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Abstract 

The model of flexible relations supports hetero- 
geneous sets of tuples in a strongly typed way. The 
elegance of the standard relational model is preserved 
by using a single, generic scheme constructor.In each 
model supporting structural variants the shape of some 
part of a heterogeneous scheme may be determined by 
the contents of some other part of the scheme. We 
formalize this relationship by a certain kind of integrity 
constraint we have called "attribute dependency" (AD). 
We motivate how ADs can be used, besides their 
application in type and integrity checking, to incorporate 
record subtyping into our extended relational model 
Moreover, we show that ADs yield a stronger assertion 
than the traditional record subtyping rule as they 
consider interdependencies among refinements. We 
discuss how ADs are related to query processing and how 
they may help to identify redundant operations. 

I. I n t r o d u c t i o n  

The relational model as defined by Codd [6] forms the 
base of most contemporary data models. It constructs a 
database as a set of relations, a relation being defined 
over a set of aUributes called its scheme. The instance of 
a relation is a set of tuples where each tuple is a mapping 
from the scheme attributes to values of given (atomic) 
domains. 

The constraint of homogeneity, i.e. the fact that all 
tuples of a relation are defined over the same set of 
attributes, does often not meet the intuition of a relation 
as a container of related entities. Take an address (e.g. of 
a person's record) as a simple example. Each address 
comprises a zip code and a town. The town-local part of 
the address may be either a post-office box number or a 
street and, if it is a street, it is sometimes followed by a 
house number, sometimes not. This little example already 
exhibits many facets: ZipCode and Town are 
unconditioned or homogeneous components as they are 

always present. The town-local part is a disjoint union of 
PostOfficeBoxNumber and Street while Street may be 
accompanied by the optional attribute HouseNumber. 

Another form of attribute relationship can be 
motivated by the "electronic communication part" of an 
address which is composed of a telephone-number, a 
FAX-number, and an electronic-mail-address. At least one 
of these three attributes should be present to constitute an 
electronic communication address, but two or all three of 
the attributes are allowed, too. This non-disjoint union is 
another relationship type between attributes, and many 
other forms of relationships can be found in addition. 

The relationships mentioned above are based on the 
pure existence of attributes. I.e. from the sole 
existence/absence of a certain attribute we draw 
conclusions about the existence or absence of other 
attributes. In addition to these existence-based attribute 
relationships there occur value-based attribute 
relationships which take the influence of values (in some 
attributes) on the existence of (other) attributes into 
account. 

Take an employee entity possessing the attributes 
salary and jobtype as an example. In addition, 

- if the value of jobtypo is 'secretary' then the attributes 
typing-speed and foreign-languages are present. 

- if the jobtype is 'software engineer' the employee is 
further described by the products he is in charge of and 
the programming-languages he knows. 

- i f  the jobtype is 'salesman' be possesses a sales- 
commission and again the produets he is in charge of. 

Another example is that the existence of a maiden- 
name is determined by the appropriate values in the 
attributes sex and marital-status. 

The overall aim of the model of flexible relations is to 
bridge the gap between semantic data models and 
operational data models. Therefore it captures the 
attribute relationships described above, yet it utilizes a 
single, generic scheme construct to preserve the elegance 
of the relational model. 
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The paper is focussing on value-based attribute 
relationships. We will introduce a notation we have 
called attribute dependencies (ADs) that enables us to 
model these relationships as integrity constraints. We will 
motivate the usage of ADs, particularly their ability to 
model a strong notion of subtyping. Besides this 
employment their connection to constructs of semantic 
data models, the benefit of attribute dependencies in type 
checking and in host language coupling is discussed. The 
behaviour of ADs, especially in connection with a query 
language, will be formally described by an axiom system. 

The rest of the paper is structured as follows: Section 
2 introduces some basic notations of the model of flexibe 
relations needed as an environment in which attribute 
dependencies are to be integrated. The different purposes 
which ADs serve in our model, including subtyping, are 
discussed in section 3. In section 4 an axiom system for 
the derivation of attribute dependencies is developed and 
shown to be sound and complete. Section 5 compares our 
approach to related ones, while section 6 concludes with a 
summary and an outlook. 

2.  A t t r i b u t e  d e p e n d e n c i e s  

2.1 Bas ic  notat ions  o f  the m o d e l  o f  f lexible 
relat ions 

The elegance of the relational model is mainly due to 
the fact that it gets along with a single type constructor. 
To preserve this elegance as much as possible, we looked 
for an extended type constructor enabling us to describe 
the various variant (and also non-varian0 structures in a 
single, generic fashion. It is obvious that specifying a 
scheme as a set of attributes, as the relational model does, 
is not expressive enough to model arbitrary attribute 
relationships. To achieve this goal we enhanced the 
scheme notation in the following way: a scheme is now 
composed of a set of attributes accompanied by a 
cardinality constraint in the form of two integer values 
determining how many components of the set have at 
least to be taken and how many components of the set are 
allowed at most. If we describe this construct as a three- 
tuple 

< at-least value, at-most value, set of attributes > 
then the various constructs introduced in section 1 can be 
expressed in the following way 1 
- a traditional relational scheme with attributes At . . . . .  

An is denoted by < n, n, { A 1 . . . . .  An } > ,  i.e. at least 
n and at most n (and therefore exactly n ) of the 
attributes have to be present. 

1 Let  as usual be 1~ the universe of attributes, A, B ... and A i be single 
atlributes, and V . . . . .  Z be atlribute sets. Let XY denote the union of the 
attribute sets X and Y and txeat attributes as singleton attribute sets when 
sets of attributes are expected. Tuples will  be denoted by < ... > .  

- a disjoint union of attributes At . . . . .  An is modeled by 
< 1, 1, { At . . . . .  An } > telling that exactly one of the 
attributes may appear. 

- a  non-disjoint union of attributes A1 . . . . .  An is 
described by < 1, n, { A1 . . . . .  A n } >, i.e. the electronic 
communication address of section 1 is expressed by 
< 1, 3, { tel-number, FAX-number, email-address } >. 

The above notation is not completely satisfying yet: a 
union might appear as only a part of a scheme, the 
variants in a union do not need to be single attributes but 
can be relational schemes, variants again, and so on. 
Therefore we have to extend our notation allowing the set 
components to be either single attributes or again three- 
tuples of our notation. This final version of a flexible 
scheme is presented by a more abstract example. 

Example 1 An application demanding tuples with 
attributes A and B (unconditioned), either attribute C 
or D (i.e. a disjoint variant between C and D ) a n d  
"some" of E, F and G (a non-disjoint union of E, F and 
G) yields the following flexible scheme FS 

FS = < 4 , 4 , { A , B ,  < 1, 1,{ C , D } > ,  
< 1 , 3 , { E , F , G  }> }> 

[] 

A flexible scheme is a very compact notation. For the 
purpose of a basic understanding one can unfold a 
flexible scheme yielding the allowed attribute 
combinations. As this unfolding can be interpreted as 
building the disjunctive normal form of a flexible scheme 
FS, we will refer to it as dnf(FS). Forming the DNF of 
the scheme of example 1 yields 

dnJ(FS)= {ABCE, ABDE, ABCF, ABDF, ABCG, 
ABDG, ABCEF, ABDEF, ABCEG, ABDEG, 
ABCFG, ABDFG, ABCEFG, ABDEFG } 

Note that this unfolded version of a flexible scheme 
corresponds to the "set of objects" idea of Ed Sciore [13] 
(see also [11], chapter 12). The little example above 
should suffice as a motivation to find a compact 
description for variant schemes. 

Now it is easy to define the domain of a flexible 
scheme. If Tup(X) denotes the set of tuples for a given 

attribute set X, then dom(FS) = I.Jx ~ dnf(FS) Tup(X). A 

flexible relation FR can then be defined as a two-tuple 
FR = < FS, inst > with scheme(FR) = FS being a flexible 
scheme and inst(FR) = inst being the instance of the 
relation, a finite set of tuples satisfying inst(FR) c 
dom(scheme(FR)). As a flexible scheme does not 
uniquely determine the shape of its tuples we assume the 
existence of a function attr(O yielding the attribute set X 
, tuple t is defined on (of course attr(O ~ dnf(FS) iff t 
dom(FS)). 
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2.2 Definition of attribute dependencies 

Up to now a flexible scheme considers existential 
relationships of attributes and determines thus the basic 
shape of tuples and instances. Value-based constraints are 
not yet taken into account, a flexible scheme is therefore, 
following the notation of [12], a primitive scheme and a 
flexible relation only a possible relation (instance). The 
examples in section 1 have shown that flexible relations 
demand, besides the known types of constraints, a certain 
class of constraints concerning the variant structure of 
tuples. Referring to the jobtype-example of section 1 we 
may say that the value of the attribute jobtypa determines 
the existence of the attributes in Y = { typing-speed, 
foreign-languages, products, programming-languages, 
sales-commission } in the way that 

(1) t(jobtype) = 'secretary' 
attr(t) n Y = { typing-speed, foreign-languages } 

(2) t(jobtype) = 'software engineer' 
attr(t) n Y = {products, programming-languages } 

(3) t(jobtype) = 'salesman' 
attr(t) n Y = { products, sales-commission } 

To prepare the formal definition of an attribute 
dependency consider the following points. While in the 
example above there is only one determining attribute 
(iobtype), in general there may be several ones (take sex 
and marital-status determining the existence of a 
maiden-name). Therefore we should say that the contents 
in the attribute set X determines which attributes in the 
attribute set Y exist. This general assertion can be refined 
by considering the legal variants explicitely. Each variant 
consists of an attribute set Yi c y (i=l..n, n being the 
number of variants) and is determined by a set of values 

Vi c Tup(X) with the obvious meaning that the attribute 
set Yi occurs in a tuple t whenever t[X] e V i . When 
there is no V i such that t[X] e V i then it is intuitive to 
demand that tuple t does not possess any attribute of Y. 
Considering this we obtain the definition of an attribute 
dependency 2 

Def'mition 2.1 "explicit attribute dependency" 
An explicit attribute dependency EAD has the syntactical 
form 

EAD = <X e~p. am, y,{v1 exp.attr> yl, 

.... Vn exp.am) Yn } > 

where X c ~,  V i c Tup(X) (i = 1 .. n), 

Y c ~t,Yi c_ y (i = l . . n ) ,  
i ~ j  --> Vi n V j  = O ( i , j = l . . n )  

2 In section 4 we will use a slightly modified definition. To distinguish 
both we call the following definition an explicit attribute dependency. 

A flexible relation FR is said to satisfy the explicit 
attribute dependency EAD ff Vt e inst(FR) : 

( 3i : t[X] E Vi ) ---> attr(O n Y = Yi 
^ ( Vi : t[X] ~ Vi ) --> attr(t) n Y = 0 [] 

Example 2 The jobtype-example is formulated in EAD- 
notation by 

< {jobtype} exp. am, { typing-speed, foreign-languages, 
products, programming-languages, sales-commission }, 
{ < jobtype : 'secretary' > e~p..m , 

{ typing-speed, foreign-languages } ,  
< jobtype : 'software engineer' > exp. ,m , 

{ products, programming-languages } ,  
< jobtype : 'salesman' > exp.,m , 

{ products, sales-commission } } > 
[ ]  

3. Usage  of  at tr ibute  dependenc ies  

There are several streams motivating the use of ADs. 
The first one is to integrate semantic type constructs into 
an operational data model, thus bridging the gap between 
semantic and operational data models. Secondly we show 
that ADs may be used to incorporate subtyping into a 
relational data model. In addition, we discuss how ADs 
may be applied in decomposition and query evaluation. 

3.1 Mapping of entity-relationship concepts onto 
flexible relations 

Specialization is one of the enhanced entity 
relationship concepts ([7], chapter 15). A specialization 
that is encoded in the entity itself is called a predicate 
defined specialization. If one replaces the predicate Pi of 
the i-th specialization by its extension Vi ,  i.e. Vi = { v I 
pi(v) is true }, then an attribute dependency is a one-to- 
one mapping of a predicate defined specialization. ER 
models further divide specialization into disjoint versus 
overlapping subclasses and total versus partial 
subclasses. This classification can be inferred from ADs 
as well: the variants of an AD are disjoint if Yi n Yj = O 

(i~j) and they are total if  Ui=LnVi = Tup(X). The benefit 

of mapping these ER constructs onto the model of flexible 
relations is that they can now be exploited operationally. 

The most important operational use of ADs is their 
application in type-checking, which is a central point of 
our model. Flexible schemes do serve this purpose 
already better than relational schemes as existential 
attribute relationships are already captured by them (see 
section 2). However, value-based dependencies cannot be 
type-checked by flexible schemes. For example, there is 
no scheme which would reject the tuple 
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< .. jobtype : 'salesman', typing-speed : high, foreign- 
languages : { french, russian } > 

as { . . . .  jobtype, typing-speed, foreign-languages } is a 
valid attribute combination. The fact that jobtype = 
'salesman' requires different attributes to be present has 
to be checked with the AD of example 2. Type checking 
based on ADs is initiated dunng insertion, update 3, and 
data retrieval, which will be discussed in more detail. 

3.1.1 Decomposition along ADs In [7] four translation 
methods for predicate defined specializations into 
relations are described. Two of these methods result in a 
single relation with plenty of null values. Moreover, 
artificial attributes indicating the current variant have to 
be introduced - and have to be interpreted by the user. 
The benefit of our model is obvious: flexible schemes 
together with attribute dependencies relieve the user of 
the burden to set and control the correct variant. 

The third and fourth translation method horizontally/ 
vertically decompose the entity along the specialization. 
These techniques can be regarded as extensions of the 
traditional horizontal/vertical decomposition [5] to 
support structural variants. To restore the entity, an outer 
union instead of a simple union (horizontal 
decomposition) and a mulfiway join instead of a natural 
join (vertical decomposition) have to be performed. 

3.1.2 Query optimization by the aid of ADs Qualified 
relations are used to extend algebraic equivalences to 
deecoiaposed relations [5]. Again we may say that a 
relation together with an AD is an extension of a 
qualified relation to support structural variants. As for 
qualified relations we can exploit each selection 
concerning the determining attributes of an AD to draw 
conclusion about redundant operations, e.g. unnecessary 
joins with variants that are known to be excluded. See 
[5,p. 103ff] for a list of query rewrite rules. 

Another potential for optimization are type guards. 
Each model supporting heterogeneous collections posses- 
ses operations do not preserve the most specific type of 
an entity (see e.g. [3] among others). Type guards restore 
the lost type information by checking if an entity has a 
certain type or if certain attributes are available. ADs 
cannot only be used to implement type guards but can 
also recognize redundant type guards when additional 
information is sufficient to determine a more specific 

type. 

3.2 Semantic preserving subtyping through ADs 

At first glance a predicate defined specialization can 
as well be described by the traditional record subtyping 
rule (see [4] among many others) 

3 W h i l e  there axe no  fu r the r  tyl:~-related consequences  w h e n  the  sa la ry  of  
an  emp loyee  is  updated ,  the  change  o f  his  j ob type  causes  a type  change ,  

too. 

t i  -< ui  ( i = l . . n )  

< a!  : t l  , --. , an  : tn , ... , a m  : tm > -< < a l  : I l l  , . . .  , an  : tln > 

Let us first show that this inclusion rule can be 
expressed with an attribute dependency. Therefore, 
consider a flexible scheme FS with attr(FS) = W and let 

EAD = < X exp. at~, Y , { V1 e~p. at~, YI . . . . .  

Vn exp. attr ~ Yn } > be an attribute dependency for FS. 
Then the corresponding supertype contains the attributes 
W - Y and the domain of X consists of Tup(X), i.e. the 
domain of X is unrestricted in the supertype. Further we 
can derive from EAD that there are n subtypes 
possessing the attributes ( W - Y ) u Yi ,  having the 
domain of X restricted to Vi (i= 1..n). We may therefore 
say that attribute dependencies incorporate record 
subtyping into the model of flexible relations. 

Now, what is the benefit of using attribute 
dependencies instead of the traditional subtyping rule? 
This rule is obviously sufficient to state that secretary, 
salesman and software engineer type are subtypes of a 
more general employee type. 

Example 3 The following employee type and its 
predicate defined subtypes could have been inferred from 
thejobtype-EAD of example 2: 

employee_type = < . . . .  salary : float, jobtype • 
{ 'secretary', 'software engineer', 'salesman' } > 

secretary_type = < . . . .  salary : float, jobtype : 
{ 'secretary' }, typing-speed : . . . .  foreign-lang : ... > 

salesman_type = < . . . .  salary : float, jobtype : 
{'salesman' }, products : .... sales-commission : ... > 

softw_eng_type= < . . . .  salary : float, jobtype : 
{'software eng' }, products : . . . .  programming- 
languages : ... > [ ]  

Note that for each of the three subtypes there are two 
type changes causing the subtype relation: The domain of 
jobtype is restricted and some attributes are added to the 
subtypes. These simultaneous type changes are 
considered to be purely accidental by the record subtyping 
rule. The type < . . . .  salary : float > (without attribute 
jobtype) is therefore treated as a valid supertype of the 
subtypes presented above, although the connection 
between the determining attribute jobtype and the 
subtypes is destroyed. To prevent this from happening or 
at least to notify the loss of this connection, it is necessary 
to treat these type changes as causal related, like attribute 
dependencies do. 

3.3 Further usage of attribute dependencies 

A last usage, which shall only be sketched here, is 
that ADs are an encoding of general sums (see [10] as an 
entry point). This equivalence can be exploited when 
embedding of flexible relations into programming 
languages is discussed. It can be shown that a flexible 
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scheme can be translated into an appropriate program- 
ming language type (e.g. a variant record in PASCAL) if 
each existential attribute relationship is accompanied by 
an AD. If necessary, this can be obtained by introducing 
artificial ADs with artificial determining attributes. 

The applications discussed in this section pose 
different requirements on ADs. In some cases, like 
insertion, whole tuples of a flexible relation are 
considered. Here, it is sufficient to apply the ADs 
specified in the scheme. But most applications, like 
update, retrieval or programming language embedding, 
are referring only to parts of a tuple or to tuples which 
may even have been transformed by (query language) 
operations. Therefore it is also necessary to know how 
ADs behave under transformations. This question is also 
the central point when ADs are exploited for (semantic 
preserving) subtyping. To answer this question we will 
develop an axiom system for the implication of attribute 
dependencies. This is done in the next section. 

4. Axiom systems for attribute dependencies 

4.1 An axiom system regarding ADs separately 

Before we define the axiom system we slightly modify 
the definition of an AD. This is only done for the sake of 
readability and to better illustrate the similarity to other 
forms of dependencies, but does not change its intention. 

From definition 2.1 we can derive that, given an 

explicit attribute dependency < X exp. ~t~, y ... >, 
whenever two tuples h, t2 agree on X, then they possess 
the same subset of Y as attributes. So we can define 

Dermltion 4.1 "attribute dependency" 

Let X, Y c ~/. A flexible relation FR is said to satisfy 

the attribute dependency X ,t~ , y if Vtl, t2 ~ inst(FR) : 

X c attr(tl) ^ X ~attr(t2) ^ tl[X] = t2[X] 

attr(q) n V = attr(t2) n V 
[] 

The axiom system i that manages attribute 
dependencies consists of the following four rules: 

(A1) X ,t~, YZ I- X ~t~, y (projectivity) 

(A2) { x  "~, Y , X  "~, z }  ~-x "~, YZ 
(additivity) 

(A3) O I - X  ,t~, y if Y _c X(reflexivity) 

(A4) X ,t~ , y F-XZ ~ , Y (left augmentation) 

A remarkable point about this rule system is that 
transitivity is not valid for attribute dependencies. This 
stems from the fact that we do not draw any conclusion 

about the contents of the determined attributes. The 
correctness of the axiom system is stated by the following 
theorem 4 

Theorem 4.1 ~ is a sound, complete and non-redundant 
system of axioms for the implication of attribute 
dependencies. 

[] 

Note that all rules could have been defined for explicit 
attribute dependencies as well. For example, the 
addidvity rule would be 

{ < X  exp. aOr > y , { V i l  e.xp. attr ) y l  1 . . . . .  Vl n exp. attr ) l n } >  ' 

<X exp'a~)Z,{V21 cxp'at~r)Z h ..... V~ exp'a~>zzm}>} 
I - < X  exp. attr ~ Y Z , {  Vl lAV21 exp. attr ) y l iz2!  . . . . .  

VlnnVz m exp. am, ylnz~a}> 

This lengthy definition hampers of course the 
readability, thus making the abbreviated definition of 
attribute dependencies more favorable for our purpose. 
Nevertheless we stress again that the presented axiom 
system works for explicit attribute dependencies as well. 

The following example motivates the arguments of 
section 3.1.2 bydemonstrating how a type guard can be 
recognized being redundant. 

Example 4 Imagine a query containing a selection with 
the formula "salary > 5000 AND jobtype = 'secretary' " 
followed by a type guard checking for the presence of the 
attribute typing-speed. The redundancy of the type guard 
can be shown by the following derivation based on the 
jobtype-EAD defined in example 2: 

Projecting the right side of the jobtype-EAD onto 
{ typing-speed } yields (cf. rule (A1)) 

<{jobtype} exp. ,~  {typing-speed} , { < jobtype : 

'secretary' > ~xp. at~ , {typing-speed} } > 

Augmenting the left side of this EAD with the 
attribute salary yields (cf. rule (A4)) 

< { jobtype, salary } exp. attr , {typing-speed}, 
{ < jobtype : 'secretary', salary : s > 

exp. a~ > {typing-speed} } > 

where s is an arbitrary value of dom(salary). We may 
conclude that the presence of the attribute typing-speed 
can be deduced from the selection formula and that the 
type guard is therefore redundant. 

[] 

4 Due to space limitations we skip the proof of soundness and non- 
redundancy. The completeness is subsumed by the completeness of the 
extended axiom system &* (see theorem 4.2) which is proved in the 
appendix. The complete proofs can be found in [8]. 
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4.2 An extended axiom system captur ing 
functional  and  a t t r ibute  dependencies 

There are several reasons why one should regard FDs 
together with ADs. The first and most practical reason 
origins from the discussion how to embed flexible 
relations into programming languages. Take PASCAL as 
an example: Although its variant record type resembles 
ADs, there are some syntactic restrictions that have to be 
obeyed. One of them is that only a single attribute may 
appear as determinant of a variant record. Iamgine an 

attribute dependency X am, y with X consisting of at 
least two attributes. There is an intuitive way to 
circumvent the aforementioned syntactic restriction: 

Introduce an artificial attribute A, replace X am , y by 

A am , y and make the value of A dependent on the 

value of X, i.e. extend the constraints by X runt, A. 
The validity of this and other replacements may be 
verified by the aid of a rule system combining functional 
and attribute dependencies. 

Secondly, the assertion of the reflexivity rule for ADs 
is too weak as X does not only determine the existence of 
Y ff Y is a subset of X but also its value (see reflexivity 
rule (F1) below). In a combined system we can sharpen 
this assertion, making the axiom system more expressive. 

As a preliminary we have to adapt the notion of FDs 
to fit into our model. The adaption simply consists of the 
adding of a type guard "X ~ attr(t)" as the access of 
values must be preceded by a type guard when structural 
variants are allowed. The axiom system, consisting of the 
reflexivity rule, the transitivity rule, and the augmenta- 
tion rule (see (F1), (F2) and (F3) below), is borrowed 
from [16,p.384ff]. Its soundness and completeness is not 
affected by the adaption to our model. 

Definition 4.2 "FD (adapted to flexible relations)" 

Let X,Y c ~t. A flexible relation FR is said to satisfy the 

functional dependency X ~ , Y ff ~'tl, t2 ~ inst(FR): 

X c_ attr(tl) ^ X ~ attr(t2) ^ tl[X] = t2[X] ---> 

Y c attr(h ) ^ y c attr(t2) ^ tl[Y] = t2[Y] 
[] 

The combined axiom system ~ for functional and 
attribute dependencies consists of the following seven 
rules: 

(AF1) X ~c , y I- X am , y (subsumption) 
(AF2){X ~ o  y , y  a m  Z}  I'-X a m  Z 

(combined transitivity) 
(A1) X am ~ YZ I'-X am, y (projectivity) 

(A2) {X a m  Y , X  a m  Z}  t - X  a m  YZ 
(additivity) 

(F1) O I- X runt, y if Y c X (reflexivity) 

(F2) X f~c ~ y I- XZ f~o, YZ (augmentation) 
(F3) {X f ~ c  y , y  ~ ,  Z}  I - X  rune Z 

(transitivity) 

Theorem 4.2 ~ is a sound, complete and non-redundant 
system of rules for the implication of functional and 
attribute dependencies. 

[] 

Referring to the motivation for this combined rule 
system, one can see that the pragmatic "work-around" for 
PASCAL's variant record type is valid (see the combined 
transitivity rule (AF2)). 

In addition we could save two rules, thus making the 
axiom system more compact. The reflexivity rule (A3) 
and the left augmentation rule (A4), still needed in ~1 to 
produce a complete axiom system, can now be inferred 
from g with rather simple derivation sequences. 

4.3 Attribute dependencies versus record 
subtyping - the impact of transformations 

At the end of this section we want to discuss the 
differences and similarities of attribute dependencies and 
traditional record subtyping. To do so, we sketch, with 
the aid of the developed axiom system, how 
transformations affect attribute dependencies. As the 
formal description of the algebra for the model of flexible 
relations is beyond the scope of this paper, we will rely 
upon well-known algebraic operator, providing the 
intuitive meaning in our model, too. 

The most remarkable difference between record 
subtyping and attribute dependencies shows the project 
operator. While record subtyping tells us that any 
projection yields a valid supertype [14], two cases have to 
be discriminated for attribute dependencies: Suppose that 
a flexible relation is to be projected onto the attribute set 
X. As there is no rule telling us that an attribute 
dependency may hold ff attributes at its left side are 

omitted, all V a m  W with V ~ X are invalidated. If 
on the other hand V c X then the projection rule tells us 

that V am , W n X holds in the projection. 
The two notions of subtyping perform similar when 

the result "enlarges" the input relation(s). This holds e.g. 
for the extension operator and the cartesian product. The 
behaviour of attribute dependencies under algebraic 
transformations can be summarized as follows: 

Theorem 4.3 Let ads(FR) be the set of attribute 
dependencies that hold in the flexible relation FR. The 
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following rules describe the propagation of attribute 
dependencies: 

(1) ads(FR1 x FR2) = ads(FR1) w ads(FR2) 

(2) ads(~x(FR)) = {V ate, W n X  I V ~t~, 

W • ads(FR) ^ V _ c X  } 

(3) ads( t~ F (FR)) = ads(FR) 
(4) a d s ( F R  1 u FR2) = O 

(5) ads(FR1 - FR2) = ads(FR1) 
[] 

The theorem shows that besides the projection the 
union operator causes a problem, too. First of all note that 
without appropriate precautions no dependency at all 
holds in the result of a union, as one cannot decide from 
which input relation the tuples do come from, i.e. this is 
not a special problem of attribute dependencies. To make 
dependencies hold, one has to tag both input relations 
before performing the union. The tagging can be realized 
with the extension operator eA:a(FR), which extends each 
tuple of FR by attribute A with value 'a'. 

The left augmentation rule allows us to replace any 

X a~, y occuring in one of the input relations by 

AX at~ y in its extended counterpart. The extended 
attribute dependencies now remain valid in the result 
relation, i.e. we obtain 

(6) ads( ( ea:al (FR1)) u ( CA: ~ (FR9) ) = 

{ AX a~, y I X a~, y • ads(FR1) v 

X ~ r  y • ads(FR2) } 

5. Related work 

The concept of subtyping is present in each object- 
oriented data model [2]. To obey the desirable closure 
property, these data models should discuss how the 
subtype relation is affected by algebraic tranformations. 
This has been done e.g. for the COCOON model in [14] 
and for the ENCORE model in [15]. Differences to our 
notion of record subtyping have been discussed in section 
3.2, the comparison of the behaviour under 
transformations is contained in section 4.3. 

From the viewpoint of data dependencies, several 
attempts have been made to consider value-oriented 
dependencies in the presence of null values ([9], [17]), 
but considering a merely existential consequence without 
any value-oriented assertion seems to be a novelty in the 
context of an operational data model. 

An approach which pursuits the idea of [7] to 
decompose an entity subtree into a master relation and 
depending relations containing the variant information is 
the "multirelation" model of Ahad and Basu [1]. They 
improve the decomposition by keeping track of the 
connection between the master relation and the 

depending relations so that the restoration of the 
complete information can be automated. The recording of 
the connection between master and depending relation is 
done via so-caUed "image attributes", attributes 
possessing relation names as their domain. Image 
attributes can be regarded as a special case of an attribute 
dependency using a single artificial attribute as 
determinant, this approach is therefore completely 
covered by our results. 

6. Summary and outlook 

In this paper we have motivated attribute 
dependencies as constraints naturally arising when 
variant structures are considered. It turned out that they 
can be used to incorporate record subtyping in a 
relational model, yielding an even stronger notion of 
subtyping, as attribute dependencies consider causal 
connections between type refinements. In addition we 
could show that the several forms of specialization 
arising in (enhanced) entity relationship models can be 
one-to-one mapped onto attribute dependencies, with the 
benefit that they can be operationally employed in type 
and integrity checking. 

Our approach to model these features as a dependency 
allowed us develop an axiom system for their derivation. 
The axiom system has been shown to be sound, non- 
redundant and complete, which enables us to precisely 
predict the effect of arbitrary transformations (like query 
language operations) on attribute dependencies. 
Furthermore the connection between attribute and 
functional dependencies has beeen discussed and an 
extended axiom system capturing both forms of 
dependencies has been evaluated. 

Although attribute dependencies were regarded in the 
context of the model of flexible relations they are rather 
loosely fled to particularities of this model (see section 2). 
Thus there seem to be no major problems to integrate 
attribute dependencies into other data models supporting 
variant structures or appropriate null values. 

In this paper the connection between attribute 
dependencies and subtyping has been shown. However, 
the second axiom system presented here, capturing both 
functional and attribute dependencies, has been motivated 
differently (see section 4.2). Additional work should be 
put on the question if this combined rule system can be 
exploited to put further semantics into the subtype 
relationship. 
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A p p e n d i x  

Proof of completeness of the axiom sytem ~.  

Let AF be a set ~ ADs and FDs and let AF+IAF" be the set of all 
dependencies that can/cannot be derived from AF by the axioms in &r. 
X+~nc, the closure of FDs for an attribute set X is known from literature 
(see e.g. [16]). Let X+anr be the corresponding closure for ADs. The 
relationship between both is X~ttr ~ X~anc as any FD implies an AD due to 
the subsumption rule (AF1). 

To prove completeness, for each X ~ Y e AF- we have to 
construct a flexible relation FR that satisfies all dependencies in AF +, but 
not X ~ Y. Analogous to the proof for FDs we construct a two-tuple 
(flexible) relation with the following specification (independent on if we 

regardX -attr ) Y e A F - o r X  rune ) Y e A F - )  

attr(t I) = 1~ 
VA~ g:t l(A) = 1 
attr(t9 = X~t~ 
VA ~ X~m c : t2(A ) = 1 
VA e X~t~- X ~ ¢  : h(A) = 0 

This relation can be visualized as follows (with Ill/symboli:fing non- 
existent attributes) 

attributes of X ~me attributes of X a+~ - X~ta¢ attributes of B - Xatlr+ 
A A A .  

1 1 . . . 1  1 1... 1 1 1 . . . 1  

1 1 . . .  1 0 0 . . .  0 / / / / / / /  

Suppose we have to show that X attr > y is not satisfied by this 
flexible relation. By reflexivity, X g~ X+func , so by construction q[X] = 
t2[X]. Y cannot be a subset of X~t ~ , otherwise it would have been inferred 
by the closure property. So by construction attr(tl) n Y ~ attr(t 2) n Y, i.e. 

X at~ ) y is not satisfied. 

Suppose at the other hand that we have to show that X rune ) y is 
not satisfied by this relation. By the closure property Y cannot be a subset 
of X~aac, so by construction either Y ~ attr(t2) or at least q[Y] ~ tz[Y ]. In 

both cases X time ) y is not satisfied. 
In addition we have to show that FR is a legal relation, i.e. that all 

dependencies in AF + are satisfied. Let W l a n e  Z ~ AF +. If 

W g X~mc, then t 1 and t 2 disagree on W, and the dependency is trivially 

satisfied by FR. Let on the other hand W ~ X+func. Then by the closure 

property X time ) W and by transitivity X rune ) Z. Using the closure 

property again we get Z K X~m c and now, by construction, tl[Z ] = t2[Z ]. 

Hence W fune > Zis satisfied by FR. 

Take now W attr ) Z ¢ A F  +. Again, i f W  g£ X ~ a  c ,  then the 
dependency is trivially satisfied by FR. Assume on the other hand 
W ~ X+func . From the functional closure property we can infer that 

fune X ) W. Now the combined transitivity rule applies and yields that 

X attr ) Z holds. The attribute closure property asserts that Z ~ X+attr 

and, by construction, attr(tl) n Z = attr(t2) n Z. Hence W attr ) Z is 
satisfied by FR. That is, the axioms are complete. 
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