Proc. Advanced Computer Technology, Reliable Systems and Applications, 5th Annual European Computer Conference, CompEuro 91,

Bologna, May 1991, pp. 398-405

Invited Faper

Extending Database Technology Towards Object Orientation:
For Whom, Why, and for What?

Peter Dadam
University of Ulm, Faculty of Informatics
Oberer Eselsberg, D-7900 Ulm, Germany
DADAM @ RZ.UNI-ULM.DBP.DE

Abstract

New application areas like Computer Integrated Manufacturing and
others are demanding for "object-oriented” database technology.
The right approach to extend database technology towards object-
orientation is therefore one of the hot research and development
issues in the database research community. Sometimes very
controversial and confusing discussions are taking place, partially
simply due to the fact that the point of view under which the
argumentation takes place is not made clear. After a discussion of
the different approaches and their underlying motivation, a possible
combined approach which takes advantage from the benefits of
cither approach is outlined and some of the remain open issues are
addressed. In total, the paper is attempting to give some answers to
the questions why an extension of database technology towards
object-orientation is needed and for whom it would be beneficial. It
also tries to give some indications for what kind of demands it
should be prepared.

1. Introduction and Background

Today's SQL-based [1,2] relational database management systems
(DBMSs) have been developed having traditional, data intensive
applications in mind. They been designed to provide adequate
support for searching in large amounts of data for the information
on entities or real world objects to be retrieved. In this scenario, the
objects of the real world usually can be represented by one tuple or
a small number of tuples respectively, e.g. to store a multi-valued
attribute like a repeating group, for example. Nowadays, the focus
of interest is moving towards the integration of non-traditional
application areas like Computer Integrated Manufacturing (CIM),
office, geographical applications, etc. Here the problem is to
integrate complex applications using large, complex structured data
objects, each of these representing different phases of an overall
engineering design task to be performed. Figure 1 illustrates the
state of the art in the design of robot based manufacturing
processes. Very often, different hardware and software systems are
used to perform the different steps of the overall design task. As a
result, whenever one step is completed, the data has to be moved
via data exchange (file transfer + data conversion) to the next
system to perform the subsequent design step.

Unfortunately, there are a couple of problems related with this pro-
cedure. At first, in many cases not all the data produced at one
system can be automatically carried over to the subsequent system
due to limitations in the data exchange programs. As a conse-
quence, manual follow-up treatment is often required, creating
additional efforts and potential sources of errors. A second and
much more serious problem is the total absence of system enforced
global control to ensure that always the most current data is
submitted to and used in the subsequent step. Consider for example
the case where a potential assembly problem is detected in a later
phase of the manufacturing design process like, e.g. during robot

CH3001-5/91/0000/0398/501.00 © 1991 IEEE

motion planning. The problem detected may require to change the
initial product design (that is the initial CAD data) to eliminate the
problem. This, in turn, causes all the data produced during the
intermediate design and planning steps and which are depending on
this CAD data to become obsolete. Usually there is no system
enforced control mechanism to automatically "mark" all these data
(versions, representations) accordingly. It, therefore, can rather
easily happen (and it happens!) that people continue to work with
obsolete versions of data without recognizing it. This is especially
“funny” if that kind of problem is only detected at manufacturing
time at the shop floor.

A scenario where the local data stores shown in Figure 2 are repla-
ced by a common engineering database would therefore certainly
be much more desirable. In the ideal case all application systems
would directly fetch from and store their data into the common
engineering database. Although consistency and redundance-free
management of data is also not automatically achieved, the pre-
conditions for coming closer to that goal are much better. Unfortu-
nately, to use today's relational DBMSs in a clean and proper way
for this purpose would cause a lot of problems. At first, relational
DBMSs require to represent all information in simple tabular form
(with rows (called ruples) and columns (called artributes)) in which
only elementary (atomic) entries (attribute values) are allowed.

(1) Robot ©.n)
an o)

Arms Endeffectors

(1,n)
(1.1

Axes :’

DH_Matrix_Ceills

Figure 1: (Simplified) Modelling of Robot Information

modeliing

planning

- geometry

- topology

- kinematics

program
development

sequences | .

- trajectory
segments

- code
generation

,- - - - {maschine code |- - -

simulation

- animation

manufact. 4 f program
sequences sequences of
intermediate
manufact. layout steps
graph program trace
v ‘ i v
modelling planning programming simulation
system system system- system

data store 1

data store 3

3 -
data / data /‘
exchangg exchange

Figure 2: Isolated Engineering Applications

(This is called the First Normal Form (INF) condition [3].) As a
consequence many different tables are needed to represent one
engineering object like a robot, for example, in proper relational
form.

Figure 1 is showing some of the information which would be nee-
ded to support a computer based robot programming and
simulation system (a more detailed treatment of this issue can be
found in [4] and [5]). To be represented in proper relational form
several tables (relations) similar to those shown in Figure 3 would
be necessary (in reality we would even need 15 and more tables to
represent the robot information properly; cf. [4]). As the
information has to be spread over many tables already simple
queries are leading to complex SQL expressions (see Query 1). As
one can easily imagine, the complexity of such queries is far
beyond that what a "normal” engineer is usually willing to accept.

Unfortunately, not only the complexity of the query is prohibitive
but also the resulting response time would be orders of magnitude
larger than with the file based solutions of today. Moreover, due to
the nature of the join operation which has to be used to combine
the tuples (records) from the different tables into one result table,
this result table will be very large and will contain many redundant
entries; in many cases probably even more than 90%. - Alternati-
vely, an application program could be written to "manually navi-
gate” between the tables using SQL. This is certainly also no
attractive solution.

399

"Show all information on robot Robl"

SELECT

Query 1:

SQL: r.Rob_ID, r.Rob_Descr, ar.Arm_ID,
ac.AxisNo, m.Row, m.Coll, m.Col2,
m.Col3, m.Col4, ac.JA_min, ac.JA_max,

ac.Mass, ac.Accel, re.Eff ID, e.Function

Robot r, Robot_Arms ar, Axes ac,
Matrices m, Robot_Endeffectors re,
Endeffectors. e

r.Rob_ID = 'Robl' AND
r.Rob_ID = ar.Rob_ID AND
ar.ROB_ID = ac.Rob_ID AND
ar.Arm_ID = ac.Arm_ID AND
ac. Arm_ID = m.Arm_ID AND

FROM

WHERE

ac.Rob_ID = m.Rob_ID AND
ac.AxisNo = m.AxisNo AND
r.Rob_ID = re.Rob_ID AND

re. Eff_ID = e.Eff ID

Regardless of the alternative which is selected, processing of the
result of this query by the application program becomes slow and
cumbersome. For these and other reasons the relational DBMSs of
today can not be adequately used for engineering applications. If
they are used at all, they are usually managing "byte containers”
which contain the real data. Some information about the contents

Robots Robot_Arms
Rob_ID Rob_Descr Rob_ID | ArmID
Robl Speedy 400 -.rrrrern. Robl | left
Rob2 Speedy 600 ... Robl | right
Rob3 Colossus MX-3 Rob2 | solo
. . Rob3 left
Rob3 middle
Rob3 right
Endeffectors Robot_Endeffectors
Eff ID Function Rob ID | Eff ID
GR700 Gripper Type 600ccoovnneene. Robl
GR700 Gripper Type 700 ...occvvcevvercrncrcacn. Rgbl ggg%
Lwl Laser Welding Equipment Type 1 .. Robl PW1380
PW1350 Point Welder Type 1350 Robl GR700
PW1380 Point Welder Type 1380 :
PW1510 Point Welder Type 1510 Rob2 SD300
SD200 Screw Driver Type 200 ... Rob2 SD300
SD300 Screw Driver Type 300 ..o Rob2 PWI1510
: : Rob2 LW1
Axes
Rob_ID | Arm_ID | AxisNo [JA_min [JA_max Mass Accel
Robl left 1 -90 90 40,0 1,0
Robl left 2 -170 180 30,5 1,5
Robl left 3 -180 180 20,0 3,0
Matrices
Rob_ID [Arm_ID | AxisNo [Row | Coll [Col2 | Col3 | Cold4
Robl left 1 1 1 0 0 1
Robl left 1 2 0 0 1 0
Rob1 left 1 3 0 -1 0 80
Robl left 1 4 0 0 1 1
Robl left 2 1 0 0 0 60
Robl left 3 4 0 -1 0 70
Robl right 4 1 0 -1 0 70
Rob2 solo 1 1 1 0 0 1

Figure 3: Representing the Robot Information in Relational Tables

of the byte containers 1s stored in proper relational form allowing
at least some limited types of queries while the major portion of the
data is stored in "cryptic" binary form which can only be
understood by the application program that created it. A not very
desirable solution with respect to the implied redundancy of data
and the related consistency problems as well as to the resulting data
dependence of application programs which one wanted to reduce
with relational database (DB) technology (cf. Sect. 2). In order to
provide better support for complex objects of this kind possible
extensions of the relational data model are under discussion already
since the early eighties (6, 7]. The goal of these and related
approaches is to provide structural object-orientation [8] to a
certain degree within a general purpose DBMS to improve
efficiency as well as to simplify complex object related queries.

Missing adequate data structuring capabilities is not the only
problem in this context, however. Assume, for example, one wants
to store the geometrical representation of a cuboid using the x-, y-,
and z-coordinates of the corners (see [9] for a more detailed
treatment of this subject). In this case 8 x 3 = 24 real numbers

400

would be needed. A possible database representation would be to
store these 24 real numbers as atiribute values of one tuple (e.g. as
attributes v111, v112, v113, vi21, .., v888). Every modify
operation applied on the cuboid like to move it in space, to rotate
it, or to change its size would mean to update these 24 real
numbers accordingly. No update operations should be allowed,
however, which would violate the cuboid property of this
geometric object (integrity constraint). Unfortunately, in most
cases of this kind the semantics of such interrelated attributes are
not known to the DBMS. Usually it will be completely hidden in
the application programs which are accessing and manipulating
these numbers. As a consequence, the DBMS is usually not able to
perform any serious consistency checking in such cases. Even
worse, because there are no DBMS provided operations for
manipulating such special types like a cuboid, every programmer is
practically free to implement his/her own algorithms. As one can
easily imagine, this is a very error-prone way to deal with data of
such type of data.

Having already problems with such relatively simple things like the
adequate structural and behavioural representation of a cuboid, the
situation becomes really bad when looking at more complex
objects like the arm of a robot or the robot as a whole. Not only to
keep the related data consistent is a hard problem, also the
formulation of expressive queries like “Find all robots whose arms
(end points) could be moved along a given sequence of
trajectories” would be far beyond the expressive power of today's
SQL. Therefore, for keeping complex object data consistent as well
as for formulating expressive queries mechanisms are needed to
reflect the behaviour of the objects in the DBMS as well. That is
structural object-orientation and behavioural object-orientation [8]
have to be provided by the DBMS in order to support complex
objects adequately.

Although there is no disagreement on these aspects of in general,
there are different standpoints and controversial discussions on how
and to which degree structural and behavioural object-orientation
should be supported by the DBMS [10, 11]. Depending on the
individual standpoint different, contradictory goals are emphasized
leading sometimes to some confusion - not only outside of the DB
research and development (R&D) community. The main reason for
this confusion is that one can look at the purpose of DBMSs from
different points of view. One point of view is to look at DBMSs as
being tools to speed up application programming. If looking only
at the implementation of individual (isolated) applications, the
convenience and adequacy of the provided DBMS data structures
and functions is most important. Certainly, also the performance
should be comparable to using conventional (file based)
programming techniques. If looking at applications which have to
cooperatively work in an integrated application environment,
however, aspects like data sharing, independence of application
programs from database data structures, a common database
representation of data which is independent from any specific
programming language, query capabilities to efficiently search in
large collections of data, and other related issues are usually
dominating. Unfortunately, these isolated points of view are not
very helpful to achieve much progress towards a new DB
technology which is broadly applicable because only parts of the
total spectrum of problems are taken into consideration. The
purpose of this paper therefore is to outline how a possible
common approach to the overall problem could look like which
could incorporate a lot of the good technology developed at either
side.

According to that goal the remainder of the paper is organized as
follows: In the next section we outline the development of DBMS

technology and its related achievements and remaining weaknesses.
In Sect. 3 the different approaches for object-oriented databases
pursued in the DBMS R&D community are presented and
discussed. How a.combined approach taking advantage from the
strong technologies at either side is outlined in Sect. 4. The paper
ends with a summary in Sect. 5.

2. Achievements of Relational Database Technology

The first generation of DBMSs which based on the hierarchical
[12]} or network [13] data model was (more or less) directly expo-
sing its internal linked record database structures to the application
programmer. As a consequence, the application programs were
rather heavily dependent on the underlying physical database
structures. The introduction of the second generation of DBMS
products based on the relational data model [14] in the early
eighties has significantly simplified application programming and
usage of database technology in total. In these DB systems in all
information has to be stored in simply structured ("flat") tables and
all relationships between tuples of the same or another table have
to be represented by appropriate attribute values, e.g. so-called
primary key - foreign key relationships [3]. By doing so, the degree
of separation between database and application program has been
enlarged significantly compared to the first generation DBMSs. In
those DBMSs nearly every kind of schema change (e.g. adding a
new record type or adding a new attribute to an existing record
type) requires program modifications or at least re-compilation of
all application programs referring to this schema. Opposed to that,
in relational DBMSs tables as well as indexes can be dynamically
created and dropped. Virtual tables (views) are an additional
mechanism for providing a higher degree of independence of
application programs from physical database structures.

The relational SQL database language which has become an ISO
standard in 1987 [1) is additionally contributing to shield the appli-
cation program from physical database structures. Instead of pro-
cedural navigation between records (tuples), the desired informa-
tion to be retrieved is described in a declarative way. As SQL is
based on a solid formal basis (relational algebra, relational
calculus), the DBMS can internally transform SQL query
expressions into equivalent query expressions to find the optimal
way for executing the query. That is, a relational DBMS is able to
perform query optimization by itself. The application
programmers, therefore, can formulate their queries such that they
appear most natural 1o them and need not (at least should not have)
to worry about how these queries will be executed. This aspect of
system provided query optimization becomes especially important
if database queries are not directly formulated by humans but are
generated by application programs [15] or in the context of distri-
buted databases when queries have to be decomposed and executed
at remote sites [16]. Over the last ten years relational DBMS tech-
nology has also been significantly improved to meet even high per-
formance requirements making it possible to use these systems also
for operational applications [17). In addition, powerful concepts
like referential integrity features supporting cascading delete and
cascading update operations, assertions, triggers, and other things
are already available or will be available in the near future [18]
making SQL-based DBMSs very powerful for a large variety of
applications.

Despite of all these achievements the relational DBMSs of today
reveal severe weaknesses when to be applied in so-called non-
standard application areas as already pointed out above. When
working on extensions DB technology towards object-orientation
we should try as hard as we can to preserve the technological
achievements of this technology. This target will also be the

401

guideline for the subsequent discussions.

3. Approaches Towards Object-Orientation

Depending on whether DBMS technology is seen as tool to support
application development or the aspect of integration of applications
is in the foreground, the discussion about object-orientation of
DBMSs or object-oriented DBMSs (ODODBMSs) is performed from
a programming language oriented point of view of from a (DB-
)system-oriented point of view. In the first case the behavioural
aspect of OODBMS is usually more emphasized. In the second
case the concentration is more on the structural aspect of
OODBMSs in general. One could also say that the goal (the
OODBMS) is approached from two different sides (see Figure 4).
We will first discuss the two approaches separately in the following
two subsections and then try to outline a possible combined
approach in Sect. 4.

Programming Language Oriented

Behavioural Object-Orientation

o
AN

Structural Object-Orientation

i

DB System Oriented

Figure 4: Approaches Towards OODBMS Technology

3.1 Programming Language Oriented Approaches

Compared to the query languages of the first generation DBMSs,
SQL is a very elegant, easy to use, and powerful query language.
Unfortunately much of this elegance of SQL gets lost when using
the application program interface (API). One reason is that SQL is
not fully integrated into the programming language used for appli-
cation programming. That is the SQL statements used within appli-
cation programs are not an integral part of the (host) programming
language but are only embedded. A special host-language depen-
dent SQL pre-compiler has to be used to translate these embedded
SQL statements into respective statements of the host programming
language. The other reason is that SQL is a set-oriented query lan-
guage returning a set of tuples as the result of a DB query while the
usually used host programming languages only support one-record-
at-a-time processing. Cursors and corresponding FETCH
operations are to be used for transferring the result of an SQL
query, one tuple after another, into respective programming
variables of the host program.

To overcome these problems extensions of programming languages
with fully (transparently) integrated DB interfaces have been pro-
posed and implemented. The earliest and best-known proposal of
this category is Pascal/R [19] which has stimulated a lot of research
activities, today usually labelled as persistent programming

(languages) or persistent data types [20]. Nowadays the focus has
moved from embedding simple relational structures and related
operations, however, towards more complex structured entities
(objects, object classes) and their related operations (methods).
Objects and their related operations are considered as being one
unit. Application programs are accessing objects for reading or
modification purposes only via methods associated with these ob-
jects in general. Consequently, the (internal) object structure is
usually not visible to the applications using it. As opposed to em-
bedded SQL the database interface is (at least to a certain degree)
transparently integrated into the object-oriented programming lan-
guage by declaring an object type to be persistent of by providing
respective methods to read and write objects. The "host" pro-
gramming languages discussed in this context are usually offering
very advanced object-oriented programming features like powerful
type and class concepts, inheritance, polymorphism, etc. [20]. Con-
sequently, when talking about the required features of a DBMS to
be called "object-oriented" groups following this approach are em-
phasizing the object-oriented programming language features (cf.
[10] for example). First commercial products basing on C** [21]
and Smalltalk [22] respectively which follow this philosophy are
currently already appearing at the market place.

3.2 Database System Oriented Approaches

When talking about "efficiency” of OODBMSs in the context of
the programming language oriented approaches described above,
usually either the saving in application development time is meant
or the performance (e.g, access time) of the resulting solution
compared to a "hand coded" one. Usually, also only a relatively
small number of objects (which may be rather complex ones
however) is assumed. As a consequence, sophisticated query
capabilities, algebraic query optimization, and automatic access
path selection are not the major issues under consideration there.
Opposed to that, more "system near” DBMS R&D groups are
concentrating on the ‘integration aspect and, therefore, are usually
much more concerned about the DBMS related performance and
internal DBMS functionality issues. An OODBMS which is
behaving only well for retrieving some of the few complex objects
it is managing but is behaving badly when having to search in large
collections of data ("the commercial bread and butter applications")
is considered to be not acceptable. On the other side, to have totally
different types of database systems for either scenario is not
desirable as well because of the resulting redundancy (consistency)
and integration problems. In order to keep the DBMSs efficient the
system-oriented approaches to OODBMS tend to keep a much
lower profile with respect to proposing fancy object-oriented
database or data model extensions compared to groups who are
favouring the programming language oriented approach described
above.

The challenge is to find appropriate DBMS enhancements for the
data representation and query capabilities such that "orthogonality”
and "closure"” of language constructs (with respect to the
underlying data model) are achieved or preserved respectively and
that APIs can be developed for these more powerful data structures
which permit safe application programming. Orthogonality means
that query language expressions can be (nearly) arbitrary combined
or nested. Wherever a constant value of a certain type is
syntactically allowed, a variable, a function, or an expression
returning a value of this type is allowed as well. Today's SQL is
not orthogonal in this sense (no table "expressions” are allowed in
the from-clause, for example), but future SQL standards will very
likely improve this situation to certain extent [18]. Orthogonality is
a very important factor for making database as well as ordinary

402

programming languages easier to understand because no complex
exception rules have to be obeyed. Closure means that one never
"leaves" the data model. That is every query expression produces a
result type which is also a legal object type (structure type) of the
underlying data model and thus could either be directly stored in
the database or could be input for a subsequent query step (nested
queries; more detailed discussions of these aspects can be found in
[23, 24]).

Among the various proposals for extending database technology to
support “new" data models providing at least a certain degree of
structural object-orientation, nested relations (also called NF?
Relations [7]) are certainly having the broadest theoretical basis.
The reason is that work on generalizing the relational theory has
already been started in the early eighties and has led to many
results with respect to appropriate extensions of the relational
algebra and its underlying theory [7, 25, 26], appropriate SQL
language extensions [27, 28], and database design theory [29, 30,
31], to name just a few out of each area (see [32], for example, for
further references). AIM-P [33] (in the initial phase) and
DASDBS [34] are examples of experimental DBMSs based on this
approach. Unfortunately, also nested relations are offering only
rather limited facilities to structure data (or object). Already a
simple thing like a vector of integer numbers, e.g. a series of
measurement values, can not be represented adequately.

Therefore further developments of the NF2 data model have taken
place which finally resulted in a data model supporting lists, sets,
tuples, and atomic values in practically every combination as legal
database objects (cf. Figure 5). AIM-P [35, 36] and also O, [37]
are both based on this type of data model. Beside offering a more
powerful data model and a DB query language supporting it, the
support of user defined data types and functions played a major
role in the development of AIM-P [38].

relation relation
(set) (set) llst
Q '*7*
tuple > tuple Q
l tuple
atomic atomic atomlc
value value value

- NF2-Relations
- nested relations

(1NF-)Relations - AIM-P Data Model

- O, Data Model

Figure 5: Evolution of Relational Data Models

One target was to enable users to enhance the system's query
capabilities by implementing their own functions which could be
used within AIM-P's SQL-like query language called HDBL
(Heidelberg Data Base Language [27, 35]). Another target was to
support these data types and functions also in the application
programming interface. By doing so, the same user defined
functions applicable within HDBL become applicable in the
application program as well. More interesting however: the DBMS
can be used to efficiently load complex objects into predefined
main memory structures for further processing within the
application program. As those "external” data representations are
the same as being used to implement new functions for HDBL,
additional application specific functions and procedures can be
provided to implement a high-performance main memory based
object cache as been done in conjunction with the RZD? project

[39, 40, 41]. This mechanism has been used for example to provide
abstract data types (hiding the object cache internals) for a robot
programming environment like the one illustrated in Figure 2 (but
with an integrated engineering database based on AIM-P [5]).

In AIM-P it is left up to the type implementor whether the
(internal) structure of the type (which is constructed using HDBL's
basic data types and its set, list, and tuple constructors) or whether
it shall be hidden (called encapsulated types [38]). By doing so, the
type implementor can decide whether just an additional built-in
function is wanted or an abstract data type behaviour shall be en-
forced. To be able to adequately support hidden types in AIM-P's
interactive ad hoc query interface the type implementor can pro-
vide display functions which will automatically replace AIM-P's
standard output screen representation for all data of this type [42].
AIM-P also allows the application programmer to decide him-
self/herself whether to use the type mechanism to move database
objects into respective main memory structures, or to use nested,
hierarchical cursors (one cursor for every level of the hierarchy) to
transfer the object attribute wise or tuple wise into appropriate host
program variables, or to mix both concepts [43]. In the first case a
so-called "external type representation” to be used in the applica-
tion program is generated by AIM-P's type compiler [38]. This
external type representation is used in the sequel to pass the object
from the database to the application program and vice versa. In the
second case the application programmer decides how the main
memory representation shall look like but a sequence of cursor
operations will be necessary in general to fill the application
program's data structure.

Updates can be (like in SQL) performed by either using the
respective HDBL commands or by using the APL If the APl is
used all updates are performed locally at first in the so-called
object buffer which is under the control of the API run-time
system. An object buffer is created when a database retrieval
operation is issued from the APL The query result (the object(s)) is
passed to the API run-time system using the object buffer. The
object buffer is also used in the sequel to reflect all modifications
performed by the application program using the APIL. Last but not
least the object buffer is used to communicate the changes to the
DBMS at commit time. The implementation of the object buffer is
done such that only the modified parts are communicated by the
API run-time system to the DBMS (cf. [44] for further details on
this subject).

Unfortunately, due to the rather limited support for dynamic data
structures in most conventional programming languages (HDBL
has been embedded in Pascal), much of the elegance of this data
model is lost when using the API. Also the function mechanism
supported to enhance AIM-P's query capabilities is rather limited
compared to the powerful methods (in conjunction with the
inheritance of methods) proposed by programming language
oriented groups. That is many of the arguments which have led to
the programming language oriented approaches for OODBMS
mentioned in Sect. 3.1 are still valid. On the other hand, many of
the programming language oriented proposals are rather weak in
the database part, especially under the aspects of adequate
structural representation of objects, concurrency control, high-level
query languages, query optimization, automatic access path
selection, etc. It would therefore be desirable to combine both
approaches to benefit from the good technologies at either side.
How such a combined approach could be look like shall be
outlined in the following.

403

4. Towards a Combined Approach for OODBMS

Complex design tasks like e.g. computer aided robot assembly or
computer aided parts design are touching the objects to be worked
with very often more than once. That is usually sequences of
operations (methods) are applied rather than finishing the task with
just one method invocation. To cross a DBMS query interface
multiple times to apply the desired sequence of methods is both
awkward and inefficient in most cases. For such kind of application
local processing (within the application program) is therefore
desirable. In such cases the database related part should be reduced
to fetch the object(s) wanted and to propagate the changes back to
the database after the modifications have been locally performed.
This means that the sophisticated methods for modifying objects
have to be available in the application programming environment
in the first place. There is no such strong need to have all of these
methods also available as part of the DBMS kernel or as part of the
DB query language respectively.

This separation can only properly work, however, if the DBMS can
"trust” the application programming environment that all modifi-
cations performed have been done using the related methods. That
is no application program has illegally "by-passed” any method.
Otherwise costly integrity checks would have to be performed
during check-in processing by the DBMS which would probably
completely eliminate the advantages of this approach. DBMS based
integrity checking should be reduced to such cases where no pre-
defined methods which are enforcing the respective integrity con-
straints can be applied. To go that way means that the DBMS
based integrity checking mechanism has to be coordinated some-
how with the method implementation to avoid double checking or
missed checking. This may also require to use special coding
mechanisms such that the DBMS can determine with safety
whether a certain modification has been performed by using the
respective method or not. Superimposed coding (that is some kind
of check sum computing) plus cryptographical methods may be
helpful techniques for doing this. This separation of processing
does not mean that only simple query capabilities have to be provi-
ded by the DBMS. In order to efficiently determine the objects
wanted within may be large collections of "similar" objects, ade-
quate search capabilities have to be offered as well. This leads
rather naturally to the requirement to support user defined data
types and functions (methods) at the DBMS side as well. They can
be reduced however to a large extent to the support of new types of
query predicates or visualization of new data types when using the
interactive ad hoc query interface (if provided).

A certain problem is the identification of object modifications
when following this approach. For efficient back propagation of
changes to the DBMS (especially in the context of versioned ob-
jects) the modified objects should not (or even can not) require to
simply overwrite the old objects in the database. Instead, only the
changes should be communicated (or should be at least easily
detectable) to allow the DBMS to sclect the most appropriate
update strategy. As this is crucial for consistency reasons (no
modifications should be "forgotten") as well as for performance
reasons, the DBMS provided type representations in the object
buffer and the respective usage in the application programming
environment (e.g. to implement new methods) have to be carefully
coordinated. This is certainly a point which deserves further atten-
ton.

Last but not least a similar (at best the same) "look and feel" should
be provided for all host programming languages using the data-
base. To avoid a "semantic break" between the database data model
and the respective programming language representation appro-
priate "embedded" data structures and operations defined on it have

to be provided in a uniform way. How this could look like is
demonstrated in O, for example [45, 46]. That is the application
programmer should not have to worry about how a "list of list of
set of .." is physically represented in the host programming
language used. He/she should only work with appropriate high-
level structures and operations within the application program. The
mapping to real data structures and operations of the host pro-
gramming language should be done by the pre-compiler. This is
also a point which deserves some more attention. The discussion
about data structures and operations is also leading to the question
which kind of data model should be supported by the DBMS. Shall
it be set-oriented and value-based, or shall it support explicit links
and navigation?

When discussing about navigation one has to carefully discriminate
between navigational access within objects and navigation between
objects. Navigation within objects is a must without any question.
This is nothing new, however. The cursor construct provided by
today's SQL API is nothing else than a mechanism to navigate in
the rtesult table (the result “object”). More complex result
structures, once supported, will certainly require more powerful
navigation mechanisms than are provided today. Opposed to that,
navigation berween objects, especially in conjunction in a record-
oriented way of database access would be a major step backward
into the direction of first generation DBMSs. As far as flexible ob-
ject structures and shared subobjects are concerned, one could
think of appropriately extended SQL query capabilities based on a
higher level (e.g. ER-like) data model allowing to describe dyna-
mically and to retrieve even network-like result (object) structures
based on flat relations [47, 48, 49]. With such extensions there
should only be very few cases left over where "manual” navigation
remains to be necessary.

There are sometimes also rather dogmatic discussion on either side
about the differences between a primary key and an object-id. It
would certainly be preferable to have not more different concepts
to support than necessary. A more general treatment of the attribute
concept might be the right way to achieve this goal. One could, for
instance, distinguish between attributes whose values can be user-
provided, system-provided, or both. This would allow the DBMS
to automatically generate attribute values on demand and depen-
ding on the attribute type and further characteristics (e.g. primary
key). Orthogonal to this concept one should be able to define
whether an attribute value, once provided, may be changed
(updated) or not. By doing so, the concept of an object identifier
and the concept of a primary key are just variants of the same basic
concept. Normal SQL-like query mechanisms could then be used
to select such objects. Clearly, appropriate language constructs
have to be provided to discriminate between retrieving only the
object identifier and the object itself. But this is trivial (cf. [27], for
example).

5. Summary

Without any doubts database technology is one of the key techno-
logies for performing the complex integration tasks many industrial
and other companies are faced with already today or in the foresee-
able future. As has been illustrated in the paper, today's database
technology is not really prepared yet to adequately support the
demands arising from non-standard application areas like, e.g.
Computer Integrated Manufacturing which we have also used to
study the problem. The same kinds of problems are also appearing
in other application areas like office, geographical, medical, and
other non-traditional application areas. That is, the current
discussion about extending database technology towards object-
orientation has its real practical roots. This answers also the

404

question in the title why database technology should be extended
towards object-orientation.

We have also elaborated the different points of view under which
the current controversial discussion on OODBMSs are taking place
at present and have pointed out some the strengths and weaknesses
of the related proposals. We have discussed the different require-
ments or priorities respectively when focussing on the aspect of
speeding up application development and when focussing on the
aspect of implementing integrated applications. This was an
attempt to give some more insights for whom database technology
has to be extended and for what kind of problems the new
technology has to be prepared.

Finally, we have tried to outline how a combined approach could
look like which takes advantage of the good technologies available
or under development at either side. In this context we have also
addressed some of the open issues which deserve further attention.

Acknowledgements

The valuable comments of A. Dyballa, K. GaBner, and Chr. Kalus
on an earlier version of this paper are gratefully acknowledged.
Thanks also to my former colleagues at the IBM Heidelberg
Scientific Center, especially the members of the AIM research
group, which contributed at a lot over all the years (1982-1990) to
gain the insights and experiences expressed in this paper.

6. Literature

(11 International Standards Organization (ISO), "Database
Language SQL", Document 1SQ-9075-1987(E).

International Standards Organization (ISO), "Database
Language SQL with Integrity Enhancement", Document ISO-
9075-1989%(E).

C.J. Date,

4th ed., Addison-Wesley Publ. Comp., 1986.

P. Dadam, R. Dillmann, A. Kemper, P.C. Lockemann,
“Objektorientierte Datenhaltung fiir die Roboterprogram-
mierung”, Informatik Forschung und Entwicklung, Springer-
Verlag, Heidelberg, vol. 2, 1987, pp. 151-170 (in German).

R. Dillmann, M. Huck: “R2D2: An Integration Tool for CIM", in
[531, pp. 355-372.

R.L. Haskin, R.A. Lorie, "On Extending the Functions of a
Relational Database System", in -

Conf, on Management of Data, Orlando, Florida, 1982,

pp. 207-212.

G. Jaeschke, H.-J. Schek: "Remarks on the Algebra of Non First
Normal Form Relations”, in M-SIGACT-SIGM

mposium on Principles of D ms, Los Angeles,
March 1982, pp. 124-138.

K.R. Dittrich, "Object-oriented Database Systems: The Notions
and the Issues”, in [50}, pp. 2-4.

A. Kemper, M. Wallrath, "An Analysis of Geometric Modeling

in Database Systems", ACM Computing Surveys, vol. 19, no. 1,
pp- 47-91, March 1987.

M. Atkinson et al, "The Object-Oriented Database Manifesto”,
Altair Technical Report No. 30-89, GIP Altair, LeChesnay,
France, Sept. 1989

M. Stonebraker et al., "Third-Generation Database System

Manifesto”, ACM SIGMOD Record, vol. 19, no. 3, 1990,
pp. 31-44,

[2]

3] ,vol. 1,

4

15]

{6l

7

(8]

(91

{10]

{11]

(12]

(13]

(14

{15]

{16]

(17

(18]

(19]

{20]

[21]

[22]

[23]

[24]

[25]

(26]

(27

(28]

(29]

{301

[31]

(32]

(33

(34]

J. Strickland, P. Uhrowczik, V. Watts: "IMS/VS: An Evolving
System", IBM Systems Journal, vol. 21, no. 4, 1982.
CODASYL: "Data Description Language Committee Report”,
Information Systems, vol. 3, no. 4, 1978, pp. 247-320.

E.F. Codd: "A Relational Model for Large Shared Data Banks",
Communications of the ACM, vol. 13, no. 6, 1970, pp. 377-387.
N. Ott, K. Horlaender: "Removing Redundant Join Operations
in Queries Involving Views" , Information Systems, vol. 10,

no. 3, 1985, pp. 279-288.

S. Ceri, G. Pelagatti, Distributed Databases. Principles and
Systems. McGraw-Hill Book Comp., 1984.

D.J. Haderle, "Database Role in Information Systems: The
Evolution of Database Technology and its Impact on Enterprise
Information Systems", in {54}, pp. 1-14.

Ph. Shaw, "Database Language Standards: Past, Present, and
Future", in [54] , pp. 55-80.

J.W. Schmidt: "Some High-Level Language Constructs for Data
of Type Relation", ACM Transactions on Database Systems,
vol. 2, no. 3, Sept. 1977, pp. 247-261.

M.P. Atkinson, P. Buneman, R. Morrison (Eds.): "Data Types
and Persistence”, Topics in Information Systems,
Springer-Verlag, 1988

Ontologic Inc.: ONTOS - Object Database Programmer's Guide,
1989

R. Bretl et al.: "The GemStone Data Management System", in
(521, pp. 283-308.

S. Abiteboul, C. Beeri, M. Gyssens, D. Van Gucht: "An
Introduction to the Completeness of Languages for Complex
Objects and Nested Relations”, in [32], pp. 117-138.

A. Heuer, M.H. Scholl, "Principles of Object-Oriented Query
Languages”, in {55}, pp. 178-197.

H.-J. Schek, M. Scholl: "The Relational Model with Relation-
Valued Attributes. Information Systems, vol. 11, no. 2, 1986,
pp. 137-147.

F. Bancilhon, P. Richard, M. Scholl: "On Line Processing of
Compacted Relations", in

Bases, Mexico, Sept. 1982, pp. 263-269.

P. Pistor, R. Traunmiiller, "A Database Languagé for Sets, Lists,

and Tables", Information Systems, vol. 11, no. 4, 1986,

pp. 323-336.

H.F. Korth, M.A. Roth, "Query Languages for Nested

Relational Databases", in [32], pp. 190-204.

Z.M. Ozsoyogly, L.Y. Yuan, "A New Norma! Form for Nested

Relations", ACM Transactions on Database Systems, vol. 12,

no. 1, 1987, pp. 111-136.

Z.M. Ozsoyogly, L.-Y. Yuan: "On the Normalization in Nested

Relational Databases", in [32], pp. 243-271.

M.A. Roth, H.F. Korth: "The Design of Non 1NF Databases

into Nested Normal Form", in Proc. ACM-SIGMOD Conf.,

San Francisco, May 1987, pp. 143-159.

S. Abiteboul, P. C Flscher H.-1. Schek (Eds.): Nested Relations
1 . Lecture Notes in Computer

Science 361, Springer-Verlag, 1989

P. Dadam et al., "A DBMS Prototype to Support Extended NF?

Relations: An Integrated View on Flat Tables and Hierarchies”,

Proc. ACM-SIGMOD Conf,, Washington, D.C., May 1986,

pp- 356-367.

H.-B. Paul et al., "Architecture and Implementation of the

Darmstadt Database Kemel System", in Pro¢, ACM-SIGMOD
Conf., San Francisco, 1987.

(35]

(36]

(37.
" Data Model", in: F. Bancilhon, P. Buneman (Eds.): Advances in

(38]

[39]

[40]

{41]

{42]

(43]

[44]

{45]

[46]

(471

(48]

(491

{50]

[51]

(52]

(53]

[54]

(55]

P. Pistor, P. Dadam, "The Advanced Information Management
Prototype", in {32], pp. 3-26.

P. Dadam, V. Linnemann, "Advanced Information Management
(AIM): Advanced Database Technology for Integrated
Applications", JBM Systems Joumal, vol. 28, no. 4, 1989,

pp. 661-681.

Ch. Lecluse, P. Richard, F. Velez, "O, - An Object Oriented

Database Programming Languages, ACM Press, 1986,

pp- 257-276.

V. Linnemann et al., "Design and Implementation of an

Extensible Database Management System Supporting User

Defined Data Types and Functions, in Proc, Int. Conf. on Very

Large Databases, Los Angeles, Aug. 1988, pp. 294-305.

P. Dadam et al., "Managing Complex Objects in R?D?", in [53],

pp- 304-331.

A. Kemper, M. Wallrath, M. Diirr, "Object Orientation in

R2D?", in [53], pp. 332-353.

A. Kemper, M. Wallrath, "A Uniform Concept for Storing and

Manipulating Engineering Objects”, in [51], pp. 292-297.

S. Hartig, N. Siidkamp, "User Defined Procedures for

Displaying Database Objects”, IBM Heidelberg Scientific

Center, Technical Note, August 1988.

R. Erbe, N. Siidkamp, G. Walch, "An Application Program

Interface for a Complex Object Database", in Proc. 3rd Int,

Conf. on Data and Knowledge Bases, Jerusalem, June 1988.

K. Kiispert, P. Dadam, J. Giinauer, "Cooperative Object Buffer

Management in the Advanced Information Management

Prototype”, in Proc, Int, Conf. on Very Large Databases,

Brighton, U.K., Sept. 1987, pp. 483-492.

Ch. Lécluse, Ph. Richard, "The O, Database Programming

Language", Altair, Rapport Technique, 26-89.

F. Bancilhon et al., "The Design and Implementation of O,, an

Object-Oriented Database System”, in [51], pp. 1-22.

R. Lorie, H.-J. Schek, "On Dynamically Defined Complex

Objects and SQL", in {51}, pp. 323-328.

H. Pirahesh, C. Mohan, "Evolution of Relational DBMSs

Toward Obiject Support: A Practical Viewpoint”, in [55],

pp- 16-37.

Th. Hirder et al., "PRIMA - DBMS Prototype Supporting

Engineering Applications”, in

Databases, Brighton, U.K., 1987, pp. 433-442.

K. Dittrich, U. Dayal (Eds.): Proc. Int. Workshop on Object-

Oriented Database Systems, Asilomar, Pacific Grove, Cal. 1986

K.R. Dittrich (Ed.): "Advances in Object-Oriented Database

Systems", ACM-IEEE Int. Workshop on Object-Oriented

Database Systems, Bad Miinster, Germany, Sept. 1988. Lecture
Notes in Computer Science 334, Springer-Verlag, 1988.

W. Kim, F.H. Lochovsky (Eds.):

Databases, and Applications. ACM Press 1989.

G. Kriiger, G. Miiller (Eds.): HECTOR, Volume II: Basic

Projects, Springer-Verlag, 1988

A. Blaser (Ed.), Proc. Int, Symp. Database Systems of the 90s,

Miiggelsee, Berlin, Nov. 1990, Lecture Notes in Computer

Science 466, Springer-Verlag 1950.

H.J. Appelrath (Ed.), Proc. "Datenbanksysteme in Biiro,

Technik und Wissenschaft”, Kaiserslautern, Germany, March

1991 (Informatik-Fachberichte 270, Springer-Verlag, 1991).

	Quelle: Proc. Advanced Computer Technology, Reliable Systems and Applications, 5th Annual European Computer Conference, CompEuro 91, Bologna, May 1991, pp. 398-405

