
Supporting Flexible Processes with
Adaptive Workflow and Case Handling

Christian W. Günther∗, Manfred Reichert†, Wil M.P. van der Aalst∗
∗Eindhoven University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

Email: {c.w.gunther, w.m.p.v.d.aalst}@tue.nl
†University of Ulm, Institute of Databases and Information Systems, 79069 Ulm, Germany

Email: manfred.reichert@uni-ulm.de

Abstract—Workflow management technology has profoundly
transformed the way complex tasks are being handled in modern,
large-scale organizations. However, it is mostly those systems’
inherent lack of flexibility that hinders their broad acceptance,
and that is perceived as annoyance by users. In this context,
Adaptive Process Management and Case Handling provide two
very different paradigms, which both attempt to make process
management more flexible and user-friendly. In this paper, we
compare strengths and weaknesses of these two paradigms, and
point out situations in which each is particularly appropriate. We
further outline ways, in which either technology can be enhanced
by crucial concepts from the other. This integration of flexibility
approaches has the potential to remedy fundamental problems
still present in each technology on its own.

I. INTRODUCTION

Workflow management (WfM) technology has been a
tremendous boon for organizations handling complex and
long-running processes. Its fundamental idea is quite simple:
The process is broken down into small and quickly manageable
tasks. Also, the organizational structure (i.e., roles and groups)
and actor assignments need to be specified. Based on this
information, the Workflow Management System (WfMS) is
able to control and monitor the execution of the process, to
activate tasks as soon as they become available, and to assign
them to appropriate users [10]. The benefits of this approach
are obvious. Users of a WfMS can work more autonomously,
the system facilitates the exchange of case-related information,
and it becomes easier for the management to monitor the
progress of all tasks. However, there is also a serious downside
to this approach. Once an operational process is implemented
based on a traditional WfMS, it is very hard to modify it. With
often thousands of running cases (i.e., instances) of a process,
it is seemingly impossible for a process (re-)designer to take
into account all implications of his changes.

Changes to a process can be classified into two major
groups. Exceptional change is characterized by rare and un-
foreseen events during process execution, which require the
process to be “bent” in order to fit the case in question [12].
Evolutionary change, on the other hand, describes a planned
migration of a process to an updated schema version which,
for example, implements new legislation, corporate policy, or
best practices [5], [7], [14]. Both of these change classes
require specific capabilities of the system supporting them.
In case of exceptional changes, it is imperative to handle

them quickly and effortless, otherwise users will rather bypass
the system [16]. For evolutionary change, the most important
requirement is that all running cases can be transferred to the
new process definition correctly and automatically. It is often
impossible to handle such a transition manually, and every
error in migrating cases can result in costly downtime.

Many approaches have been proposed to deal with the
problem of change in a WfMS [2], [18], [20], [5], [7], [14],
yet at this point in time, none of them has seen widespread
acceptance nor significant market penetration. One quite recent
approach are Worklets, which have been implemented in the
YAWL system [4]. The basic idea of worklets is to introduce
a flexible hierarchy to process definitions. On a high level, the
process is designed with generic activities, whose implemen-
tation is left open. These “gaps” are dynamically filled with an
implementation at runtime, whereas there may be multiple im-
plementations for each high-level activity. A similar approach
is provided by Pockets of Flexibility [15] and MOVE [8].
While these approaches are an adequate solution for many
situations, they require the points of flexibility (i.e., where
deviation is supposed to occur) to be known in advance. Case-
Based Reasoning (CBR) has also been proposed as a solution
for managing processes in a more flexible manner [19]. The
solution to a given problem is derived from a set of cases,
which had been successfully executed previously. The problem
with CBR-based approaches is their reliance on a sufficiently
large set of “trustworthy” cases. Further, users will need to
be given significant freedom in adapting cases, defying the
widespread desire to retain a certain amount of control.

In this paper, we focus on two of the more successful ap-
proaches for providing flexibility in process execution, which
have also gained significant adoption in industrial practice:
Adaptive Process Management and Case Handling. The two
subsequent sections introduce these concepts in more detail,
followed by an assessment of their strengths and weaknesses
in Section IV. Section V discusses potentials for integrating
concepts from both approaches in order to overcome these lim-
itations, before Section VI closes the paper with conclusions
and an outlook on future work.

II. ADAPTIVE PROCESS MANAGEMENT

The principle of production workflow is based on atomic,
strictly defined activities, whose precedence relations are or-

ganized in a rather rigid process model. This model fares well
for relatively stable types of processes (e.g., manufacturing
processes), which rarely need to be updated. Also, when cases
typically have a rather short runtime, the usual solution for
dealing with (evolutionary) change is to finish the already
running cases according to the old process definition, while
newly started cases follow the updated process.

However, there are many application domains with long-
running cases, such as insurances, health care treatments,
judicial court cases, and the like. When a law is being passed
that affects a certain type of insurance, it is often no option
to treat already running insurance cases without taking this
new law into account. Comparable problems may arise from
changes in corporate policies, mergers and acquisitions, and
the general evolution of rules and norms in society. These
situations are classified as evolutionary change (cf. Section I),
meaning that a general adaption of the process, including
presently running and future cases, is desired [5], [7], [14].

The second important category is ad-hoc change, describing
an exceptional modification of a small subset of cases [12].
Some extraordinary situations, such as time pressure, excep-
tions, or specific customer demands, require an organization
to respond quickly and non-bureaucratically. Yet, if employees
have to follow a rigidly specified process definition which
conflicts with that goal, oftentimes they simply choose to
bypass the system, solving the problem “behind its back”. One
problem resulting from this conflict is, that such cases can
no longer be correctly monitored and traced, as they are not
faithfully represented in the system. The fundamental problem,
though, is that the production WfMS, intended to help and
serve the workforce, becomes a pain and a burden to use.

Adaptive Process Management (APM) constitutes an evolu-
tionary extension of the production workflow paradigm which
intends to remedy the deficiencies related to dynamic process
change. While there exist a number of alternative “flavors” of
APM [14], [19], [20], this paper concentrates on the approach
implemented in the ADEPT system [12], [13]. The ADEPT
approach is based on a simple, block-structured process model
notation, i.e. blocks of parallel or alternative behavior have
single, dedicated start and end points, and are mutually dis-
joint. Activities may be equipped with pre- and postconditions,
defining whether they are valid within their given context in
the process model. These properties allow to define correctness
criteria for basic change operations, such as moving an activity
to a new position in the process, removing it, or inserting
a new activity. From these basic change operations, higher-
level modifications can be compiled (e.g., skipping part of the
process in order to execute a later activity first). In combination
with correctness checks, this model allows end users of the
system to intuitively, interactively, and quickly perform ad-hoc
changes to single cases, while ensuring that the result will still
be able to execute properly [12].

Moreover, the ADEPT framework also allows for the
implementation of evolutionary change in a comparatively
straightforward fashion. When a process designer applies
modifications to a process on the type level (i.e., affecting the

general definition of a process, including all cases), he enjoys
the same support of pervasive correctness checks, ensuring
the final result is a valid process model. On top of that,
ADEPT can also check all running cases of the original
process definition, whether they can be safely transferred to
the modified version (and perform this transfer automatically).
The combination of intuitive change operations with pervasive
correctness checks makes ADEPT an environment which is
actively supporting change, rather than punishing it with
maintainability nightmares.

Other examples for APM implementations are WASA2 [20],
WIDE [6], CAKE2 [11], and CBRFlow [19].

III. CASE HANDLING

While production workflow, emphasizing the routing be-
tween atomic activities, is strongly process-oriented, the case
handling paradigm focuses mainly on the case itself [1], [3].
The case is the primary object to be manufactured, e.g. the
outcome of a lawsuit or the response to a customer request.
Thus single activities diminish in importance in favor of the
larger context. They are no longer considered to be atomic
steps that have to be performed in an “all or nothing” manner,
but rather make up the logical partitions of work between
which a transition from one worker to another is possible.

Like in traditional WfM there exists a set of precedence re-
lations between single activities making up a process. However
the primary driver for progress is no longer the event related to
explicit activity completion, but the availability of values for
data objects. While production workflow clearly separates the
process from associated data, Case Handling integrates both
far more closely, using produced data not only for routing
decisions, but also for determining which parts of the process
have already been accomplished. With Case Handling, each
task is associated to three sets of data objects, each for distinct
purposes. The first association is between a task and all data
objects that shall be accessible while performing this task.
Further on, all data objects mandatory for a task have to be
set (i.e., bound to a value) before the task itself is considered
to be accomplished by the system. Finally, every data object
can have a random number of tasks to which it is restricted,
meaning that it can only be altered while performing one of
these tasks. User-interactive tasks are connected to a form,
each providing access to a selection of data objects. Note that
one form can be associated to multiple tasks. Furthermore it
is possible to associate a form to the case itself, i.e. the case
can be accessed at any point in time.

In order to provide an abstract introduction into the basic
principles of the Case Handling paradigm, Figure 1 shows a
simplified example of a case type, the Case Handling analogy
to a workflow process definition: Three tasks A, B and C
are making up the process, sequentially chained by causal
relationships denoted by connecting arrows. Their mandatory
relationships to the three data objects x, y and z below are
denoted by curved arcs, as are their associations with the
forms M and N . As can be seen in the illustration, tasks
A and B share the same form M , providing access to data

Fig. 1. Simplified example case type

objects x and y. If a properly authorized worker now starts
handling task A, the associated form M will open and he
will start providing values for the presented data objects. In
a traditional WfMS activity A would not be finished before
form M is closed. However the Case Handling system regards
A as being finished as soon as a value for x has been provided
(and confirmed appropriately), automatically enabling task B
in the background. If the worker would now close form M ,
another employee could pick up the case where he left it,
starting task B, which would provide the same form M with
x having a value filled in (that could now be changed again).
Another possibility, however, is that the first worker keeps on
handling the form, providing also a value for y. This would
correspondingly trigger the auto-completion of task B (as all
associated mandatory data elements have been provided) and
activate task C. Note that if a worker closes a form after filling
out only parts of the mandatory data fields of a task, despite
the task not being considered as finished, data already entered
will remain available to the person continuing to work on that
task. Such closely intertwined relationship between data and
process obviously abandons their, often unnatural, separation
so rigidly pursued in traditional WfM. With the status of case
data objects being the primary determinant of case status, this
concept overcomes a great deal of the problems described in
the introduction:

• Work can now be organized by those performing them
with a far higher degree of freedom. Activities can either
be performed only partially, without losing intermediary
results, or multiple related activities can be handled in
one go, surpassing the weakened border between tasks.

• Routing is no longer solely determined by the process
model. Case types can be designed in such a way, that
multiple activities are enabled concurrently, providing
different ways of achieving one goal.

In addition to the execute role, specifying the subset of
resources allowed to handle a specific task, the Case Handling
principle introduces two further roles crucial for operation.
The skip role allows workers to bypass a selected task, which
could be interpreted as an exception. Exceptions, like skipping
a background check for trusted clients, are likely to occur
quite frequently. The ability to grant the skip role to a senior
worker renders the necessity for implementing such bypass

obsolete, thus greatly simplifying the whole case type. It has
to be noted that in order to skip a taks all preceding tasks that
have not been completed yet have to be skipped (or completed)
beforehand. This is necessary to ensure an unambiguous state
of the process. Traditional workflow definitions use loops
for repeating parts of the process, e.g. because they have
not yielded an expected result. Case Handling obsoletes such
construct by the introduction of a redo role, enabling its
bearer to deliberately roll the case’s state back and make
a task undone. In doing so, the values provided for data
objects during this task are not discarded but merely marked as
unconfirmed, so that they serve as template when re-executing
the affected task. Similar to skipping, before a task can be
redone all subsequent tasks that have already been completed
need to be rolled back as well before.

Intertwining authorization with distribution of activities has
been one major flaw of traditional workflow technology. In
a Case Handling system, the former in-tray, i.e. a list of
all activities the user is authorized to perform and that he
can choose from, has been replaced by a query mechanism.
This tool can be used to look for a specific case, based on
certain features (e.g. case data, or enactment meta-data like
the start date of a case instance). Moreover it can be used to
create predefined queries tailored to each worker (or, group
of workers). A manager is no longer overwhelmed with all
possible activities that he can perform, but only those which
require a certain role (or, e.g., case instances of an order
where the combined value exceeds $1000). Obviously the
query mechanism can also be used to perfectly imitate a classic
in-tray, as found in a traditional WfMS, if required.

IV. STRENGTHS AND WEAKNESSES

Both Adaptive Process Management and Case Handling
have proven to be viable, flexible alternatives to rigid pro-
duction workflow, providing effective means for addressing
dynamic change. However, their basic approaches differ sig-
nificantly, which leads to very particular “flavors” of flexibility.
This section explores the relative advantages and downsides
of each technique, positioning them for specific applications.

A. Adaptive Process Management

The approach for providing flexibility in Adaptive Process
Management reveals its strong heritage from traditional WfM.
As such, the problems of rigid solutions are addressed from
within the paradigm of WfM, while its well-known metaphors
(e.g., defined activities, explicit control flow specification)
remain perfectly valid. Although often overlooked, this is
probably one of the strongest points of this approach in
practice, rendering this technique a highly suitable solution
for organizations already familiar with the WfM paradigm. It
allows for a smooth transition and prevents lengthy periods of
adjustment (as necessary with more revolutionary approaches).

One particular advantage, derived from this property, is
that process owners (i.e., the management) retain tight control
over their processes. The ability to modify both single cases
and complete process types can be restricted to a subset of

trusted employees [17]. That way, flexibility may be gained
in a controlled manner, limited to problematic situations and
skilled personnel. The value of this feature is not in keeping
a tight grip on your workforce’s actions, but in ensuring
accountability and the adherence of operations to certain
standards or regulations. If each case’s process model were to
look different, it would be rather difficult to retain an overview
on the state of affairs and the progress of individual cases.
For example, by enforcing that the process definition always
contains a defined set of milestones (i.e., points in the process
where a well-known state is supposed to be accomplished),
it is ensured that monitoring the operational state of the
organization is possible (albeit, on a coarser-grained level).

In large organizations, it is often infeasible to train every
single employee, such that he is able to master modifying
the process model of a case. Being able to limit the set
of personnel authorized to perform such changes allows to
concentrate this training (which may also involve legal matters,
organizational policies, etc.) on a dedicated group of employ-
ees. There are situations, however, where employees will be
very vocal on working autonomously, and not be pressed into
working according to a predefined process. One example of
this are hospitals, which need to adhere to medical guidelines
and legal frameworks, yet are facing the resistance of doctors
having strong opinions about their personal, preferred way
of working. Adaptive Process Management can alleviate such
conflicts, whereas a possible compromise may be to allow such
employees the rights to adapt “their” cases.

The medical field is, in general, an excellent example for
the suitability of Adaptive Process Management, which we
will use to summarize and highlight the most useful traits of
this approach [9].

• Compatibility: Medical guidelines, which model the se-
quence of steps in treating a specific kind of illness, are
ubiquitous in the medical domain, and strongly resemble
traditional workflow definitions. If an organization is
already subscribed to the workflow paradigm, APM offers
a straightforward migration path.

• Strict definition: While changes to a process model are
possible, the default behavior of an APM system is to
support a rigid, strictly defined process. This is important
when there are strict guidelines or laws to abide, as is
common in the medical domain.

• Exception handling: Especially in emergency situations,
being able to deviate from prescribed procedures in a
quick and well-supported fashion can be essential. Pro-
viding these means, together with integrated correctness
checks, APM facilitates the work of doctors while helping
them to not overlook potential problems.

• Accountability: As a highly sensitive domain, medical
institutions such as hospitals always need to be able to
lay out their procedure in a specific case. Being able
to limit the authority to perform process modifications
allows them to prevent too much variation.

• Retention of control: While flexibility is a necessity of
hospitals, there are also requirements to keep process

modifications under control. APM can be used to mirror
the traditional structure of an organization, e.g. so that
doctors may choose to ignore certain guidelines, while
nurses do not enjoy this privilege.

• Type migration: Changes in legislation, scientific ad-
vances, and evidence-based medicine are constantly
changing the way work is supposed to be performed in a
hospital. Being able to perform the necessary adaptations
once, and having all currently running cases benefit from
them immediately, is often a necessity.

While hospitals, where doctors are usually very well aware
of the standard procedures, are highly suitable for Adaptive
Process Management, this approach may be rather problematic
for domains where the processes are more tacit and vari-
able. Employees which are neither aware of the complete
process, nor have any knowledge about process specification
and correctness criteria, will have a hard time implementing
even small modifications. If such tacit understanding of the
process is combined with a high variability, where deviations
occur on a frequent basis, the application of Adaptive Process
Management may be bound to fail. It is also important to
point out that one of the greatest strengths of this approach
is being able to support rigidly specified, control flow-driven
processes. Flexibility is rather an “add-on” to this basic
feature. Some processes are, by nature, neither well-structured,
nor primarily reliant on pure control flow. For such processes,
Adaptive Process Management will introduce similar problems
as traditional workflow management technology – the fact that
it also brings tools to remedy these problems is not particularly
worthwhile here.

In such situations, it is advisable to choose a less rigid
solution which better respects the inherently flexible, data-
driven nature of the process. This is one of the main strengths
of Case Handling, which will be covered in the following
subsection.

B. Case Handling

Adaptive Process Management remedies the problem of
dynamic change in the environment by providing means to
modify the process definition during execution. In contrast
to this approach, Case Handling addresses the same problem
by anticipating volatile environments and thus avoiding the
need for process modification. The fundamental property of
Case Handling supporting this approach is its strong reliance
on the case metaphor, where the importance of activities is
diminished in favor of the global context, and its use of data
dependencies as primary driver of the process. These two
features are a perfect match for many knowledge-intensive
industries, such as insurance, governmental bodies, or call
centers. The case corresponds to, e.g., an insurance claim, cus-
tomer request, etc. Additionally, handling such cases is mainly
performed from within the system itself, i.e. the outcome of
activities is completely represented in the system by the data
produced (as opposed to a healthcare process, for example,
where the main effects are not visible within the WfMS).

We use the example of an insurance company to illustrate
some of the strong points of Case Handling:

• Case metaphor: The case, as an insurance claim of a
client which needs to be handled, fits naturally into
the system. Usually, employees are familiar with this
metaphor and will need little training in order to become
acquainted with a Case Handling System.

• Data as the main driver: All “products” which are used or
manufactured while handling a case are contained within
the case itself as data (e.g., address, claim value). The
concept that a certain state in the process is reached
when a set of data becomes available (e.g., a letter can be
sent once the address is known), also fits the application
area naturally. This makes processes easier to design, and
easier to understand for workers familiar with the domain.

• Weak activity boundaries: Activities are metaphors used
to structure complex processes. The way in which a
designer perceives a process to be partitioned into activi-
ties does not necessarily coincide with the perceptions
of all employees. An employee may prefer to handle
two activities in one go, or see that he cannot finish an
activity mid-way. In a Case Handling system, this will not
affect the correctness of the process, and will be handled
transparently to the end user.

• Skip and redo roles: These roles are mostly necessary for
responding to exceptions, e.g. when a deadline needs to
be met. Thus, it is natural not to model these exceptions
explicitly (i.e., using loops and bypass paths), but to
instead use generic skip and redo operations on an as-
needed basis. These roles can be assigned to superiors,
who will need to acknowledge exceptions anyway.

• Case query: While a simple change from the classical
in-tray of WfMSs, the case query makes a profound
difference for end users. Work is no longer “pushed”
to them by the system, but employees can look for
specific types of work to perform which better fits their
interests, skills, or simply their current mood. Rather than
controlling the workforce in a mechanical way, the system
becomes a discreet aid in accomplishing one’s tasks.

Obviously, these benefits vanish if Case Handling is used
in a context which is neither data-driven, nor has a natural
case metaphor. Apart from this more general issue, there are
a number of shortcomings in this approach which may pose
limitations. One of these limitations is directly related to the
strong role of the case metaphor, where the user handling a
case has access to all information at once. This feature requires
the case to be exclusively locked while being handled, which
makes it impossible to handle a case concurrently.

Also, while the weak activity boundaries and data-driven
nature of Case Handling largely prevent the need for explicit
change, there are situations which require modification of the
process definition. In this respect, a Case Handling system
performs like a traditional WfMS – modified case types may
only be used by newly started cases, while running cases need
to follow the old definition. There are ways to work around this

problem, e.g., by using global case forms to perform additional
actions, or using the skip role to bypass legacy parts of the
process. However, they remain “hacks” of the paradigm, which
essentially does not support such situations.

The next section explores how ideas from Case Handling
and Adaptive Process Management may be integrated, in
order to overcome some of the shortcomings described, and
to provide a more complete solution for realizing flexible
processes.

V. INTEGRATION OF APPROACHES

Although Adaptive Process Management as well as Case
Handling are successful at overcoming many problems, which
occur when inherently flexible processes “clash” with tradi-
tional production workflow, we have seen that both paradigms
also come with their specific shortcomings. While some of
these problems are inherent to the fundamentals of the re-
spective approach, others can be resolved with relatively small
extensions. In this section, we explore how ideas from each
approach can be introduced into the respective other approach,
to remedy some of the described problems.

The rigid nature of process definitions does not necessarily
constitute a problem in an APM system. It may even be
desirable for applications, for which a larger degree of control
and accountability becomes necessary. For many situations, the
erosion of activity boundaries as provided by Case Handling
is very beneficial, in the sense that it often avoids the need for
explicit change in the first place. Integrating data as a primary
driver to Adaptive Process Management would introduce this
feature, and enable users to work in a more case-based
manner in which they are less aware of the single activities
handled. Much in the same way, it would also be rather
trivial to introduce skip and redo roles to Adaptive Process
Management. Many exceptional situations do not require the
process model to be explicitly changed, it is just necessary
to deviate on an ad-hoc basis. By mapping the effect of skip
and redo actions onto equivalent modifications of the process
model, their correctness can be ensured on the fly. In an
Adaptive Process Management system, introducing data as a
driver and dedicated skip and redo roles could serve as the
“poor man’s flexibility”, as they do not require the end user
to know anything about process design or correctness.

In addition, it would be straightforward to provide case
queries instead of, or in addition to, the standard in-tray for
providing work items. Although technically very similar to a
push model, the query mechanism is a powerful means for end
users to customize the system and to use it in a flexible way.
On top of this, querying for work instead of having it assigned
by the system makes a profound difference on a psychological
level, putting the employee back in control.

The worst problem of the Case Handling approach is
probably its inability to modify case types on the fly, and
to migrate running cases to an updated case type. If one were
to implement such a change manually, it could however be
accomplished in a rather simple, although tedious, manner:
The new case type is designed, based on the previous version,

and a new case is instantiated from it. Subsequently, all data
from the (old) case in progress is entered into the new instance.
The system will then auto-complete all tasks, for which data
dependencies have been satisfied, essentially re-creating the
state of the previous instance. From then on, the old case may
be removed from the system, while work continues on the new
instance, following the updated case type definition.

It is obvious that this procedure, besides the actual change of
the case type, can equally be performed in a (semi-)automatic
fashion by the Case Handling system itself. When problems
occur during the replay of the old case (i.e., transferring
its data values and auto-completing satisfied tasks), these
problems can be resolved manually. Note that this approach
cannot match the ease of performing the same action in
an Adaptive Process Management system, as there are no
correctness checks which could aid the user in redesigning
the case type. However, it is certainly feasible to implement
with comparably little effort, and would bring tremendous
advantages when explicit change to the case type is required.

VI. CONCLUSION AND OUTLOOK

In this paper, we have presented two relatively mature
and successful approaches for dealing with flexibility in pro-
cess management, Adaptive Process Management and Case
Handling. Adaptive Process Management can be seen as an
evolutionary technique, solidly based on traditional workflow,
while extending it with features to dynamically and safely
adapt the process definition at any point in time. Case Handling
follows a more revolutionary approach, departing from the
rigid structure of traditional workflow processes and their strict
separation of data and control flow. We have discussed both
approaches, comparing them with respect to their strong and
weak points. While either of them can be applied in practically
any setting, their respective strengths will only be able to play
out to the fullest if combined with an appropriate domain.
When applied to such appropriate domains the respective
weaknesses of either approach are mostly negligible, however,
there are a number of domains which fit neither approach
perfectly. In Section V we have presented a number of ideas to
integrate fundamental ideas of either approach into the other.
Such extension will benefit the practical usability of both
approaches, alleviating many of the identified downsides of
each. The aim of our proposed integration is not to merge the
approaches, but the proposed extensions have the potential to
significantly increase the “radius” of application domains for
each approach. Specialization and customization of process
management for various domains should be welcomed, and
appropriately supported with data interchange standards.

Future work should concentrate on approaches to further
alleviate the downsides of each approach, and on making
flexibility and change more of a transparent action in the
process management system. Systems will need to be designed
for coping with a flexible world, instead of forcing the envi-
ronment into their limited paradigms. This is ultimately a re-
quirement for the success of process management technology.

Acknowledgements: This research is supported by the Tech-
nology Foundation STW, applied science division of NWO and
the technology programme of the Dutch Ministry of Economic
Affairs.

REFERENCES

[1] W.M.P. van der Aalst and P.J.S. Berens. Beyond Workflow Management:
Product-Driven Case Handling. In S. Ellis, T. Rodden, and I. Zigurs, ed-
itors, International ACM SIGGROUP Conference on Supporting Group
Work (GROUP 2001), pages 42–51. ACM Press, New York, 2001.

[2] W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change:
Identification of Issues and Solutions. International Journal of Computer
Systems, Science, and Engineering, 15(5):267–276, 2000.

[3] W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling:
A New Paradigm for Business Process Support. Data and Knowledge
Engineering, 53(2):129–162, 2005.

[4] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst.
Worklets: A Service-Oriented Implementation of Dynamic Flexibility
in Workflows. In R. Meersman and Z. Tari et al., editors, OTM
Confederated International Conferences, CoopIS 2006, volume 4275 of
Lecture Notes in Computer Science, pages 291–308. Springer-Verlag,
Berlin, 2006.

[5] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. Data
and Knowledge Engineering, 24(3):211–238, 1998.

[6] F. Casati, P. Grefen, B. Pernici, G. Pozzi, and G. Snchez.
Wide workflow model and architecture. Technical report, Diparti-
mento di Elettronica e Informazione, Politecnico di Milano, 1996.
http://dis.sema.es/projects/WIDE/Documents/ase30 4.ps.gz.

[7] C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within
workflow systems. In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos,
and S. Kaplan, editors, Proceedings of the Conference on Organizational
Computing Systems, pages 10 – 21, Milpitas, California, August 1995.
ACM SIGOIS, ACM Press, New York.

[8] T. Herrmann, M. Hoffmann, K.U. Loser, and K. Moysich. Semistruc-
tured models are surprisingly useful for user-centered design. In G. De
Michelis, A. Giboin, L. Karsenty, and R. Dieng, editors, Designing Co-
operative Systems (Coop 2000), pages 159–174. IOS Press, Amsterdam,
2000.

[9] R. Lenz and M. Reichert. It support for healthcare processes - premises,
challenges, perspectives. Data Knowl. Eng., 61(1):39–58, 2007.

[10] F. Leymann and D. Roller. Production Workflow: Concepts and
Techniques. Prentice-Hall PTR, Upper Saddle River, New Jersey, USA,
1999.

[11] M. Minor, D. Schmalen, and A. Koldeho. A workflow supported by a
suspension. In WETICE, 2007.

[12] M. Reichert and P. Dadam. ADEPTflex - Supporting Dynamic Changes
of Workflows Without Loosing Control. Journal of Intelligent Informa-
tion Systems, 10(2):93–129, 1998.

[13] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process
management with adept2. In Proc. 21st Int’l Conf. on Data Engineering
(ICDE’05), pages 1113–1114, Tokyo, 2005.

[14] S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria for
Dynamic Changes in Workflow Systems – A Survey. Data and
Knowledge Engineering, Special Issue on Advances in Business Process
Management, 50(1):9–34, 2004.

[15] S. Sadiq, W. Sadiq, and M. Orlowska. Pockets of flexibility in workflow
specification. In ER, pages 513–526, 2001.

[16] D.M. Strong and S.M. Miller. Exceptions and exception handling in
computerized information processes. ACM Transactions on Information
Systems, 13(2):206–233, 1995.

[17] B. Weber, M. Reichert, W. Wild, and S. Rinderle. Balancing flexibility
and security in adaptive process management systems. In OTM Confer-
ences (1), pages 59–76, 2005.

[18] B. Weber, S. Rinderle, and M. Reichert. Change patterns and change
support features in process-aware information systems. In CAiSE, pages
574–588, 2007.

[19] B. Weber, W. Wild, and R. Breu. CBRFlow: Enabling adaptive workflow
management through conversational case-based reasoning. In Proc.
Eurpean Conf. on Case–based Reasoning (ECCBR’04), pages 434–448,
Madrid, 2004.

[20] M. Weske. Formal foundation and conceptual design of dynamic
adaptations in a workflow management system. In Proc. Hawaii
International Conference on System Sciences (HICSS-34), 2001.

