
Mining Process Variants: Goals and Issues

Chen Li
University of Twente

The Netherlands
lic@cs.utwente.nl

Manfred Reichert
University of Ulm

Germany
manfred.reichert@uni-ulm.de

Andreas Wombacher
University of Twente

The Netherlands
a.wombacher@utwente.nl

Abstract
Recently, Process-Aware Information Systems (PAIS)

were introduced, which allow for dynamic process and ser-
vice changes. This, in turn, has led to a large number of pro-
cess model variants, which are difficult to maintain and ex-
pensive to configure. This paper deals with goals and issues
related to the mining of process model variants. Our over-
all goal is to learn from process changes and to ”merge”
the resulting model variants into a generic process model
in the best possible way. By adopting this generic process
model in the PAIS, future cost of process change and need
for process adaptations will decrease.

1 Introduction
In today’s dynamic business world success of an enter-

prise increasingly depends on its ability to react to inter-
nal and external changes in a quick and flexible way. In
response to this need, Process-Aware Information Systems
(PAIS) emerged, which support the modeling, orchestration
and monitoring of business processes. Recently, a new gen-
eration of flexible PAIS (e.g. ADEPT2 [2]) was introduced,
which additionally allows for dynamic process and service
changes (i.e., to insert, delete or move activities).

The ability to adapt processes at different levels, results
in collections of process model variants (process variants
for short) created from the same process model, but slightly
differing from each other. Fig. 1 depicts an example. Fig.1a
shows a high-level view on a patient treatment process as
it is normally executed: a patient is admitted to hospital,
where he first registers, then receives treatment, and
finally pays. In emergency situations, however, it might
become necessary to deviate from this model; e.g., by first
starting treatment of the patient and allowing him to register
later during treatment. To capture this behavior of the re-
spective process instance, we need to move activity receive
treatment to a position parallel to activity register. This
leads to an instance-specific process variant S′ as shown in
Fig. 1b. Generally, a large number of process variants de-
rived from the same original process model might exist [8].

S[∆>S’receive treatmentAdmitted
a) S: original process model

register pay
b) S’: final execution & change

registerreceive treatment pay AND-Split AND-Joinadmitted ∆=Move (S, register, admitted, pay) e=<admitted, receive treatment, register, pay>
Figure 1. Example of a process variant

Such process variants are expensive to configure and diffi-
cult to maintain.

An interesting approach is provided by process mining
[4]. Its key idea is to discover a process model by analyzing
the execution log of the process instances. However, only
little work considered process variant mining so far. In this
paper we deal with related issues. Our goal is to learn from
process changes applied in the past and to ”merge” the re-
sulting process variants into a generic process model which
covers these variants best. By adopting this generic process
model within the PAIS, cost of change and need for future
process adaptations will decrease. This paper deals with the
following research questions:

Why is process variant mining needed and what are the
differences between traditional process mining and the min-
ing of process variants?

We motivate the need for mining process variants and
discuss some major challenges arising in this context. The
mining algorithm itself is out of the scope of this paper (see
[9]). We have developed respective techniques and utilized
them for comparing variant mining with conventional pro-
cess mining. Sec. 2 gives background information. In Sec.
3 we discuss why process changes should be expressed in
terms of high-level change operations. Sec. 4 discusses
major goals of process variant mining and shows why it is
different from traditional process mining. Sec. 5 discusses
related work. We conclude with a summary in Sec. 6.

2 Backgrounds
We first introduce basic notions needed in the following.
Process Model. Let P denote the set of all process

models. A process model S = (N, E, . . .) ∈ P is block-
structured, where N is the set of activities and E constitutes

1

the set of precedence relations between them [2].
Process Change. A process variant results from an orig-

inal process model S by applying a sequence of changes
to it [2]. Such changes modify initial model S by alter-
ing its set of activities or by changing their order relations.
Thus, each change ∆ of a process model S consists of a
sequence of change operations and results in another pro-
cess model S′, denoted as S[∆〉S′. Examples of high-level
change operations include insert, delete, and move activity
as implemented in the ADEPT change framework [2]; e.g.,
move(S,A,B,C) means to move activity A from its cur-
rent position within S to the position after B and before C,
while operation delete(S,A) deletes A from S. Issues con-
cerning the correct use of these operations are described in
[2]. Though the depicted change operations are discussed
in relation to ADEPT, they are generic in the sense that they
can be easily applied in connection with other process meta
models (e.g., Petri Nets) as well [1]. We refer to ADEPT
since it covers by far most high-level change patterns when
compared to other approaches [1].

Distance and Bias. The distance between two process
models S and S′ is the minimal number of change opera-
tions needed for transforming S into S′. The respective se-
quence of change operations is denoted as bias between S
and S′. Generally, the distance between two process mod-
els measures the complexity for model transformation. As
example take Fig. 1. Here, distance between S and S′ is
one, since we only need to perform one change operation
move(S, receivetreatment, admitted, pay) to transform
S into S′ (see [5]).

Trace. A trace t on process model S = (N, E, . . .) de-
notes a valid execution sequence t ≡< a1, a2, . . . , ak > of
activities ai ∈ N on S according to the control flow defined
by S. All traces producible on S are summarized in set TS .

3 On Representing Process Changes

We first discuss basic aspects concerning the representa-
tion of process changes.

Why Do We Need a Change Log? Change and execu-
tion logs capture different runtime information on process
instances and are not interchangeable. Even if the origi-
nal model of a process instance is given, it is not possi-
ble to convert its change log to its execution log or vice
verse. Consider our example from Fig. 1. When apply-
ing the described change to original model S, we obtain
process variant S′ (i.e. S[∆〉S′) with change log ∆ =<
move(S, reveive treatment, admitted, pay) >. This
process variant represents an instance-specific model and
the trace of the particular instance is {admitted, receive
treatment, register, pay}. If original model S and in-
stance trace had been the only available information, it
would be not possible to determine the respective change.
Note that the process model, which can produce the given

trace, is not unique; e.g., a process model with the four ac-
tivities contained in four parallel branches could produce
this trace as well. By contrast, it is generally not possi-
ble to derive the trace of a process instance from its struc-
ture and change log, because execution behavior of S′ is
also not unique, e.g., trace < admitted, register, receive
treatment, pay > is also producible on S′.

High-level Change Operations vs. Change Primitives
We now discuss why it is beneficial to measure the distance
between process models based on high level change opera-
tions. Consider process model S from Fig. 2a, it comprises
a parallel branching (C and D may be performed concur-
rently), a conditional branching (either E or F is executed),
and a silent activity τ (depicted as empty node). Assume
that in two different scenarios high-level change operations
are applied to S resulting in variants S1 and S2 respectively:
S[∆1〉S1 with ∆1 = move(S,C,A,B) and S[∆2〉S2 with
∆2 = move(S,A,B,C). Fig. 2 additionally depicts the
change primitives representing the snapshot differences be-
tween S and variants S1 and S2 respectively. In comparison
with low-level primitives, the use of high-level change op-
erations offers several advantages:

High-level change operations with formal pre-/post-
conditions (e.g., [2]), guarantee soundness (e.g., absence of
deadlocks); i.e., their application to a sound process model
S results in another sound model S′ [2]. This also applies to
our example from Fig. 2. By contrast, when applying single
primitives, soundness cannot be guaranteed in general.

High-level change operations enable more effective user
support when compared to low-level primitives. Generally,
a high-level change operation is based on a set of primitives
which collectively realize a particular change pattern. As
example take ∆1 from Fig. 2. This operation is internally
based on 15 primitives to delete and add edges, to delete
the silent activity, and to update node types. By defining
changes with high-level operations, cost of change can be
reduced. As another benefit, high-level operations perform
model optimizations when realizing a process change. Re-
garding ∆1 from Fig. 2, for example, movement of C is
accompanied by deletion of silent activity τ , since the par-
allel branching is no longer needed.

Another important aspect concerns the number of change
operations needed to transform a process model S into an-

delEdge(StartFlow,A); delEdge(A,B); delEdge(B,C); addEdge(B,A); addEdge(A,C); addEdge(StartFlow,B)
delEdge(A,B); delEdge(B,C); delEdge(B,D); delEdge(C, τ); delEdge(D,τ); delEdge(t,E); delEdge(τ, F}; delNode(τ); addEdge(A,C); addEdge(C,B); addEdge(B,D); addEdge(D,E); addEdge(D,F); updateNodeType(D, XorSplit); updateNodeType(B, empty);GBA

C

D

E

F

DA C
E

F
B G

B
A C

D

E

F
G

Change Primitives
Change Primitives

∆1=Move (S, C, A, B)

S1: model after change ∆1
∆2=Move (S, A, B, C)

S[∆1>S1

S[∆2>S2
S: original process model S2: model after change ∆2AND-SplitAND-Join XOR-SplitXOR-Join

a) b)

Figure 2. High-Level Change Operations

other model S′. Regarding our example, for instance, we
only need one move operation to transform S to either S1

or S2. When using change primitives instead, migrating S
to S1 requires 15 primitives, while the second change ∆2

can be realized with 6 primitives. This demonstrates that
the number of change primitives needed for model transfor-
mation does not provide an adequate means to express the
difference between two process models.

How Do High-level Changes Influence Process Behav-
ior? [3] measures similarity between two process mod-
els based on their trace sets, i.e., behavioral distance be-
tween models S1 and S2 is calculated as sum of the edit
distances of all possible pairs of traces (t1,t2) with ti ∈ TSi

(i = 1, 2). Obviously, this method evaluates to what degree
the behaviors of the two process models differ from each
other rather than on what the effort for transforming one
model into another is. On the one hand, application of one
change operation can significantly modify execution behav-
ior of the respective process model. On the other hand, sev-
eral changes might be required to realize a smooth change
of the behavior of a process model. When considering the
two models from Fig. 1, we obtain behavioral distance one.
However, when performing another change S[∆2〉S′′ with
∆2 = move(S, pay, admitted, receivetreatment), be-
havioral distance between S and S′′ is four. Particularly,
when a change moves or adds activities to parallel branches,
the number of possible traces grows exponentially.

In our approach, we focus on the relationship between
behavior of process models and biases.

4 Mining Process Variants

So far, we have motivated the need for representing pro-
cess changes in terms of high-level change operations. This
section discusses the major goal of mining process variants,
namely to derive a generic process model out of a given col-
lection of process variants. This shall be done in a way such
that the different process variants can be efficiently config-
ured out of the generic model. We measure the efforts for
respective process configurations by the number of change
operations needed to transform the generic model into the
respective model variant. The challenge is to find a generic
model such that the average number of change operations
needed (i.e., the average distance) becomes minimal.

To make this more clear, we compare process variant
mining with traditional process mining. Obviously, input
data for process mining and process variant mining dif-
fer. While traditional process mining operates on execution
logs, mining process variants is based on change logs (i.e.,
the process variants we can obtain from them). In princi-
ple, methods like alpha algorithm or genetic mining [4] can
be applied to our problem as well. For example, we could
derive all traces producible by a given collection of process
variants [3] and then apply existing mining algorithms to

them. To make the difference between process mining and
process variant mining more evident, in the following, we
consider behavioral similarity between two process models
as well as structural similarity based on their bias.

The behavior of a process model S can be represented
by the trace set TS it can produce. Therefore, two models
can be compared based on the difference between their trace
sets [3, 4]. By contrast, biases is used to express (structural)
distance between two process models based on model trans-
formations [5]. While process variant mining addresses
structural similarity, traditional process mining focuses on
behavior. Obviously, this leads to different choices in algo-
rithm design and also different mining results. Fig. 3 shows
one example. Assume that 55 process instances are running
on process variant S1 and 45 instances on variant S2. If we
focus on behavior, like existing process mining algorithms
do [4], the discovered process model will be S; all traces
producible on Si (i = 1, 2) can be produced on S as well,
i.e. TSi ⊆ TS (i = 1, 2). However, if we adopt S as refer-
ence model, all instances running on S1 or S2 will have non-
empty bias. The average weighted distance between S and
Si (i = 1, 2) is one; i.e., for each process instance we need
on average one high-level change operation to configure S
into Si (i = 1, 2) (S[∆1〉S1 with ∆1 = move(S,B,A,C)
and S[∆2〉S2 with ∆2 = move(S,B,C,D)).

By contrast, if the goal is to reduce the average dis-
tance between genetic model and process (instance) vari-
ants, we should choose S′ as reference model. Though S′

does not cover all traces S1 and S2 can produce, average
distance between generic model and process instances be-
comes minimal. More precisely, the average distance be-
tween S′ and instances running either on S1 or S2 is 0.45;
while S′ = S1, we only need to move B for the 45 instances
based on S2, i.e. S′[∆′〉S2 with ∆′ = move(S′,B,C,D).
Though S′ cannot cover all traces variants S1 and S2 can
produce, adapting S′ rather than S as new reference model
requires less efforts for process configuration, since the av-
erage weighted distance between S′ and the instances run-
ning on both S1 and S2 is 55% lower than when using S.

Our discussions on the difference between behavioral
and structural similarity also demonstrate that current pro-
cess mining algorithms do not consider structural similarity
based on bias and change distance. We give an example to
illustrate the basic goal as well as relevant issues and chal-

A B C D

A C B D

S1
S2

A B C D

Focus on behavior

Focus on biases

55 instances

45 instances

A D

B

C
S

S’

Biases exist: 100 Executions cover: 100%

Biases exist: 45 Executions cover: 55%

Process variants Reference model

Figure 3. Mining focusing either on behavior
or minimization of biases

lenges for mining process variants. Consider Fig. 4 and
assume that process model S defines a standard business
process. Six process variants Si (i = (1, . . . , 6)) have been
configured out of S. Furthermore, on each of these variants
several instances are running. A simple statistics is given
to show the respective ratio (e.g., 30% of all instances are
running on variant S1 and 8% on S5). Based on the rela-
tive frequency of each process variant (i.e., its weight), the
weighted average number of changes required for config-
uring the six process variants is 1.5. This means we have
to perform on average 1.5 changes on original model S in
order to configure these process variants out of it.

When mining the six variants by our approach [9], we
obtain process model S′ as result (cf. Fig. 4). This model
S′ is better in the sense that it can reduce average distance
process variants have with respect to a reference process
model (if using S′ instead of S as reference model). The
weighted average number of change operations (i.e., aver-
age distance between reference model and process variants)
then decreases from 1.5 to 1.15 (cf. Fig. 4).

We also compared our result with the models obtained
through process mining algorithms, like Alpha and Al-
pha++ algorithms, Heuristic mining and Genetic mining
(see them at [4]). We first enumerate all traces producible
on the six variants, and use these traces as the input of the
process mining algorithms. Afterwards, we measure the re-
sult by computing average weighted distance between the
discovered models and the 6 process variants. Evaluation
results show that the process model discovered using our
approach has shortest average weighted distance to the pro-
cess variants (see [9] for details).

5 Related Work
A variety of techniques for process mining has been sug-

gested in literature [4]. As illustrated in this paper, tradi-
tional process mining is different from process variant min-

S1: 30%
S2: 15%S3: 20%

S4: 20%
S5: 8%

B C

E
A D

DA C B E

A
D

E
B C

B EA
C

D

A B C D ES: Original process model
σ1 =< Move (S, E, A, D) > σ4 =< Move (S, C, B, E) >

σ2 =< Move (S, D, B, C), Move (S, E, B, C) > σ3 =< Move (S, C, A, B), Move (S, E, B, D) >

Process Variants

Process Adaptations

σ5 =< Move (S, D, E, End), Delete (S, C) > A B E DS6: 7%σ6 =<Delete (S, B), Move (S, E, C, D)> A C E D

A B C E DS’: Discovered process modelChange Mining
Schema Evol
ution

S[∆
>S

’ :
∆=

Mo
ve

 (S
, D

, C
, E

)

Average weighted distance: 1.5 changes / instance

Average weighted distance:
1.15 change/ instance

I1: 30%I2: 15%I3: 20%I4: 20%I5: 8%I6: 7%
Biases after process evolutionσ'1 =< Move (S’, E, A, D) > σ'2 =< Move (S’, D, B, C), Move (S’, E, B, C) > σ'3 =< Move (S’, C, A, B) > σ'4 =< Move (S’, C, B, E) > σ'5 =<Delete (S’, C) > σ'6 =<Delete (S’, B)>

Propagate schema change
6

A Admitted to hospital B Register
C Receive treatment D Give feedback E Leave

Figure 4. One example

ing due to its different goal and inputs. A few techniques
have been proposed to learn from process variants by min-
ing change primitives [6]. However, this approach does not
consider important features of process meta model; e.g., it
is unable to deal with silent activities or loop backs, and
does also not differentiate AND- and OR-splits. Similar
techniques for mining change primitives exist in the fields
of association rule mining and maximal sub-graph mining
[7]; here common edges between different nodes are dis-
covered to construct a common sub-graph from a set of
graphs. None of the discussed approaches aims at creating a
generic process model, which allows for easy and optimized
configuration for process variants.

6 Summary and Outlook
We have motivated the need for process variant mining,

discussed its major goals as well as relevant issues, and
elaborated its differences when compared to traditional pro-
cess mining. Basically, as input our approach takes a col-
lection of process variants, and then produces a generic pro-
cess model as output which covers these variants best; i.e.,
the generic model has minimal average distance to process
variants. Note that this will reduce adaptation and config-
uration costs as well. When comparing our approach with
traditional mining techniques, we can see that the latter do
not satisfy the need for deriving a process model which is
easy configurable. This justifies the efforts for designing
specific algorithms for process variant mining, which we
will present in other papers.

References
[1] B. Weber, S. Rinderle, M. Reichert: Change Patterns and

Change Support Features in Process-Aware Information
Systems. CAiSE’07, LNCS 4495, 2007, pp. 574-588

[2] M. Reichert and P.Dadam. ADEPTflex - Supporting Dy-
namic Changes of Workflows Without Losing Control. Jour-
nal of Intelligent Information Systems, 10(2):93–129, 1998.

[3] A.Wombacher, M.Rozie: Evaluation of Workflow Similarity
Measures in Service Discovery. Service Oriented Electronic
Commerce 2006: 51-71

[4] http://ga1717.tm.tue.nl/wiki/
[5] C.Li, M.Reichert, A.Wombacher. Process Similarity Based

on High Level Change Operations. CTIT Technical Report,
University of Twente, The Netherlands.

[6] J.Bae, L. Liu, J. Caverlee, W. B. Rouse: Process Min-
ing, Discovery, and Integration using Distance Measures
ICWS06, pp. 479-488, 2006

[7] P. Tan, M. Steinbach, V. Kumar: Introduction to Data Min-
ing. Addison Wesley, 2006.

[8] R. Lu, S.W. Sadiq: Managing Process Variants as an Infor-
mation Resource. BPM’06, LNCS 4102, pp 426-431, 2006

[9] C. Li, M. Reichert, A. Wombacher: Discovering Process
Reference Models from Process Variants Using Clustering
Techniques. TR-CTIT-08-30. University of Twente. 2008.

