
A Distributed Execution Environment
for LargeScale Workflow Management Systems

with Subnets and Server Migration

Thomas Bauer, Peter Dadam
Dept. of Databases and Information Systems, University of Ulm

Albert-Einstein-Allee, 89069 Ulm, Germany
(bauer, dadam} @informatik.uni-ulm.de

Abstract

If the number of users within a workjlow management
system (WFMS) increases, a central workflow server (WF-
server) and a single local area network (LAN) may become
overloaded. The approach presented in this paper describes
an execution environment which is able to manage a grow-
ing number of users by adding new servers and subnets.
The basic idea is to decompose processes into parts which
are controlled by different WF-servers. That is, during the
execution of a workjlow instance its execution (step) con-
trol may migrate from one WF-server to another: By se-
lecting the appropriate physical servers (for hosting the
WF-servers) in the appropriate LAiVs, communication costs
and individual WF-server workload can be reduced signif-
icantly.

1. Introduction

Since a couple of years there has been a growing interest
in using WFMS for implementing process-oriented appli-
cation systems. As the benefit of such application systems
increases with the number of applications being served, the
number of workflow applications and WFMS users within
a company will significantly grow year by year once it has
started to go that way. Thus, the question arises how to man-
age large numbers of users (may be even tens of thousands
[9]) and high volume data transfer (e.g. in conjunction with
multi-media applications) within a WFMS.

Most existing systems use a central WF-server. It is easy
to see that it becomes a bottleneck and will be overloaded
under a high load. To reduce the load of the WF-server it
can be replicated. This method can be used in combination
with our approach (section 3.3) and is chosen in [2] (see
section 5), for example. But there remains a bottleneck,
namely the band-width of the subnet of the W-server.

To see that a LAN really may become a bottleneck, let
us perform a little numerical exercise. Let us assume that
300 users are working concurrently, each of them needing
5 minutes (= 300 seconds) in the average to perform one
(workflow) step. This means, that in the average one step is
executed per second. Let us further assume, that in the av-
erage 10% of all users have the appropriate role to execute a
certain step. That is, this step should appear in the worklists
of these users. Assuming a packet size of 100 byte, we will
need approx. 4 packets for transmitting the worklist entries
and respective acknowledgements, in total 30 -4 . 100 byte
= 12 KB per second. If we further assume that the selection
and execution of one step requires the transmission of 300
KB of input data and produces the same amout as output,
then 12 KB + 600 KB = 612 KB = 4.9 megabits of pure
data per second have to be transferred in average. Taking
all the additional overhead into account this would already
lead to an overload for a simple Ethernet-based LAN. In
general, due to the potentially large number of individual
messages, even very expensive high-speed LANs may be-
come overloaded for a larger number of users.

Our approach to solve this problem is to distribute the
load by using several subnets. Not every decomposition
of a single LAN into subnets leads to the desired result,
however. In figure la, for example, three subnets are used.
Since all WF-servers belong to LAN 1, this subnet is bur-
dened with the full communication load. The existence of
the other subnets (LAN 2 and LAN 3) does not lead to any
load reduction for LAN 1. The same problem appears, if we
assume that in figure lb WI-server S1 has all of its clients
in subnet LAN 3 and W-server Sa has all its clients in sub-
net LAN 1. In this case, both, LAN 1 and LAN 3 have to
take the full communication load as if they would be in a
single LAN. On the other hand, if in the scenario illustrated
in figure 1 b WF-server S1 has all its clients in LAN 1, Ss in
LAN 2, and Sa in LAN 3, then all communication may take
place locally within the individual subnets. In this case we

O-8186-7946-8/97 $10.00 0 1997 IEEE
99

0)
I I LAN1

I
LAN 1

I I LAN 3

Figure 1. Structure of networks (S: WF-server with its WF-database on the same node, Cl: client,
GW: gateway (router), DB: database, external data source).

achieve a significant decrease in communication load per
subnet.

These examples show that the introduction of subnets
may help to reduce the communication load per subnet, but
it also shows that the WI-servers and clients must be in the
“right” subnet to achieve the desired load reduction. As we
will see later, it is not sufficient to consider workflows as a
whole (each of it being controlled by a single WF-server),
but that we even have to split workflows into parts each of it
being controlled by another WF-server to find satisfying so-
lutions. The development of criteria for “good” and “bad”
distributions, for splitting workflows into parts, as well as
the presentation of a corresponding design method for WF
networks are the main issues of this paper.

One might think that load balancing should be done
by the distributed system infrastructure (e.g. OSF DCE,
CORBA , . . .) and not by the WFMS. Unfortunately this
layer has no knowledge about processes or involved roles.
Hence it can not predict the communication behavior of fu-
ture steps and therefore its optimizations are less effective
than those of the WFMS.

The remainder of the paper is organized as follows: in
section 2 the optimization problem and in section 3 the cor-
responding solution are described. Section 4 analyzes the
efficiency of our approach, especially the creation of sub-
nets and the decomposition of workllows. Section 5 dis-
cusses related ‘approaches and section 6 concludes with a
summary and an outlook.

2. Problem Description

The optimization problem can be sketched as follows:
Given a set of processes consisting of several steps, find a
distribution of processes to WF-servers such that the com-
munication load in the subnets is minimized under the re-
striction that no subnet, WF-server, and gateway is over-
loaded. Until further notice we assume that the users

(clients) can be distributed to the subnets in any way. Be-
cause this assumption is not realistic in most cases, restric-
tions are discussed in section 3.2.2.

The communication costs for each WI-step are caused
by:

.

0

step offering (SOk): the transmission of the informa-
tion associated with the step to all users resp. clients
with an appropriate role and their acknowledgement
(SOk are the costs for maintaining the worklist of one
user for step k)

step selection (S9;O: the transmission of the informa-
tion to the server indicating that a certain user has se-
lected the step and the transmission of the the input
parameters for this step to the corresponding client

worklist refresh (W&E): sending a delete-message for
that step to the other clients to bring their worklists up-
to-date and transmitting their acknowledgements

result transfer (RTk): the transmission of the output
parameters of an activity to the server and the trans-
mission of its acknowledgement. There is no need for
a 2 phase commit protocol (2PC) to achieve transac-
tional properties. The client stores the result in per-
manent storage and retransmits it if the corresponding
acknowledgement times out. The WF-server ignores
repeated transmissions. This is a special case of the
last agent optimization of the 2PC [151

migration costs (MI,): transmitting (transfering)
workflow control information from one WF-server to
another (see section 4.2 for details)

In our approach, the units of distribution are not com-
plete processes, but single steps. This makes sense, because
the sum of the communication costs is smallest if all steps
are allocated at the optimal WI-server (and not only the

100

logical view:

i B:
Migration”,’ Migration,-,

Figure 2. The steps of the process are assigned with the WF-servers A and B. The system decom-
poses the process in a part for WF-server A and one for WF-server B. At the points the control
changes between the servers, migration steps are inserted.

process as a whole). Therefore it may become necessary
to decompose a process into parts which are managed by
different WF-servers as illustrated in figure 2. That is, dur-
ing execution a process (resp. its control) may migrate from
one Wl-server to another. If this happens, all data of this
process instance is copied to the subsequent WF-server and
deleted at the previous one (see section 4.2 for further de-
tails).

For estimating the load of each component we make two
simplifying assumptions at the moment, for a more sophis-
ticated model we refer to section 3.1. Firstly, the execution
of steps should be distributed equally during the time pe-
riod T. Secondly, each user with an appropriate role should
have the same probability (independent of its subnet) for
selecting a step. Concerning the W&model itself, we do
not make any restricting assumptions. That is, the model
may contain AND-branches, OR-branches, iterations etc.
We only assume resp. require, that i??k, the number of exe-
cutions of step lc during a time period T, can be estimated
(e.g. based on ‘statistical information). Our approach even
works with parallel branches, but (as always) they lead to a
synchronization problem. We do not discuss this in detail,
but we suggest the use of global process variables, because
they require smaller data volumes at migration time than
input/output containers [8] and at step execution time than
electronic circulation folders [101. Each variable can only
be modified in one of the parallel branches, in the others it
has to be modeled as read-only variable.

Let Uk denote the number of appropriate users for step
Ic. Thus the step appears in Uk worklists. Once one user has
decided to execute the step, it has to be removed from Uk - 1
worklistsl. We now consider the average communication
load resulting from the execution of step k. At first we look
at the load Cp in the subnet where the WI-server (Sk)

’ The item can be removed from the worklist of the user that has selected
this step without further communication.

resides: (Fl)
ck~=~‘(~k’sok+~k+(uk-1)‘wRk+RTk)

The load in the other subnets can be estimated as fol-
lows. In total we have Uk users which qualify to execute
step k. If U$ of these users (clients) belong to another sub-
net z (which does not contain Sk), the probability of step
k to be executed in subnet z is 2. If the step is executed
in subnet z, the parameters have to be transmitted to that
client (#!!I& + RTk), but there is no need to refresh its work-
list (-WRk). Thus the communication load for step k in
subnet 2 can be approximated as follows: 032
c; = 9. (U; * (Sok + w&)

+$(&+RT*-WI-h))

The total load which a process P creates in subnet N is
the sum of the step execution load and the migration load for
the migration steps m. M1: specifies the migration costs
for step m. They are zero, if the subnet N is not affected by
this migration. Thus we get: (F3)
c~=~c~+gwMI”

The total load of a subnet N is: (F4)
CN=CCpN

The 1oadPof the WF-servers and gateways is calculated in a
similar way.

3. Derivation of Appropriate Network Topolo-
gies and Workflow Designs

The goal of this section is to develop two algorithms for
calculating good distributions of the components. The first
one is used for building groups of users that can be assigned
to the same subnet. The second algorithm makes sugges-
tions for a good distribution of step control to the subnets.

101

3.1. Basic Idea

To minimize communication costs, the control of each
step should be allocated in the subnet with the highest prob-
ability for executing this step. By doing so, the probability
that all communication remains inside this subnet becomes
very high. The probability for a certain step to be executed
in a certain subnet can be approximated using the distribu-
tion of the users.

We introduce a weight gr (0 5 gq 5 1) for each user i
and subnet z which corresponds to the probability that this
user chooses a step. The weight is used to describe the rel-
ative amount of time the user spends in working with the
WFMS in this subnet. It is usually 1, but can be smaller
if the users has only a part time job or if the user works in
several subnets, for example.

The weights are used for calculating the probability that
a step is executed in a certain subnet. In a WFMS only users
owning one of the roles of a certain step are allowed to ex-
ecute this step and the step appears only in their worklists.
In our model the subnet of each user is known. With this in-
formation it is possible to calculate for each step how many
“full” users exist in each subnet by computing the sum of
the weights of the appropriate users for step k: u$ = C gf .

i

3.2. Design of Processes

So far we have explained the problem and the charac-
teristics of good solutions. In this section we show how
such good distributions can be found. The problem can
be solved by using a closed mathematical optimization ap-
proach, similar to some of the solutions proposed in dis-
tributed databases for finding an optimal distribution of
fragment relations [l 1, 14, 51. Taking this approach, one
can find an optimal solution, in principle. The WF designer,
however, has to specifiy a lot of (rather uncertain) parameter
and constraint values which makes this approach rather ex-
pensive and thus unattractive. (Further, the practical value
of the computed result is questionable, too.)

We, therefore, are in favour of an interactive and itera-
tive approach. It starts modeling an (initial) distribution of
users and WI-servers. By analyzing the resulting load, the
modeling is improved iteratively and interactively until an
acceptable solution is found.

3.2.1. Modeling and Analysis
In our approach, a WF design iterates through the fol-

lowing steps:
1. The WF designer is modeling the processes like in a

central WFh4S (describing the organization, data, pro-
cesses; cf. upper part of figure 3).

2. The WF design system proposes an initial distribution
of users and WF-servers.

3. The WF design system computes the resulting load for
each component (subnet, Wl-server, gateway, . ..) us-
ing the model and additional statistical information.

4. If the load of all components is within the target range,
the design is completed and sent to the affected WF-
servers.

5. If a component is overloaded the model is modified
by the WF designer using the outcome of the user dis-
tribution analysis (see “Assigning Users to Subnets”)
and by computing (assisted by the system) the conse-
quences of decomposing processes (see “Distribution
of Step Control”). The design process is continued at
step 3.

Note, that this analysis is completely done at build time.
That is, it does not disturb running processes. After WF
design has been completed, the process execution model is
generated, it is decomposed into parts and complemented
with migration steps (if a decomposition has been selected
by the WF designer), and transmitted to the affected WF-
servers.

w et

Figure 3. Modeling of
tially drawn).

3.2.2 Algorithms

processes (only par-

The WF design system proposes (initial) distributions of
users and step control. The underlying analyses and algo-
rithms are explained in the following.

Assigning Users to Subnets
The following algorithm assumes that the processes as

well as the users and their roles are known. It computes
“clusters” of users who can perform the same (or a similar)
collection of steps. These clusters are candidates for build-
ing respective subnets. The algorithm implicitly assumes

102

that one starts from scratch, that is users are not yet assigned
to subnets (see “Applicability” for further comments).

The problem is similar to the distribution of attributes
at vertical partitioning in distributed database systems. For
this reason the following algorithm is adopted from this re-
search area [12, 131. First of all we sketch the algorithm
then we explain its meaning and the meaning of the sym-
bols used.

1. create the user step matrix useLi
2. standardize usesi to USeki

3. compute the user affinity matrix affij using useki
4. use the known algorithms to find clusters in Qffij
5. while (there is a cluster that is. too large)

6.

7.

decompose that cluster
assign the clusters to the subnets (more than one cluster
per subnet is allowed)
change (manually) the assignment of users to subnets
if necessary (and possible)

The user step matrix use;i contains the weights of the
users @i)2 with respect to their ability of executing a cer-
tain step.

e.g. user !A if user i can iset 1 2 3 4
useij = execute step k

0 otherwise
---I- step 1 1 0 0 0.5

20110
3 0 1 1 0.5

Then this matrix becomes standardized so that it con-
tains the probability that a user will execute a certain step.
The divisor of the fraction will be unequal to 0, because
Vj : useij = 0 would mean that no user is allowed to exe-
cute this step.

user

USeki = $$&

j
w

Now the user aflinity matrix can be created. It contains
the degree of the connection between users. If a cluster
of users has high values in this matrix, they have common
steps and should be in the same subnet. Such clusters of
users can be found with the algorithms described in [12]
and (with a better complexity) in [131.
affij = ~USek; * Usekj * Ek Cuff 1 2 3 4

Frequeniy of step k:
1 44.4 0 0 22.2
2 0 16.6 16.6 0.8
3 0 16.6 16.6 0.8
4 22.2 0.8 0.8 11.5

In this example one cluster would consist of the users
1 and 4 and another of the users 2 and 3. Each of these
clusters could be allocated in one subnet of their own. The

2There is no upper index for 9, because until now no subnet is assigned
to this user.

algorithm does not take into account the “quality” of the
clusters. That is, clusters may be suggested which are too
large and thus would lead to a high load in the respective
subnet. In such cases clusters have to be decomposed man-
ually into appropriate parts (subnets) to achieve the desired
result. If there are more clusters than subnets, several small
clusters must be assigned to one subnet, and if the physical
location of a user prevents him from being in the proposed
cluster, it has to be assigned to another cluster.

Applicability
This simple algorithm presented here, assumes that the

WF design is starting from scratch, that is users are not
yet assigned to subnets. But even if it is used in an exist-
ing WFMS environment where users have already been as-
signed to subnets, the results can give valuable suggestions
for improvements concerning the choice of WF-servers and
the decomposition of processes.

Distribution of the Step Control
As already mentioned above, workflows are assigned

to WF-servers at the granularity of single steps instead of
complete workflows. The calculation of the optimal dis-
tribution of the step control would have exponential com-
plexity, because every step can be controlled by each WF-
server. Our greedy algorithm discussed below will not al-
ways find the optimal solution, but it will deliver a good
result for the common cases and has polynomal complexity.

The idea is to select at first the optimal subnet for every
step without considering the migration costs. Then for each
single step in a subnet it is checked if it is cheaper to save
the migration costs (MI,) and to assign the step to the WF-
server of the step preceeding resp. succeeding the current
one, with higher costs for step execution (Sk, RTk) and
worklist maintenance (SOk, WRk). ‘IhiS is alSO done for
all groups of 2,3,. . . steps controlled by one and the same
WF-server. The algorithm can be sketched as follows:

for each step: assign the WI-server of the subnet with
the most appropriate users
fori= 1,2, . . .

for each group with i steps in the same subnet:
check if it is cheaper to control that group of steps
by the W-server before or after the current one

if yes: assign the group to that WF-server

The algorithm can be easily extended for the case that
some steps are pre-assigned to specific W-servers (e.g.
because of organizational restrictions) and cannot be as-
signed to any other WF-servers. These steps are assigned
to the dedicated W-server (independent of the costs resp.
the distribution of the users) and marked as “locked steps”.
The algorithm does not consider to reassign them.

103

3.3. Refinements

Our method achieves scalability by distributing the steps
of the processes among the WI-servers. If there is only
one relevant process with only one step, however, it is not
possible to distribute anything, because one step can only
be controlled by one WE-server. Even though this is not
a typical scenario for a WFMS, there are several solutions
(besides using future hardware and/or future networks):
One solution consists of splitting the process into several
processes. If a process has to serve customers, one could
e.g. assign the customers with names A . . . M to process PI
and N . . . Z to another process Pz. Pr and P2 can then be
controlled by different WF-servers.
Another solution is to extend our approach with WI-server
replication. Instead of one WE-server for each step, sev-
eral servers are used in different subnets. Only one of them
may be in the optimal subnet, however, the others have to
be in less suitable subnets. But even in this case the load
can be reduced (see section 4.1), if it is distributed equally
among the WF-servers. This is possible e.g., by randomly
choosing one of these servers for starting or migrating the
processes.

The external data sources3 shown in figure 1 are a
performance-critical aspect, too. They may also become
a bottleneck. Therefore they have to be taken into account
during the analysis. For this purpose the amount of com-
munication with them has to be estimated for each step. It
can be reasonable (where applicable), to use several (inde-
pendent) databases in order to keep communication local to
a subnet as often as possible.

4. Efficiency Analysis

In the subsequent two sections we will analyze the com-
munication costs in different scenarios. At first we consider
the case that processes are not decomposed, i.e., no process
migration takes place. This means, that all steps of a pro-
cess are controlled by one and the same WF-server. Subse-
quently we will analyze scenarios with process migration.

4.1. Using Multiple Servers without Pro-
cess Migration

In the following, we analyze the communication traffic
in the subnets which is caused by the maintenance of work-
lists (Sok, II&) and the transfer of parameter data (XSjc,
RTk). We assume that the processes do not migrate (i.e.
they are controlled by one WF-server from their beginning
until their termination) which approximates also the case

30nly data required outside the WFMS is stored in external data
sources, because there are more possibilities for optimizations (e.g. mi-
gration) for data stored in the (local) database of the WF-server.

that migration costs are small when compared with the step
execution costs.

In the sequel, we analyse three interesting cases. Some
related cases are mentioned, others can be easily derived in
the same way.
Case 1: All clients are located in the subnet of the corre-
sponding W&server.
Case 2: The majority of the clients is located in the “right”
subnet.
Case 3: The majority of the clients is located in the “wrong”
subnet.
For each of these cases we compare two scenarios. In the
first scenario we have only one subnet with one central WF-
server. In the other scenario we have two subnets, each with
a WI-server, connected by a gateway. This is a scenario as
described in section 1. The load in the subnets would be ex-
actly the same, if there would be more than one WI-server
in each subnet. For reasons of simplicity we consider only
two subnets, but the results would be the same for any num-
ber of subnets.

To simplify our analysis we ignore the weights of the
users for a moment and assume that every client having
the appropriate role has the same probability for execut-
ing the step. Since the data exchanged with each client
has the same volume (because sok, Sk, w&, RTk are
equal for all users), there is no need for counting messages
or data packets. To compare the load in the different sub-
nets, it is sufficient to count how many clients are involved
in the execution of how many steps for a given set of pro-
cesses. Figure 4-la illustrates the case where two processes,
each involving two clients (discriminated by solid and dot-
ted lines), are executed by one server. In this case we count
4 “connections” in this subnet in total. Opposed to that, two
servers, each executing one process, are used in figure 4- 1 b.
In this case we have only 2 “connections” in each subnet.

To simplify the comparison, we assume that the total
number of processes to be served is equally distributed
among the servers. This leads to equal loads for all WE-
servers and subnets and it becomes possible to compare the
subnet load in the two scenarios.

Case 1: Each client is located in the same subnet as the
WF-server of the corresponding steps. In this case the gate-
way need not to be used and - as each WI-server serves
50% of the processes - the communication in each subnet
is halved. This is the best case because all communication
is completely taking place inside the subnets. Figure 4-la
shows that in the scenario with one LAN there are 4 con-
nections between the WF-server and clients, while in fig-
ure 4-1 b there are only 2 connections per subnet. If there
were n subnets instead of two, the load would be ith of the
not distributed case.

Case 2: Here, the majority, but not all clients are in the
“right” subnet. It is evident that this also leads to an im-

104

la)

24

W

lb)

2b)

3b)

Figure 4. Comparison of scenarios with one and two subnets for different communication patterns.

provement compared to having only one net (see figure 4-
2). There are 2 clients in the subnet of the W-server and 1
client in the other one. This leads to 4 connections instead
of 6.

If there were as many clients in the subnet of the WF-
server as in the other one, we would save 25% of the com-
munication. One can demonstrate this in figure 4-2 by delet-
ing the connection to Cl1 and Cla. In this case, there re-
main 4 (2a) resp. 3 (2b) connections. The saving of 25%
is achieved because in the case of a communication with a
client in the own subnet (50% of the cases) the other subnet
(50% of the subnets) is not used.

practice. One always could distribute the processes’ in an-
other way, so that at least for some steps there is a user in
the “right” subnet. For more than two subnets in a com-
pletely intermeshed network there are always subnets with
a reduced load. Even if all clients are in “wrong” subnets
there are always subnets which are not involved in commu-
nication for certain steps because there is no through traffic.
Therefore our approach is also eligible for unfavorable dis-
tributions of users.

Case 3: Here most of the clients are located in the
“wrong” subnet. Even in this case we save communica-
tion as demonstrated in figure 4-3. In this example only 1
client is in the subnet of the WI-server but 2 clients are in
the other one. Even in this unfavorable scenario only 5 con-
nections are needed instead of 6. The saving exists as long
as there are clients in the subnet of the WF-server, because
for communication with these clients the other subnet is not
used.

To achieve the best efficiency the users and the control of
steps must be distributed in such a way that as many users
as possible are in the same subnet as the Wl-server that
controls their steps.

4.2. Using Multiple Servers with Process
Migration

The worst case is that all clients are in the “wrong” sub-
net. Even in this case, however, the subnet load is not
higher than in the single net version. All subnets are used
for all communications, but this case should never occur in

In this section we consider the case that - due to the dis-
tribution of users - no single WF-server does really opti-
mally fit for controlling a given process. In such cases it
may be better to decompose the process into parts such that
each of it can be controlled by the optimal WF-server. That
is, we consider the case that after execution of a set Sr of
steps in subnet Nr, the process control is m igrated to an-
other WF-server in subnet Nz which controls the execution

105

of the remaining set S’s of steps. The crucial question is
whether the reduction in communication load (due to the
migration) is counterbalancing the migration costs. We can
discriminate three cases:

l ideal case
l mixed positive case
0 negative case

Ideal case: In this case, after migration all clients are
in the same subnet (Ns) as the new WF-server. Thus, af-
ter migration, subnet Nl has no communication load for the
remaining steps any more and the load in subnet Ns is the
same as without migration. Given the load resulting from
the migration (CMI = % + MI) - which we have to count
two times because it occurs in both the “sender” and the “re-
ceiver” subnet - and using formula (F2) we can compute,
how many remaining steps (+ S’z) are needed to make a
migration rewarding. This is the case, if the following un-
equation is satisfied:
2. CM1 < c c,s”

kc.%
where C Cp describes the savings in subnet Nl, if the

control for the steps Sa = { ss, , . , . ss, } is migrated to the
WF-server in the other subnet.

Mixed positive case: In this case, after migration most
- but not all - clients related to the remaining steps (+ Ss)
are in the “right” subnet (~2 < up). This means that
we achieve some saving in subnet Nl because some of the
communication load is now completely handled in subnet
Ns. In subnet Ns, however, the load is higher than without
migration, because this subnet is now also burdened with
the communication to the clients in subnet Nl. The deci-
sion problem can be formulated as follows: The migration
is rewarding if the following unequation holds: (F5)
2’Ch&k~;(!C~;C,N’!- !ck”<c~; >

savings in Nl additional load in N2
*2*CMI< c (c,“z-c,“l)

kESa-
(*)

As we consider here the case that u? < ufzJz , expression
(*) will always be positive. That means, having enough
steps in S’s, migration is rewarding.

Negative case: In this case, after migration most clients
are in the “wrong” subnet (u? 2 up). The analysis is
the same like in the previous case and thus also leads to
the same unequation (F5). In this case, however, expression
(*) can never become positive and thus migration is never
rewarding (as expected).

The circumstances under which migration is rewarding
are demonstrated in the following numerical example: We
assume equal steps in Ss with the same frequency for each
step (Ek) and for the migration step (Em). They shall have
the following characteristics:

input parameter volume: INk = 300 KB
output parameter volume: OUT, = 100 =
total process instance data: INST = 1000 KB
data transmitted for a worklist entry: WL = 0.1 KB
data transmitted for an acknowledgement (minimal
packet size): Ack =O.lKB
appropriate users in subnet Nr : up = 10
appropriate users in subnet N2 : up = 200
users altogether: uk = 210

Based upon this information, values for the variables in
the formulas in section 2 can be calculated as follows:
sok =WL+Ack =0.2m
%T& =wL+INk =300.1m
w& = WL + Ack = 0.2 Id!3
RTk = OuTk + Ack = 100.1 m
MI = INS” + Ack = 1000.1 KB

Now (Fl) can be used to calculate the load in the subnet
in which the Wl-server is located:
cp = 9 * (210. 0.2 + 300.1 + 209 * 0.2 -I- 100.1) KB

= 9 - 484 KB
If the WF-server is located in Ns the resulting load in

subnet Nl can be calculated with (F2):
c,N1= Ek .23~ T

If the WF-server is located in the “wrong” subnet Nr,
the load in Ns is much higher:
C~=+,,lKB

Using formula (F5) we can calculate that the migration
is rewarding if

% * 2 * 1000.1 KB < c
BE& ’ ’ (

461- 23) KB

With Ek = Em follows (IS’s1 is the number of steps in Ss):
2000.2 < IS21 - 438
Therefore the migration is rewarding if there are at least 5
steps in Ss.

The algorithm calculating a distribution of step control
(section 3.2.2) does not directly use unequation (F5), but
it compares the costs with and without migration. A pro-
cess is decomposed only if the migration is rewarding. In
this section we have shown that there exist cases in which a
migration is rewarding.

5. Related Work

The approach described in this paper concentrates on the
reduction of communication load in large-scale WFMS en-
vironments. To achieve this goal, we use subnets as well
as the decomposition and distributed control (via process
migration) of processes. To the best of our knowledge,
there are no other approaches that deal with the reduction
of communication load in a WFMS. Hence process instance
migration was never used for this purpose. For our type

106

of application scenario we are only interested in process-
oriented systems (as opposed to e.g. Lotus Notes), because
in large scale environments the corresponding functional-
ity is needed. Most process-oriented systems use a central
WF-server and are therefore not (directly) suitable for our
target environment. In the following we discuss some dis-
tributed approaches.

FlowMark [7, 81 is a system with a central WF-server,
but it is possible to execute a “subprocess” in another Flow-
Mark system (local domain). If process control shall be dis-
tributed, the concept of subprocesses has to be used, be-
cause only subprocesses can be executed at remote servers.
The logic is comparable to a remote procedure call. That is
control returns to the caller after completion of the subpro-
cess.

Exotica [2] uses so called “clusters” to achieve paral-
lelism. A cluster consists of one WF-database and repli-
cated WE-servers. The user has to connect with one WF-
server of each. cluster. By replication, load reduction is
achieved for the WF-servers within a cluster. The control
of a process instance stays in the cluster in which the pro-
cess was started. By selecting an appropriate cluster, load
balancing among the clusters can be achieved, but it may
cause long distance communications to the users.
In MOBILE [6] server replication is used, too. The WF-
model is separated into several perspectives (organization
structure, control flow, etc.) each with its own database and
its own server. If one of these servers is overloaded it be-
comes replicated. Static data of these servers are replicated,
dynamic are partitioned and assigned to only one server.
Scalability is achieved under the assumption that there exist
independent partitions (e.g. for different departments). Both
approaches (Exotica and MOBILE) do not consider subnet
load. Therefore, process instance migration is not used.

There are several approaches which do not use WF-
servers at all. They have in common, that after finishing
a step the process instance migrates directly to the node of
the following step. Usually a reliable communication sys-
tem is used for this purpose. The disadvantage is that the
role resolution is only done at the first time when a step be-
comes available [I]. Consequently, this step is not offered
to users which are connecting at a later point in time. In IN-
CAS [4] every step is dedicated to exactly one user. Thus,
there is no need for synchronization, but the functionality
is very limited. A similar approach is used in the Mentor
project [16, 171, where each step is associated with exactly
one “entity”. To each entity belongs a WF-server, but it is
only responsible for its local clients. Thus there is also no
global role resolution. Opposed to this, in Exotica/FMQS
[3] a step is offered to all users with an appropriate role. Be-
cause there exists no WF-server for coordinating the step
selection, a distributed (and therefore expensive) synchro-
nization mechanism has to be applied. But the problem re-

mains, that a step is not offered to users which connect to
the WFMS after this step is ready for selection. All these
approaches have in common that at every step the whole
process instance migrates.

6. Summary

In this paper we have concentrated on the aspects of
how to optimize the communication load in WFMS envi-
ronments with a large number of users. We have shown
that with the usage of subnets and by assigning WF-control
to the “right” WF-servers, the load can be distributed and
thus more users can be served. We have described how -
based on easily to obtain information - one can develop al-
gorithms for calculating such distributions.

We have further shown that it can be favourable to not
always treat and control workflows as a whole but to de-
compose them into parts which are controlled by different
WF-servers. We have analyzed under which circumstances
such a “process migration” is rewarding.

There are further possible improvements of our ap-
proach, e.g. dynamic optimization of the step control dis-
tribution at runtime. Furthermore several aspects as the dy-
namic structural changes of processes at runtime and the
handling of the resulting exceptions or process abortion
with compensation of already executed steps have to be in-
tegrated in our approach. This will be subject of our future
work.

References

Ill

PI

t31

141

151

161

G. Alonso, R. Gunthor, M. Kamath, D. Agrawal, A. E. Ab-
badi, and C. Mohan. ExoticalFMDC: Handling Discon-
nected Clients in a Workflow Management System. In Proc.
of the Third hat. Conf: on Cooperative Information Systems,
pages 99-l 10, Vienna, May 1995.
G. Alonso, M. Kamath, D. Agrawal, A. E. Abbadi, R. Gun-
thor, and C. Mohan. Failure Handling in Large Scale Work-
flow Management Systems. Technical Report RJ9913, IBM
Almaden Research Center, Nov. 1994.
G. Alonso, C. Mohan, R. Gtinthor, D. Agrawal, A. E. Abba-
di, and M. Kamath. Exotica/FMQM: A Persistent Message-
Based Architecture for Distributed Workflow Management.
In Proc. of the IFIP Working Con$ on Information Systems
for Decentralized Organisations, Trondheim, Aug. 1995.
D. Barbara, S. Mehrotra, and M. Rusinkiewicz. INCAS:
A Computational Model for Dynamic Workflows in Au-
tonomous Distributed Environments. Technical report, Mat-
sushita Information Technology Laboratory, Princeton, May
1994.
P. Dadam. Verteilte Datenbanken und ClientBerver-Sys-
teme (Distributed Databases and Client/Server Systems).
Springer-Verlag, 1996. (in german).
P. Heinl and H. Schuster. Towards a Highly Scaleable Archi-
tecture for Workflow Management Systems. In Proc. of the

107

7th Int. Conf and Workshop on Database and Expert Sys-
tems Applications, DEXA’96, pages 439444, Zurich, Sept.
1996.

[7] IBM. FlowMark - Installation and Maintenance, Version 2
Release 2, Second edition, Feb. 1996. Document Number:
SH 12-6260-00.

[S] IBM. FlowMark - Modeling Workflow, Version 2 Release
2, Second edition, Feb. 1996. Document Number: SH19-
8241-01.

[9] M. Kamath, G. Alonso, R. Giinthbr, and C. Mohan. Pro-
viding High Availability in Very Large Workflow Manage-
ment Systems. In Proc. of the 5th Int. Conf on Extending
Database Technology, pages 427-442, Avignon, Mar. 1996.

[lo] B. Karbe, N. Ramsperger, and P. Weiss. Support of Coop-
erative Work by Electronic Circulation Folders. In Confer-
ence on O&e Information Systems, IEEE Computer Soci-
ety, pages 109-l 17,199O.

[l l] H. Morgan and K. D. Levin. Optimal Program and Data Lo-
cations in Computer Networks. Comm. of the ACM, 20:315-
322,1977.

[12] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical
Partitioning Algorithms for Database Design. ACM Trans-
actions on Database Systems, 9(4):680-710, 1984.

[13] S. Navathe and M. Ra. Vertical Partitioning for Database
Design: A Graphical Algorithm. In Proc. of the 1989 ACM
SIGMOD Int. Conf on Management of Data, volume 18,
pages 440-450, Portland, June 1989.

[141 M. Gzsu and P Valduriez. Principles of Distributed Data-
base Systems. Prentice Hall, 1991.

[15] G. Samaras, K. B&ton, A. Citron, and C. Mohan.
Two-Phase Commit Optimizations in a Commercial Dis-
tributed Environment. Distributed and Parallel Databases,
3(4):325-360, Oct. 1995.

[16] J. Weissenfels, D. Wodtke, G. Weikum, and A. Kotz-
Dittrich. The Mentor Architecture for Enterprise-wide
Workflow Management. In Proc. of the NSF Workshop on
Workflow and Process Automation in Information Systems,
pages 69-73, Athens, May 1996.

[17] D. Wodtke, J. Weissenfels, G. Weikum, and A. Katz Ditt-
rich. The Mentor Project: Steps Towards Enterprise-Wide
Workflow Management. In Proc. of the 12th IEEE Int. Conf
on Data Engineering, pages 556-565, New Orleans, Mar.
1996.

108

	quelle: Proc. IFCIS In`l Conf. on CoopIS, Kiawah Island, South Carolina, June 1997

