Universitat Ulm
Fakultat fiir Informatik

Towards Customizable, Flexible
Storage Structures
for Complex Objects

Ullrich KeBler, Peter Dadam
Universitit Ulm

Nr. 93-07

Ulmer Informatik-Berichte

Towards Customizable, Flexible Storage Structures
for Complex Objects

Ulirich KeBler, Peter Dadam
Universitat Ulm
Fakultat fir Informatik
Abt. Datenbanken und Informationssysteme
89069 Ulm, Germany
e-mail: {kessler, dadam}@informatik.uni-ulm.de

Abstract

During the last years several new data models have been developed which directly support
complex objects, especially their structure definition and manipulation. In most of these
approaches the internal storage structures are directly derived from the logical structure of
the complex objects following a fixed system inherent mapping strategy. The adequacy of a
certain mapping strategy, however, is strongly dependent on the access patterns of the
related applications. It should, therefore, be possible to define the internal representation (=
physical schema) of complex objects irrespective of their logical structure (= external
schema). In this paper we discuss appropriate base constructs for implementing complex
objects and describe how to define alternative internal storage structures related to these
base constructs by just specifying appropriate parameters in a respective data definition
language. In addition, we also discuss how to control the clustering of these objects.
Altogether, we achieve a flexibility which allows to define for a given logical complex object
structure almost every storage and clustering structure discussed in the literature. Further-
more, many other variants and mixtures of storage structures not discussed yet can be
defined.

1. Introduction

Because of the limitations of traditional data models to appropriately support engineering
applications and so-called non-standard applications, several new data models have been
developed during the last years. Typical examples are Smalltalk-like persistent object-oriented
data models [Nier89], the C++ data model [Stro86], the molecule-atom data model [Mits88], the
NF2 data model [ScPi82], and its extension the extended NF2 (eNF2) data model [PiAn86].
Based on these and other data models several DBMS systems and prototypes as for example
O, [Banc88], AIM-P [Dada86], [DaLig9], Prima [HMMS87], Orion [Kim89], XSQL [Lori85],
GemStone [MSOP86], DASDBS [Paul87], COCOON [ScSc90], [Scho92a], Ontos [Onto92], and
ObjectStore [LLOW91] have been implemented. Opposed to traditional DBMS these systems
directly support complex structured objects (complex objects, for short), especially their structure
definition and manipulation.

In conjunction with these new data models and DBMS systems and prototypes also strategies to
store these complex objects on page-oriented storage devices (disks) have been discussed.
Respective solutions can be found in [Dada86], [DPS86], [Ha0z88], IKFC90], [Kim89], [Lori85],
[MSOP86], and [Sike88]. Most of these approaches decompose a complex object into records as
the smallest low-level storage and access unit. Usually, these records are composed and stored
using a fixed storage and clustering strategy. As one can easily show, there is no fixed decom-
position strategy which is always the "best" for all possible applications and access patterns. If, for
example, a complex object is stored in a small number of "large" records these "large" records
must always be transferred into main memory, even if a query! accesses only a very small portion
of the complex object. On the other hand, a strategy which always decomposes a complex object
into many "small” records is also not a good solution in every case. Here, the retrieval of "small"
portions of a complex object will be supported very well but the retrieval of complete substructures
becomes very costly because of the large number of record accesses being necessary.
Especially, if the path length of retrieving a record is very long or if the records are not well
clustered these costs can sum up extremely. Therefore, a good decomposition strategy should
store substructures which are often retrieved as a whole in just one or a few records and should
separate those parts which are not frequently accessed together. In general, however, this aim
cannot be achieved with a decomposition strategy which does not take the application profile into
account. An example for this problem is illustrated by the following discussion on possible
decompositions of an eNF2 relation storing information on robots.

Fig. 1 shows a very simple example of an eNF2 relation storing the construction data of robots
like the geometry of their axes as well as some administration data like a report of the products
being produced by each robot during the last weeks. If one follows the typical approaches
mentioned above, in most cases each axis of each robot will be decomposed into 4 up to 8
records. However, if, in general, an axis is accessed as a whole a solution which stores a
complete axis in just one record - as indicated in Fig. 1 by the [=]-frame - might be much better
because it may save many record accesses. On the other hand, in most cases the attributes
"R_nb", "Name", and "Instructions" will be stored together in one record even though they might
better be stored in different records. This separation might save costs, if, for example, the name
and the number of a robot are much more frequently accessed than the instructions. In this case
the usually rather long instructions need not to be transferred into main memory every time.

1In this paper the notion "query" is used as a synonym for "query or data manipulation".

2

{Robots}

R_nb [Name <Axes> {Production_report} {Endeffectors} Instructions
Axis_nb <Matrices> Product {Action} E_nb| Function
Row <Vector> Week | Price
R 1 Robi 1 1 <20,20,20,20> screw Robot ...
2 <34,37,56,90> weld
3 <21,34,78,60> punch
4 <45,56,78,12> drill
2 1 <16,90,30,14>
2 <16,42,45,78
3 <12,79,59,78
4 <23,67,31,67> :
R_2 | Bigi
Description: sets: {}, flists <>

user defined record structure:

user defined object independent record cluster:

Fig. 1: Extension of an eNF2 robots relation

Another potential to optimize access behaviour is to cluster the records appropriately. In the
context of complex objects, the most common heuristic is to try to store all records belonging to
one complex object on adjacent pages ([BeDe89], [Dada86], [DPS86], [KFCS0], [Kim87],
[ScSi89]). With respect to our Robots relation this means that the records of each robot would be
stored in a separate record cluster. However, if some portions of a complex object logically belong
to the object but is seldom if ever accessed in conjunction with the rest of the object, this
clustering strategy might have the opposite effect. If, for example, the production reports are
frequently read for accounting purposes without needing the rest of the objects, a clustering
strategy which stores all these reports in just one object independent cluster - as indicated in Fig.
1 by the shade - might be much better.

In a system which offers just one physical representation for each logical construct, an application
oriented "optimal" physical storage and cluster structure can only be achieved by changing the
logical structure of the data. If this is done at some later point in time, all application programs
accessing these objects have to be modified accordingly. A better solution would be to distinguish
between the logical and the physical representation of a complex object. The idea of separating
the logical data structure from its physical implementation is not new - in fact just the opposite.
Such features are - to a certain degree - even already available in a number of commercial
DBMS. In Ingres [Ingr90], for example, the user can choose among several storage structures for
relations. In Oracle [Orac90] tuples of different relations can be clustered based on common
values of their "clustering attributes". Other examples are the hierarchical database system IMS
[Gee77] and CODASYL systems which offer storage structure description languages. However, in
the context of complex objects there only exist a few projects which discuss how to define storage

structures and clustering strategies in dependency of the related applications. One of these
projects is COCOON [Scho92a]. in the context of this project in the papers [Scho92], [TRSB93],
and [RiSc93] several strategies to map networks of objects into NF2 relations have been
presented. Other proposals discussing how to realise application dependent object clusters can
be found in [BeDe89], [Kim87], and [ScSi89].

Using the eNF2 data model as an example we will show that there exist in essence two degrees
of freedom for defining storage structures for complex objects. The first one is to select data
structures to implement sets, lists, and tuples. The second decision is whether to store the
elements of these sets and lists or the attributes of the tuples, respectively, directly within these
data structures or in referenced records. These two degrees of freedom can be controlled by just
three orthogonal and simple parameters of an accordingly defined data definition language. By
applying these parameters accordingly, the decomposition of a complex object can be defined
almost arbitrarily. For example, nearly every storage structure discussed in [Dada8é6], [DPS86],
[HaOz88], [KFC90], and [Lori85] can be realised. Even new variants, not discussed so far, can be
defined as well. The set of possible structures is ranging from the one extreme where a complete
complex object is stored in just one record to the other extreme where each atomic value is
stored in a separate record. It is important to mention in this context that the logical structure of a
complex object remains the same even if another storage structure is going to be used?. That is,
application programs would not be affected by such changes to the physical structures.

Besides the decomposition of complex objects into (physical) records we will also discuss
strategies, how to cluster the records in an application oriented fashion. These strategies allow to
store nearly any subset of records in a separate ciuster. That is, for almost any substructure of a
complex object a separate cluster may be generated, if desired. On the other hand, so-called
object independent clusters may be used to accumulate records of different complex objects
within one and the same cluster. In the context of our Robots relation this means that for every
robot a respective cluster may be generated to store the data for the axes and for the
endeffectors in close neighborhood. At the same time, the production reports of all the robots may
be collected altogether in a another (single) cluster.

Although we are using the eNF2 data model here as the vehicle for our discussion, the results are
not only applicable to systems which offer such a disjoint and non-recursive data model at the
user interface, as for example AIM-P [Dada86] does. In DASDBS [Paul87], for example, a data-
base kernel using NF2 relations as an internal interface has been developed. On top of this kernel
the COCOON data model [Scho92a] which is a recursive, non disjoint model has been
implemented successfully. In other systems as O, [Banc88] or C++ like systems as ONTOS
[Onto92] or ObjectStore [LLOW91] complex structures are build by lattices of objects. However,
the objects themselves are hierarchically structured. Even in the case of flat objects, when
complex objects are implemented only by references between these objects, proposals exists
which discusses how to map these lattices onto hierarchical structures. [Kim87], for example,
discuss how to define structures in Smalltalk-like systems like GemStone and Orion. Other papers
as [BeDe89] and [ScSi89] introduce trees to represent object clusters in systems like Oo and
Prima. The reason is always that hierarchies can be clustered much easier than network-like
structures.

2 Changing the storage structure of an existing object may require an (internal) unload - reload operation or a
respective catalogue management for dynamically handiing such cases.

4

CY == D

<\E§:é:j . /;;;ZZ/>

-

Fig. 2: The eNF2 data model

The remainder of the paper is organised as follows: In Section 2 we briefly review the eNF2 data
model and introduce a data definition language which we will use in our further discussions. In
Section 3 - the main part of this paper - we discuss the choices for the physical representation of
sets, lists, and tuples using an appropriate data definition language. Section 4 describes how to
define different clustering strategies for the different physical representations. In Section 5 we
summarise the results and discuss our future research activities in this area.

2. The eNF2 Data Model

For our further discussions we will use the eNF2 data model as described in [PiAn86]. In this data
model complex objects are composed of atomic values and, recursively applied, set, list, and
tuple constructors (cf. Fig. 2). Typical atomic values are integer, real, and string. In this data
model a complex object may be, for example, a "set of sets of strings”, or just one simple "atomic
value", or a much more complex structure as the Robot relation depicted in Fig. 1. Every relation
in first normal form is also a legal object type of the eNF2 data model.

To define the type and the storage structure of a complex object we will use a simplified data
definition language because the basic principles of defining such storage structures are the main
issue of this paper, not the syntactical constructs of such a language. The complete "language”
used in this paper is given in Fig. 8 (see Appendix).

In this language the type of a typical employee relation (cf. Fig. 5) with the attributes "Emp_nb",
"Name", "Salary", and "Résumé" is defined as follows? (the storage structure of this relation will be
defined later by filling the [...] brackets):

complex_object Employees [...]

set [...] of tuple (Emp_nb [...]: integer,
Name [...]: fix_string(30),
Salary [...]: real,
Résumé [...]: var_string)

3To make the examples more readable key words are written in small letters and user defined names start
with capitals.

3. Definition of Physical Storage Structures for Complex Objects

When defining physical storage structures for complex objects mainly two degrees of freedom
exists. The first decision is to select appropriate data structures to implement sets, lists, and
tuples. In the following, these internal data structures are called "constructor data structures”. For
example, the "constructor data structure" of a set or list may be an array of variable length or a
linked list. The attributes of a tuple may be stored in one and the same record or may be
distributed over several records.

The second decision is whether to store the elements of a set or list, or the attributes of a tuple
directly within the constructor data structure or to store them in separate records. This is called an
"inplace" or a "referenced" storage, respectively, of the elements or attributes. A very simple
example is a set of atomic values which is implemented by an array of variable length. An
"inplace" storage means that the values are directly stored within the array. A "referenced”
storage means that each value is stored in an own referenced record. Both solutions are shown
in Fig. 3 for the set "{a, b, c}".

IR [alb[ed

Fig. 3.1: "Referenced” storage Fig. 3.2: "Inplace" storage

Fig. 3: Two implementations of the set {a, b, ¢}

The decision whether to store elements or attributes "referenced" or "inplace” is not restricted to
atomic values. Also complex structured elements or attributes may be stored "inplace" or
"referenced". An exarnple is the following set:

{{String_1, String_2}, {String_3, String_4}}.

The elements "{String_1, String_2}" and "{String_3, String_4}" of the outer set are sets
themselves. Therefore, these sets (= elements of the outer set) as well as their elements
"String_1", ..., "String_4" (= elements of the inner sets) may be stored "inplace" or "referenced".
The four resulting combinations and storage structures are depicted in Fig. 44.

In Fig 4.1 it is assumed that the elements of the outer set as well as the elements of the inner
sets are stored referenced. Therefore, the constructor data structure of the outer set contains
references to records storing the constructor data structures of the inner sets. These constructor
data structures themselves contain references to records with the values "String_1", ..,
"String_4". In Fig. 4.2 the elements of the outer set are stored inplace but not those of the inner
sets. Therefore, the constructor data structures of the two inner sets are stored within the same
record as the constructor data structure of the outer set. The elements "String_1", ..., "String_4" of
the inner sets are still stored in their own, separate records. Figs. 4.3 and 4.4 examine again the
two cases in which the elements of the outer set are referenced or stored inplace, respectively.
But now the elements of the inner sets are stored inplace in both cases. Therefore, the values
"String_1", ..., "String_4" are stored directly within the constructor data structures of the two inner
sets.

41t is assumed that for all sets only arrays of variable length are used as constructor data structures. If also
linked lists are taken into account one gets at least 16 possible variants.

6

Anchor _rec

5
—

Structure_rec;

Anchor__rec: . v v

1))

B

D

!
String_rec ;

=

y!

=

String_1

String_2

String_3

String_4

String_rec

String_1

String_2

String_3

String_4

Fig. 4.1: elements outer set: referenced
elements inner set: referenced

Fig. 4.2: elements outer set: inplace
elements inner set: referenced

Anchor_rec

)
—

Structure rec J

String_2 S

String_1 String_3 String_4S

Fig. 4.3: elements outer set: referenced
elements inner set: inplace

Anchor_rec

String_3

String_ZS Stri ng_4S

Fig. 4.4: elements outer set: inplace
elements inner set: inplace

! (TS S v

record reference

record variable length array within a record record internal reference

Fig. 4: Four implementations of the set {{String_1,String_2}, {String_3,String_4}}

In the remainder of this section, after introducing the terms "record" and "record type name", we
will discuss how to control both degrees of freedom - selection of a data structure and the
decision whether to store elements or attributes inplace or referenced - by just three orthogonal
parameters of an accordingly defined data definition language, as already mentioned in the
introduction. These parameters will allow to define the internal representation of sets and lists as
well as of tuples and, by doing so also of complete complex objects.

3.1 Records and Record Type Names

A "record" - as we use this term here - is a logical storage unit holding a variable number of bytes.
Depending on the size of the records, several records may be stored within the same page but
one record may also span several pages. Every complex object has one distinguished record
serving as unique entry point. In the following this record is called "anchor record". Following the
record references and the record internal references within this record leads to all components of
the complex object.

In the following discussion and especially when defining the clustering of a complex object (see
Section 4) it will be necessary to refer to classes of records by symbolic names. Therefore, we
assume that records with semantically equivalent contents form so-called record types. When
defining the storage structure of a complex object these record types get user defined
unambiguous "record type names". For example, when defining the storage structure in Fig. 4.1
the record type names "Anchor_rec", "Structure_rec", and "String_rec" may be assigned to the

7

record types as illustrated there. The record type name "Anchor_rec" of the anchor record is
specified in the parameter "anchor_record_type" (cf. Appendix, Fig. 8 [1]) of the data definition
language used here. The two other record type names "Structure_rec" and "String_rec" are
assigned in the type definitions of the corresponding sets.

3.2 Storage Structures for Sets and Lists

As already mentioned two independent degrees of freedom can be discriminated when defining
the storage structures of sets and lists. The first one is the selection of a constructor data
structure, the second one is the decision whether to store the elements inplace or referenced.
Therefore, to control both degrees of freedom independently two parameters are needed. Con-
sequently, we add two parameters - called "implementation” and "element_placement” - to our
data definition language (cf. also Appendix, Fig. 8, [2]-[7]):
object_type = ...

/* Definition of a set. */

set [implementation = implementation_type,

element placement = placement_typel] of object_type |
/* Definition of a list. */
list [implementation = implementation_type,

element placement = placement_typel of object_type |

The parameter "implementation” is used to select the data structure to implement the set or list. If
a system, for example, supports arrays of variable length and linked lists to implement sets and
lists, this parameter would have two valid values (cf. Fig. 8, [11]):

implementation_type = array | linked 1list

The second parameter called "element_placement” is used to define whether the elements of the
set are stored within the same record as the constructor data structure or within referenced
records. Therefore, valid values of this parameter are (cf. Fig. 8, [10]):

placement_type = inplace | referenced (record_type_nhame)

If the value "inplace” is used, the elements will be stored within the same record as the
constructor data structure (cf. the elements "String_1", ..., "String_4" in Figs 4.3 and 4.4). On the
other hand, if the value "referenced" is used each element of the set or list will be stored in its
own "referenced" record. These "referenced" records are forming an own record type. The
unambiguous name of it must be given in the parameter "record_type_name" (in Figs. 4.1 and
4.2, for example, the elements "String_1", ..., "String_4" are stored in referenced records of type
"String_rec").

To demonstrate the usage of these parameters we will discuss now how to define the different
storage structures in Fig. 4. The complete definition of the structure in Fig. 4.1 is:

complex_object Set_of_set_of_strings [anchor_record_type = Anchor_rec]
set [implementation=array, element_placement=referenced (Structure_rec)A] of

set [implementation=array, element placement=referenced (string rec)B] of

> WD

var_string.

In line 1 the name "Set_of_set_of_strings" of the complex object and the name "Anchor_rec” of
the type of the anchor record are declared. Line 2 expresses that the complex object is a set and
an array has to be used for its implementation. The elements of the set shall be stored in
referenced records. The name of the record type being formed by these records shall be

8

"Structure_rec". Line 3 defines that the elements of this set are themselves sets which are also
implemented by arrays. The elements of these inner sets are stored in referenced records forming
the type "String_rec". Finally line 4 defines that the elements of these inner sets are strings of
variable length.

Having once defined the storage structure of Fig. 4.1, the other three storage structures in Figs.
4.2, 4.3, and 4.4 can be obtained by just changing the values of the parameters "A" and "B",
respectively. To define the storage structure in Fig. 4.2 the value of the parameter "A" must be set
to "element_placement = inplace", the parameter "B" remains unchanged. On the other hand, to
define the storage structure in Fig. 4.3 the parameter "B" must be set to "element_placement =
inplace" and the parameter "A" remains unchanged. Last but not least, to get the structure of Fig.
4.4 which stores the complete complex object in just one record both parameters "A" and "B"
must be set to "element_placement = inplace". Please note, that we have got the four different
storage structures by just changing the parameters "A" and "B". If both "implementation”
parameters are also subject to change (e.g. "implementation = linked_list") we obtain at least 16
different storage structures to implement the set of set of strings.

3.3 Storage Structures for Tuples

Having discussed the representation of sets and lists in detail we will now turn over to storage
structures for tuples. In principle, the same degrees of freedom - definition of a constructor data
structure, decision whether to store the attributes inplace or referenced - are appearing here, too.
In this case the first degree of freedom corresponds to the decision whether to store a tuple - or
more precisely its constructor data structure - in just one record or to distribute it over several
records (= vertical partitioning of a relation). The second degree of freedom is the decision
whether the attribute values are stored within the same records as the constructor data structure
or in referenced records. To control both degrees of freedom independently again two parameters
are needed. Therefore, we introduce the parameters "location" and "element_placement" (which
has the same meaning as in sets and lists) into the term to define attributes (cf. Fig. 8, [8]-[9]):

attribute_description = attribute_name [location = location_type,
element_placement=placement_typel]: object_type

Our mental model of a constructor data structure for a tuple is very similar to a record in a
PASCAL-like programming language. For each attribute of a tuple one field is reserved within the
constructor data structure. Whether this field contains the attribute value itself (= inplace storage)
or a reference to a record which stores the attribute value (= referenced storage) is controlled by
the parameter "element_placement". As this parameter is bound to the attribute definition, the
decision whether to store an attribute valueS inplace or referenced can be made independently for
each attribute.

Sometimes, if, for example, some attributes are accessed very seldom it may be useful to
distribute a tuple over several records. Therefore a mechanism is provided that allows to divide
the constructor data structure of a tuple into one primary and several secondary blocks. Each of
these blocks may contain one or more fields of the constructor data structure. Each secondary
block is stored in a separate record. The references to these records are also stored (in addition
to the fields for normal attributes) in the primary block.

51f the attribute value itself is a complex structured subobject the corresponding constructor data structure of
the attribute value is stored inplace or referenced.

Employees
Emp_nb Name Salary Résumé
77234 Johns 4000 Mrs. Johns is born ...
77235 Smith 4400 Mr. Smith is born ...

Fig. 5: Extension of an employees relation

To define whether an attribute (resp. its corresponding field) is located in the primary block or in a
secondary block the parameter "location” is used. This parameter can take one of the following
two legal values (cf. Fig. 8, [12]):

location_type = primary | secondary (record_type_name)

If the value "primary" is specified for an attribute its corresponding field is located in the primary
block. If, however, the value "secondary (record_type_name)" is used, the field is located in a
secondary block. This secondary block is stored in a record of type "record_type_name". If more
than one attribute shall be stored in the same secondary block just the same record type name
has to be used in the parameter "record_type_name" for all these attributes.

The interaction of both parameters "location” and "element_placement” shall be demonstrated
now using the Employees relation of Fig. 5 as an example. We assume that the attributes
"Salary" and "Résumé" are accessed very seldom. Therefore, the attributes "Emp_nb" and
"Name" shall be stored in the primary block while the attributes "Salary" and "Résumé” shall be
stored together in a secondary block. As the résumé itself may be very long its value shall be
stored in a referenced record. This example shall also be used to demonstrate how to implement
a relation by a linked list. A possible definition satisfying all these requirements is:

complex_object Employees [anchor_record_type=Link rec]
set [implementation=linked_list, element_placement=referenced (Prim_rec)]
of tuple (Emp_nb [location=primary, element_placement=inplace]: integer,
Name [location=primary, element_placement=inplace]: fix_string(30),
Salary [location=secondary (Sec_rec), element_placement=inplace]: real,
Résumé [location=secondary (Sec_rec),

element_placement=referenced (Résumé_rec}]: var_string) .
The resulting storage structure is illustrated in Fig. 6.1.

This storage structure is a good example why both parameters "location and
"element_placement" are needed. If one of them would be omitted it would be impossible to
express that the reference to the résumé record shall be stored in the same secondary record as
the value of the salary. It would only be possible to store the reference of the résumé record
within the primary block.

A drawback of the storage structure shown in Fig. 6.1 is that there are many small link records,
each of it used to store one pointer to the primary block of the tuple and another pointer to the
next tuple. This problem, however, can be avoided very easily by storing the primary biocks of the
tuples as shown in Fig. 6.2 within the link records. This is expressed by changing the value of the
parameter "element_placement” in the second row of the definition from "referenced (Prim_rec)"
to "inplace™:

complex_object Employees [anchor_record_type=Link_rec]

set [implementation=linked_list, element_placement=inplace] of ...

10

Link_rec Prim|rec Sec_rec Résumé_rec
| — 77234 | Johns 4000 —+» Mrs. Johns is born ...
nil — 77235 | Smith 4400 — Mr. Smith is born ...

Fig. 6.1 Tuples with referenced primary blocks

Link_rec Sec_rec Résumé_rec

77234 Johns 4000 —1+—» Mrs. Johnsis born ...

l

nil 77235 | Smith 4400 —r—» Mr. Smith is born ...

Fig. 6.2 Tuples with primary blocks stored inplace

Fig. 6: Two possible storage structures for the emplioyees relation

3.4 An Example of a Storage Structure for the Robots Relation

The discussion of the two degrees of freedom - selection of a constructor data structure and
decision whether to store elements and attributes inplace or referenced - as well as of the
parameters "element_placement", "implementation”, and "location" to control these degrees of
freedom is now complete. Fig. 9 shows a complete type definition for the eNF2 Robots relation
(cf. Fig. 1) using one possible physical storage structure. In this rather comprehensive example,
all the constructs and parameters introduced so far are used in conjunction. The selected storage
structure follows the assumptions made in the introduction. Those parts of the relation being
accessed often as a whole are stored together in the same records and those parts not frequently
accessed together are separated. The resulting storage structure is depicted in Fig. 10.

The following details of the storage structure may be worthwhile to be mentioned. The constructor
data structure of each Robot tuple has been distributed among the primary block and one
secondary block. In the definition of the Robots relation (Fig. 9) this is expressed by the lines [1],
[2], I3], [13], [16], and [18]. This decomposition allows (see Section 4 for details) to create one
record cluster for each robot and store the data of the axes and endeffectors in these clusters
object wise. At the same time, the data of all production reports of all robots can be stored
together in one single object independent record cluster. Another feature of the storage structure
is the representation of the axes. The complete data of an axis is stored in a single "Axis" record
(cf. Fig. 9: [5] - [12]). To implement the lists of axes variable length arrays are used (cf. Fig. 9: [4]).
These variable length arrays are stored inplace of the "Sec_rec" records (Fig. 9: [3]). This kind of
implementation of a list (or a set) corresponds to the DASDBS (cf. [DPS86]) implementation of
complex objects. On the other hand, the implementation of the production reports follows the
strategy of AIM-P (cf. [Dada86]) to implement sets and lists. A variable length pointer record is
referenced by a field of the primary block of a robot tuple (cf. Fig. 9: [13]). This pointer record
carries the references to the data records storing the names of the products being worked on and
to records storing the amount of work (cf. Fig. 9: [14], [15]). Finally, the implementation of the sets
of endeffectors corresponds to the ideas of XSQL (cf. [Lori85]). The elements of the sets are
linked together by twin pointers (cf. Fig 9: [17]). The usually rather long instructions of the robots
are stored in separate records (cf. Fig. 9:[18]).

11

4. User Defined Clustering of Complex Objects

The methods discussed in Section 3 allow to define application oriented decompositions of
complex objects into appropriate record structures. However, nothing has been said about the
physical placement of these records on disk so far. In the following we will, therefore, discuss
mechanisms which ensure that records being accessed frequently together are stored on the
same or on adjacent pages to reduce the number of page faults when accessing them. As in the
previous discussion of storage structures a "hard-wired" clustering strategy as, for example, to
store always the records of one complex object on adjacent pages may be good in many
(perhaps even most) cases but may also fail sometimes. In these cases the user should be able
to change the clustering strategy accordingly. In the following we will first introduce the logical
terms "segment" and "record cluster" and then discuss how the distribution of records among
these clusters and segments can be controlled.

4.1 Segments and Record Clusters

In the following, we assume that a "segment" is a linear, page oriented address space having a
unique segment identifier. In a file based system a segment is usually mapped to one or more
direct access files. Each segment contains one or more "record clusters", each of which storing
an arbitrary large number of records of various types. The system will attempt to store records
which belong to the same cluster on adjacent pages of a segment. The number of record clusters
within a segment is not static but can grow or shrink as related objects or subobjects are inserted
into or deleted from the database. This is very similar to the kind of clusters being used in the
commercial database system Oracle [Orac90].

4.2 Object-Centred and Object-Independent Record Clusters

As already indicated in the introduction two kinds of record clusters can be discriminated. One
kind of record clusters are used to collect records belonging to a specific object or subobject.
Because of this behaviour we will call them "object-centred" record clusters in the sequel. They
compare to the "classic" clusters as discussed, for example, in [BeDe89], [Dada86], [DPS86],
[KFC90], [Kim87], [ScSi89). The second kind of record clusters are used to store records
independently of their object membership in the same record cluster. We, therefore, will call them
"object-independent” record clusters.

To define which records of an object are stored in object-centred and which are stored in object-
independent clusters we use the syntax given in Fig. 7. The respective specification is based on
the record types rather than the record instances because it makes query optimisation rather
difficult, if the clustering structure has to be determined at instance level at run-time.

4.2.1 Object-Centred Record Clusters

To express which records are stored in object-centred record clusters we use so-called "object-
centred record cluster types". Each object-centred record cluster is an instance of such a cluster
type. To identify the "correct" instance when storing a record we associate with each object-
centred record cluster a so-called "identifying record"® which serves as the "identifier" of the

6Because an "identifying record" serves only (via a system internal identifier) as the identifier of an object-
centred record cluster, it is not necessary that the identifying record itself is stored in the cluster.

12

cluster_definition = /* Definition of an object-centred record cluster type. */
object_cluster_ type (cluster_type name = cluster_type_name,
segment

segment_name,
identifying records = record_type_name,

member_records list_of_record_types) |

/* Definition of an object-independent record cluster. */
segment_ cluster (cluster_name = cluster_name,
segment = segment_nhame,

member_ records list_of_record_types)

/* List of "member" record types of a record cluster. */

list_of_record_types (record_type_name {, record_type_name}*)

cluster_type_name = string /* Name of an object-centred cluster type. */
cluster_name = string /* Name of an object-independent record cluster. */
segment_name = string /* Name of a segment. */

Fig. 7: Term to define object-centred and object-independent record clusters

cluster. Such a cluster type and the identifying records are defined by the first variant of the term
for defining clusters (cf. Fig. 7):

cluster_definition = object_cluster_type (cluster_type name = cluster_type_name,
segment = segment_name,
identifying records = record_type_name,

member_records = list_of_record_types)

This declaration reads as follows: An object-centred cluster type called "cluster_type_name" is
defined. The instances of this cluster type are stored in the segment specified by
"segment_name". Their identifying records are of the type given in the parameter
"identifying_records". This implies that for each record of this type one instance of the cluster type
is created. The "member_records" clause specifies which records of which record types will be
stored in these clusters. |dentifying records and their related member records either have to be in
a (may be transitive) parent - child relationship or have to be the same type.

This process of defining object-centred record clusters shall be illustrated by an example. Again,
we use the Robots relation and follow the assumptions in the introduction that all data of the axes
and endeffectors shall be collected in an own, separate record cluster for each robot. This means
that for each robot one record cluster is needed which stores the "Sec_rec", "Axis_rec", and
"Endeff_rec" records as depicted in Fig. 10 by the -shade. The definition of the correspond-
ing object-centred record cluster type is:

object_cluster_type (cluster_type_name = Sec_rec_cluster,
segment = Main,
identifying_records = Sec_rec,
member_records = (Sec_rec, Axis_rec, Endeff_rec))

This definition means that for each record instance of type "Sec_rec" one record cluster is created
in the segment "Main". In Fig. 10 these clusters are labelled with "Sec_rec_cluster-1" and
"Sec_rec_cluster-2". Depending on their hierarchical dependency of the identifying "Sec_rec"
records all "Sec_rec", "Axis_rec", and "Endeff_rec" records are stored within these two clusters.

13

It should be mentioned that in this process any record type of any hierarchical level may be used
as the identifying record type to define an object-centred cluster type. This allows to define a
large variety of clustering strategies for the substructures. Furthermore it is not necessary (as
mentioned in footnote 6) that the identifying records themselves are stored in the record clusters
which they generate. This is shown by the following example:

object_cluster_type (cluster_type_name = Prim_rec_cluster,
segment = Secondary,
identifying_records = Prim_rec,

member_records

(Inst_rec))

This definition says that the "Inst_rec" records which store the instructions of the robots are stored
in object-centred record clusters which are localised in the segment "Secondary" (cf. Fig. 10:
"Prim_rec_cluster-1" and "-2"). However, the "Prim_rec" records themselves which are the
identifying records of these record clusters are stored in an object-independent record cluster as
defined in the following section.

4.2.2 Object-Independent Record Clusters

Object-independent record clusters are used to cluster records independently of their object
membership. In contrast to object-centred record clusters only one extension of an object-
independent record cluster (type) exists in this case. Therefore, these record clusters may be
identified by unambiguous user defined names. As there do never exist two object-independent
record clusters with the same name in a segment, we call these clusters also "segment clusters”
(cf. Fig. 7). Their usage shall be demonstrated also using again the Robots relation as an
example.

In the introduction we assumed that the production reports are frequently accessed without
needing the other parts of the object structure. Therefore it may be favourable to store all records
of the types "Pointer_rec", "Product_rec", and "Action_rec" together in one object-independent
record cluster. This is expressed by the following term. Its effect is that all records of this three
types are stored in the "Costs_cluster" (cf. the .. -shade in Fig. 10) which is localised in the
segment "Main".

segment_cluster (cluster_name = Costs_cluster,

segment Main,

member_records (Pointer_rec, Product_rec, Action_rec))

Another example are the "Anchor_rec" and "Prim_rec" records. These records are involved in all
kinds of object access. Therefore it seems useful to collect all these records independently of
their object membership in a single cluster. In Fig. 10 this cluster is labelled "Anchor_cluster” and
is defined as follows:

segment_cluster (cluster_name Anchor_cluster,

segment Main,

member_records = (Anchor_rec, Prim_rec))

The last term completes the cluster definitions for the Robots relation. In the structure discussed,
the data of the axes, endeffectors, and instructions are clustered in a "classical” object-centred
manner while the data of the production reports are collected object-independently in a single
cluster. This potential to define a mixture of object-centred and object-independent clusters
distinguishes this approach from others which support only object-centred clusters.

14

5. Conclusion and Future Work

The central issue of this paper is the description of a basic mechanism which allows to separate
the logical structure of complex objects from their physical implementation. By doing so, a large
variety of different physical storage structures can be used to implement a given logical structure.
In the first part of this paper (Section 3) we discussed how to define application oriented system-
internal storage structures for complex objects. We elaborated two degrees of freedom for defin-
ing storage structures for complex objects. The first one is the selection of appropriate constructor
data structures to implement sets, lists, and tuples. The second one is the decision whether to
store elements of sets and lists and attributes of tuples directly within of the constructor data
structures or in referenced records. To control both degrees of freedom independently we have
introduced three orthogonal parameters. These parameters allow to define a large variety of
different physical structures for complex objects. Using this approach, the selection of a "good" or
"bad" storage structure influences only the access performance but not the logical behaviour of a
complex object. This guarantees that application programs need not to be changed if the storage
structure shall be changed for performance reasons at some later point in time.

The definition of a good storage structure, however, is only the first step towards an optimized
storage of complex objects. We, therefore, discussed in the second part of the paper (Section 4)
also new strategies for clustering the records on disk. Otherwise one might have a good storage
structure but each record access may cause a page fault. Therefore, we elaborated two kinds of
clusters and described how to define them. The first kind of clusters are so-called object-centred
clusters which collect records of objects or subobjects in a "classical" object-centred manner. The
second kind of clusters are so-called object-independent record clusters which store records
independently of their object membership. The combination of these cluster types and the
possibility to define more than one object-centred cluster for each object or subobject allows to
define a large variety of different clustering strategies. Taking both approaches together, it is no
longer necessary to choose an inadequate logical complex object structure just for performance
reasons.

However, the definition of an optimized storage and clustering structure does not automatically
guarantee that an optimal access performance is achieved. In addition, also the process of query
optimisation must be adjusted accordingly to use these storage structures optimally. In [KeDa91]
we have already discussed various strategies to use indexes when evaluating queries which
access complex objects. In our future work we will develop cost formulas for different storage
structures and clustering strategies for being able to rank alternative query plans accordingly.

15

6. References

Banc88

BeDe89

Dada86

Dal.i89

DPS86

Gee77

HaOz88

F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman, C.Lécluse, P.
Pfeffer, P. Richard, F. Velez: The Design and Implementation of O,, an Object-Oriented
Database System. K.R. Dittrich (Ed.), Advances in Object-Oriented Database Systems,
Proc. 2nd Int. Workshop on Object-Oriented Database Systems, Bad Minster, Lecture
Notes in Computer Science 334, Springer-Verlag, pp. 1-22, 1988.

V. Benzaken, C. Delobel: Dynamic Clustering Strategies in the O2 Object-Oriented
Database System. Altair, BP105, 78153 Le Chesnay Cedex, France, pp. 1-27, 1989.

P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe, J. Guenauer, V. Lum, P.
Pistor, G. Walch: A DBMS Prototype to Support Extended NF2 Relations: An Integrated
View on Flat Tables and Hierarchies. ACM-SIGMOD, Proc. Int. Conf. on Management
of Data Washington, D.C., pp. 356-367, 1986.

P. Dadam, V. Linnemann: Advanced Information Management (AIM): Advanced Data-
base Technology for Integrated Applications. IBM Systems Journal, Vol. 28, No. 4,
pp. 661-681, 1989.

U. Deppisch, H.-B. Paul, H.-J. Schek: A Storage System for Complex Objects, K.
Dittrich, U. Dayal (Eds.), Proc. Int. Workshop on Object-Oriented Database Systems,
Pacific Grove, pp. 183 - 195, 1986.

W.C. McGee: The information management system IMS/VS: Data base facilities. 1BM
Systems Journal, Vol. 16, No. 2, pp. 96-123, 1977.

A. Hafez, G. Ozsoyoglu: Storage Structures for Nested Relations. |EEE Data
Engineering, Vol 11, No. 3, Special Issue on Nested Relations, pp. 31 - 38, 1988.

HMMSB87 T. Harder, K. Meyer-Wegener, B. Mitschang, A. Sikeler: PRIMA - a DBMS Prototype

Ingr90
KeDa91

KFC90

Kim87

Kim89

LLOWS1

Lori85

Supporting Engineering Applications. Proc. 13th Int. Conf. on Very Large Data Bases,
Brighton, pp. 433 - 442, 1987.

INGRES/Database Administrator's Guide. Release 6.3, 1990.

U. KeBler, P. Dadam: Auswertung komplexer Anfragen an hierarchisch strukturierte
Objekte mit Pfadindexen (Evaluation of Complex Queries Against Hierarchically
Structured Objects Using Path Indexes), H.-J. Appelrath (Ed), Proc. Datenbanksysteme
in Biro, Technik und Wissenschaft, Gl-Fachtagung, Springer-Verlag, Informatik-
Fachberichte 270, pp. 218-237, 1991, (in German).

S. Khoshafian, M.J. Franklin, M.J. Carey: Storage Management for Persistent Complex
Objects. Information Systems, Vol. 15, No. 3, pp. 303-320, 1990.

W. Kim, J. Banerjee, H.-T. Chou, J.F. Garza, D. Woelk: Composite Object Support in an
Object-Oriented Database System. Proc. Int. Conf. on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), pp. 118-125, 1987.

W. Kim, N. Ballou, H.-T. Chou, J.R. Garza, D. Woelk: Features of the ORION Object-
Oriented Database System. W. Kim, F.H. Lochovsky (Eds.), Object-Oriented Concepts,
Databases, and Applications, ACM Press, Frontier Series, pp. 251-282, 1989.

C. Lamb, G. Landis, J. Orenstein, D. Weinreb: The ObjectStore Database System.
Communications of the ACM, Vol. 34, No. 10, Special Section: Next-Generation
Database Systems, pp. 50-63, 1991.

R. Lorie, W. Kim, D. McNabb, W. Plouffe, A.Meier: Supporting Complex Objects in a
Relational System for Engineering Databases. W. Kim, D.S. Reiner, D.S. Batory (Eds.),
Query Processing in Database Systems, Topics in Information Systems, Springer-
Verlag, pp. 145-155, 1985.

16

Mits88

B. Mitschang: The Molecule-Atom Data Model. T. Harder (Ed.), The PRIMA Project
Design and Implementation of a Non-Standard Database System, University
Kaiserslautern, Report No. 26/88, Erwin-Schrédinger-StraBe, 6750 Kaiserslautern,
Germany, pp. 13-36, 1988.

MSOP86 D. Maier, J. Stein, A. Otis, A. Purdy: Development on an Object-Oriented DBMS. Proc.

Nier89

Onto92
Orac90
Paul87

PiAn86

RiSc93

Scho92

Scho92a

ScPi82

ScSc90

ScSi89

Sike88

Stro86
TRSB93

Int. Conf. on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), pp. 472-482, 1986.

O. Nierstrasz: A Survey of Object-Oriented Concepts. W. Kim, F.H. Lochovsky (Eds.),
Object-Oriented Concepts, Databases, and Applications, ACM Press, Frontier Series,
pp. 3-21, 1989.

ONTOS DB 2.2, First Time User's Guide, 1992.
Oracle RDBMS Database Administrator's Guide, Version 6.0, 1990.

H.-B. Paul, H.-J. Schek, M. H. Scholl, G. Weikum, U. Deppisch: Architecture and
Implementation of the Darmstadt Database Kernel System. ACM-SIGMOD, Proc. Int.
Conf. on Management of Data, San Francisco, USA, pp. 196-207, 1987.

P. Pistor, F. Andersen: Designing a Generalized NF2 Model with an SQL-Type
Language Interface. Proc. 12th Int. Conf. on Very Large Data Bases, Kyoto, Japan, pp.
278-285, 1986.

C. Rich, M.H. Scholl: Query Optimization in an OODBMS. W. Stucky, A. Oberweis
(eds.), Proc. Datenbanksysteme in Biiro, Technik und Wissenschatft, Gl-Fachtagung,
Springer-Verlag, Informatik aktuell, pp. 266-284, 1993.

M. Scholl: Physical Database Design for an Object-Oriented Database System. J.-C.
Freytag, G. Vossen, D.E. Maier (Eds.), Query Processing for Advanced Database
Applications, Morgan Kaufmann, 1992.

M. H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch: The COCOON Object Model.
ETH Ziirich, Department of Computer Science, report no. 193, pp. 1-61, 1992. Also
available at University of Ulm, Department of Computer Science, report no 93-02, pp.
1-59, 1993.

H.-J. Schek, P. Pistor: Data Structures for an Integrated Data Base Management and
Information Retrieval System. Proc. Int. Conf. on Very Large Data Bases, Mexico City,
pp. 197-207, 1982.

M. H. Scholl, H.-J. Schek: A relational object model. Proc. Int. Conf. on Database
Theory (ICDT), Paris, France, Springer-Verlag, Lecture Notes in Computer Science
470, pp. 89-105, 1990.

H. Schéning, A. Sikeler: Cluster Mechanisms Supporting the Dynamic Construction of
Complex Objects. Proc. 3rd Int. Conf. on Foundations of Data Organization and
Algorithms (FODO), Paris, France, Springer-Verlag, Lecture Notes in Computer
Science 367, pp. 31-46, 1989.

A. Sikeler: Key Concepts of the PRIMA Access System. T. Harder (Ed.), The PRIMA
Project Design and Implementation of a Non-Standard Database System, University
Kaiserslautern, Report No. 26/88, Erwin-Schrédinger-StraBe, 6750 Kaiserslautern,
Germany, pp. 69-99, 1988.

B. Stroustrup: The C++ Programming Language, Addison Wesley, 1986

W.B. Teeuw, C. Rich, M.H. Scholl, H.M. Blanken: An Evaluation of Physical Disk I/0O for
Complex Object Processing. Proc. 9th Int. Conf. on Data Engineering, Vienna, Austria,
IEEE Computer Society Press, Los Alamitos, California, pp. 363-372, 1993.

17

Appendix: Figures

/* Definition of a complex object. */

complex_object db_object_name [anchor_record_type = record_type_name] object_type

db_object_name =

record_type_name =

object_type =

length =

attribute_description

il

attribute_name =

/* Parameters to define

placement_type =

implementation_type =

location_type =

/* Name of a complex object. */
string

/* User defined record type name of a record type. */
string

/* Recursively constructed complex object types. */
/* Examples of atomic value types. */
integer | real | var_string | fix string(length) |

/* Definition of a set. */
set [implementation = implementation_type,
element placement = placement_type] of object_type |

/* Definition of a list. */
list [implementation = implementation_type,
element_placement

placement_type] of object_type |

/* Definition of a tuple with a list of attributes. */
tuple (attribute_description {, attribute_description}*)

/* Size of a fix length string. */
integer

/* Definition of an attribute of a tuple. */

attribute_name [location location_type,

element_placement

/* Name of an attribute. */
string

the storage structure of complex objects */

/* Definition whether an element of a set or list or an */
/* attribute of a tuple is stored inplace or in referenced */
/* records. */

inplace | referenced (record_type_name)

/* Alternatives to implement sets and lists. */
array | linked_list

/* Definition whether the correspondent field of an */
/* attribute is localised within the primary block or a */
/* secondary block of the constructor data structure. */
primary | secondary (record_type_name)

Fig 8: Syntax to define the type and storage structure of complex objects

18

{11

(2]

[3]
[4]

(5]
(6]

[71]

(8]

placement_typel: object_type[9]

[11]

complex_object Robots [anchor_record_type=Anchor_rec]

set [implementation=array, element_placement=referenced (Prim rec)] of
tuple (
R_nb [location=primary, element_placement=inplace]: integer,

Name [location=secondary (Sec_rec), element_placement=inplace]: fix_string(30),

Axes [location=secondary(Sec_rec), element_placement=inplace]:
list [implementation=array, element_placement=referenced (Axis_rec)] of

tuple (

Axis nb [location=primary, element_placement=inplace]: integer,

Matrices [location=primary, element_placement=inplace]:

list [implementation=array, element_placement=inplace] of
tuple (
Row [location=primary, element_placement=inplace]: integer,
Vector [location=primary, element_placement=inplace]:
list [implementation:array,element_placement=inplace] of integer)),

Production_report [location=primary, element_placement=referenced (Pointer_rec)]:
set [implementation=array, element_placement=inplace] of
tuple (
Product [location=primary, element_placement=referenced (Product_rec)]:
fix_string (30},
Action [location=primary, element_placement=inplace]:
set {implementation=array, element_placement=referenced (Action_rec)] of
tuple (
Week [location=primary, element_placement=inplace]: integer,
Price [location=primary, element_placement=inplace]: integer)),

Endeffectors [1ocation=secondary(Sec_rec),element_placement=referenced(Endeff_Rec)]:
set [implementation=linked_list, element_placement=inplace] of
tuple (
E_nb [location=primary, element_placement=inplace]: fix_string(30),

Function [location=primary, element_placement=inplace]: fix_string(30)),

Instructions [location=secondary (Sec_rec), element_placement=referenced (Inst_Rec)]

var_string))) .

Fig. 9: Type and storage structure definition of the eNF2 Robots relation

19

[3]
[4]
[5]
[6]
{71
[8]

[10
[11
[12

(131

[15]

[16]
[17]

(18]

Anc_hor_cluster Sec_rec_cluster-1 Prim_rec_cluster-1

S
OO0
Ak

s
o

Costs_cluster

Fig. 10: One feasible storage structure for the eNF2 Robots relation

20

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von f£tp.informatik.uni-ulm.de erhéltlich
Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de
Reports marked with * are out of print

91-01 KER-I Ko, P. ORPONEN, U. SCHONING, O. WATANABE
Instance Complexity

91-02* K. GrLaDITZ, H. FASSBENDER, H. VOGLER
Compiler-Based Implementation of Syntax-Directed Functional Program-
ming

91-03 ALFONS GESER
Relative Termination

91-04* J. K6BLER, U. SCHONING, J. TORAN
Graph Isomorphism is low for PP

91-05 JoHANNES KOBLER, THOMAS THIERAUF
Complexity Restricted Advice Functions

91-06 UWE SCHONING
Recent Highlights in Structural Complexity Theory

91-07 F. GREEN, J. KOBLER, J. TORAN
The Power of Middle Bit

91-08* V.ARVIND, Y. HAN, L. HAMACHANDRA, J. KOBLER, A. LOZANO,
M. MUNDHENK, A. OGIWARA, U. SCHONING, R. SILVESTRI, T. THIERAUF
Reductions for Sets of Low Information Content

92-01 VIKRAMAN ARVIND, JOHANNES KOBLER, MARTIN MUNDHENK
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally
Sets

92-02* THoMmas NoLL, HEiko VOGLER
Top-down Parsing with Simulataneous Evaluationof Noncircular Attri-
bute Grammars

92-03 FAKULTAT FUR INFORMATIK
17. Workshop iiber Komplexititstheorie, effiziente Algorithmen und Da-
tenstrukturen

92-04 V. ArvinD, J. KOBLER, M. MUNDHENK
Lowness and the Complexity of Sparse and Tally Descriptions

92-05 JoHANNES KOBLER
Locating P/poly Optimally in the Extended Low Hierarchy

92-06 ARMIN KUHNEMANN, HEIKO VOGLER
Synthesized and inherited functions -a new computational model for syntax-

directed semantics

92-07 HEINZ FASSBENDER, HEIKO VOGLER
A Universal Unification Algorithm Based on Unification-Driven Leftmost

Outermost Narrowing

92-08 UWE SCHONING
On Random Reductions from Sparse Sets to Tally Sets

92-09 HERMANN VON HASSELN, LAURA MARTIGNON
Consistency in Stochastic Network

92-10 MICHAEL SCHMITT
A Slightly Improved Upper Bound on the Size of Weights Sufficient to

Represent Any Linearly Separable Boolean Function

92-11 JOHANNES KOBLER, SEINOSUKE ToDA
On the Power of Generalized MOD-Classes

92-12 V. ARvVIND, J. KOBLER, M. MUNDHENK
Reliable Reductions, High Sets and Low Sets

92-13 ALFONS GESER
On a monotonic semantic path ordering

92-14 JoosT ENGELFRIET, HEIKO VOGLER
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 ALFRED LUPPER, KONRAD FROITZHEIM
AppleTalk Link Access Protocol basierend auf dem Abstract Personal

Communications Manager

93-02 M.H. ScuotL, C. LaascH, C. RicH, H.-J. ScHEK, M. TRESCH
The COCOON Object Model

93-03 THOMAS THIERAUF, SEINOSUKE TODA, OSAMU WATANABE
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 JIN-Y1 Cal, FREDERIC GREEN, THOMAS THIERAUF
On the Correlation of Symmetric Functions

93-05 K.KUHN, M.REICHERT, M. NATHE, T. BEUTER, C. HEINLEIN, P. DADAM
A Conceptual Approach to an Open Hospital Information System

93-06 Kraus GASSNER
Rechnerunterstiitzung fiir die konzeptuelle Modellierung

93-07 ULLRICH KESSLER, PETER DADAM
Towards Customizable, Flexible Storage Structures for Complex Objects

Ulmer Informatik-Berichte

ISSN 0939-5091

Herausgeber: Fakultit fiir Informatik

Universitdt Ulm, Oberer Eselsberg, D-89069 Ulm

