
Flexible Relations - Operational Support of Variant Relational Structures

Christian Kalus Peter Dadam
Department of Databases and Information Systems, University of Ulm

e-mail:{kalus,dadam}@informatik.uni-ulm.de

Abstract

The relational model is accepted for its simplicity and ele-
gance. At the other side the simplicity causes the problem,
that most semantic type constructs are not representable
as a simple relation. Variant and heterogeneous structures
belong to those constructs not adequatly supported by the
simple relational model. In this paper we give an overview
of the model of flexible relations that allows to model and
process arbitrary heterogeneous structures, while preserving
the relational philosophy of operating with a single construc-
tor. As flexible relations support both the modeling and
the operational aspect of variant structures seamlessly, our
model truly helps to further bridge the gap between seman-
tic and operational data models.
We discuss the structural part of the model and introduce
an algebra for flexible relations. Further we examine a sub-
class of flexible relations, that can be processed as efficiently
as the simple relational model, and show that this subclass
possesses desirable structural normal form properties. In ad-
dition, we point out that our approach exceeds the object-
oriented paradigm in modeling power, typing precision, and
query optimization potential.

1 Introduction

The relational model ([Cod70]) is the most accepted op-

erational data model due to its mathematical founda-
tion, its simplicity and elegance. Both elegance and
simplicity are mmainly due to the fact that it uses a sin-
gle constructor, the relation. A disadvantage of this
aspect is that many useful modelling constructs are not

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made OT distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very LaTge Data

Base Endowment. To copy otherwise, OT to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 21th VLDB Conference
Zurich, Switzerland 1995

adequatly supported by the relational model ([Ken79]).
This fact caused the development of semantic data mod-
els (see [PM88], [HK87] for overviews). As semantic
data models do emphasize the modelling aspect and typ-
ically do not offer query processing or data manipulation
facilities, they have to be mapped onto operational data
models. As the simple relational model is too weak to
support these modelling aspects, extensions of the rela-
tional model have to be developed to bridge this seman-
tic gap. The challenge that relational extensions have
to meet is to integrate the intended modelling aspects
without sacrifying the benefits of the original relational
model. The most convincing extension to the simple
relational model is the NF’ model (see [AFS89] as an
entry point) that supports the modelling construct ag-
gregation and association, but still employs a single con-
structor, namely an extended relation constructor.

The overall aim of the model described in this paper is
to support each form of variant (and non-variant) struc-
tures in a generic way, thus providing an “operational
engine” for structural aspects currently not supported
by the relational model. We will show that our model
integrates homogeneous and heterogeneous structures
seamlessly, thus enlarging the scope of the relational
model without giving up the benefits of the simple re-
lational model.

There are several forms of variant structures occuring
in semantic data models, and we would like to motivate
them with an address type. The most popular variant
type is the exclusive union telling that exactly one of
its subtypes has to be present. An example of an
exclusive union is the inner-town address consisting
either of a post-office box or a street, but never of
both. Another form of heterogenity can be motivated
by the “electronic part” of an address composed of the
telephone number, the telex number, and the electronic
mail address. These attributes do not need to occur
together nor do they exclude each other. Instead we

539

TYPE address =
TUPLE zip code : integer;

city : string;
ONE OF (post-office box : integer;)

(TUPLE street : string;
OPTIONAL houseno: integer;

END;)
END;
SOME OF (telephonno : integer;)

(telexno : string;)
(email-address : string;)

END;
END;

Figure 1: Desired representation of an address type

would like to express that some of these attributes are
allowed to be present which is achieved by an inclusive
union. A third form is a single optional attribute. For
instance, a street may be accompanied by a house-
number, but does not need to. If one puts these
heterogeneous structures together with the zip code
and the city, that shall always be present, an ideal
representation should look like the one depicted in figure
1. There are two possibilities to map the address
type onto the simple relational model. The first one
is to normalize the conceptual type, i.e. to enumerate
each allowed attribute combination, yielding 21 address
relations’. The second alternative is to specify zip code
and city to be not null attributes, and to allow null
values for the other attributes. Besides the problem
that there are several semantics for null values, the
connection between the attributes gets completely lost2.
Both alternatives are dissatisfying, i.e. the operational
support of heterogeneous structures requires a proper
extension of the relational model.

The structural kernel of our model consists of the
definition of a flexible scheme, an extension of a
relational scheme that allows to specify homogeneous
and heterogeneous structures with a single, generic
constructor. This aspect will be discussed in section

1 We assume here that the semantics of the some of construct in
figure 1 is that at least one of its components has to be present,
giving 7 possibilities for the electronic address. Multiplied with
the three variants of the inner-town address yields 21 different
combinations.

2 Some approaches including SQL2 ([MS93]) provide the facil-
ity to specify relationships between attributes as integrity con-
straints of the form “(post-office box IS NULL AND street IS
NOT NULL) OR . . .“. But nothing is said about the influence
of these integrity constraints on query processing and so on.
This aspect is considered by our model providing true integra-
tion of variant structures into an operational data model.

2. Section 3 deals with a corresponding extension
of the relational algebra, putting the emphasis on
the point that our algebra is adequate with respect
to the structural part of our model, and preserves
the consistency with the simple relational algebra at
the other side. In section 4 the related aspects
equivalence among flexible schemes, restructuring of
flexible schemes, and structural normal forms of flexible
schemes are discussed. Section 5 contains a comparison
of our model to related approaches, especially to the
object-oriented paradigm. Section 6 finishes with a
summary and an outlook.

2 The model of flexible relations

There is no problem to extend the relational model
by one constructor for exclusive disjunctions, another
constructor representing inclusive disjunctions, a third
constructor for optional attributes, and so on. This
approach would not yield a satisfactory solution as

one can easily imagine application scenarios that de-
mand yet another form of variant structure requir-
ing a fourth constructor with appropriate operators
(and so on), plus

supporting multiple constructors requires a query
processing language whose operators are specific
to certain constructors, i.e. in such a language it
depends on the query context if an operator is
applicable or not, destroying both efficiency and ease
of use.

The arguments show that supporting variant structures
in a relational model raises the challenge to find a single
constructor that is complete in the sense of being able

540

to model each possible form of heterogeneity, otherwise
the benefits of the relational model get lost.

It is obvious that a simple relational scheme consisting
of a set of attributes is too weak to meet these structural
requirements. Therefore we added two integer values
kin and km,, that specify a range of validity. Together
with the known set { Al , . . . , Al, } of attributes, a
choice scheme forms a three-tuple

<hnin,km,~,{A~ ,..., Ak}>
The intuitive meaning of a choice scheme is that its
domain consists of each tuple that possesses m (0 5
kin I m I km,,) attributes out of { AI, . . . , Ak }.
The semantic type constructs introduced in section 1
are mapped onto a choice scheme as follows

l an exclusive union is represented by < 1 , 1 , { A1 ,
.‘. > Ak } >, expressing that at least 1 and at
most 1 and therefore exactly one of the attributes
Al, . . . , Ak has to occur.

l an inclusive union is equivalent to the choice scheme
<O,k,{Al,..., Ak } >, meaning that at least
none and at most all and therefore some of the
attributes AI , . . . , Ak may be present. Requiring
that at least one of the attributes has to be present
leadstothescheme<l,k:,{Ar ,..,, Al,}>.

l a single optional attribute conforms to the choice
scheme <0, 1, {A}>.

l a conventional relational scheme does not leave any
choice among the attributes and corresponds there-
foretothechoicescheme<k,k,{Ar,...,Ak}>,
expressing that each attribute has to be specified.

Putting the characterized semantic constructs together,
we are able to represent the address type of figure 1 by
the flexible scheme depicted in figure 2. It demonstrates
that our notation allows to express each involved
semantic structure with a single, generic constructor.
Note that we enhanced the notion of a choice scheme in
figure 2 in that we do not only allow simple attributes to
occur in the third component of choice schemes, but also
choice schemes again. As unions occur as subtypes of
tuples and vice versa, it is obviously necessary to define
schemes supporting variant structures in a recursive
manner. This recursive step leads to the final definition
of a flexible scheme3.

3 As usual we assume the existence of a countablyin5nite set Z-4 of
attributes. In addition, we expect that there is a set ‘D of basic
domains and a function dom : U - Q associating a domain
with each attribute. As we are not particularly interestedin the
attribute values, we omit to properly define this relationship.

Definition 1 The set 3S of flexible schemes is the
smallest set that satisfies

1. AETS, ifAEZ4

2. <kmin,kmaz,{FS~,...,FSk}>E~‘S,
if bin , km,, , k E IN, 0 L kmin I km,, 5 k,

FSI , . . . , F& E Fs 0

Up to now we only have developed a syntactic charac-
terization of flexible schemes. We still have to associate
a domain with them. There is a direct (and very effi-
cient) way to determine the tuples forming the domain
of a flexible scheme (see [Ka195]), but for a basic under-
standing it is more suitable to flatten a flexible scheme,
with the goal to describe its domain as a set of legal at-
tribute combinations. This representation is much like
the Disjunctive Normal Form (DNF) of propositional
logic. Therefore we called the algorithm that computes
the flat representation the dnf-algorithm. It recursively
“multiplies out” the components of a flexible scheme
until an equivalent flat enumeration of its attributes is
achieved.

As the outcome of the dnf-algorithm is very intuitive,
we omit a formal definition and present an example
instead. The application of the dnf-algorithm to the
scheme FS =<4,4,{A,B,<l,l,{ C,D}>,
~2, 3, {E, F, G}>)>” yields the result

dnf(FS) = { ABCEF, ABCEG, ABCFG,
ABCEFG, ABDEF , ABDEG,
ABDFG, ABDEFG)

Using the dnf-algorithm it is now easy to define the
domain of a flexible scheme FS: The domain of FS
consists of each tuple that is defined on an attribute
set X E dnfTFS), i.e. if Tup(X) denotes the set of
tuples defined on the attribute set X, then dom(FS) =

U XEdnf(FS) TUp(x)5.

A second benefit that results from the dnf-function is
that it is not only possible to map a flexible scheme
onto a dnf, but that it is also possible to associate
each DNF of attribute sets with a flexible scheme.
Using elementary results of propositional logic we may

4 For the remainder of the paper we will use the scheme FS =
<4,4,{A,E,<l,l,{C,D}>,<2,3,{E,F,G}>}>
as the running example. Although it looks very abstract at first
glance, it is only slightly modified with respect to the concrete
address scheme in figure 2. So we emphasize again that flexible
schemes do possess practical relevance despite their somewhat
abstract notation.

5 Note that this flat, enumerative description of a flexible scheme
corresponds to the “set of objkcts” approach of [SciSO] (see also
[M&83], ch. 12).

541

address = < 4, 4, { zip-code : integer,
city : string,

< 1 , 1, { post-office-box : integer,

< 2,2, { street : string,

< 0, 1, { houseno : integer } >

I>
> >?
< 1,3,{ telephoneno : integer,

telexno : string,
email-addr : string

I>
I>

Figure 2: Representation of the address type as a flexible scheme

conclude that flexible schemes are complete in the sense
that arbitrary heterogeneous structures can be mapped
onto a flexible scheme. Summing up, it may be said that
flexible schemes satisfy the structural goals of providing
a single, complete constructor for variant structures.

A sample instance of a flexible relation based on the
flexible scheme < 4, 4, { A, B , < 1, 1, { C, D } > ,
<2,3,{ E, F,C}>}>mightlookasfollows:

inst(FR) A B C D E F G

3 The F-algebra - an algebra for
flexible relations

In the previous section we have shown that flexible
schemes provide a compact and generic description of
heterogeneous structures. But little is gained by a
generic constructor if it is not supported operationally.
Therefore we developed the F-algebra, the operational
part of the model of flexible relations, with the goal
to provide a query processing language as powerful
in its ability to process variant structures as flexible
relations are on the structural side. The main emphasis
in designing the F-algebra was put on

l adequacy: each operator should be applicable
to any flexible relation with arbitrarily structured
flexible schemes.

closeness: each operator should result in a flexible
relation again. The emphasis had to be put on
the result schemes, which were intended to be well-
formed flexible schemes, i.e. a precise and compact
description of the operator’s output.

efficiency: the operators should not be more
complex than their relational counterparts.

semantic connection to the relational algebra:
the intuitive meaning of the operators should be
kept, and the F-algebra’s operators should be
faithful and precise6 with respect to the relational
algebra.

In summary, the F-algebra comprises the relational
operators projection, selection and Cartesian product,
an extension operator to add a new column, the
set operators union, minus and intersection and a
restriction operator that checks for the presence or
absence of attributes.

The projection operator shall serve as an illustrative
example and will be discussed in more detail. The other
operators are sketched at the end of this section.

3.1 Projection

The intuitive meaning of a projection is to drop
columns. To do so, one specifies a set X of attributes
that shall survive the projection. As the result of a
projection, a relation containing the attributes X n

6 The notions faithful and precise are adapted from [M&83].
An extended operator p’ is said to be faithful to its basic
counterpart p if both provide the same result applied to a
non-extended relation. An extended operator pf is said to be
precise to its basic counterpart p if there is a mapping lnap from
the extended model Rj to the basic model such that map is a
homomorphism for pJ and p .

542

a%(R) is produced 7. The intuition of a projection is
directly reflected by the relational definition

sch(ax(R)) = x n sch(R)

insl(7fx(R)) = {t[X l-l sch(R)] 1 t E insZ(R)}

One of the design goals of the F-algebra was to preserve
the intuitive meaning of the relational operators. There-
fore our extended of operator has to eliminate columns
of a flexible relation in the very same way. This effect is
informally presented in figure 3. Note that the projec-
tiononto {A, C, E, F} d oes not mean that the result
tuples are defined on each of the specified attributes.
As { A, B , C , D , E , F , G } is a superset of the at-
tributes of the input relation’s tuples, {A, C , E , F} is
a superset of the output relation’s tuples consequently,
too. This statement leads directly to the definition of
inst(TgR)):

inst(?r$(FR)) = {t[X n attr(t)] 1 t E insl(FR)}

To be able to define sch(?r$(R)) analogously to the
relational projection one needs a flat description of a
flexible scheme. Fortunately, this can be achieved with
the dnf-function introduced in section 2, that represents
a flexible scheme as a set of legal attribute sets. As
a relational scheme is merely a set of attributes, the
result of the dnf-function can be interpreted as a set of
relational schemes. Now the analogy to the relational
definition can be maintained by defining that all legal
attribute sets have to be intersected with the projection
attributes:

dnj(sch(w&(FR))) = {X n Y 1 Y E dnf(sch(FR))}

The effect of this definition on the example scheme
is shown in figure 3. This definition satisfies the
fourth design goal, the close connection to the relational
algebra, but it fails to satisfy the other three goals.
The definition is neither adequate as it does not take
a flexible scheme as input but merely a flat description
of a flexible scheme, nor is it really closed as the output
is again flat and not a compact flexible scheme. Finally,
the definition is not efficient as it depends on both the
dnf- and the dnf -‘-function which can be very costly
in some cases. Hence the main challenge in the design
of the projection operator (and the whole F-algebra)
is to find scheme transformations that accept flexible
schemes as input and map them directly onto flexible
schemes. How this problem was solved is discussed in
the next section.

7 We do not require X C attr(R) here. This leads to a

slightly modified, but eq&alent definition and better reflects
the connection to the F-algebra.

3.1.1 Direct computation of a projection
scheme

It is easier to explain the scheme transformation of
the projection if one starts with a single level scheme
sch(FR) = < &in , Ic,,, , { Al , . . . , Ak } >. Assume
that the projection attributes are X = {Al , . . . , A, }.
Due to our arguments in the previous section we know
that {Al, . . . , A, } will be the superset of the result
tuples’ attributes, i.e. the result scheme will look like
sch(&(FR)) = < kAi, , k:,, , { Al , . . . , A, } >. In
this scheme the new lower bound /&, and the new
upper bound I&,, still have to be determined. The
new bounds must be chosen such that exactly those
tuples satisfying the ins&-definition are members of the
result scheme. The computation of fAin can therefore
be regarded as a “worst case analysis”: how many
attributes does a tuple of the input scheme have at
least in common with the projection attributes? The
way how kAi, is determined is depicted in figure
4. The upper attribute “interval” in figure 4
represents the input scheme’s attributes, while the
second interval shows that the projection attributes
are the first m attributes of the input scheme. A
tuple being member of the input scheme contains at
least kmin attributes. To create the worst case we
place these k,,,in attributes at “the end” of the input
scheme’s attributes, i.e. a worst case tuple possesses the
attributes { Ak-k,,,+l , . . . , Ak } (see third interval in
figure 4). The projection leaves the intersection of the
projection attributes and the attributes of the worst
case tuple (see lower interval in figure 4). The width
of this interval k,i, +m- k is the new lower bound. As
emphasized by the dotted line the value kmin + m - k
may be less than zero, i.e. the resulting interval may be
empty. The correct lower bound of a projection scheme
is therefore kAin = maz(k,i, + m - 6, 0).

k A,, is obtained analogously by a best case analysis.
A best case tuple consists of k,,, attributes located at
“the start” of the input scheme’s attribute interval to
share as many attributes with the projection attributes
as possible. The intersection of the best case tuple’s
attributes with the projection attributes results in the
new upper bound k;,, = min(k,,, , m).

The definition for single level schemes is now complete.
The generalization to an arbitrary, multiple level scheme
sch(FR) = < kmi,, , k,,, , { FSl , . . . , Fsk } > is
achieved by the following argumentation: In the single
level case the attributes {AI , . . . , A, } were those that
survived the projection. In the multiple level case a
subscheme FSi survives the projection if it contains at

543

FS=<4,4,{A,B,<1,1,{C,D}>,<2,3,{E,F,G}>}>

1 dnf
dnf(FS) = (ABCEF , ABCEG, ABCFG, ABCEFG,

ABDEF,ABDEG,ABDFG,ABDEFG)

1 n {A,C,E,F}

dnf(?ri(FS)) = { ACEF, ACE, ACF, AEF, AE, AF}

Jl dnf -I

n;(FS) = <3,3, {A, <O, 1, {C}>,<l, 2, {E, F}>}>

Figure 3: example of a projection in the model of flexible relations

AI An:
afir t

a22r(a{A~ ,...,A,n}(FS))
&

aqt 11 worst case” >
t--------i-- Ak-k,;,+l

ati+{ A1 , . . . , A,)(hvorst case”))
t--------j m

* kAi, = mar(kmin + m- k,O)

Figure 4: Computation of the lower bound kAi,, of a projection scheme

least one of the projection attributes. The number m of
surviving subschemes, which influences the computation
of kAi, and kl,, (see above), has now to be chosen
such that a2trfFSi) II X # 0 (i = l..m) and at2rfFSj) n
X = 0 (j = m + l..k). As a surviving subscheme
is allowed to possess attributes not contained in the
projection attributes, those superfluous attributes have
to be removed, too. Therefore the projection operator
has to be applied recursively to the subschemes of a
multiple level schemes. This argumentation leads to
the final definition of the scheme transformation of the
projection in the F-algebra:

Definition 2 Let sch(FR) = < k,,,i,, , k,,, , { FSI ,
. . . , F& } > be a flexible scheme, let X be the set
of projection attributes and assume w.1.o.g. that the

subschemes of sch(FR) are ordered such that

allr(FSi) n X # 0 (i = l..m)
aitr(FSj) n x = 0 (j = m + l..k)

Then the result scheme of a projection is defined by

sch(&FR)) =
<&in, k;,, , { ‘IF~(FSI), . . . , &F&n) I>
with kAi, = maz(k,i, + m - k, 0)
and k:,, = min(k,,,, m)

An atomic scheme sch(FR) = A is transformed by

sch(&(FR)) = “T’ ‘kist8’ x
{ ’

0

8 T is a special flexible scheme whose domain consi& only of the
empty tuple <>, i.e. dam(T) = { <> } and dnf(T) = { 0}.

544

7r$(Fs) =

?r~(<4,4,{A,B,<1,1,{C,D}>,<2,3,{E,F,G}>}>) =

<3>3, M(A), 4(<L 1, -cc, W>), 7r$(<2, 3, {E, F, G}>)}> =

<3,3, {A, <O,l, b$(C>b, <1,2, b&(E), $#‘)b+ =

~373, {A, <O,l, {Cl>, ~172, {E, J’l>l>

FS

=<4,4, {A, B,

operational

?r’-definition
Z- r;(FS) =

<3,3, {A, I
cl, 1, {C, D)>,

dnfl) <2,3, w, F, m-b

dnfTF3
= {ABCEF,ABCEG,

ABCFG, ABCEFG,
ABDEF, ABDEG,
ABDFG, ABDEFG)

semantic

?r’--definition
= {ACEF, ACE,

ACF, AEF,
AE, AF}

Figure 5: Direct computation of a projection scheme and its relationship to the dnf-based computation

The application of this definition to the sample scheme
FS = < 4,4,{ A,B,< l,l,{ C,D } >,<
2,3,{E,F,G)>)> and the projection attributes
X = { A, C , E , F} is depicted in figure 5. Now
we have two definitions for the scheme transformation
of a projection: First, there is a flat description along
the dnf-function that realizes the connection to the rela-
tional algebra. Secondly, we have a recursive definition
that works directly on flexible schemes and satisfies the
design goals adequacy, closeness and eficiency. But this
definition does hardly resemble the relational projec-
tion, so we need a connection to the flat definition that
reflects the similarity to the relational algebra. This
connection is achieved by verifying the commutativity
of the diagram in figure 5. In this example it is easy
to see that the dnf-function serves as a homomorphism
between the operational and the semantic definition of a
projection, i.e. the diagram commutes. The proof that
this equation holds in general is contained in [Ka195].

3.2 Overview of the F-algebra

In summary the F-algebra consists of the basic oper-
ators projection, selection, Cartesian product, exten-
sion, union, minus, intersection, and restriction. Due
to lack of space we omit to present the algebra in de-
tail and refer to [Ka195] for the complete definition. To
give an impression of the F-algebra we recapitulate the

design goals characterized at the start of this section.
The semantic connection of the F-algebra to the rela-
tional algebra is kept by appropriate inst- and dnflsch)-
definitions leading to the following theorem [Ka195]:

Theorem 1 The extended operators projection, se-
lection, Cartesian product, union, minus, and intersec-
tion of the F-algebra are faithful and precise with re-
spect to their counterparts in the relational algebra.

Of course, there are positive differences to the rela-
tional algebra, for example the set operators can be
applied to arbitrary input relations that do not have
to be “set compatible”, i.e. that do not have to pos-
sess identical schemes. The adequacy and closeness of
the F-algebra with respect to the structural part of our
model is achieved by operational scheme transforma-
tions applying directly to flexible schemes. The follow-
ing theorem guarantees the identity of the two scheme
transformations for each operator [Ka195]:

Theorem 2 For each operator p of the F-algebra, the
operational definition of the scheme transformation pop
(based upon the sch-definition) is correct with respect to
the semantic definition pSem (based upon the dnflsch)-
definition), i.e. for each flexible scheme FS the equation
dnflp”P(Fs)) = psem(dnf(FS,)) holds. 0

545

As flexible relations deal with heterogeneous sets the
structure-related operators of the F-algebra demand
further explanation. The restriction operator 11, checks
for the presence PA or the absence 4-A (FR) of an
attribute A in a flexible relation FR. It can be regarded
as a formalization of the IS NOT NULL resp. IS NULL

test in SQL. The type guard operator 7~s~ JJS, (FR)
takes a flexible relation FR, a subscheme FS of sch(FR),
a restricted scheme FS’ with dom(FS’) c dom(F,‘j’)
and selects those tuples of FR whose F&part belongs
to the domain of FS’, i.e. inst(rFs+ FS~ (FR)) = { t 1
t E inst(FR) A t[attr(FS)] E dom(FS’)}. Thus the
type guard checks for specific structural variants, e.g.
~AIlEmployees+ Technicians(Employees) extracts the tech-

nicians out of an employee relation (with appropriately
defined and named schemes). Formally the type guard
can be derived from the restriction by forming the DNF
of FS’, but mapping it onto the membership test of flex-
ible schemes is much more efficient.
With the aid of the type guard we can express
that the computation of a property depends upon
the actual structural variant, namely by prop(FR) =
Ui eEpri(T,,h(FR) --+ v,(FR)), where ezpri is the imple-
mentation of the property prop in the variant F/;. This
feature allows us to integrate methods and method over-
riding in the algebraic processing and in the algebraic
optimization step provided that the method implemen-
tations expri are expressible within the algebrag. Fur-
ther it enables us to strictly separate between flexible
relations (i.e. sets of heterogeneous tuples) plus methods
at the logical level and implementation issues at the in-
ternal level. To compare our approach with the object-
oriented paradigm we have developed equivalence trans-
formations for the type guard and we can show that in
case of a horizontal fragmentation of a flexible relation
into homogeneous sets each type guard can be elimi-
nated resulting in the OO-style expression. This aspect
can be sketched as follows: Suppose FR is partitioned at
the internal level into homogeneous sets Si with struc-
ture vi. Then we can put the equation FR = Ui Si
into the expression prop(FR) described above. The first
transformation step is to push the type guard into the
union, which works as for the selection. Now the type
guards are directed against the homogeneous sets di-
rectly. All which is now left to do is to identify re-

.dundant type guards rsseh(~~)+ vi($) = Si and un-
satisfiable type guards r,,h(~~)+ ,(Sj) = I (i # j)
which are eliminated by the rule FR UJ I = FR. These
simple transformation rules yield the desired expression

g Regarding this aspect it is advisable to consider domain
operations in the algebra as for example [GCt89] does.

prop(FR) = ua ezpr,(Si) which exploits the horizontal
fragmentation. Of course our approach works for verti-
cally fragmented or unfragmented flexible relations, too.
Thus the F-algebra provides true data independence for
heterogeneous relations and makes method-like compu-
tation of properties that depend on structural variants
accessible to the optimization component.
To demonstrate the practical relevance of our model
we have designed FSQL, an extension of SQL support-
ing variant structures. Some key features of FSQL
are: FSQL contains syntactic constructs to express type
guards and restriction and in contrast to SQL it consid-
ers the corresponding scheme transformations. FSQL
supports methods whose implementation may depend
upon structural variants and it offers a generic IF-
THEN-ELSE and CASE construct to express depen-
dent computation directly. An application of the generic
CASE construct is the multi-way join joining a master
relation with different dependent relations guarded by
a specified condition. This operator which is the key
aspect of [AB91] comes for free in our model. To re-
verse the heterogeneity of flexible relations FSQL offers
default expressions that replace missing attributes, thus
filling up the gaps in a flexible relation.
As FSQL is based upon the F-algebra and its derived
operators we may conclude that our model provides
user-friendly access to heterogeneous relations with a
theoretically sound foundation.

4 Restructuring and normalizing
flexible schemes

The question if two schemes are equivalent is an im-
portant question in scenarios like view construction,
schema simplification, database integration and many
others. The formal basis of the notions information ca-
pacity, schema dominance and schema equivalence are

presented in [Hu186] and [AABM82]. While simple re-
lational schemes are equivalent only if they are identi-
cal [Hu186], the same does not hold for more complex
data models. In the context of the FORMAT MODEL

([HY84]), which supports tuple and set constructors in
arbitrary order, it was shown that structurally different
schemes may be equivalent and restructuring rules were
presented that map schemes onto equivalent ones. In
[AH881 a data model that extends the Format Model
by an exclusive union constructor was considered and
the rules were extended to capture it. A major result of
[AH881 is that the restructuring rules transform schemes
of this model into an unambigious normal form.
One of the restructuring rules of [AH881 is depicted in
figure 6. It states that a tuple constructor (represented

546

.
AI
R

Ae
. . .

A, Ain AI Ai, Al, Al A,, Ak

Figure 6: Example of a restructuring rule

by @) with /c components whose i-th component is a
union constructor (represented by @) with n compo-
nents is equivalent to a union constructor with n com-
ponents, each component being the tuple constructor of
the left scheme having the i-th component replaced by
a component of the union constructor.

The problem of having equivalent, but syntactically
different schemes applies to flexible relations, too. An
example of schema equivalence in our model is depicted
in figure 7 that contains three flexible schemes that do
all describe the same domain, i.e. that are equivalent.
The first scheme states in a compact way that 2 up to 3
of the attributes {A, B , C , D } have to be present.
The second scheme splits this information by saying
that either exactly 2 or exactly 3 of the mentioned
attributes may occur. The third scheme is special in
the way that it consists of a complete enumeration of
all valid attribute combinations. In that form both the
&in- and the k,,, -value can be statically determined:
Lin = km,, = 1 at the top level, kmini = k,,,, =
card(subschemei) at the second level. Such a flexible
scheme does therefore bear exactly the information
computed by the &f-algorithm and we will call those
schemes being in disjunctive normal form (DNF).

This third scheme corresponds to the normal form
developed in [AH88], i.e. the DNF is the result of
the transformations described in [AH881 when these
transformations are applied to types consisting only of
tuple and union constructors and not possessing any set
constructor. Besides the advantages of the DNF, that
is being a normal form and being easy to compute, it
has several disadvantages:

l The storage costs of DNF schemes are exponential
in the number of attributes. The time complexity of
comparing two DNF schemes is exponential”, too.

lo Usually processing costs are measured in the size n of the input
yielding n logn for the comparison of two schemes in DNF.
But our intention is to compare our model with the relational
one. Therefore we have chosen the number of attributes as the
common basis.

l For arbitrary flexible schemes the membership test
is in NP relative to the input size. Measured in the
number of attributes (for a better comparison with
the relational model) the membership test and other
algorithms on flexible schemes including the scheme
transformations of the algebra have exponential time
complexity for DNF schemes.

4.1 Minimal normal form of flexible schemes

The disadvantages of the DNF can be avoided if one
utilizes the capability of flexible schemes to express
heterogeneous structures in a compact way (as the first
scheme in figure 7 does). Hence arises the need to
transform flexible schemes into a dense form with as
few schema nodes as possible. Obviously, the way one
has to pursue is to apply the restructuring rules in a
direction that yields “smaller” schemes with less schema
nodes, e.g. from right to left in figure 6. The challenge
of reducing flexible schemes is to answer the question if
applying the rules towards smaller schemes always leads
to an unambigious normal form.
As one can show this cannot be achieved for arbitrary
flexible schemes. That is, there are schemes for which
applying the restructuring rules in different orders leads
to different final schemes. The crucial point whether
there exists a minimal normal form is the number of
occurences of attributes. There is a subclass of 3’S
that we have called the class V3S of disjoint flexible
schemes. It contains all flexible schemes that possess
each attribute at most once, e.g. the first scheme in
figure 7 belongs to V3S, while the other two schemes
in figure 7 possess multiple occurences of attributes
and belong hence to NV3S = 3S - V3S. At first
glance one might think that members of V3S are
normalized by definition. A counterexample is the
scheme FS = <3,3, {A, B, <2,2, {C,D}>}>.
FS is a member of VDTS, but it can be reduced to
FS’ = < 4,4, {A, B, C, D} >. This reduction
is achieved by the tuple in tuple restructuring rule
described in [Ka195]. In summary, [Ka195] contains
seven restructuring rules applying to schemes in V3S
and it can be shown ([Sch94],[Ka195]) that reducing
members of V3S by applying the rules in arbitrary
order yields an unambigious minimal normal form.

The second important property of V3S is that the
time complexity of the relevant algorithms, including
the membership test, is polynomial in the number of
attributes. The result is due to the fact that a scheme
in V3S with n attributes possesses o(n) schema nodes
and that the most costly node-local operation is the
intersection of two attribute sets which is o(n logn).

547

= <l, 1, {<2,2, {A, B, C, D}>, <3,3, {A, B, C, D}>}>

~<1,1,{<2,2,{A,B}>,<2,2,{A,C}>,<2,2,{A,D}>,<2,2,{N,~~‘}>

<2,2,{B,D}>,<2,2,{C,D}>,<3,3,{A,B, C}>,

<3,3, {A,B,D}>,<3,3, {A,C,D}>,<3,3,{B,C,D)>)>

Figure 7: Equivalent flexible schemes

It would be a pleasant result if each flexible scheme
could be brought into minimal normal form. Unfor-
tunately this is not the case. First, not every flexible
scheme possesses a representative in V3S” , e.g. there
is no member ofV3S whose dnf is {A, AB , BC}. For
schemes in NV3S that do not have a representative in
V3S one can easily show that they do not possess a
minimal normal form. There are restructuring rules ap-
plying to members of Nv~S, like the rule depicted in
figure 6, but the output of the reduction process is not
unique and depends upon the order in which the rules
are applied12.

The seven restructuring rules mentioned above leading
to the minimal normal form apply only to schemes
that are already members of V3S. Hence it remains
the question how members of NV3S can be brought
into V3S if they possess a representative in V3S.
We have developed an algorithm dnf-’ that takes
a flat description of a flexible scheme and decides if
there exists a representative in V3S possessing the
specified DNF. A complete description of the algorithm
can be found in [Kal95]. It is not surprising that
the algorithm is very expensive in extreme cases as
it involves numerous tests on common subexpressions.
Fortunately the dnf -’ -algorithm is needed rarely as
the algebra is closed in V3S except the union and
the intersection operator. The remaining problem can
be attacked with the restructuring rules applying to
members of NVFS. These restructuring rules do often
apply in practical cases, and serve therefore as low cost
shorthands so that the expensive dnf-‘-algorithmmust
rarely be employed.

l1 Fortunatley, the class V3S is sufficiently large as there are more
than n! members of 273s with up to n attributes. Nevertheless,
the cardinality of N’D3S is larger, namely 22n, telling that
there exist members of NV3S that do not possess an equivalent
member of V3S.

l2 An illustrative example is the scheme FS with dnf(F.9) =
{ AB , AC, AD, BC, BD, BE). There are threestructurally
different minimal representations of FS, each consisting of 13
nodes, allowing the conclusion that there is no minimal normal
form in NV3S.

5 Comparison to related approaches

Some attempts have been made to suyl)ort variant
structures in relational data models ([A R9 I], [1)(.X9]).
These approaches share the problem that, t,hc notin
of a precise, statically typed scheme is ab;indollcn,i
and that the proposed query languages either do
work only interactively when variant par& are touched
([DCSS]) or are only able to produce query results
that are more variant than the input leading quickly
to useless diversified “patchwork” ([AB91]). A morr\
competitive approach is the data model of the LILO(;-
DB project ([LudSO], [BGL+Sl]) where connertiorl,
between attributes may be specified with the boolean
operators and, or and no& i.e. in a form “address . . .
(HAS street AND HAS house-number AND NOT HAS
post-office box) OR (HAS post-office box AND .” The
major disadvantage of LILOG-DH is t,lI:lt t 11~ El; I’,\
algebra defined upon their model ([LW’JI]) tlrlc~ 11111

take the structure information of the input SCII~~IIIIY
into account. In contrast, it works on nrbitrarr~ly typed
heterogeneous sets. Therefore it. is not evident. what the
effort of precisely specifying schemes wrvps for.

5.1 Comparison to object---oric~lltc!d cl;\t:t
models

Formal object-oriented models ([SLH $!I:!; : I. I<\M’
[EA91]) typically define the domain ol’ ;I 1) 181 r to
be the set of all objects with type T’ 5 T. \\ itI1 5
being an appropriate subtype relationship) ([(‘ll;%]).
Therefore an object-oriented type is never ittl arbit~rnry
polymorphic set, but always a complete lat tic-c.

Let us first demonstrate that, flexible schemes are
capable of simulating object-orient.rd types: Let r
be a tuple-valued type consisting of the attributes

{Al , . . . Al, } and assume that the set { .41 , . . . A, }
of relevant attributes is known. Then the lattice
under 7 conforms to the scheme FS = < k + 1 , k +
1, {Al, . . . 13 Ak,<O,n-k, {A~+I, . ..A.}>}> ,

l3 Even if the set of relevant attributes is unknown or varies over
time, the siklation does not fail: Each novel attribute A,+,

548

i.e. a flexible scheme that must contain the attributes
{Al, . . . & } and may possess any subset of { ,&+I ,
. . . A,, }. So a lattice can be represented as a simple
two-level flexible scheme, and it is a rather easy task to
transform object-oriented algebras onto our model.

Our model is not behaviourally object-oriented, i.e.
inheritance or other dynamic aspects are not supported.
Nevertheless, flexible relations meet the structural
requirements to place a behaviourally object-oriented
model on top of them. From the structural point of
view the key property to support dynamic aspects is
subtyping, and of course we are able to represent the
different notions of subtyping [BW90] in our model:
Object-oriented subtyping and subset subtyping at
the tuple level of two flexible schemes F& and FS2
can be expressed by appropriate relationships bgtween
dnj(F&) and d~~flFS’2)‘~. Subset subtyping at the
level of attribute domains is achieved in our model
by a new form of integrity constraint which we have
called attribute dependency. Details about attribute
dependencies can be found in [KD95].

In addition to being able of simulating 00 features,
our model exceeds the 00 approach in its modeling
capabilities, as a flexible scheme allows to restrict the
domain to meaningful types. The disadvantage of the
lattice approach continues in query processing. For
example, the result type of the union operator has to
be defined as the least upper bound of the input types
to be consistent with the lattice properties ([BK89],
[SLR+93]). One can easily define a type r 5 hb(rr, 72)
for which neither I- 5 ~1 nor r 5 72 holds, i.e.
dom(rr Uoo 72) _> dom(rr) U dom(rz), while our algebra
assures that dom(ri Uf ~2) = dom(rr) U dom(r2) holds.
This causes problems in 00 data models, e.g. with
updatable views, that we do not have. As a last point
both our approach and 00 data models require type
guards ([B091]) b f e ore variant parts may be accessed.
As shown in section 3.2 we are capable of identifying
redundant or unsatisfiable type guards at compile time,
while 00 models have to check most of them at run
time, as they are not able to disallow non-occuring
subtypes. Further optimization potential similar to
pualified relations [CP83] stems in our model from
attribute dependencies and is discussed in [KD95].

can be added to FS by “upgrading” FS to the scheme < k + 1,

k+l,{Al, . . . Ak, <o,n-k+l,{&+l, . . . Ant1)>I>.
Such au upgrade does not invalidate the existing member tuples
of the scheme, so it can be done at any time.

l4 Subset subtyping FS, 5” FS, holds when dnf(FSl) s
dnflF.f&), and object-oriented subtyping FS, 5”” FSz holds
when VX E dnf(FSl) 3Y E dnj(FSz) : X _3 Y.

6 Summary
In this paper we have introduced the basic concepts
of the model of flexible relations that improves the
relational model on providing modeling and operational
support of variant structures. The central feature of
the model is the notion of flexible schemes that allow
to model homogeneous and heterogeneous structures
in a uniform way. Flexible schemes combine the
relational paradigm of providing a single constructor
with the aspect of completeness, i.e. each heterogeneous
structure is expressible as a flexible scheme.

The F-algebra defined on flexible relations has been
presented and its adequacy with respect to the structural
part of the model and the semantic relationship to
the relational algebra have been shown. We have
outlined how advanced operators that process variant
structures in a concise and elegant way can be derived
from the basic ones. These derived operators can be
regarded as the intermediate step towards FSQL, a
high-level language providing user-friendly access to
flexible relations. Due to lack of space the user-friendly
interface to flexible relations could only be sketched
but section 3.2 gave an impression of how method-
like processing, generic IF-THEN-ELSE and CASE
expressions, and default values are supported by FSQL
and based upon the F-algebra and its derived operators.

The need of a more powerful scheme mechanism com-
pared to a simple relational scheme led to the prob-
lem that equivalence among flexible schemes cannot be
decided in structural, syntactical terms. A disjunctive
normal form on flexible schemes could be derived from
previous results ([AH88]). Problems of the DNF, espe-
cially its processing costs, were identified and the con-
dition, under which a very cheap minimal normal form
is available, were determined. These investigations led
to the subclass 2>FS of those flexible schemes, in which
each attribute occurs at most once. An interesting open
question is if a minimal normal form exists if flexible
relations are extended by a set constructor, i.e. if our
model is joined with the NF2 data model [AFS89].

Besides the aspect that structural reduction of flexible
schemes leads exactly in VFS to the minimal normal
form, one can show that relevant algorithms on flexible
relations, like membership test and the algebraic oper-
ators, possess polynomial complexity (measured in the
number of attributes) in ZJFS, while these algorithms
have an exponential worst case complexity for general
flexible schemes. These results allow the conclusion that
the simple relational model can be extended to the much
larger class ‘D3S without losing any positive property
of the simple relational model.

549

Finally, we compared our model with other approaches
supporting heterogeneous structures, especially to the
object-oriented paradigm. We did show that flexible
relations are able to simulate object-oriented classes,
and outperform the 00 approach in modeling and
typing precision and provide a higher potential of query
optimization.

Acknowledgements

We would like to thank the anonymous referees for their
valuable suggestions.

References

[AABM82]

[AB91]

[AFS89]

[AH881

[BGL+Sl]

[BK89]

[B091]

[BW90]

[Cod701

(CP83]

[CWSS]

P. Ate&, G. Ausiello, C. Bat%, and M. Moscarini.

Inclusion and equivalence between relalional data-
base schemata. Theoretical Computer Science 19,

S. 267-285 (1982).

R. Ahad and A. Basu. ESQL: A Query Language
for Ihe Relation Model supporting Image Domains.

In [ICDESI], pp. 550-559.

S. Abiteboul, P.C. Fischer, and H.-J. Schek, ed-

itors. Nesled Relations and Complex Objects

in Databases, Darmstadt, Deutschland (1989).

Springer-Verlag, LNCS 361.

S. Abiteboul and R. Hull. Reslrucluring Hierarchi-

cal Database Objects. Theoretical Computer Sci-

ence 62, S. 3-38 (1988).

S. Benzschawel, E. Gehlen, M. Ley, T. Ludwig,
A. Maier, and B. Walter. LILOG-DB: Database
Support for Knowledge Based Systems. In Text
Understanding in LILOG, pp. 501-594. LNAI 546,

Springer-Verlag (1991).

F. Bancilhon and S. Khoshafian. A Calculus for
Complex Objects. Journalof Computerand System

Sciences 38(2), S. 326-340 (Apr. 1989).

P. Buneman and A. Ohori. A Type System that

reconciles Classes and Extents. In Proc. 3rd Int’l

Workshop on Database Progranum ‘ng Languages,

pp. 175-186, Nafplion, Greece (Aug. 1991).

K. Bruce and P. Wegner. An Algebraic Model
of Subtype and Inhesitance. In F. Bancilhon

and P. Buneman, editors, Advances in Database
Programrm ‘ng Languages, pp. 75-96. ACM Press

Frontier Series (1990).

E.F. Codd. A Relational Model of Data for Large
Shared Data Banks. Communications of the ACM

13(6), S. 377-387 (June 1970).

S. Ceri and G. Pelagatti. Correctness of Query EX-
eculion Strategies in Distributed Databases. ACM
Transactions on Database Systems S(4), S. 577-607
(Dec. 1983).

L. Cardelli and P. Wegner. On Understanding
Types, Data Ab&ractions, and Polymorphism.
ACM Computing Surveys 17(4), S. 471-522 (Dec.

1985).

[DC891

[EA91]

[Giit89]

[HK87]

[HuI86]

[HY84]

[ICDESl]

[Kal95]

[KD95]

[Ken791

&RVSS]

[LudSO]

[LW91]

[Mai83]

[MS931

[PM881

[Sch94]

[SciSO]

[SLR+ 931

H. Dreizen and S.-K. Chang. Imprecise Schema:
A Rationale for Relations with Embedded Subre-

lalions. ACM Transactions on Database Systems

14(4), S. 447-479 (Dec. 1989).

D. Eichmann and D. Alton. A Polymorphic
Relational Algebra and Its Optimization. In
[ICDESI], pp. 680-689.

R.H. Giiting. GRAL: An Extensible Relational
Database System for Geometric Applications. In
Proc. 15th Int’l Conf. on Very Large Databases,
pp. 33-44, Amsterdam, Netherlands (Aug. 1989).

R. Hull and R. King. Semantic Database Modeling:
Survey, Applicaliions and Research Issues. ACM
Computing Surveys 19(3), S. 201-260 (Sept. 1987).

R. Hull. Relative Information Capacity of Simple
Relational Database Schemata. SIAM Journal of
Computing 15(3), S. 856-886 (Aug. 1986).

R. Hull and C.K. Yap. The Format Model: A
Theory of Database OTganizalion. Journal of the
ACM 31(3), S. 518-537 (July 1984).

PTOC. 7th Int’l Conf. on Data Engineering, Kobe,
Japan (Apr. 1991).

C. Kalus. Supporling Variant Struclures in a
Generalized Relational Data Model (in German).
Phd thesis in preparation, University of Uhn

(1995).

C. Kalus and P. Dadam. Record Subtyping in Flex-
ible Relations by means of Attribute Dependen-
cies. In Proc. 11th Int’l Conf. on Data Engineering,

Taipeh, Taiwan (Mar. 1995).

W. Kent. Limitations of Record-Based Informa-
tion Models. ACM Transactions on Database Sys-
tems 4(l), S. 107-131 (Mar. 1979).

C. Lecluse, P. Richard, and F. Velez. 02, an
Object-Oriented Data Model. In Proc. ACM SIG-
MOD International Conference on Management of
Data, pp. 424433, Chicago, Illinois (June 1988).

T. Ludwig. A Brief Overview of LILOG-DB. In
Proc. 6th Int’l Conf. on Data Engineering, pp. 420-

427, Los Angeles, California (Feb. 1990).

T. Ludwig and B. Walter. EFTA: a database Te-
trieval algebra for featwe-terms. Data & Knowl-

edge Engineering 6(2), S. 125-149 (Mar. 1991).

D. Maier. The Theory of Relational Databases.

Computer Science Press (1983).

J. Melton and A.R. Simon. Understanding the

new SQL: a complete guide. Morgan Kaufnnm

Publishers (1993).

J. Peckham and F. Maryanski. Semantic Data
Models. ACM Computing Surveys 20(3), S. 153-

189 (Sept. 1988).

C. Schiekel. Reduction and equivalence of gener-
alized relational schemes - theoretical foundations
and algorithmic so&lions (in German). Master’s
thesis, University of Uhn (July 1994).

E. Sciore. The Universal Instance and Database
Design. Phd thesis, Princeton Univ., Princeton,

NJ (1980).

M. Scholl, C. Laasch, C. Rich, H.-J. Schek, and
M. Tresch. The COCOON Object Model. Technical
Report 93-02, University of Uhn (Feb. 1993).

550

