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Abstract

MedicaJ guidelines play an increasing role in selecting diag-

nostic and therapeutic steps under the aspects of effective-

ness, invasiveness, and costs. To work directly on patient

data already available in electronic form, they should be in-

tegrated into a medical information system. In order to de-

velop a “medical guideline module” (M GM ) managing and

applying guidelines to patients, a “knowledge level” repre-

sentation of guidelines is necessary which reflects the struc-

ture of medical knowledge and matches medical processes.

Furthermore, a direct transformation to the “symbol level”

is needed. We use a nested, frame-like structure on the

knowledge level and show that a classification-based knowl-

edge represent ation system ( CBKRS) is principal y well

suited for the symbol level. To facilitate the usage and to be

independent of a particular CBKRS, we introduce an inter-

mediate level called “intelligent object system” (10 S). It is

developed by augmenting a simple data model for descri-

bing complex objects with prototypes and implications as a

means to classify objects and to draw inferences based on

this classification. Finally, the transformation of guidelines

to prototypes and implications is described.

1 Introduction

Medicine of today is confronted with exploding costs, expo-

nentially growing knowledge, high specialization, and high

informational needs. Increasingly, medical guidelines are

used to select adequate diagnostic and therapeutic steps

under the aspects of effectiveness, invasiveness, and costs.

These guidelines are intended to bring recent scientific re-

sults from the literature and from expert physicians into

medical practice. For given medical problems of a patient,

they suggest necessary ( “indicated”) steps, warn about side-

effects or contra-indications, and remind of preparatory

measures. To work directly on patient data already available

in electronic form, they should be integrated into a medical

information system. The consult ation style should be vari-

able from active guidance for unexperienced users to merely

issueing cert tin warnings for experienced physicians.
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In this paper we describe the design and prototypical im-

plementation of a “medical guideline module” (MGhf) for

managing and applying guidelines to patients, which is part

of a medical information system. Major challenges in devel-

oping this MGM have been:

●

●

●

finding an abstract ( “knowledge level”) representation

of medical guidelines reflecting the typical structure

of medical information and knowledge; it should be

reusable, extensible, and naturally understood by ex-

pert physicians;

identifying essential (abstract ) inference mechanisms

matching medical processes;

establishing a direct transformation to a concrete

( “symbol l~vel” ) representation.

Section 2 describes the structure of medical guidelines and

an abstract representation by means of nested frames, as

well as the basic inferences necessary to apply guidelines

to patients. Section 3 identifies these inferences as classifi-

cation problems naturally being solved by a clsssification-

based knowledge representation system (CBKRS). It also

identifies the essential CBKRS features needed by the M GM

and defines a corresponding functional interface called “in-

telligent object system” (10S) which abstracts from a par-

ticular CBKRS and provides a small and uniform interface.

Section 4 describes the transformation of abstract,

frame-structured guidelines to concrete “symbols” of the

10S and demonstrates their application to actual patients.

In section 5 we will discuss related and future work.

2 Abstract Representation and Inferences

Medical Guidelines

The complexity and general structure of the medical guide-

lines we consider can be illustrated with the following exam-

ple. A specific cause for the common disease arterial hyper-

tension (elevated arterial blood pressure) can be identified in

a small minority of patients only, but a patient may be cured

if this cause is detected. To rule out an endocrine disease as

one of these causes, a series of diagnostic steps should be per-

formed. Typically, results determine subsequent steps, and

it would be uneconomic or too invasive to perform all tests

at a time. So, basically, only potassium and creatinine will

be determined from a blood sample, and an ultrasonography

examination of the kidney region will be performed. If e.g.

hypokalemia (decreased potassium in the patient’s blood) is
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found, the suspicion of primary aldosteronism (which can be

caused by a tumor of the suprarenal gland) will be risen, and

the aldosterol and renin serum/plasma levels should be de-

termined. Next steps—again depending on the outcomes—

may follow and finally lead to a surgical intervention.

This example is translated into the frame-like structure

shown in figure 1 in a straight-forward and natural way.

The essential parts of a frame are conjunctive conditions

(disjunction and negation will be discussed in section 5),

and steps indicated when the conditions are satisfied. Ad-

ditional slots, such as a short explanation of the steps or

references to literature explaining in more detail the indi-

cation, might be included. Frames can be nested in order

to represent a context binding implicit in many guidelines.

For example, from the condition “potassium <3.5” the step

“test of aldosterol and renin” is derived only in the context

of the problem “arterial hypertension.” The introduction of

subframes inheriting the conditions of their superframes is

a natural way to represent this context binding.

Formally, conditions and steps consist of a keyword (e.g.

probiem, reszdt, or ezarn) followed by a one or more terms

taken from a controlled vocabulary. The keyword deter-

mines the interpretation of the following terms, e.g. “prob-

lem x“ means “patient has problem x,” while “esmm x y . ..”

means “examination x with parameters/questions y . . . is in-

dicated.”

The construction of a controlled medical vocabulary is

discussed extensively in the literature [1, 2, 3], and sev-

eral important requirements have been identified [4]. The

most important property in our context is “multiple clas-

sification,” allowing a term to specialize one or more other

terms. Figure 2 shows an excerpt of an “ad hoc” term hi-

erarchy which has been sufficient for building the MGM

Cond.: problem art-hyp

Step: ezam lab-exam potassium creatmine

Step: exam ultrasonography . . .

Expl.: basic diagnostic for arterial hypertension

Cond.: result lab-exam potassium <3.5

Step: exam lab-exam aldo renin

Expl.: rule out aldosteronism

II I I
Cond.: result lab-exam aldo increased

Cond.: result lab-exam renin decreased

Step: prob/em prim-aldost

t t

Cond.: result lab-exam creatinine >120

Step: e.mrn lab-exam crea-clearance . .

Expl.: renal hypertension?

I J

Figure 1: Guideline frame “arterial hypertension”

(see figure 2 for an explanation of terms)

proto~ype. In the long run, however, we

place it by an existing, more sophisticated

intend to re-

approach.

term

root of the

problero

~te.bi erarch~ Parm

exam
medical

,, examination
psrameterJ

/\ “

problem

/\

question

I
art -hyp prim-aldost rad-exam lab-exam lab-param

art erial primary radiological laboratory laboratory
hypertension aldost eronism examination examination mmsrnet er

/\
/- \

Ct cro-exam
potassium

computer

/ /

renin
contrast medium

tomography (CT) examination
potassiwm renin

\/

crest inine aldo

creatinine aldosterol

cm-ct crea-clearance

CT with creatinine
contrast medium clearance

Figure 2: Term hierarchy (links represent specialization)
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~ond.: is-ordered cm-exam

itep: exam lab-exam creatinine

IXpl.: prerequisite for CM examination

Cond.: result lab-exam creatinine >120

Step: ezam lab-exam crea-clearance

Expl.: prerequisite for CM examination

Cond.: result lab-exam crea-clearance <50

Step: warnzng limited renal function

Figure 3: Guideline frame “contrast medium examination”

Figure 3 shows an example of a guideline frame mak-

ing explicit use of this specialization hierarchy. It describes

preparations for a radiological examination with application

of contrast medium (CM), which may lead to a warning be-

cause of limited renal function. As its condition refers to the

general term cm-exam, it is also satisfied when a more spe-

cialized examination such as cm-ct has been ordered, and

thus need not be reformulated for all these examinations. It

might be called a reusable “library” frame.

Patients

Facts about patients might be stored in several different

databases of the medical information system. In order to

apply guidelines to a patient, his facts must be made avail-
able to the MGM in a predefine structure. For that pur-

pose, they are grouped together in a complex object partially

shown in figure 4. Arrows denote relationships or roles which

are viewed as set-valued functions with names derived from

their domain and range (e. g. patient–>exam). The rela-

tionship patient–>problem is used to store medical prob-

lems, while results of examinations are represented as val-

ues (param– > value) of parameters/questions (exam–>

param) of the patient’s examinations (patient–>exam).

Given that representation, conditions of frames can be in-

terpreted more formally than above, e.g. problem art-hyp

means that the patient object under consideration has a

patient–>problem role filler of type art-hyp, while re-

sult lab-exam potassium < 3.5 means that it has a

patient–>exam role filler of type lab-exam having itself

an exam–>param role filler of type potassium with a

param–>value role filler that is lower than 3.5.

The same relationships as well as additional ones such

as patient–>remark will be used by the MGM to store

derived facts about the patient, as described below.

Inferences

In order to apply guidelines to a given patient, the MGM

must determine all frames with conditions satisfied by this

patient’s facts. The corresponding steps, which may be in-

dicated examinations including parameters/questions, con-

cluded medical problems, or warnings to be issued, must

be added to the patient object using the appropriate rela-

tionships (e. g. patient–>remark for warnings, reminders

etc.). Because this process may lead to further satisfied con-

ditions, it must be repeated until a “fixed point” is reached,

patient

/l\
problem exam remark

param

value

Figure 4: Complex object “patient”

i. e. no further conditions become satisfied. Every time the

patient object is changed, i.e. facts about the patient are

added or removed (the latter might happen when a medical

problem has been solved), the MGM must recompute (or

update accordingly) the derived facts.

A second kind of inferences is needed to answer questions

like “Is a particular examination indicated at the moment ?’s

or “Under which circumstances is it indicated?” Because

the MGM is intended to operate with incomplete knowledge

(guidelines as well as facts about patients may be incom-

plete), the first question is principally undecidable (the ex-

amination might well be indicated without the M GM know-

ing about it). The second question. however, can be an-

swered at least partialiy by determining all frames contain-

ing this examination as a step, and returning their condi-

tions. If a patient satisfies a significant part of these con-

ditions (defined precisely by the application), a hint might

be issued: “If the patient would additionally satisfy condi-

tion . . . . the examination would be indicated for him.”

3 Technical Foundation

Finding all frames with conditions satisfied by a patient’s

facts can be seen as a classification problem. Each frame

defines the class of patients satisfying its conditions, and

patients have to be classified according to their facts. Be-

cause subframes inherit the conditions of their superframes.

the class of patients defined by a subframe is a subclass (i. e,

a subset) of the classes defined by its superframes. There-

fore, each complex frame (i. e. top-level frame including its

direct and indirect subframes) induces a corresponding class

hierarchy.

Classification-based knowledge representation systems

(CBKRSS) provide a language consisting of concept forming

operators as a means to describe such class hierarchies, and

a specialized reasoner, the class~jier, which automatically

identifies all classes an object belongs to [5]. Typical concept

forming operators are conjunction, stating that an object be-

longs to class C iff it belongs to classes Cl, . . . . Cn, and sev-

eral kinds of number and vaiue restrzcttons, stating that an

object belongs to class C, iff all or at least/at most k fillers

of one of its roles belong to a class C’. Furthermore, these
systems usually allow some kind of implications or forward-

chaining rules to be associated with a class, stating that an

object of class C also belongs to class D. If the definition

of D prescribes concrete role fillers for its instances (which
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might be considered a special kind of value restriction). these

rules can be used to automatically add additional role fillers

to objects matching class C. These derived role fillers are

truth-maintained, i. e. they are retracted again. if the object

no longer satisfies the conditions of class C. This combi-

nation of classification, forward-chaining rules, and t ruth

maintenance is exactly what is needed in order to provide

the first kind of inferences described above. (The second

kind will come as a by-product at the end of section 4.)

A typical CBKRS provides a large set of functions, oper-

ators, etc. [6, 7], many of which are rarely needed by an ap-

plication. Sometimes there exist several different functions

for similar purposes, leading to a large and unwieldy inter-

face. Furthermore, different CBKRSS provide quite different

interfaces for the same or similar features, causing serious

portability problems [8]. Therefore it is reasonable to intro-

duce an intermediate layer which abstracts from a particu-

lar CBKRS, concentrates on the essential features needed,

and provides a smalf and uniform interface for them. In

the remainder of this section, an intermediate layer of this

kind will be developed step by step. After defining a data

model for describing complex objects, prototypical mdividu-

ais and wrzphcattorzs wilf be introduced as a means to classify

objects and to draw inferences based on this classification.

Afterwards we will briefly sketch the implementation of this

layer called “intelligent object system” (10 S). and describe

in more detail the CBKRS features it requires. In section 4,

the 10S wiIl be used aa a platform to implement the MGM.

Terms, Types, and Relationships

A controlled vocabulary constitutes the basis of every

knowledge-based system. In order to build term hierarchies

as the one shown in fimre 2, we postulate a function term-,
taking aa arguments a term to

set of superterms it specializes,

(term exam)

(term rad-exam exam)

(term ct rad-exarrd

(term cm-exam rad-exam)

(term cm-ct ct cm-exam)

b; defined and optionally a

for example:l

On the one hand, a term is a word, i. e. an element of a

vocabulary, while on the other hand it is a type representing

a class of real-world objects. In order to build complex ob-

jects like the one shown in figure 4, the function relation

is introduced, taking as arguments domain and range of a

relationship. For example:

(relation
(relation

(relation

(relation

(relation

Individuals

patient problem)

patient exam)

exam param)

parem value)

patient remark)

For each type, there exists apredefined individual with the

same name as the type. Furthermore, the name of a type

can be used as a function (“type function”) to create a new

individual of that type. Initial role fillers may be specified

as a sequence of relationship–individual pairs, e. g.:

(patient patient->problem art-hyp)

lS1nce almost every CBKRS 1s based on Lisp, It was a natural

decmon to implement the 10S ]n LMp, too

This creates anew patient individual with thepatient–>

problem relationship filled by the predefine individual

art-hyp. Because initial role fillers can be created in the

same way, a complex individual can be created with a single

expression resembling the conceptual graph notation of [9]:

(patient

patient->problem art-hyp

patient->exam

(lab-exam exam->param

(potassium param-%alue 3.2)

)

)

This creates a patient individual with the problem arter-

ial hypertension and a laboratory finding of potassium with

value 3.2.

The function current, taking as argument a type, re-

turns the “current” instance of that type, i.e. the last indi-

vidual created of that type. The name of a relationship can

be used as a function (“relationship function”) to establish

that relationship between two individuals. This allows the

same individual to be built incrementally:

(patient)

(patient->problern (current patient.) art-hyp)

(patient->exam (current patient) (lab-exam))

(exam->param (current lab-exam) (potassium))

(param->value (current potassium) 3.2)

A relationship function can also be used to retract role fillers

and to query the current set of role fillers for agivenindivid-

ual as in the following example, where all medical problems

of the current patient are returned:

(patient->problern (current patient))

Prototypes

On the one hand, the individual created above might de-

scribe a single patient of the real world having the problem

arterial hypertension and a potaasium value of 3.2. On the

other hand it may be viewed as a description of the class of

all patients having this problem and this potassium value.

If it is used in the latter way, it is called a prototypica/ in-

dwdualora prototype,and every element of the class being

described by it is said to match that prototype. In order

to allow formore general class descriptions, prototypes may

have symbolic role fillers like (< 3.5) or(> 120) to describe

ranges of values instead of concrete numericaf values.

Formally, matching a prototype is defined as follows:

● Atypeis called asubtypeof another type, ifboth types

are equal, or ifthe formeris defined as a specialization

of the latter.

● A numerical value is said to match a range, if it is an

element of that range.

● An individual is said to match a prototype, if the in-

dividual’s type is a subtype of the prototype’s type,

and for each role filfer of the prototype, there exists a

rnatchtng role filler of the individual.

Thelastpart of the definition hasto be recursively applied, if

role fillers arethemselves individuals or prototypes. Roughly

speaking, these definitions say that a prototype describes

the class of all individuals being at least as specialized as

the prototype itself.
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Because prototypes describe classes of individuals, they

can be used as query expressions. The function all returns

the set of all individuals matching a given prototype, e.g.

(all (patient patient-jproblem art-hyp) )

This returns all patients with the problem arterial hyper-

tension.

The function copy creates an exact copy of a prototype

(oran arbitrary individual). Thisisuseful forcreating%ub-

prototypes,” because after adding additional role fillers to

the copy, it cau be used as a prototype describing a subset

of the class described by the original prototype.

Implications

In order to build an intelligent object system, reintroduce

implications of the form: “Aslong as an individual matches

prototype A, it is guaranteed to also match prototype B.”

Inorder to satisfy this “guarantee,” an individual matching

prototype A must automatically receive role fillers match-

ing the role fillers of Bin addition to its original role fillers.

(This is most easily accomplished by receiving exactly the

role fillers of B.) As the term “as long as” indicates, these

additional role fillers must be retracted again, if the individ-

ual does no longer match prototype A.

The function implication taking asarguments two pro-

totypes, is used to define such an implication, e.g.

(inrplication

(patient.patient-jproblem art-hyp)

(patient

patient->exam

(lab-exam

exsm->param potassium

exam->parsm creatinine

)

)

)

This guarantees that every patient having problem art-hyp

automatically receives a patient–>exam role filler of type

lab-exam having exam–>param role fillers with types

potassium and creatinine.

Implementationof thelOS

Terms, relationships, and individuals (including prototypes)

are naturally mapped to prirnihue concepts, relations and

instances of a CBKRS, respectively. In order to build term

hierarchies, con~unction of primitive concepts is needed.

The first argument toimplication isconvertedtoa de-

fined concept describing exactly the set of individuals match-

ing this prototype. The concept forming operators needed

here, are conjunction and qualifying existential restriction

(stating that an individual must have atlea..st onerolefdler

of type C’ in order to be a member of class C) as well

as a means to describe numerical ranges. In the syntax

of Loom [6], which has been used for the prototypical im-

plementation, the patient individual shown above would be

converted to:

(defconcept . . . :is

(:and patient

(:sorne patient->problem art-hyp)

(!*.=. pati.nt–~.xam

(:and lab-exam

(:some exam->param

(:and potassium

(= param->value 3.2)))))))

The second argument toimplication is converted to a con-

cept definition prescribing concrete role fillers for its in-

stances, for example:

(defconcept . . . :is

(:and patient

(:filled-by patient->pr-oblern prim-aldost)))

The implication itselfis mapped to an zrnpticattonor rule

of the CBKRS with the first concept as antecedent and the

second as consequent.

A prototype passed to all might be converted to a de-

fined concept in the same way as the first argument to im-

plication, and afterwards the CBKRS can be queried for

all individuals matching that concept. If the CBKRS al-

lows for more complex queries, however, the prototype can

be converted directly to an equivalent query expression, and

no “auxiliary” concept definition is needed.

4 The Medical Guideline Module

Transformation of Frames to Prototypes and impli-
cations

A “guideline base” is a set of frame-structured guidelines as

described in section 2. In order to make them applicable to

actual patients, they are transformed to prototypes and im-

plications of the 10S, i.e. eventually to concepts and rules

of the underlying CBKRS. For each frame, two prototypical

patients are created—one to represent the conditions, and

the other to represent the steps of the frame. Because the

“condition prototype” must be matched by aUpatients satis-

fying the conditions of the frame, each condition is converted

to a “prototypical” role filler. For example, the condition

problem art-hyp is transformedto apatient–>problem

role filler of type art-hyp, while result lab-exam potas-

sium < 3.5 produces apatient–>exam role filler oftype

lab-exam having itself an exam-> param role filler of type

potassium with aparan->valueof (< 3.5). In the same

way, steps are transformed to role fillers of the “step proto-

type.” This transformation—which depends heavily on the

structure of the complex patient object (figure 4) as well

as the internal structure of conditions and steps—is done

by a separate “parsing function.” If new keywords shall be

introduced for conditions or steps, this is the only function

needed to be modified.

After these transformations, an implication is declared

between the two prototypes. According to the definition of

an implication in the 10S, this guarantees that each patient

matching the condition prototype, i.e. satisfying the condi-

tions of the frame, also matches the step prototype, i.e. has

the steps of the frame as derived role fillers.

In order to make asubframe inherit the conditions of its

superframes, its condition prototype is created as a copy of

its parent’s condition prototype and augmented with role

fillers corresponding to its own conditions.

Suggesting Indicated Steps

In order to apply a guideline base to a given patient, a pa-

tient individual is created and filled with all facts available

about the patient in the information system. The implica-

tions mentioned above cause all indicated steps to be auto-

matically added to the individual. From the CBKRS’S point

ofview, theclassifier determines all concepts matched by the

individual and applies the associated rules. Whenever the

individual is changed, it is reclassified and its derived role
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fillers are updated accordingly. Therefore, an application

can obtain the indicated steps at any time by querying the

role fillers of the individual, e.g. patient–>exam to get in-

dicated examinations, patient–>remark to get reminders

and warnings, and so on.

In order to demonstrate this behavior in more detail,

we will briefly sketch an interactive “test session” with the

MGM. After loading the CBKRS, 10S, and MGM code,

as well as a sample knowledge base containing the frames

described here, into a Lisp system, a new, “empty,” patient

individual is created which is afterwards accessible as the

“current” patient:

J (pat lent)

In order to tell the system that this patient suffers from

arterial hypertension, a corresponding patient–>problem

role filler is added:

> (patient->problem (current patient) art-hyp)

After this “assertion, ” the system recognizes the patient to

satisfy the top-level condition of the frame in figure 1, and

therefore adds the corresponding steps asderived role fillers.

This may be verified by querying the patient–>exam role

fiUers:

> (pat ient-zexam (current patient))

(lab-exam--1 ultrasOnogr._aphy --l)

Querying the exam-> param role fillers of lab-exam--l

yields:

> (exam->param lab-exam--l)

(potassium-- 1 creatinine--l)

In order to inspect a complex object more conveniently, the

function show can be used to show apiece of code which

would exactly reproduce the given individual:

> (show (current patient))

(pat ient

patient->problem (art-hyp)

patient->exam

(lab-exam

exam->parara (potassium)

exam->param (creatinine)

)

patient->exam

(ultrasonography . ..)

)

An application-specific function suggest may take thede-

rived patient–>exam role fillers (i.e. the indicated exami-

nations), filter out those which have already been carried

out, and expand the “cryptic” terms into more readable

texts. If we assume that no examinations have been per-

formed yet, it would yield:

>
*

*

(suggest (current patient))

laboratory examination

(basic diagnostic for arterial hypertension)

- potassium

- creatinine

ultrasonography

(basic diagnostic for arterial hypertension)

. . .

After having performed the suggested laboratory tests, their

results are entered by augmenting the patient individual

with a corresponding patient–>exam role filler:

> (patient->exam (current patient)

(lab-exam
exam->param (potassium param->value 3.2)

exam->param (creatinine param->value 110)

According to the guideline in figure 1, potassium is de-

creased (< 3.5) while creatinine has a normal value. There-

fore, the condition of the first inner frame is satisfied, lead-

ing to the suggestion of a laboratory test of aldosterol and

renin. Since the above ultrasonography has not been per-

formed yet, it is suggested again:

>
*

*

(suggest (current patient))

ultrasonography

(basic diagnostic for arterial hypertension)

. . .

laboratory examination

(rule out aldosteronism)

- aldosterol

- renin

This “dialog” ofentering newresults andasking for the next

indicated steps may be continued that way.

In order to test the system’s behavior in case of retrac-

tions, too, one might remove the problem art-hyp now.

Then, the patient no longer satisfies the top-level condition

offigure 1 nor the conditions of any subordinate frames since

they inherit this top-level condition. Therefore, all derived

role fillers will be retracted, causing the output of suggest

to become empty. The only remaining role filler of the cur-

rent patient is the laboratory examination which has been

explicitly asserted:

> (patient->problem (current patient)

:retract art-hyp)

> (show (current patient))

(patient

patient->exam

(lab-exam
exam->param (potassium param->value 3.2)

exam->param (creatinine param-%alue 110)

)

)

Finding Preconditions ofaStep

Because each prototype matches itself, the implication asso-

ciated with a condition prototype is applied to the prototype

itself as well, i.e. each condition prototype receives the role

fillers of the corresponding step prototype as derived facts.

This can be employed to determine the preconditions of a

particular step by looking for all condition prototypes con-

taining that step, because their original role fillers constitute

exactly these preconditions.

In principal, all can be used to obtain all individual~

containing that step, and afterwards relationship functions

like patient–>problem can be used to obtain their role

fillers. Two problems remain, however: all is unable todis-

tinguish condition prototypes from other individuals, and

the relationship functions cannot distinguish between origi-

nal and derived role fillers. In order to fix these problems, we

augment the 10S with two simple partitioning mechanisms

which might be useful for other purposes as well. First, type

functions such as patient as well as the query function all

accept an optional argument specifying a partztmnin which

individuals are created or searched, respectively. This can
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be used to create condition prototypes in a separate par-

tition, thus circumventing the first problem. Second, the

relationship functions accept an optional argument specify-

ing which kind of role fillers to query: original, derived, or

both.

Since a CBKRS internally distinguishes between origi-

nal and derived facts anyway, the second extension comes

almost for free. If multiple partitions of individuals are not

directly supported, an 10S internal relationship represent-

ing the partition an individual belongs to, can be used to

simulate it.

5 Discussion

We have built a medical guideline module on top of a

classification-based knowledge representation system. The

combination of classification, forward-chaining rules, and

truth maintenance of derived facts provides a powerful plat-

form for building knowledge-based systems rather quickly.

Several authors describe the advantages of using a semanti-

cally well defined terminology as a “backbone” of an intel-

ligent system, which is usually augmented with production

rules as an inferential component [1 O, 11, 12]. Because we

do not use production rules which cannot be undone once

having “fired,” but truth-maintained implications, the situ-

ation is even better: rules (i. e. frames in our context) can be

formulated in a completely declarative way, without needing

to have any strategy for execution or conflict resolution in

mind. Indeed, rules are not executed in a procedural way,

but instead the set of all facts derivable via rules is main-

tained by the CBKRS. It remains to be evaluated, though,

how these powerful mechanisms affect system performance.

In [13], a semantic data model is described which ex-

tends the CBKRS languages FL–, KANDOR, and BACK.

It provides a single, homogeneous language for defining ob-

jects, queries, and views, instead of different languages for

data definition and manipulation. Similarly, the CLASSIC

system [7] provides identical language constructs for defin-

ing concepts and individuals. We follow this approach in

the design of the intelligent object system. The same func-

tions/language constructs needed to create (complex) indi-

viduals are used to describe queries, classes, and implica-

tions. This principle of “re-using” the same constructs for

several purposes, combined with the careful selection of the

essential CBKRS features needed, has led to an interface

consisting of less than ten simple functions. Furthermore,

since individuals can be constructed incrementally, query

expressions and class descriptions may also be built step by

step, which is sometimes more convenient than generating

one complex description as a whole.

The idea of “blending classes and instances” in order

to simplify language design and usage is also described for

the prototype-baaed object-oriented programming languages

Self [14, 15] and Omega [16].

The definition of matching a prototype, given in sec-

tion 3, is based only on conjunction and qualifying existen-

tial restriction. More general value and number restrictions

have not been necessary so far, but they may be added if an

a.pphcatkm-specific need has been identified. We have ex-

cluded negation and disjunction so far, because they make

things more difficult and thus are omitted from most avail-

able CBKRSS. The authors of [17] tell some simple “tricks

of the trade” to achieve a limited form of negation, how-

ever, which is sufficient in our context: instead of saying

e. g. (not (potassium < 3.5)) or (not (ultrasonography

normal) ) we say (potassium >= 3.5) or (ultrasonog-

raphy pathological), and so on. In order to deal with

disjunction, we add the following “trick:” if an individual

belongs to claas C, if it belongs to class A or 1?, this can be

modeled with the implications A + C and B + C’.

Because CBKRSS as well as the 10S are application-

independent tools providing generic language constructs, it

is not surprising that knowledge representation using solely

these constructs is more like an “encoding” dealing with

“symbols” like concepts, relations, or prototypes, than an

abstract description of knowledge concentrating on the es-

sential content. Usually, a few syntactic templates have to

be repeated again and again (cf. sample knowledge bases

provided with some CBKRSS; one of them is described

in [17]). Therefore, we vote for an application-specific

“knowledge level” representation which is at the same time

“natural” enough to be understood by domain experts and

formal enough to be “understood” by a software module

translating it to the symbol level. We have chosen nested

frames for describing medical guidelines for the following

reaaons. First, the extensible slot structure of frames repre-

sents suite naturallv the structure of manv “units of knowl-. .
edge” including rules. In this respect, our approach is sim-

ilar to the Arden Syntax [18] which has been suggested as

a standard representation for medical knowledge. Its “med-

ical logic modules” (MLMs) are essentially frame-structured

rules, augmented with slots for maintenance, citations, etc.

In order to be easily sharable, MLMs are demanded to be

independent of each other, which means that their condi-

tions must be compiete. While this makes sense for simple,

“single-stage” units of knowledge being semantically inde-

pendent, it leads to unnatural and unwieldy formulations in

the area of “multi-stage” guidelines since many conditions

have to be reueated in order to achieve the context bind-.
ing described in section 2. Therefore, we allow frames to

be nested, i.e. conditions to be complete only in their well-

defined context. This does not sacrifice sharability, though,

but changes the granularity of sharable nnits of knowledge

from single rules to complete complex frames.

Due its inherently forward-chaining mode of opera-

tion [5], a CBKRS needs all facts about an individual in

advance in order to find the most specific concepts it be-

longs to. The classifier does not “intelligently” ask for ad-

ditional facts which could “improve” the classification. As

long as the MGM is used as an experimental prototype sub-

ject to changes and improvements, a complete replication

of patient-specific facts in the CBKRS is acceptable. For

routine use, however, where the MGM must deal with many

patients at the same time, this may lead to memory prob-

lems, since a CBKRS usually keeps all knowledge in main

memory. In addition, consistency and reliability problems

can result. Since not all uatient-sDecific facts available in the

information system are relevant for the application of guide-

lines, a more “intelligent” coupling between the information

system and the MGM is desirable.

Actiue values [10] can be employed to automatically

query relevant facts on demand, but since few CBKRSS sup-

port them, we intend to investigate an alternative approach

which might be called “incremental” classification: Initially,

only a few “essential” facts (e. g. medical problems) are used

to cLassify a patient, and the result is exploited to selec-

tively ask the information system for additional facts. In

the long run, it might even be worthwile to implement the

10S directly on top of a database system without using a
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CBKRS at all, in order to avoid the memory and consistency

problems mentioned above. To remain open for this possi-

bility has been another motivation for defining a CBKRS-

independent intermediate layer which is as small and simple

as possible.
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