
Workflow and Process Synchronization
with Interaction Expressions and Graphs

Christian Heinlein

Dept. Databases and Information Systems
University of Ulm, Germany

heinlein@informatik.uni-ulm.de

Abstract

Current workflow management technology does not provide adequate means forinter-workflow coor-
dinationas concurrently executing workflows are considered completely independent. While this sim-
plified view might suffice for one application domain or the other, there are many real-world applica-
tion scenarios where workflows −− though independently modeled in order to remain comprehensible
and manageable −− are semantically interrelated. As pragmatical approaches, like merging interdepen-
dent workflows or inter-workflow message passing, do not satisfactorily solve the inter-workflow co-
ordination problem,interaction expressions and graphsare proposed as a simple yet powerful formal-
ism for the specification and implementation of synchronization conditions in general and inter-work-
flow dependencies in particular. In addition to a graph-based semi-formal interpretation of the formal-
ism, a precise formal semantics, an equivalent operational semantics, an efficient implementation of
the latter, and detailed complexity analyses have been developed allowing the formalism to be actually
applied to solve real-world problems like inter-workflow coordination.

1. Introduction

Inter-Workflow Dependencies

Current workflow management systems (WfMS), whether commercial products or research proto-
types, do not provide adequate means forinter-workflow coordinationas concurrently executing
workflows are considered completely independent. While this simplified view might suffice for one
application domain or the other, there are many real-world application scenarios where workflows −−
though independently modeled in order to remain comprehensible and manageable −− are semantically
interrelated. As a simple example from the domain of medicine, consider the examination workflows
depicted in Fig. 1 describing the performance of an ultrasonography (left) and an endoscopy (right)
including necessary pre- and postprocessing steps like scheduling, report writing, etc. As long as these
workflows refer to different patients, they might well be executed independently. If the same patient is
involved, however, the activitiesprepare, inform, call, and perform1 must be synchronized somehow
as they access a “limited resource,” viz the patient under consideration. If for example, the activities
order, schedule, prepare, and inform of both workflows have already been performed, the activities
call are to be executed next, i. e., they will be inserted into the worklists of appropriate users −− e. g.,
medical assistents of the ultrasonography and endoscopy departments, respectively −− by the WfMS.
As soon as one of these activities is actually executed, however, the other one should temporarily dis-
appear from the worklists −− or at least become marked as currently not executable −− as a patient can-
not be called to a second examination as long as he passes through the first one. Only after completion
of the first examination (activityperformof the corresponding workflow), activitycall of the second
workflow should become executable again, i. e., reappear in appropriate worklists.

1 For the sake of simplicity, only the verb of an activity (e. g.,prepareinstead ofprepare patient) is used throughout the following text.

1

order examination

schedule examination

prepare patient

call patient

perform examination

write report

read report

ultrasonography

order examination

schedule examination

inform patient prepare patient

call patient

perform examination

write short report

read short report

write detailed report

write detailed report

endoscopy

Figure 1: Medical examination workflows

Impractical Solutions

As current WfMSs neither provide adequate means to describe nor to implement such inter-workflow
dependencies, one might resort to rather pragmatical approaches like merging interdependent work-
flows into a single workflow to transforminter-workflow dependencies to ordinaryintra-workflow
control flows. As soon as not only two, but maybe fiv e, ten or twenty interrelated workflows have to
be merged, however, the resulting workflows will reach magnitudes which are no longer comprehensi-
ble nor manageable in practice. Furthermore, a host of 2n merged workflows would be necessary to
capture every possible combination ofn original workflows. Finally, typical intra-workflow control
structures, like sequence, conditional and parallel branching, and possibly loop, would force a work-
flow designer to prescribe a particular ordering of the examinations ultrasonography and endoscopy in
the example above (more precisely, of the activitiescall and performof the corresponding workflows)
as they do not allow to describe a sequential execution in either order. For these reasons, the idea to
simply “define away” inter-workflow dependencies by translating them to well-known intra-workflow
control flows has to be abandoned.

Another apparently attractive idea uses inter-workflow messaging or event services provided by
some WfMSs to explicitly synchronize concurrently executing workflows. While this approach avoids
the creation of unmanageable “mega workflows” as it retains the structure of the original workflows,
it does not solve the “combinational explosion” problem as, in principal, 2n variations of each work-
flow are necessary describing which messages to exchange with concurrent workflows depending on
the “cast” of the actually executing “workflow ensemble.” Similarly, the “mutual exclusion” problem,
i. e., describing that the examinations can be performed in either order, cannot be solved with this ap-
proach as inter-workflow messages cannot be used to temporarily disable activities which have al-
ready been enabled by the WfMS. Therefore, the idea of reducing inter-workflow dependencies to
bare message passing has likewise to be abandoned.

A common problem of both approaches not mentioned so far is their principal unability to deal with
dynamicworkflow ensembles where the number and the actual participants of a set of concurrently
executing workflows is not known in advance and might change with time. As currently executing
workflows might always terminate and additional workflows can be initiated by a user at any time,

2

however, dynamically evolving ensembles are actually the normal case and must thus be supported ac-
cordingly.

Extended Regular Expression Formalisms

In order to find a satisfactory solution to the inter-workflow coordination problem at all, it is absolute-
ly necessary to strictlyseparateinter-workflow synchronization aspects from individual workflow de-
scriptions and to use an extremely flexible and declarative formalism for their specification. In some
sense, this means to reapply a basic principle of workflow management, viz the separation of the over-
all control and data flow specification of a workflow from the implementation of individual applica-
tion modules, one level higher: Inter-workflow synchronization aspects are extracted from individual
workflows and described on a separate level using a tailored and well-suited formalism.

In the past, similar approaches have been proposed for the synchronization of parallel programs [2,
10, 25]. Instead of directly encoding synchronization conditions using semaphor operations or the like
in individual procedure implementations, an abstract formalism based on extended regular expressions
is used to describe them separately in a compact, legible and easily adaptable manner. The basic idea
with these formalisms is to interpret thelanguageof an expression, i. e., the set of words it accepts, as
set of permissible execution sequencesof actions where actions correspond to the start or termination
of individual procedures. By that means, it is indeed possible to specify synchronization conditions in
a very flexible and declarative way.

Despite the fact that many similar formalisms have been proposed over the years (cf. Fig. 2), each
of them lacks one important operator or the other. By carefully analysing the overall spectrum of oper-
ators provided, one can identify three pairs of “complementary” or dual operators: There are two basic
composition operators,sequentialand parallel composition, two corresponding closure operators,se-
quential and parallel iteration, and two Boolean operators,disjunction and conjunction.2 Further-
more, the concept ofparametric expressionsandquantifierscan be found in a restricted form in some
approaches. Apart from the fact, that none of the formalisms proposed so far is conceptually compre-
hensive or complete with respect to the others, most of them do not allow operators to be arbitrarily
combined, but impose considerable restrictions on their nesting. In path expressions, for example, the
parallel iteration operator must not contain other parallel iterations, while operands of a parallel com-
position in synchronization expressions must have disjoint alphabets.

regular
expressions

CoCoA
execution rules

[9]

path
expressions

[2]

synchronization
expressions

[10]

ev ent and flow
expressions

[22, 23]

???
parameters

quantifie
rs

conjunctionparallelcomposition

parallel
iteration

parallel
iteration

parallelcompositionconjunction

quantifiers

parameters

Figure 2: Formalisms based on extended regular expressions

Interaction Expressions and Graphs

This lack of orthogonality on the one hand and the conceptual incompleteness of the formalisms on
the other hand calls for the development of a new formalism to describe synchronization requirements

2 Note that regular expressions provide just the first operator of each pair: sequential composition (sequence), sequential iteration (Kleene
closure), and disjunction (choice).

3

which is at least conceptually complete and fully orthogonal and thus can fill the hole depicted by the
question marks in Fig. 2. Despite its conceptual completeness, such a formalism should also be flexi-
bly extensible with user-defined operators in order to be optimally useful in different application do-
mains. Furthermore, it should be readily comprehensible even for mathematically ignorant persons,
which suggests the use of a graphical representation instead of or in addition to a formal notation. Last
but not least, the proposed formalism must be efficiently implementable in order to be practically use-
ful, and the implementation should be −− in contrast to, e. g., Petri nets and process algebras −− com-
pletely deterministic.

In order to meet the requirements just enumerated,interaction expressions and graphshave been
developed in the author’s Ph. D. thesis [11, 12] as a simple yet powerful formalism for theexpression-
or graph-based specification and implementation ofinter-action dependencies, i. e., synchronization
conditions. Interaction graphs, which constitute the graphical, user-oriented view of the formalism, are
introduced in Sec. 2, while interaction expressions, their formal counterpart, are treated in Sec. 3. Sec-
tions 4, 5, and 6 dealing with the operational semantics, implementation, and complexity of interac-
tion expressions, respectively, pav e the way for their practical application which is illustrated in Sec. 7
by describing their integration with workflow management systems. Finally, Sec. 8 concludes the pa-
per.

2. Interaction Graphs

Example

Figure 3 shows a typical example of an interaction graph specifying a genericintegrity constraint for
patientsby describing necessary synchronization requirements for the activitiesprepare, inform, call,
and perform. As all these activities refer to a particular patientp as well as a particular examina-
tion x, they possess corresponding parametersp andx containing, for example, a social security num-
ber identifying a patient and a symbolic value likesono or endo representing an examination,
respectively.3 The ellipses containing flash symbols, which −− in contrast to the predefined circular
operators −− constitute a user-defined operator, represent amutual exclusiondescribing that a patientp
might either pass through exactly one examinationx (middle branch) or be prepared for or informed
about several examinationsx simultaneously (upper and lower branch, respectively). The “for
somex” quantifiers

x
. . .

x
specify that their body, i. e., the subgraph in between, must be traversed

for exactly one arbitrarily chosen value of the parameterx, while the body of the “for allp” quantifier

prepare
patient

p, xx x

call
patient

p, x

perform
examination

p, xx x

inform
patient

p, xx x

p p

Figure 3: Integrity constraint for patients

3 In the workflows of Fig. 1, these parameters have been omitted for the sake of simplicity. They might be considered global workflowvaria-
bles which are implicitly passed to all activities of the workflow.

4

p
. . .

p
might be traversed concurrently and independently for all possible values of the parameterp.

Thus, these operators constitute generalizations of the basic “either or” (disjunction) and “as well as”
(parallel composition) branchings, respectively, depicted in Fig. 4. Finally, the “arbitrarily parallel”
operators . . . allow an arbitrary number of concurrent and independent traversals of their body.4

y

z

y

z

Figure 4: Basic branching operators: “either or” (left) and “as well as” (right)

User-Defined Operators

To complete the example above, Fig. 5 shows a possible definition of the mutual exclusion operator
“flash” as a constant repetition (sequential iteration) of an “either or” branching containing the mutual
exclusive branchesx, y, andz.5 Employing such kinds of templates does not only simplify the graphs
containing them, but also raises their level of abstraction as a user of the “flash” operator does not
need to know its precise definition but only its abstract meaning. Therefore, frequently occurring or
fairly complicated application-specific operators might be predefined by an “interaction graph expert”
and applied afterwards even by unexperienced users.

x

y

z

x

y

z

Figure 5: Definition of the mutual exclusion operator

Modular Combination of Graphs

Figure 6 shows another example of an interaction graph specifying a genericcapacity restriction for
examination departmentsby describing that for each kind of examinationx (quantifier

x
. . .

x
) three

concurrent and independent instances (multiplier
3

. . .
3

) of the sequencecall − perform might be
executed repeatedly (sequential iteration. . .). Each of these sequences might be traversed with an
arbitrary patientp (quantifier

p
. . .

p
). This means effectively, that each examination departmentx

can treat at most three patientsp simultaneously.

4 As a mnemonic aid, a single circle (whether small or large) expresses thatonebranch must be chosen, while a double circle requiresboth
or all branches to be traversed. Finally, three circles represent anarbitrary number of parallel traversals.
5 It is also possible to give a more general definition where the number of branches is variable.

5

call
patient

p, x

perform
examination

p, xp p

3 3

x x

Figure 6: Capacity restriction for examination departments

Having specified separate synchronization conditions for patients (Fig. 3) and examination depart-
ments (Fig. 6), a coupling operator is employed to combine these independently developed subgraphs
into a single interaction graph representing their semantic conjunction (cf. Fig. 7). More precisely, the
combined graph permits the execution of a particular activity if and only if it is permitted byall sub-
graphs containing this activity. Applied to the graph of Fig. 7 this means that the execution ofcall
and perform is permitted if and only if it is permitted by both branches of the coupling operator

. . . , while prepareandinform are permitted as soon as they are permitted by the upper branch. In
contrast to a strict conjunction operator (denoted. . .) which permits execution of an activity if and
only if it is permitted byall its branches, the more loosely coupling employed in Fig. 7 is usually
much more intuitive and useful in practice as a subgraph should not prohibit the execution of activities
which it does not explicitly mention. This kind of open-world assumption −− there might be activities
which are either unknown or irrelevant at the time a graph is developed −− supports a modular develop-
ment of small interaction graphs describing particular aspects or facets of a synchronization condition
and their seamless integration into larger graphs afterwards. In contrast, formalisms providing strict
conjunction only [10] or no explicit conjunction operator at all [22, 23] force graph developers to aug-
ment the individually developed subgraphs with auxiliary branches or special synchronization sym-
bols before combining them to larger graphs [12].

prepare
patient

p, xx x

call
patient

p, x

perform
examination

p, xx x

inform
patient

p, xx x

p p

call
patient

p, x

perform
examination

p, xp p

3 3

x x

Figure 7: Coupling of independently developed subgraphs

6

3. Interaction Expressions

Formal Semantics

For normal applications, the meaning of an interaction graph, i. e., its set of permissible execution se-
quences, is intuitively derived by traversing the graph from left to right according to descriptive rules
and recording the visited actions.6 Formally, such a sequence of actions is called acomplete wordof
the graph if the traversal is complete, i. e., reaches the rightmost end of the graph. Otherwise, if the
traversal is terminated prematurely, the resulting sequence is called apartial word. In order to pre-
cisely determine the semantics of an interaction graphx, the setsΦ(x) andΨ(x) containing the com-
plete and partial words ofx, respectively, will be defined in the following.7 As it is possible −− typical-
ly by misusing the coupling operator −− to construct graphs with “dead ends,” i. e., graphs possessing
partial but no complete words, partial words cannot be simply derived as prefixes of complete words
but hav e to be defined separately. In order to simplify notations, interactionexpressionsare introduced
in the following as an equivalent formal notation of interaction graphs. Expressed the other way
round, interaction graphs are merely a graphical notation of interaction expressions just like syntax
charts constitute a graphical representation of context-free grammars.

Table 8 summarizes the definition of interaction expressionsx (first and second column) wherey
andz constitute recursively defined subexpressions anda represents anabstract action

a ∈ Γ = { [a0, a1, . . ., an] n ∈ IN0, a0 ∈ Λ, a1, . . ., an ∈ Ω ∪ Π }

consisting of an actionname a0 ∈ Λ and zero or morearguments a1, . . ., an ∈ Ω ∪ Π which are ei-
ther concretevaluesω ∈ Ω or formal parameters p∈ Π. Here,Λ, Ω, andΠ denote corresponding
basic sets for which the conditionsΩ ∩ Π = ∅ and Ω = ∞ shall hold. Furthermore, for each

Category x Φ(x) Ψ(x) α (x)
atomic expression a { 〈a〉 } ∩ Σ* { 〈〉, 〈a〉 } ∩ Σ* { a }
option y Φ(y) ∪ { 〈〉 } Ψ(y) α (y)
sequential composition y − z Φ(y) Φ(z) Ψ(y) ∪ Φ(y) Ψ(z) α (y) ∪ α (z)
sequential iteration y Φ(y)* Φ(y)* Ψ(y) α (y)
parallel composition y z Φ(y) ⊗ Φ(z) Ψ(y) ⊗ Ψ(z) α (y) ∪ α (z)
parallel iteration y Φ(y)# Ψ(y)# α (y)
disjunction y z Φ(y) ∪ Φ(z) Ψ(y) ∪ Ψ(z) α (y) ∪ α (z)
conjunction y z Φ(y) ∩ Φ(z) Ψ(y) ∩ Ψ(z) α (y) ∪ α (z)

Φ(y) ⊗ κx(y)* ∩ Ψ(y) ⊗ κx(y)* ∩
Φ(z) ⊗ κx(z)* Ψ(z) ⊗ κx(z)*

synchronization y z α (y) ∪ α (z)

disjunction quantifier
p

y
ω ∈Ω
∪ Φ(yω

p)
ω ∈Ω
∪ Ψ(yω

p)
ω ∈Ω
∪ α (yω

p)

parallel quantifier
p

y
ω ∈Ω
⊗ Φ(yω

p)
ω ∈Ω
⊗ Ψ(yω

p)
ω ∈Ω
∪ α (yω

p)

synchr. quantifier
p

y
ω ∈Ω
∩ Φ(yω

p) ⊗ κx(yω
p)*

ω ∈Ω
∩ Ψ(yω

p) ⊗ κx(yω
p)*

ω ∈Ω
∪ α (yω

p)

conjunction quantifier
p

y
ω ∈Ω
∩ Φ(yω

p)
ω ∈Ω
∩ Ψ(yω

p)
ω ∈Ω
∪ α (yω

p)

Table 8: Formal semantics of interaction expressions

6 The rectangular nodes of an interaction graph represent so calledactivitiespossessing a positive duration in time. In contrast,actionscor-
respond to points in time without any duration. As the exact duration of an activityA is irrelevant, it is implicitly mapped to a sequence of
two actions,AS andAT, representing the start and termination ofA, respectively.
7 As another mnemonic aid,Φ (pronouncedfi) contains “final” or complete words, whereasΨ (psi) containspartial words.

7

expressionx, Tab. 8 defines its set of complete and partial words (third and fourth column, respec-
tively) where brackets〈. . .〉 are used to denoteabstract words∈ Γ* and Σ represents the set ofcon-
crete actions,

Σ = { [a0, a1, . . ., an] n ∈ IN0, a0 ∈ Λ, a1, . . ., an ∈ Ω } ,

whose argumentsai are all concrete values. Consequently, aconcrete word w∈ Σ* corresponds to a
sequence of concrete actions executed in the real world.

The concatenation (U V) and Kleene closure (U*) of languagesU , V ⊆ Σ* is defined as usual,
whereas theshuffleof wordsu, v ∈ Σ* and languagesU , V ⊆ Σ* as well as the corresponding closure
is defined as follows [23, 10]:8

u ⊗ v = { u1 v1 . . .un vn n ∈ IN, u1, v1, . . .,un, vn ∈ Σ*, u1 . . .un = u, v1 . . .vn = v } ,

U ⊗ V =

v∈V
u∈U
∪ u ⊗ v = { w ∈ Σ* ∃ u ∈ U , v ∈ V: w ∈ u ⊗ v } .

n

i=1
⊗Ui =

{ 〈〉 }

(n−1

i=1
⊗Ui) ⊗ Un

for n = 0,

for n > 0,
U# =

∞

n=0
∪

n

i=1
⊗U =

u1, . . .,un∈U
n∈IN0

∪ u1 ⊗ . . . ⊗ un.

For an expressiony, a parameterp ∈ Π, and a valueω ∈ Ω, yω
p denotes the expression derived

from y by replacing every occurrence of the parameterp with the valueω . Infinite unions and inter-
sections are defined as usual, whereas the shuffle of infinitely many languagesUω ∈ Σ* (ω ∈ Ω) is ei-
ther empty or can be reduced to a union of finite shuffles if all participantsUω contain the empty word
[12]:

ω ∈Ω
⊗ Uω =

ω1≠. . .≠ωn∈Ω
n∈IN
∪

n

i=1
⊗Uω i

,

∅

if 〈〉 ∈ Uω for all ω ∈ Ω,

otherwise.

Finally, Tab. 8 defines thealphabetα (x) of expressionsx (last column) which is needed for the defi-
nition of thealphabet complementκx(y) = α (x) \ α (y). Unfortunately, space does not permit a more
detailed motivation and explanation of the definitions given in this section.

Properties of Interaction Expressions

Based on the definitions of Tab. 8, two interaction expressionsx1 and x2 are considered equal or
equivalent, if they possess the same alphabet and accept the same complete and partial words.9 Given
this equivalence relation, numerous useful properties of interaction expressions, like commutativity,
associativity, or idempotence of operators, which are intuitively evident, can be formally proven [12].

Furthermore, interaction expressions can be compared with well-known formalisms like regular ex-
pressions and context-free grammars regarding their expressiveness. While it is obvious that interac-
tion expressions are more expressive than regular expressions, their relation to context-free grammars
is not yet exactly determined. On the one hand, there are expressions, e. g.,
x = (a − b − c) (a − b − c), whose language,Φ(x) = { 〈an, bn, cn〉 n ∈ IN0 } , is not
context-free. On the other hand, there are context-free grammars specifying, e. g., palindromes, whose
language ispresumablynot expressible with interaction expressions as they −− deliberately −− do not
allow recursive expressions. As these questions are of little relevance for practical applications of in-
teraction expressions, they hav e not been investigated in more detail.

8 Note that, in the first definition,ui andvi do not represent actions∈ Σ, but subwords∈ Σ* consisting of zero or more actions.
9 More precisely, asx1 and x2 might contain unbound parameters, every pair ofconcretions(x1)

ω1, . . .,ωk
p1, . . ., pk

and(x2)
ω1, . . .,ωk
p1, . . ., pk

(for arbitrary pa-
rametersp1, . . ., pk ∈ Π and valuesω1, . . .,ωk ∈ Ω) must accept the same complete and partial words.

8

4. Operational Semantics of Interaction Expressions

State Model

Given the formal semantics of interaction expressions, it is possible in principal to construct an algo-
rithm solving theword problem−− giv en an interaction expressionx and a concrete wordw, decide
whetherw is a partial or complete word ofx −− by more or less directly transforming the definitions of
Ψ(x) andΦ(x) into executable code. The problem with this algorithm is, however, that it is hopelessly
inefficient as its complexity grows exponentially with respect to the length of the wordw ev en for
very simple expressionsx [24, 12]. In order to obtain a more efficient and practically useful imple-
mentation of interaction expressions, it is thus necessary to introduce an operationalstate modelcom-
parable in some sense to finite state machines typically used for the implementation of regular expres-
sions.

For that purpose, every interaction expressionx is assigned aninitial stateσ (x) where a state might
be a complex, hierarchically structured mathematical object. Furthermore, astate transitionfunctionτ
is defined which maps a states and an actiona to a successor states′ = τa(s). Finally, twostate predi-
cates, ψ (s) andϕ(s), are introduced which correspond directly to the setsΨ(x) andΦ(x) of the formal
semantics (cf. below). The nature of these definitions allows them to be transformed to executable
program code quite directly. To further improve the efficiency of the so constructed implementation,
an equivalence relationis introduced for states based on the predicatesψ andϕ and anoptimization
function ρ is defined which maps some statess to equivalent, but less complex states ˆs = ρ(s) which
can be processed more efficiently.

Intuitively, the state model formalizes the descriptive idea of traversing an interaction graph. That
means, the initial stateσ (x) of an expressionx describes thestarting positionof a walker (or a group
of walkers) who wants to walk through the corresponding interaction graph, while a state
transitionτa(s) represents thetraversal of an actiona. A successor stateσw(x), derived from the in-
itial stateσ (x) by applying a sequence of state transitions corresponding to a wordw, describes the set
of all possible positionsthe walker(s)might have reached after traversing the sequence of actionsw.
Such a state is said to bevalid, which is equivalent to its predicateψ being true, if the sequencew is
permissible, i. e., constitutes a partial word ofx. It is called afinal state, which is equivalent to its
predicateϕ being true, if the walker(s) might have reached the end of the graph after traversing the ac-
tions ofw.

To actually guarantee the correctness of the state model with respect to the formal semantics of in-
teraction expressions, the following equivalences must hold for every wordw ∈ Σ*:

w ∈ Ψ(x) ⇔ ψ (σw(x)) = true and w ∈ Φ(x) ⇔ ϕ(σw(x)) = true.

The corresponding proof constitutes a very large structural induction using several smaller computa-
tional inductions (verifying properties of the statesσw(x) for the different categories of expressionsx)
as lemmas. Furthermore, an auxiliary theorem must be proven in parallel to make sure that quantifier
expressions, though constituting conceptually infinite expressions, can nevertheless be implemented
using finite states [12].

Example

As space does not permit to present the definitions of the state model in full detail, a single example
should suffice to give the reader a “taste” of their nature. The states of a parallel composition
x = y z are tuples[, A] consisting of the parallel composition operator and a setA of alterna-
tivesdescribing possible positions of walkers in the graph corresponding tox. Each alternative consti-
tutes a pair of substates[l , r], wherel andr represent states of the left and right operandsy andz of
the expressionx, respectively, describing in turn possible positions of walkers in the corresponding
subgraphs.

The initial state ofx consists of a single alternative containing the initial states of the subexpres-
sionsy andz:

9

σ (x) = [, A] where A = { [σ (y), σ (z)] } .

As the branches of a parallel composition are executed concurrently and independently, the traversal
of an actiona ∈ Σ in x might be performed in either branch,y or z. That means, that a state
transitionτa(s) of a states = [, A] should replace each alternative[l , r] ∈ A with two transformed
alternatives[l ′, r] and [l , r ′] where l ′ = τa(l) and r ′ = τa(r) represent the corresponding successor
states ofl andr , respectively:

τa(s) = [, A′] where A′ = { [τa(l), r] [l , r] ∈ A } ∪ { [l , τa(r)] [l , r] ∈ A } .

A state s = [, A] should be considered valid or final, if and only if it contains an alternative
[l , r] ∈ A where both substatesl andr are valid or final, respectively:

ψ (s) =
[l , r] ∈A

∨ (ψ (l) ∧ ψ (r)), ϕ(s) =
[l , r] ∈A

∨ (ϕ(l) ∧ ϕ(r)).

Finally, a states = [, A] might be optimized by removing alternatives containing invalid substates as
these do not represent reasonable positions of walkers in the graph:

ρ(s) = [, Â] where Â = { [l , r] ∈ Aψ (l) ∧ ψ (r) } .

5. Implementation of Interaction Expressions

Implementation of the State Model

As already mentioned in Sec. 4, the nature of the definitions of the functionsσ , τ , ψ , ϕ, andρ allows
to transform them to executable program code quite directly. It turns out, however, that the state predi-
cateψ is dispensible if invalid states are already recognized by the optimization functionρ and
mapped to a special null state. Furthermore, as the state transition functionτ and the optimization
function ρ are always applied successively, it makes sense to combine them into a single optimized
state transition function ˆτa(s) = ρ(τa(s)). The remaining functions,σ (x), τ̂a(s), andϕ(s), can be readi-
ly implemented using any suitable programming language.

Solution of the Word and Action Problems

Assuming corresponding function implementationsinit() , trans() , and final() in C++, it is
easily possible to implement top level functionsword() andaction() solving the following prob-
lems (cf. Fig. 9):

1. The functionword() solves theword problem, i. e., it decides whether a sequencew of n actions is
a complete, partial, or illegal word of an interaction expressionx and returns a corresponding inte-
ger value. For that purpose, the initial states of x is computed (functioninit()) and successively
transformed using the actionsw[i] of w (function trans()). If the resulting states is a final state
(function final()), w constitutes a complete word ofx ; otherwise, ifs is valid (i. e., different
from the null state),w is a partial word ofx ; otherwise,w is illegal.

2. The functionaction() solves the so calledaction problem. After computing the initial states of
the expressionx , it successively reads actionsa (function ReadNextAction()) and decides
whether each such action iscurrently permissible. For that purpose, a “tentative” state transition is
performed to check whether the successive statet is valid. If it is,a is accepted and the state tran-
sition is actually performed by replacing the current states with the successor statet . Otherwise,
a is rejected and the current states remains unchanged.

As will be explained in Sec. 7, solving the action problem is highly relevant for practical applications
of interaction expressions, while the solution of the word problem is more or less a by-product of pri-
marily theoretical interest.

10

// Functions implementing the state model.
State init(Expr x); // Return the initial state of expression x.
State trans(State s, Action a); // Perform an optimized state transition

// of state s with action a.
bool final(State s); // Determine whether s is a final state.

// Function to solve the word problem.
int word(Expr x, Action* w, int n) {

State s = init(x);
for (int i = 0; i < n; i++) s = trans(s, w[i]);

if (final(s)) return 2; // Complete word.
else if (s) return 1; // Partial word.
else return 0; // Illegal word.

}

// Function to solve the action problem.
void action(Expr x) {

State s = init(x);
while (true) {

Action a = ReadNextAction();
if (State t = trans(s, a)) { printf("Accept.\n"); s = t; }
else printf("Reject.\n");

}
}

Figure 9: Solution of the word and action problems

6. Complexity of Interaction Expressions

Despite the fact, that statements about the computational complexity of interaction expressions are
highly relevant for practical applications, space does not permit to treat this topic in much detail. Nev-
ertheless, the main results providing the basis for a successful practical employment shall be briefly
presented.

Generally, there is a good news and a bad news about the complexity of interaction expressions.
The bad news is, it is possible to construct “malignant” expressions, i. e., expressions for which the
complexity of a state transition (in the current implementation) grows exponentially with respect to
the length of the action sequence processed so far. The good news is, those expressions do not seem to
occur in practical applications. In order to substantiate this admittedly vague statement, extensive and
detailed analyses about the growth and evolution of states of an expression have been carried out. For
example, the size of a parallel composition states = [, A], i. e., the cardinality of the set of
alternativesA, potentiallygrows by a factor of two for each state transition (cf. Sec. 4). In practice,
however, the transformed alternatives[l ′, r] and[l , r ′] often contain invalid substatesl ′ or r ′ causing
them to get immediately removed by the subsequently applied optimization functionρ. Therefore, the
cardinality of A and thus the complexity of subsequent state transitions remains nearly constant for
many practical examples.

To obtain more precise propositions about the actual behaviour of expressions, several useful sub-
classes of interaction expressions have been identified, e. g., quasi-regular expressions, completely and
uniformly quantified expressions, etc., for which detailed criterions for their “benignity” have been
elaborated. For example, it can be shown that quasi-regular expressions (i. e., expressions not contain-
ing parallel iterations or quantifiers) are “harmless” (the complexity of a state transition remains con-
stant) and that completely and uniformly quantified expressions (which constitute the normal case of
quantified expressions in practice) are “benign” (the complexity of a state transition grows polynomi-

11

ally with respect to the length of the action sequence processed so far). Furthermore, these proposi-
tions can be used in combination to evaluate step by step that a given expression is benign.

To put it in a nutshell, all practical examples considered so far −− including those presented in this
paper −− hav e been formally proven benign using the complexity propositions developed in [12]. Fur-
thermore, the actual degree of the polynomial growth is rarely greater than 1 or 2. On the other hand,
malignant expressions −− including a suitable word for which they actually behave malignant −− hav e to
be selectively constructed and do not seem to have any practical relevance.

7. Integration with Workflow Management Systems

Coordination and Subscription Protocols

Having designed interaction expressions and graphs (Sec. 2), defined their formal semantics (Sec. 3),
developed, verified, and implemented an equivalent operational semantics (Secs. 4 and 5), and finally
proved its efficiency for practically relevant expressions (Sec. 6), the question arises how interaction
expressions and graphs can actually be employed to synchronize the execution of real-world activities.
Assuming that these activities will be executed by some sort ofinteraction clients(typically workflow
management systems), a central scheduler orinteraction managerand a suitablecoordination proto-
col is needed to monitor and control the execution of actions (cf. Fig. 10, left side).

interaction
manager

interaction graph/expression
prepare
patient

p, xx x

call
patient

p, x

perform
examination

p, xx x

inform
patient

p, xx x

p p

interaction
client

actions
prepare
patient

p, x

inform
patient

p, x

interaction
client

actions
call

patient
p, x

perform
examination

p, x

1. ask

2. reply

4. confirm

3.
 e

xe
cu

te

1. subscribe

2. inform

4. unsubscribe

3. update
w

orklists

5.
 s

ta
te

tr
an

si
tio

n

Figure 10: Coordination and subscription protocols

To make sure that a client does not execute an action which is currently not permitted by the given
interaction graph, the client has toask the interaction manager for permission first (step 1). Depend-
ing on the current state of the graph, the interaction managerreplieseither yes or no (step 2). If a posi-
tive answer is received, the client actuallyexecutesthe respective action (step 3) andconfirmsits ex-
ecution (step 4) causing the interaction manager to perform a correspondingstate transitionof the
graph (step 5). Otherwise, the client must refrain from executing the action now and try again later.

In order to avoid busy waiting in that case causing unnecessary communication and interaction
manager workload, a client cansubscribeto a particular action (step 1, right side of Fig. 10) causing
the interaction manager toinform him about everystatus changeof the respective action (step 2), i. e.,
the client receives informational messages whenever the status of a subscribed action changes from
permissible to non-permissible or vice versa. These messages can be used on the one hand to keep

12

users’ worklists up to date (step 3) and on the other hand to wait passively for the right moment to ask
again for permission to execute an action. Finally, if a client is no longer interested in the status of an
action, a correspondingunsubscribemessage (step 4) tells the interaction manager to stop sending in-
formations about this action.

As space does not permit to discuss these protocols in more detail, the interested reader is referred
to [12], where several alternative coordination protocols, possessing different complexity and particu-
lar advantages and disadvantages, are presented and −− to avoid the interaction manager to become a
bottleneck −− generalized to application scenarios involving multiple interaction managers. Further-
more, the employment of persistent message queues [1] for the communication between interaction
manager and clients as well as recovery strategies of the interaction manager are described.

Adaptation of Worklist Handlers versus Workflow Engines

In order to force a WfMS, which is per se not designed to ask anybody else for permission before ex-
ecuting an activity, to participate in a coordination protocol, two alternative strategies can be pursued
possessing different advantages and disadvantages. As the runtime component of a WfMS basically
consists of a workflow engine communicating with several worklist handlers via the WfMS’s API, ei-
ther the workflow engine or the individual worklist handlers can be adapted to become interaction
clients participating in a coordination protocol with an interaction manager (cf. Fig. 11).

interaction
manager

. . .
adapted
worklist
handler

adapted
worklist
handler

standard
workflow

engine

coordination
protocol

WfMS API

. . .
standard
worklist
handler

standard
worklist
handler

adapted
workflow

engine

interaction
manager

coordination protocol

WfMS API

Figure 11: Adaptation of worklist handlers (left) versus workflow engines (right)

As the WfMS’s API is either standardized by the Workflow Management Coalition (WfMC) or at
least documented by the vendor, it is common practice to replace the standard worklist handlers of a
WfMS with customized implementations fitting better into the overall appearance of users’ desktop
environments or the like. Under these circumstances, it takes little extra effort to incorporate a coordi-
nation protocol into such a customized worklist handler implementation causing it to become a central
mediator between workflow engine and interaction manager (left side of Fig. 11). In this scenario, an
adapted worklist handler offers and executes only those activities which are regularly scheduled by the

13

workflow engineand currently permitted by the interaction manager, whereas the workflow engine
remains completely unchanged and does not even know of the interaction manager’s existence.

Although this solution is rather easy to realize, it has several drawbacks in practice. First of all, as
ev ery worklist handler has to communicate with the interaction manager, it introduces substantial
communication overhead. Secondly, as the workflow engine is not involved in the coordination proto-
col, it might happen that activities will be executed accidentally through a standard worklist handler of
the WfMS, i. e., the approach is not completely “waterproof.” A third problem arises from the fact that
worklist handlers usually run on users’ desktop computers which are rather unreliable. If, for instance,
a user switches off his PC while the worklist handler performs step 3 of the coordination protocol (cf.
Fig. 10), the interaction manager waits in vain for the confirmation in step 4 causing him to remain
stuck in a critical region comprising steps 2 to 5. The only way to alleviate this problem is to use a
more complicated coordination protocol inducing even higher communication overhead [12].

In order to remedy all these shortcomings, it is necessary to incorporate the coordination protocol
directly into the workflow engine (cf. Fig. 11, right side). In that case, the adapted workflow engine
offers and executes only those activities which are regularly scheduled according to the respective
workflow definitions and currently permitted by the interaction manager, whereas the worklist han-
dlers are completely unaffected. (Of course, it is possible to use customized implementations anyway.)
Though absolutely preferable in principal, this solution requires substantially more design and imple-
mentation effort as additional functionality has to be incorporated into an already fairly complex soft-
ware system, viz a workflow engine. Furthermore, this solution can only be realized by the WfMS
vendor possessing the workflow engine’s source code and documentation, while the adaptation of
worklist handlers is realizable by customers, too.

8. Conclusion

Interaction expressions and graphs constitute a flexible and expressive formalism for the specification
and implementation of synchronization conditions in general and inter-workflow dependencies in par-
ticular. In addition to a declarative semi-formal interpretation (traversing interaction graphs), a precise
formal semantics, an equivalent operational semantics, an efficient implementation of the latter, and
detailed complexity analyses have been developed allowing the formalism to be actually applied to
solve real-world problems like inter-workflow coordination. In contrast to other formalisms based on
extended regular expressions, interaction expressions are conceptually comprehensive and completely
orthogonal. Compared to other well-known approaches for the specification of concurrent systems, es-
pecially Petri nets [21, 16] and various kinds of process algebras [13, 14, 20], their behaviour is fully
deterministic, even though this heavily complicates their operational semantics and implementation
[12].

Despite the fact that inter-workflow dependencies occur frequently in practical applications, they
have not received much attention in the workflow community yet. Neither special issues of journals
devoted to the overall topic of workflow management [5, 6, 7, 8, 17] nor books reflecting the state of
the art in that field [26, 15] have really addressed the problem so far. The same holds for conference
and workshop proceedings in general where the number of papers dealing with other workflow man-
agement problems, e. g., flexibility and scalability, is steadily increasing. Two noteable exceptions are
[3] and [18]. Both approaches, however, are not able in principal to deal with dynamically evolving
workflow ensembles whose participants are not known in advance and might change with time.
Therefore, the thorough development of interaction expressions and graphs and their application to
coordinate dynamically evolving workflow ensembles constitutes a pioneering approach towards a
general solution of the inter-workflow coordination problem.

In addition to a very mature core implementation of interaction expressions based on the formally
verified operational semantics (cf. Sec. 5), a syntax-driven editor for interaction graphs has been de-
veloped to facilitate their creation in practice. Furthermore, the coordination and subscription proto-
cols described in Sec. 7 have been prototypically implemented and tested for the WfMS ProMInanD
[19]. Their integration into the next generation WfMS ADEPT [4] is a topic of future work.

14

References

[1] P. A. Bernstein, M. Hsu, B. Mann: “Implementing Recoverable Requests Using Queues.” In:
Proc. ACM SIGMOD Int. Conf. on Management of Data. 1990, 112−−122.
[2] R. H. Campbell, A. N. Habermann: “The Specification of Process Synchronization by Path Ex-
pressions.” In: E. Gelenbe, C. Kaiser (eds.):Operating Systems. Lecture Notes in Computer Sci-
ence 16, Springer-Verlag, Berlin, 1974, 89−−102.
[3] F. Casati, S. Ceri, B. Pernici, G. Pozzi: “Semantic WorkFlow Interoperability.” In: P. Apers,
M. Bouzeghoub, G. Gardarin (eds.):Advances in Database Technology −− EDBT’96. Lecture Notes in
Computer Science 1057, Springer-Verlag, Berlin, 1996, 443−−462.
[4] P. Dadam, M. Reichert: “The ADEPT WfMS Project at the University of Ulm.” In:1st European
Workshop on Workflow and Process Management(Zürich, Switzerland, 1998). 1998.
[5] Special Issue on Workflow and Extended Transaction Systems.IEEE Data Engineering Bulletin
16 (2) June 1993.
[6] Special Issue on Workflow Systems.IEEE Data Engineering Bulletin18 (1) March 1995.
[7] Special Issue on Software Support for Work Flow Management.Distributed and Parallel Data-
bases3 (2) April 1995.
[8] Special Issue on Workflow Systems.Distributed Systems Engineering Journal3 (4) Decem-
ber 1996.
[9] F. J. Faase, S. J. Even, R. A. de By:Introduction to CoCoA(TransCoop Deliverable IV.3). Techni-
cal Report TC/REP/UT/D4-3/033, University of Twente, The Netherlands, February 1996.
[10] L. Guo, K. Salomaa, S. Yu: “On Synchronization Languages.”Fundamenta Informaticae
25 (3+4) March 1996, 423−−436.
[11] C. Heinlein, P. Dadam:Interaction Expressions −− A Powerful Formalism for Describing In-
ter-Workflow Dependencies. UIB 97-04, Fakultät für Informatik, Universität Ulm, February 1997.
[12] C. Heinlein:Workflow and Process Synchronization with Interaction Expressions and Graphs.
Ph. D. Thesis (in German), Fakultät für Informatik, Universität Ulm, 2000.
[13] M. Hennessy:Algebraic Theory of Processes. The MIT Press, Cambridge, MA, 1988.
[14] C. A. R. Hoare:Communicating Sequential Processes. Prentice-Hall, London, 1985.
[15] S. Jablonski, M. Böhm, W. Schulze (eds.):Workflow-Management. Entwicklung von Anwendun-
gen und Systemen. dpunkt-Verlag, Heidelberg, 1997.
[16] K. Jensen, G. Rozenberg (eds.):High-Level Petri Nets. Theory and Application. Springer-Verlag,
1991.
[17] Special Issue on Workflow and Process Management.Journal of Intelligent Information Sys-
tems. Integrating Artificial Intelligence and Database Technologies10 (2) March 1998.
[18] M. Kamath, K. Ramamritham: “Failure Handling and Coordinated Execution of Concurrent
Workflows.” In: Proc. 14th Int. Conf. on Data Engineering (ICDE)(Orlando, FL, February 1998).
IEEE Computer Society, 1998, 334−−341.
[19] B. Karbe: “Flexible Vorgangssteuerung mit ProMInanD.” In: U. Hasenkamp, S. Kirn, M. Syring
(eds.):CSCW −− Computer Supported Cooperative Work. Addison-Wesley, Bonn, 1994, 117−−133.
[20] R. Milner:Communication and Concurrency. Prentice-Hall, New York, 1989.
[21] J. L. Peterson: “Petri Nets.”ACM Computing Surveys9 (3) September 1977, 223−−252.
[22] W. E. Riddle: “A Method for the Description and Analysis of Complex Software Systems.”
ACM SIGPLAN Notices8 (9) September 1973, 133−−136.
[23] A. C. Shaw: “Software Description with Flow Expressions.”IEEE Transactions on Software
EngineeringSE-4 (3) May 1978, 242−−254.
[24] A. C. Shaw: “On the Specification of Graphics Command Languages and Their Processors.” In:
R. A. Guedj, P. J. W. ten Hagen, F. R. A. Hopgood, H. A. Tucker, D. A. Duce (eds.):Methodology of
Interaction. North-Holland Publishing Company, Amsterdam, 1980, 377−−392.
[25] A. C. Shaw: “Software Specification Languages Based on Regular Expressions.” In: W. E. Rid-
dle, R. E. Fairley (eds.):Software Development Tools. Springer-Verlag, Berlin, 1980, 148−−175.
[26] G. Vossen, J. Becker (eds.):Geschäftsprozeßmodellierung und Workflow-Management. Modelle,
Methoden, Werkzeuge. International Thomson Publishing, Bonn, 1996.

15

	Quelle: Ulmer Informatikberichte Nr. 2000-11, September 2000

