
Supporting Adaptive Workflows in
Advanced Application Environments

Manfred Reichert, Clemens Hensinger, Peter Dadam
Department Databases and Information Systems

University of Ulm, D-89069 Ulm, Germany
Email: {reichert, hensinger, dadam }@informatik.uni-ulm.de

Abstract

The need for supporting adaptive workflows (WFs)
is widely recognized. For many business processes
(BPs) it is nearly impossible to consider all possible
task sequences already at the design level. Besides this,
ongoing business cases may also have to be adapted to
organizational and functional changes in their environ-
ment. A basic step towards adaptive workflow manage-
ment systems (WfMSs) is the support of run-time WF
specification as well as of dynamic WF changes. Such
changes may affect only a single active WF instance or
may affect multiple instances of a particular WF type.
To adequately support adaptive WFs, it is important to
understand why processes change and which kinds of
changes may occur. In this paper we use clinical
application scenarios to explain and to elaborate the
functionality needed to support dynamic WF changes in
an advanced application environment. The paper
addresses conceptual issues related to ad hoc changes
of a single WF instance on the one hand, and it
discusses issues related to WF schema changes and
their propagation to its active instances on the other
hand. We show that the different levels of changes must
be considered in conjunction and we use the ADEPT
concepts to illustrate how an integrated approach
could look like.

1 Introduction
While data-centered application systems tend to

remain stable (i.e., unchanged) for rather long periods
of time, process-oriented applications must be modified
whenever the BP they support changes, and this may
happen rather frequently in real working environments
(see [EKR95], [Shet96], [ShKo97], and [Sieb96]). In a
hospital, for example, we find BPs whose planning and
execution overlap, ad-hoc cases for which no standard
plan exists, unforeseen events leading to ad-hoc devia-
tions from the pre-planned BP, or functional and or-
ganizational changes requiring modifications in the
definition of standard processes. Once an application
system has been made to behave process-oriented, it
should support these cases and reflect the changes of a
BP very quickly; otherwise its benefit would be low.

Process-oriented WfMSs offer a promising techno-
logy to achieve this goal. They allow modeling the con-
trol and the data flow of a BP explicitly and separately
from the implementation of the application compo-
nents. In principle, it is possible to implement the appli-
cation functions as isolated components, which can ex-
pect that their input parameters are provided by the run-
time environment upon invocation and which only have
to worry about producing correct values for their output
parameters. If the components are properly implement-
ed and the data dependencies between them have been
made explicit, a WF can be adjusted to changes of a BP
with a relatively low effort when compared to conven-
tional programming approaches [LeRo97]. Today's
WfMSs, however, have been primarily designed for the
support of well-structured BPs showing little variations
in their possible task sequences. They implicitly as-
sume that all aspects of a BP and all tasks are known in
advance to the WF designer, and they rather enforce a
strict execution of the pre-modeled WF. Adaptive WFs
and particularly dynamic WF changes are supported
only rudimentarily. At the level of single WF instances,
some WfMSs allow users to deviate from the pre-
modeled WF at run-time, but at the risk of inconsisten-
cies and errors. Finally, little support is available for
changing the definition of a WF type and for applying
these changes to already active instances as well.

To adequately support adaptive WFs, it is import-
ant to understand why processes change and which
kinds of changes occur in practice. In this paper we use
clinical application scenarios to explain and to elabo-
rate the functionality needed to support dynamic WF
changes in an advanced application environment. Al-
though clinical processes are used for explanatory
purposes, the problems addressed are also valid for
other non-trivial application areas (see [BFG93],
[ShKo97], [Sieb96], and [Wes98]).

The paper is organized as follows: In Section 2 we
describe characteristic properties and requirements of
clinical WFs, concentrating on dynamic WFs and on
WF changes. In Section 3 we show that these aspects
must be considered in conjunction, and we use the
ADEPT concepts to illustrate how an integrated ap-
proach could look like. Section 4 discusses related
work and concludes with a summary.

2 Clinical Processes
The in-depth understanding of the characteristic

types of processing, the organizational structures, the fle-
xibility requirements of the medical personnel, the kinds
of exceptions and deviations occurring in clinical proces-
ses, and the adequate reactions on such events is indis-
pensable for the support of clinical processes. In hospi-
tals, we find BPs of different complexity and duration:
Simple ones, like order entry and result reporting for lab-
oratory and radiology, but also complex and long-
running (even cyclic) BPs like diagnostic treatment of a
patient or chemotherapy. These BPs may be highly
dynamic with an overlapping planning and execution of
tasks on the one hand, or may follow strictly predefined
medical procedures that normally have to be obeyed on
the other hand. But even for well-structured and
repetitive BPs, there are many circumstances under
which ad-hoc deviations are mandatory.

2.1 Working Situation
When efforts are taken to automate the flow of

clinical processes, it is important to realize the working
situation under which WF technology must prove its
usefulness and applicability. The cooperation between
organizationally separate units is an important task in a
hospital with repetitive but nevertheless non-trivial
character. Medical and nursing care involve clinical
tasks that may be critical to patient care on the one hand,
and it comprises time-consuming organizational respon-
sibilities on the other hand. Medical procedures and tests
must be planned and prepared, appointments be made,
and results be obtained and evaluated. We find personnel
working under extremely high time pressure who often
must make important decisions about patient treatment
within a rather short period of time, and we find
personnel who is confronted with a massive load of un-
structured data that have to be processed and put into re-
lation to the problems of their patients. In addition, the
working situation is burdened by frequent context
switches. Unforeseen events and emergency situations
occur, patient status changes, information necessary to
react is missing. Because of this, many coordination
problems result, leading to unnecessary long hospital
stays and increasing costs or invasiveness of patient
treatment. In critical situations, missing or erroneous
patient information may even cause late or wrong deci-
sions. For all these reasons, a process-oriented informa-
tion system, which helps to coordinate and to schedule
clinical and organizational tasks would be highly
welcome by the medical personnel.

2.2 Ad-hoc Deviations From Pre-Planned
Processes

For the WF-based support of even well structured
and repetitive clinical processes it is extremely important
not to restrict the physician or the nurse. Any attempt to

automate the flow of patient processes will fail, if rigidi-
ty comes with it. Variations in the course of a disease or
a pre-planned treatment process are deeply inherent to
medicine; the unforeseen event is to some degree a "nor-
mal" phenomenon. Medical personnel must be free to
react and is trained to do so. For example, if physicians
come to the conclusion that for a patient an additional
medical test, which has not been anticipated in the pro-
cess plan, is needed they will adjust the plan according-
ly. In emergency situations, physicians may perform an
intervention immediately without finishing preparatory
measures required for the normal case. In such situa-
tions, a process participant may wish to collect infor-
mation about the patient (e.g., the result of a previous
medical test) by phone and afterwards proceed with the
process, without waiting for the (electronic) report to
be written; i.e., this documentation step is skipped and
worked on later. Finally, if the prerequisites for a
medical examination are dissatisfied, the physician
must be free to abort it and to repeat it later (including
the repetition of preparatory steps), to schedule an
alternative procedure, or to do anything else.

Such exceptions are frequent and inherent to clini-
cal processes. Adequate reactions on them include
(among other things) that tasks are repeated, skipped,
modified, postponed, or undone, that pre-planned task
sequences are changed (i.e., the order of tasks is rear-
ranged), or that alternative or new tasks are scheduled.
For cyclic process structures – as in the case of a
chemotherapy – such ad-hoc changes may concern a
single treatment cycle or all (or part) of them.

2.3 Dynamically Evolving Patient Processes
Besides well-structured and repetitive medical pro-

cedures, the personnel is involved in long-term patient
processes for which the planning and execution of tasks
overlap. In a treatment process, usually several well-
structured diagnostic and therapeutic procedures are
carried out. Before an invasive medical intervention is
performed, for example, the patient has to undergo nu-
merous preliminary medical examinations. Each of them
may require additional preparations and aftercare. While
some of these measures are known in advance and may
therefore be considered in the overall process plan al-
ready at the design level, others have to be scheduled dy-
namically depending on the patient’s state of health and
on the results of previously performed tests. For these
reasons, a patient process cannot be always modeled on a
fine-grained level before the execution of the process
starts.

The (dynamic) planning of the patient flow is a very
complex and error-prone task, since activities may be
closely related to each other due to clinical, organiza-
tional, or logistic reasons. Because of this, they can
neither be executed sequentially nor completely indepen-
dent from each other. For a particular patient, for ex-

ample, medical interventions may have to be performed
in a certain order or with a minimum or maximum time
distance between them (see [DaKl98] for an example).
Such interdependencies between tasks are deeply in-
herent to medicine and must be considered in the plan-
ning of the patient process. Finally, for dynamically
evolving patient processes, again we are faced with the
problem of ad-hoc changes as described in Section 2.2.

2.4 Changes of Standard Processes
Up to now we have only considered changes that

affect a single (patient) process. Modifications in the
definition of a standard process and the adaptation of
its ongoing cases may become necessary as well.
Reasons for them may be the availability of new dia-
gnostic or therapeutic tests, the adjustment of processes
to a new law, the optimization of processes in conjunc-
tion with reengineering and quality management ef-
forts, or the restructuring of the hospital organization
itself. A process-oriented clinical application will there-
fore not accurately represent the BPs of the health care
organization for long. Instead, mechanisms must be
foreseen for handling organizational changes at the
system level; otherwise, over time the mismatch bet-
ween the real (patient) processes and those supported
by the system will increase. Ideally, changes of stand-
ard processes can be introduced on the fly without sub-
stantial delays. Especially in the context of long-run-
ning BPs, it may also be desirable to apply them to al-
ready ongoing patient cases as well.

2.5 Requirements
On the one hand, process-oriented application

systems would be highly welcome by the medical per-
sonnel. On the other hand, for clinical processes it is
nearly impossible – except in very simple cases – to con-
sider all possible task sequences and all deviations that
may occur already at the design level. For WF-based cli-
nical applications, it is therefore extremely important
that users may gain complete initiative whenever they
need it. A process-oriented information system must
offer simple to use interfaces to the medical personnel
for the handling of scheduled tasks as well as for the
ad-hoc deviation from the pre-planned process. In addi-
tion, methodological support is needed for the dynamic
planning of a single patient process i.e., for the dyna-
mic composition of pre-defined tasks descriptions. The
resulting plan must then be automatically mapped onto
an operational WF model.

 Depending on their privileges, users must be able
to change the structure of a single WF instance –
temporarily or permanently – by adding or deleting
tasks, by rearranging the order of tasks, by suspending
single tasks or whole processes, or by changing task at-
tributes (e.g., role assignments and deadlines). Corres-
ponding changes must be properly integrated, especial-

ly with respect to authorization and documentation;
i.e., any deviation from the standard process must be
recorded. Furthermore, the alteration of a single WF
instance must be possible without affecting its original
template. Finally, to deviate from a pre-modeled WF
must not be complicated for the user. For example, the
complexity concerning the re-mapping of input/output
parameters of the components affected by a change
must be hidden to a large degree from users. Generally,
it is also not acceptable that the user must check whe-
ther an envisaged modification may cause any run-time
problems in the sequel (e.g., cyclic waits leading to
deadlocks, lost updates, missing data due to the skip-
ping of a process step, or violated temporal con-
straints). Such checks have to be done by the system,
ideally without performance penalty.

The issues discussed so far mainly concern changes
of a single WF instance without affecting its original
template. In conjunction with changes in the definition
of a standard BP (see Section 2.4), modifications of a
WF template may become necessary as well. As many
clinical processes are of long duration, it must be pos-
sible to make corresponding changes on the fly and to
apply them not only to future instances of the corres-
ponding WF template, but to in-progress WF instances
as well. This is not as trivial as it looks like at first
glance, since the propagation of template changes to a
WF instance may not only depend on the current state
of the instance, but also on ad-hoc changes previously
applied to it.

3 Conceptual Issues in Supporting
Dynamic Workflow Changes
Most of the issues addressed in the previous

section cannot be treated reasonably well when consi-
dered in an isolated fashion only. In the ADEPT project
we are trying to look at the different facets of dynamic
WF changes in an integrated manner. In the following,
we illustrate some of the problems and sketch how an
integrated solution for supporting dynamic WF changes
could look like. We only describe here those parts of
the ADEPT methodology, which are necessary for this
discussion.

3.1 WF Modeling and Execution
With increasing complexity and expressive power

of a WF model, it becomes more and more difficult to
handle dynamic WF changes and their side-effects in a
proper and secure manner. The challenge on the one
side is to find a modeling technique that allows the WF
designer to adequately describe all types of relevant
processes. The challenge on the other side is to keep
such modeling techniques learnable and usable for
both, the WF designer as well as (to some degree) the
end-users. To change structural components of an
active WF instance, its representation (or a partial view

on it) must be understandable to the end-user, or at
least to those end-users which have the privilege to per-
form dynamic changes. Apart from this, users must be
sure that any change initiated by them will not cause in-
consistencies (e.g., unintended lost updates) or run-time
errors (e.g., program crashes due to the invocation of
task components with missing input data). As moti-
vated in Section 2 the necessary checks have to be per-
formed by the system and not by the end-user. To
achieve this, the model must define consistency and
correctness properties allowing to detect (or to avoid)
problems like non-termination of the WF, the passing
of wrong or missing input data to an application com-
ponent, or temporal inconsistencies, for example. For a
given WF model, these properties must be validated al-
ready at the design level, and they have to be preserved
whenever a change is applied to instances of that model
at run-time.

For all these reasons we have dismissed the idea of
using rather unstructured models like, for example,
Petri nets or ECA rules for WF modeling. Instead, we
have adopted concepts from block-structured process
description languages. We have enriched them by intro-
ducing additional control structures (e.g., for synchro-
nizing the execution of tasks from parallel execution
branches) and by explicitly representing the process
state in the model. Figure 1 illustrates the main philoso-
phy how processes are modeled in ADEPT. It shows a
very simplified part of a clinical WF: A patient passes
through multiple treatment cycles. In each of them she
or he is treated with a medicament of which the dose is
taken depending on her or his current weight and
height. In order to avoid interactions with possible
problems on the side of the patient, an additional lab-
test is performed before the medication. The graphical
representation of the WF as shown in figure 1 is not in-
tended for the physician or the nurse. However, even
more "end-user-friendly" interfaces will somehow
reflect the basic concepts described here to avoid too
large discrepancies between the user’s mental model
and the model used by the system.

In the ADEPT WF model different types of split
and join nodes can be used to describe different kinds
of branching (including parallel and conditional bran-
ching). In addition, in contrast to many other WF
models, ADEPT provides an explicit loop construct
(see figure 1). This does not only improve the read-
ability of the WF model, but it also allows distinguish-
ing between intentionally modeled loops and uninten-
tionally modeled cycles. Furthermore, at run-time the
event triggering the next iteration of the loop is well-
known to the system, which allows supporting ad-
vanced features like the (efficient) undoing of tempo-
rary structural changes before the next loop iteration is
started (see Section 3.2). A branching or a loop is al-
ways modeled in a block-oriented fashion having ex-

actly one entry and one exit node. These blocks may be
nested but they are not allowed to overlap. As this li-
mits the expressive power of the model, in addition,
ADEPT provides different types of so-called synchroni-
zation edges which can be used to express different
kinds of “wait-for” situations in concurrent executions
(see also Section 3.2). The use of these synchronization
edges has to meet several constraints in order to avoid
“bad cycles” leading to termination problems of the
WF at run-time.

The data flow of a WF is defined by a set of data
edges connecting the input/output parameters of tasks
with global data elements of the WF. Data elements
store the data versioned to allow partial rollback – even
to an earlier iteration of a loop. ADEPT imposes a set
of constraints governing the nature of a correctly mod-
eled data flow schema. Before a task component is in-
voked, for example, all mandatory input parameters
must be supplied. That means, all data elements to
which the task’s input parameters are connected must
be written at least once within all valid task sequences
leading to the activation of the task. Furthermore, tasks
from different branches of a parallel branching may not

check patient
record

collect
patient data

admit
patient

physical
examination

pre-order
medicament

calculate
the right dose

produce
medicament

validate
dose

perform
lab-test

take
specimen

validate
medical reports

patientId

 weight
+ height

dose

give
medicament

provide
aftercare

discharge
patient

another
cycle?

no

yes

�

ACTIVATED

TRUE_SIGNALED

COMPLETED

NT = STARTLOOP

NT = ENDLOOP

ET = LOOP_E

ET = DATA_E

data elements

ET = CONTROL_E

AND-split AND-join

�

�

�

NT: node type

ET: edge type

Fig. 1: Modeling and Executing Processes in ADEPT

write the same data element, unless they are explicitly
synchronized by a synchronization edge.

The control structures described so far are the same
for the description of WF templates and of WF instance
graphs. At the WF instance level, in addition, special
labels are used to explicitly describe the current status
of nodes (e.g., ACTIVATED, RUNNING, or COMPLE-
TED) and the status of edges (e.g., TRUE_SIGNALED
or FALSE_SIGNALED). ADEPT uses a set of marking
rules, which define the conditions under which the
labeling of nodes and edges must be changed. After
completing an AND-split node, for example, all outgo-
ing edges are signaled as TRUE. This, in turn, may lead
to the activation of succeeding steps.

In summary, we have selected the block structure
because it is rather quickly understood by users, it al-
lows to provide syntax-driven WF editors, and it also
allows the implementation of efficient algorithms for
checking the correctness properties defined by ADEPT.
For more details on the ADEPT workflow model, the
interested reader is referred to [ReDa98].

3.2 Ad-hoc changes of a Single WF Instance
When a WF instance graph is changed, it must be

ensured that the resulting graph is syntactically correct
and has a legal state. Any modification must lead again
to a proper block structure, and it must preserve the
consistency of the WF instance graph. ADEPT offers a
set of change operations to end-users, which can be
applied for the proper and secure handling of ad-hoc
deviations from pre-modeled WF templates. Depending
on their privileges, users may add tasks as well as
whole task blocks (as sequential or as parallel steps),
may delete tasks, may rearrange the order of tasks1,
may initiate a partial rollback of the WF, or may
change task attributes (e.g., role assignments, dead-
lines, or binding of resources). All changes are
registered in a history and they are properly integrated
with respect to authorization and documentation. For
each change operation, ADEPT defines the pre-
conditions for its use, graph transformation rules2, the
semantics of the resulting graph substitutions, mecha-
nisms for detecting possible problems and side-effects,
and policies for handling these problems. It is
important to mention that even simple operations like
skipping a task may require a non-trivial restructuring
of the WF instance graph in order to regain its correct-
ness and consistency (see below).

The applicability of a change operation depends on
the state of the WF instance under consideration and on
its structural properties. For the deletion of a task, for

1 e.g., by skipping tasks with or without working on them later or by
jumping forward to a currently inactive part of a WF instance graph
2 These rules are based on a complete and minimal set of basic
change primitives like AddNode, DeleteNode, SetNodeAttribute,
AddEdge, AddDataElement, or SetEdgeState, for example.

example, the following state constraint must be made:
A task may not be removed from a WF instance graph
if it has already been labeled as COMPLETED or
RUNNING; i.e., the component associated with this
task has already been invoked. As an example for a
structural constraint take the addition of a new task to
a WF instance graph as a successor of the node X and
as a predecessor of the node Y. This insertion would not
be allowed if Y precedes X in the flow structure; in this
case bad cycles leading to deadlocks at run-time might
result. Other kinds of constraints (e.g., temporal con-
straints, security constraints, and user defined integrity
constraints) are outside the scope of this paper.

Due to lack of space, we omit further details and
present an example instead. Let us assume that the WF
instance graph at a certain point in time looks like as
the one depicted in figure 1. The steps represented by
the nodes “admit patient” and “physical examination”
have been completed in the current loop iteration and
the task “collect patient data” has been activated (i.e.,
routed to worklists). Let us further assume that an ex-
ceptional situation occurs making it impossible for the
nurse to perform the activated step at the moment; e.g.,
she may not know where her patient is. Instead the
nurse may wish to skip this step for the time being (i.e.,
to shift it to a later point in time) and to work on the
task “check patient record” immediately. This task is
executable, in principle, as it is not data-dependent on
the task “collect patient data” and all other predecessors
have already been completed.

Skipping the task “collect patient data” means to
remove it temporarily from the WF instance graph. In
doing so, its data edges are deleted as well, which may
lead to missing or incomplete input data of succeeding
steps and thus to a violation of the correctness of the
WF instance graph. To avoid such cases, at first
ADEPT checks whether there are succeeding tasks that
are data-dependent on the step to be deleted. In the ex-
ample, there is exactly one successor of the task “col-
lect patient data” satisfying this criterion, namely the
task “calculate the right dose”. Assume that this task re-
presents an automated step of which the WF designer
has disallowed the deletion (by having marked the node
accordingly). If we had removed the node “collect pa-
tient data” without any further adaptation, this would
have caused serious consequences. The component for
the step “calculate the right dose” would then be
invoked later, although mandatory input data would be
missing. This might lead to a program crash or – which
would be even more terrible – to wrong output data
(i.e., a wrong dose). Because of this, ADEPT accepts a
change request only if no violation of the defined cor-
rectness properties occurs. Concerning the deletion of a
task X, for example, several policies are provided to
deal with the problem of missing data:

1. Data-dependent steps are deleted as well

2. A dynamically generated form is activated when
the user starts the task with the missing data.

3. An additional provider step Xprox is inserted into
the instance graph substituting X; i.e., Xprox takes
over the data links of X and must be completed
before any task data-dependent on X is activated.

In our example, the first two variants are not appli-
cable. The step “calculate the right dose” may not be
deleted, and it is an automated activity; i.e., prompting
the user for the missing data when starting this task will
not be possible. Instead, ADEPT will offer the user to
generate a form and to prompt for the missing values –
either immediately or when needed; i.e., variant 3 is
chosen. Now the restructuring of the WF graph can
begin: First of all, the task “collect patient data” is de-
leted; this is realized by removing it from worklists and
by substituting a “null task” for it in the graph. Then a
corresponding provider task (“collect data”) is inserted
as a parallel path into the instance graph. As this
insertion must lead to a proper block structure again,
additional nodes and edges are added by the system.

This transformation alone would not be correct,
however, because we must ensure that the newly
inserted step is completed before the task “calculate the
right dose” is activated (why?). To enforce this, a syn-
chronization edge leading from the step “collect data”
to the step “calculate the right dose“ is added to the
graph. Following this transformation, the status of
nodes and edges is re-evaluated according to the
marking rules defined by ADEPT. Afterwards, the
steps “check patient record” and “collect data” can be
executed immediately as in both cases all incoming ed-
ges are marked as TRUE_SIGNALED. The resulting
instance graph is shown in figure 2. This graph reflects
a second change, which we have not discussed here,
namely the insertion of the task “perform X-ray”
between the two steps “take specimen” and “validate
medical reports”.

At this point, it is important to mention that users
are not really burdened with the restructuring of the in-
stance graph. They express a change request in a rather
declarative way (“skip task X”, “insert task Z between
X and Y”, etc.), and they may choose between different

provide
aftercare

discharge
patient

 another
cycle?

no

yes

�

admit
patient

physical
examination

check patient
record

pre-order
medicament

calculate
the right dose

produce
medicament

validate
dose

perform
lab-test

take
specimen

validate
medical reports

 weight
+ height

dose

give
medicament

�

��

collect data
(proxy step)

perform
X-ray

NT = NULL

NT = NULL

�

ET = SYNC_E

�

ACTIVATED

TRUE_SIGNALED

COMPLETED

check patient
record

collect
patient data

admit
patient

physical
examination

pre-order
medicament

calculate
the right dose

produce
medicament

validate
dose

give
medicament

provide
aftercare

discharge
patient

no

yes

�

ACTIVATED

TRUE_SIGNALED

COMPLETED

�

perform
lab-test

take
specimen

validate
medical reports

perform
X-ray

Fig. 2: Ad-hoc changes of a single WF instance graph in ADEPT Fig. 3: The same graph after entering the next loop
iteration and after undoing the temporary change.

policies for handling side-effects. Internally, graph
transformation and reduction rules (see [ReDa98]) are
used to perform the necessary modifications.

As a last interesting aspect, consider once again the
WF instance graph depicted in figure 2. As already
mentioned, the skipping of a task – together with the
insertion of a substituting provider task – may be only
of temporary nature. That means, when the next loop
iteration is entered, the modifications made have to be
undone. Concerning changes of an instance graph,
users may also desire that the applied modifications re-
main permanent; i.e., the change must be valid for the
current as well as for all future iterations of the loop. In
our example from figure 2, this might be the case for
the insertion of the task “perform X-ray”. The differen-
tiation between loop-temporary and loop-permanent
changes is essential when both, loops and dynamic
changes are supported in the same system. The
handling of them, however, is not as trivial as it looks
like at first glance. ADEPT defines additional rules that
describe when a modification may be loop-permanent
and when it can only become loop-temporary. The
most important constraint is that a loop-permanent
change must not depend on a previously performed
loop-temporary modification; otherwise severe
inconsistencies or run-time errors may result when the
next iteration of the loop is entered. Figure 3 shows
how the WF instance graph from figure 2 may look like
when the next iteration of the loop is entered (In this
graph we omitted the presentation of the data flow.)
The loop-temporary change is undone while the loop-
permanent one is maintained A more comprehensive
treatment of theses issues can be found in [ReDa98].

3.3 Workflow Type Changes and the Handling
of Active Instances

So far, we have concentrated on ad-hoc changes at
the level of a single WF instance; i.e., modifications of
a WF instance graph – either temporarily or permanent-
ly – without affecting its original WF template. In this
section, we address issues related to modifications in
the definition of a WF type. In this context, the import-
ant question arises how to deal with the active instances
of a WF type when its definition is changed. Shall they
be finished according to the old template version, or
shall all (or part) of them be “migrated” to its new ver-
sion? And, if the latter is the case, under which circum-
stances are such on-the-fly changes desirable and pos-
sible, and how must we deal with in-progress instances
that cannot be (immediately) migrated to the new tem-
plate? In the following we sketch how these issues are
related to each other and how ADEPT treats them.

3.3.1 Template Changes and their Complexity
Though there are similar problems between the ad-

hoc modification of a WF instance graph and its adap-

tation due to the release of a new template version,
changes of a WF template and the necessary graph
transformation tend to be more complex. As an examp-
le, think of a modification during which it becomes
necessary (among other things) to add a new loop to the
WF graph surrounding an already existing block of the
flow structure. Generally, we cannot expect the end-
user to perform such changes. The WF modeler, how-
ever, must be free and is trained to do so. Nevertheless,
ADEPT describes changes of a WF template similarly
to ad hoc changes of a WF instance graph. A change
corresponds to a sequence of change operations c1 ... cn

that – when applied to a correct WF template T – lead
again to a WF template T* with a proper block structure
and a correct data flow schema (see figure 4 for an
example). To ensure this, ADEPT provides a syntax-
driven WF editor to the modeler with built-in opera-
tions like AddActivity, DeleteActivity, AddBlockStruc-
ture, AddSyncEdge, or AddDataElement. The set of
basic change operations offered is minimal and
complete in the sense of allowing each possible form of
restructuring of a given WF template. At this point, it is
important to mention that the high-level change
facilities offered to end-users (e.g., to skip a task or to
jump forward to currently inactive tasks) are realized
based on the same set of basic change operations,
which is also used by the WF modeler when changing a
WF template.

Finally, a new version of a WF template is released
only if its correctness is ensured. Multiple versions may
be derived from the same WF template.

3.3.2 Policies for Change Propagation
Generally, different policies for handling the

instances of a modified WF template are conceivable.
In rare cases it may not be desirable that instances of
the same WF type, but which are based on different
template versions are operational at the same time.

T

B CA

d

ET = LOOP_E

NT = STARTLOOP NT = ENDLOOP

T*

X
CA

B
Y

ed

Fig. 4: Change of the template T leading to the new tem-
plate version T*. The data element e has been added, ac-
tivity X has been inserted between A and C (together
with two data edges), and activity Y (reading the data
element e) has been added.

When a new template version T* is installed, then all
instances executed according to the old version T must
either be aborted (and re-started if necessary) or, first of
all, they must be finished before instances of T* may be
created. Another policy is to allow the WF designer to
generate a new version of a WF template and to base
the execution of future instances on it, while already
running instances of that type are still executed accord-
ing to the old template. For many practical cases, how-
ever, these simple approaches will not be sufficient.
Especially in conjunction with long-running WFs –
think of, for example, a medical treatment process of
which the duration may be up to several months or
years – it is often desirable that changes in the defini-
tion of a WF type are applied to already active
instances as well.

ADEPT does therefore not “hard-wire” any of these
policies. Instead, the modeler is free to choose between
them and to describe which instances may be adapted
to changes of their original template and which may
not. For example, she or he may specify that template
changes may be applied to a WF instance graph only if
it has (not yet) reached a certain state or if it satisfies a
set of conditions (like “The instance was created after a
certain point in time” or “No ad-hoc changes have been
applied to it”). For this, the corresponding WF instan-
ces must be qualified in a predicate-like manner. In
principle, it is also possible to derive different versions
of the same template T and to split the set of currently
active instances of T accordingly. Finally, the modeler
may fix a time interval in order to define when a new
template version is valid.

3.3.3 Handling of Active Instances
To propagate changes of a WF template to in-

progress instances is not as trivial as it looks like at first
glance. Whether a template change can be correctly
applied to a WF instance graph or not, does not only
depend on the current state of the instance, but may
also be influenced by ad-hoc changes previously ap-
plied to its instance graph (see Section 3.2). Further de-
pendencies (e.g., temporal constraints) may be consi-
dered as well, but are outside the scope of this paper.

In the following, let T* denote a WF template that
has been derived from the template T by applying a set
of change operations c1...cn to it. Assume further that
wT denotes a WF instance graph that was created from
the template T and of which the execution has not yet
been finished. The instance graph wT may differ from
its original template T in two respects: the labeling (i.e.,
the status) of nodes and edges and – in some cases – the
structural components. The latter will be the case if ad-
hoc changes are applied to wT (see Section 3.2). Propa-
gating the template changes c1...cn to the WF instance
graph wT now means to apply these changes to this
graph as well. Obviously, a necessary condition is that

the resulting instance graph satisfies the defined cor-
rectness and consistency properties. Generally, this will
not always be possible and even if, the propagation
may not be desirable due to “semantic conflicts” bet-
ween the changes c1...cn applied to the template T on
the one hand and ad-hoc changes c1

w...cm
w applied to

the instance graph wT on the other hand.
First of all, let us assume that no ad-hoc structural

changes have been applied to the instance graph wT so
far. Then – except for the labeling of nodes and edges –
the graph wT and its original template T correspond to
each other. For this case, the deciding factor whether
the template changes c1...cn may be propagated to the
instance graph or not, is the current status of its nodes
and edges. For each change operation, ADEPT defines
the pre-conditions an instance graph must satisfy
regarding its state. Template changes c1...cn may be
applied to the instance graph wT, only if for each
change operation ci (1 ≤ i ≤ n) wT meets these condi-
tions.3 This will always be the case, for example, if the
region of wT affected by the change has not yet been
entered; i.e., the nodes and edges from this region have
not been labeled so far.

As an example, consider the template evolution
from T to T* as depicted in figure 4. In the figures 5a
and 5b two instance graphs wT

(1) and wT
(2)

 are shown,
which were created from the template T. As they have
not been structurally modified so far, the propagation
of the template changes solely depends on the current

a)

B CA

d

�

ACTIVATED

TRUE_SIGNALED

COMPLETED�wT
(1)

b)

B CA

d

�

RUNNING

TRUE_SIGNALED

COMPLETED�

� �

wT
(2)

c)

B CA

d

�

ACTIVATED

TRUE_SIGNALED

COMPLETED�wT
(3)

d)

B
A

d

�

ACTIVATED

TRUE_SIGNALED
COMPLETED�

Z

�

C

RUNNINGwT
(4)

Fig. 5: WF instance graphs created from the template
T (cf. figure 4a). Note that ad-hoc changes have been
applied to the instance graphs shown in figures c) and
d). Consequently, their structure differs from the
structure of the original template T.

state of the instance graphs. The template changes
described in figure 4 may be immediately applied to
wT

(1) as all change operations – both, the insertion of
the task X between A and C and the insertion of Y after
the loop block – are allowed in the current state of
wT

(1). The instance graph resulting from this change
propagation is depicted in figure 6a.

 Regarding the instance graph wT
(2), however, the

template changes cannot be (immediately) applied to it,
since the insertion of the task X is not permitted in the
current state of this graph.4 In such cases, a simple
approach would be to dismiss the changes for the WF
instance under consideration and to proceed with the
flow according to the present template version T. Other
solutions that can be devised and that have been pro-
posed in the literature (e.g., [BPS97], [Casa96]) include

• the partial rollback of the flow to a previous state,
that allows correctly applying the changes c1...cn

• the “migration” of the instance graph to an alterna-
tive template T**, which may be valid only tempo-
rarily to handle such specific cases.

These approaches are easy to handle, but they will
restrict the practical usability of this feature signifi-
cantly. Think of the treatment cycle from figure 2; the
partial rollback of the flow would not be practicable
here. Instead, it would be desirable to dismiss the
changes for the current iteration, but to apply them for
following iterations of the loop. Because of this,
ADEPT supports the propagation of template changes
at a later point in time as well. The change request will
not be dismissed, but will be registered if it cannot be
immediately applied to the instance graph due to a

3 Further checks are not necessary since the structural correctness of
T* has been already validated at the modeling level.
4 Assume that we have applied the two insert operations to wT

(2)

nevertheless. If the loop block is left after the current iteration, the
component of the task Y will then be invoked with missing input data.

status conflict. The modifications will then become
effective at the next possible point in time. If no ad-hoc
changes are applied to the instance graph wT

(2)
 in the

following, this late propagation will be possible when
the next iteration of the loop is entered.

 If both, changes at the instance level as well as at
the type level are supported in one system, the impor-
tant question arises how to deal with WF instances to
which ad hoc changes have been previously applied by
end-users when their original template T is changed.
One may argue that in such cases changes in the
definition of T may not be propagated to these in-
stances at all. This, however, would be too restrictive
for many applications – especially in clinical environ-
ments where both types of changes frequently occur –
and it would also be not necessary in general. Similar
like with concurrency control in cooperative environ-
ments (cf. [WäKl96]), the problem is to avoid structural
as well as semantic conflicts between changes made
independently from each other and applied to the same
object – in our scenario to the same WF graph (respec-
tively to a copy of it). If such conflicts occur between
the ad-hoc changes c1

w...cm
w applied to the WF instance

graph wT
 on the one hand and changes c1...cn of its ori-

ginal template T on the other hand, the template
changes may not be propagated to the instance graph
(at least as long as these conflicts cannot be resolved).
Due to lack of space, we omit technical details (e.g.,
concerning conflict tests) as well as issues related to the
handling of semantic conflicts. Instead we present two
examples focusing on structural conflicts.

As a first one, consider the WF instance graph wT
(4)

as shown in figure 5d. This graph differs from its
original template T (see figure 4) since an ad-hoc
change – the insertion of Z between A and C – has been
applied to it. Nevertheless, the changes of the template
T (as shown in figure 4) may be propagated to wT

(4)

without causing structural conflicts. The instance graph
resulting from this propagation is shown in figure 6b.

 As a second example take the instance graph wT
(3)

from figure 5c, where the tasks A and C (together with
their data edges) have been deleted. Due to this ad-hoc
change, the modifications of the template T may not be
propagated to wT

(3) at the moment; X reads the data
element d, which is not currently supplied due to the
deletion of A. If the deletion of the task A is loop-tem-
porary (see Section 3.2), the changes may be propa-
gated to wT

(3) at a later point in time; i.e., after the tem-
porary changes, which have caused the structural con-
flict, are undone and no new conflicts do occur due to
ad hoc changes applied in the meantime. In the presen-
ted example, this may be the case when the next itera-
tion of the loop is entered (i.e., when the deletion of
task A is undone). If task A was deleted loop-perm-
anently from wT

(3), however, the template changes may
not be propagated at all. In all these cases, the system

a)

X
CA

B
Y

ACTIVATED

TRUE_SIGNALED

COMPLETED�

�

ed

wT
(1)

b)

A

d

�

B

�

Z

C

X

ACTIVATED

TRUE_SIGNALED
COMPLETED�

RUNNING

Y

e

wT
(4)

Fig. 6: WF instance graphs from figures 5a and 5d after
propagating the template changes to them.

must allow performing the necessary checks very
efficiently.

4 Discussion and Summary
The need for adaptive WFs has been identified by

several groups (e.g., [BPS97], [Casa96], [DMP97],
[EKR95], [ShKo97], [Sieb96], and [Wes98]). The
majority of these approaches, however, concentrate
only on some aspects related to the dynamic change
problem. The proposals made in [BPS97], [EKR95]
and [Casa96], for example, deal with WF type changes
and their propagation to running WF instances. How to
treat WF instances, to which ad hoc changes have been
previously applied, is not discussed in this context.
Issues concerning the consistency and correctness of
dynamic changes (e.g., with respect to the flow of
data), the management of loop-temporary and loop-
permanent changes, or the late propagation of WF
template changes are also not sufficiently addressed.
Finally, some interesting proposals have been made in
the field of dynamic planning processes (e.g.,
[DMP97], [Hei96]), which aim at the methodological
support of dynamically evolving WFs. More compre-
hensive treatments of these approaches and of other re-
lated work can be found in [ReDa98].

The discussion on dynamic WF changes has shown
that many non-trivial interdependencies exist between
the different varieties of dynamic changes, which must
be carefully analyzed and understood. In the ADEPT
project we attempt to consider most of the challenges
described in conjunction with each other. We provide a
proper framework with a clear semantics, which also
allows arguing on the correctness of dynamic WF chan-
ges. In addition, we have been working on issues like
the transactional support of WF changes, the control of
concurrent changes, the support of temporal
constraints, and security. Human-machine-interaction is
also a major issue in this context; users must be able to
understand the consequences of a change they are
going to perform, and they should also be able to
understand why the system is refusing to perform a
certain change request. The work on large-scale aspects
as well as on supporting dynamically evolving WFs is
on its way. During the last years, we have implemented
several dedicated prototypes to study implementation
and usability aspects of some of these features.
Recently we have finished the implementation of the
first version of the ADEPT-WfMS, which comprises
many of the features addressed within one system. The
description of the system architecture and the
discussion of implementation issues will be the subject
of other papers.

We are convinced that the approach we have taken
in the ADEPT project will allow supporting the clinical
as well as many other application domains in an ade-
quate way.

References
[BFG93] Bandinelli, S.; Fuggetta, A.; Ghezzi, C.: Software

Process Model Evolution in the SPADE
Environment. IEEE Transactions on Software
Engineering, 19(12):1128-1144, 1993.

[BPS97] Bichler, P.; Preuner, G.; Schrefl, M.: Workflow
Transparency. Proc. 9th Int’l Conf. on Advanced
Information Systems Engineering (CAiSE 97),
pp. 423-436, Barcelona, 1997

[Casa96] Casati, F.; Ceri, S.; Pernici, B.; Pozzi, G.:
Workflow Evolution. Proc. 15th Int’l Conf. on
Conceptual Modeling, pp. 438-455, Cottbus,
Germany, 1996.

[DaKl98] Dadam, P., Klas, W.: The Database and
Information System Research Group at the Uni-
versity of Ulm. SIGMOD Record, 26(4):75-79,
1997.

[DMP97] Dellen, B.; Maurer, F.; Pews, G.: Knowledge
Based Techniques to Increase the Flexibility of
Workflow Management. Data & Knowledge
Engineering, 1997.

[EKR95] Ellis, C.A.; Keddara, K.; Rozenberg, G.:
Dynamic Change Within Workflow Systems.
Proc. COOCS'95, pp. 10-21, Milpitas, CA, 1995.

[Hei96] Heimann, P. et al.: DYNAMITE: Dynamic Task
Nets for Software Process Management. Proc.
18th Int. Conf. Software Engin., pp. 331-341,
Berlin, 1996,

[LeRo97] Leymann, F.; Roller, D.: Workflow-based
Applications. IBM Systems Journal, 36(1):102-
123, 1997.

[ReDa98] Reichert, M.; Dadam, P.: ADEPTflex - Supporting
Dynamic Changes of Workflows Without Loosing
Control. Journal of Intelligent Information
Systems, Special Issue on Workflow and Process
Management. 10 (2), March 1998 (to appear)

[Shet96] Sheth, A.; Georgakopoulos, D.; Joosten, S.;
Rusinkiewicz, M. et al.: Report from the NSF
Workshop on Workflow and Process Automation
in Information Systems, SIGMOD Record, 25
(4):55-67, 1996.

[ShKo97] Sheth, A.; Kochut, K.: Workflow Applications to
Research Agenda: Scalable and Dynamic Work
Coordination and Collaboration Systems. Proc.
NATO Adv. Study Institute on Workflow
Management Systems and Interoperability.
Istanbul, Turkey, 1997.

[Sieb96] Siebert, R.: Adaptive Workflow for the German
Public Administration. Proc. 1st Int. Conf. on
Practical Aspects of Knowledge Management,
Workshop on Adaptive Workflow, Basel,
Switzerland, 1996

[WäKl96] Wäsch, J.; Klas, W.: History Merging as a
Mechanism for Concurrency Control in
Cooperative Environments. Proc. RIDE-NDS’96,
New Orleans, pp. 76-85, 1996.

[Wes98] Weske, M.: Flexible Modeling and Execution of
Workflow Activities. Proc. 31st Hawai'i Int’l Conf.
on System Sciences, Software Technology Track
(Vol VII), pp. 713-722, 1998

