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Abstract. The capability to dynamically evolve process models over
time and to migrate process instances to a modified model version are
fundamental requirements for any process-aware information system.
This has been recognized for a long time and different approaches for
process schema evolution have emerged. Basically, the challenge is to
correctly and efficiently migrate running instances to a modified process
model. In addition, no process instance should be needlessly excluded
from being migrated. While there has been significant research on cor-
rectness notions, existing approaches are still too restrictive regarding
the set of migratable instances. This paper discusses fundamental re-
quirements emerging in this context. We revisit the well-established com-
pliance criterion for reasoning about the correct applicability of dynamic
process changes, relax this criterion in different respects, and discuss the
impact these relaxations have in practice. Furthermore, we investigate
how to cope with non-compliant process instances to further increase the
number of migratable ones. Respective considerations are fundamental
for further maturation of adaptive process management technology.

1 Introduction

The ability to effectively deal with change has been identified as key functionality
for any process-aware information systems (PAISs). Through the separation of
process logic from application code, PAISs facilitate process changes significantly
[1]. In the context of long-running processes (e.g., medical treatment processes
[2]), PAISs must additionally allow for the propagation of respective changes
to ongoing process instances. Regarding the support of such dynamic process
changes, PAIS robustness is fundamental; i.e., dynamic changes must not violate
soundness of the running process instances. This cannot be always ensured, for
example, when ”changing the past” of an instance. As example consider Fig. 1
where change A inserts two activities X and Y together with a data dependency
between them. Applying A to instance I could lead to a situation where Y is
invoked though its input data has not been written by X. Another challenge in
the context of dynamic process changes concerns the treatment of the dynamic
change bug [3]; i.e., the problem to correctly adapt process instance states (e.g.,
markings in a Petri Net) when performing a dynamic change.
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Fig. 1. Changing the Past

In response to these challenges adaptive PAISs have emerged, which allow for
dynamic process changes at different levels [4-10]. Most approaches apply a spe-
cific correctness notion to ensure that only those process instances may migrate
to a modified process schema for which soundness can be ensured afterwards.
One of the most prominent criteria used in this context is compliance [4,11].
According to it, a process instance may migrate to schema S’ if it is compliant
with S’; i.e., the current instance trace can be produced on S’ as well. Different
techniques have been introduced to efficiently implement this compliance cri-
terion [11,12]. Unfortunately, traditional compliance has turned out to be too
restrictive, particularly in connection with loop structures or uncritical changes.
Consequently, a large number of instances is excluded from being migrated to a
modified schema, even if this does not violate soundness.

In this paper we relax the traditional compliance criterion in different re-
spects, introduce new compliance classes and their properties, and discuss the
impact the different relaxations have in practice. Orthogonally, data flow consis-
tency in the context of compliance is discussed. Furthermore, we investigate how
to cope with non-compliant process instances to further increase the number of
migratable instances. In this context we extent existing approaches [11, 8] based
on traditional compliance. Altogether respective considerations are fundamental
for further maturation of adaptive process management technology.

Section 2 introduces background information needed for the understanding
of our work. In Section 3 we revisit the compliance criterion as introduced in
[4,11], show how it can be relaxed in different ways to increase the number
of migratable instances, and discuss the properties of the resulting compliance
classes. Section 4 deals with the handling of non-compliant instances and presents
different policies in this context. In Section 5 we extend our considerations to
the data flow perspective. An example is given in Section 6. We discuss related
work in Section 7 and conclude with a summary and outlook in Section 8.

2 Backgrounds

For each business process to be supported (e.g., handling a customer request
or processing an insurance claim) a process type T represented by a process
schema S has to be defined. For a particular type several process schemas may
exist, representing the different versions and evolution of this type over time. In



the following, a single process schema is represented as directed graph, which
comprises a set of nodes — representing activities or control connectors (e.g.,
XOR-Split, AND-Join) — and a set of control edges (i.e., precedence relations)
between them. In addition, a process schema comprises sets of data elements and
data edges. A data edge links an activity with a data element and represents
a read or write access of this activity to the respective data element. Based on
process schema S at run-time new process instances can be created and executed.
Start or completion events of the activities of such instances are recorded in
traces. WIDE, for example, only records completion events [4], whereas ADEPT
distinguishes between start and completion events of activities [11].

Definition 1 (Trace). Let PS be the set of all process schemas and let A be the
total set of activities (or more precisely activity labels) based on which process schemas
S € PS are specified (without loss of generality we assume unique labeling of activities).
Let further Qs denote the set of all possible traces producible on process schema S €
PS. A particular trace o7 € Qs of instance I on S is defined as 07 = < e, ..., e, >
(with e; €{Start(a), End(a)}, a € A,1=1,...,k, k € N) where the temporal order
of e; in o reflects the order in which activities were started and/or completed over S.*

Adaptive process management systems are characterized by their ability to
correctly and efficiently deal with (dynamic) process changes [12]. Before dis-
cussing different levels of change, we give a definition on the topology of change.

Definition 2 (Process Change). Let PS be the set of all process schemas and
let S, S' € PS. Let further A = <opu,...,opn> denote a process change which applies
change operations op;, i=1,. . . ,n sequentially. Then:

1. S[A> S’ if and only if A is correctly applicable to S and S’ is the process schema
resulting from the application of A to S (i.e., S'=S + A)

2. S[A>S’ if and only if there are process schemas Si,S2,...,Snt1 € PS with S =
S1, 8" = Spt1 and for 1 < i < n: Si[A;>Si1 with A; = (op;)

In general, we assume that change A is applied to a sound (i.e., correct)
process schema S [13]; i.e., S obeys the correctness constraints set out by the
particular process meta model (e.g., bipartite graph structure for Petri Nets).
This is also called structural soundness. Furthermore, we claim that S’ must obey
behavorial soundness (i.e., any instance on S’ must not run into deadlocks or
livelocks). This can achieved in two ways: either A itself preserves soundness by
formal pre-/post-conditions (e.g., in ADEPT [7]) or A is applied and soundness
of S’ is checked afterwards (e.g., by reachability analysis for Petri Nets).

Basically, changes can be triggered and performed at the process type and
the process instance level. Changes to a process type T may become necessary to
cover the evolution of real-world business processes captured by process schema
of this type [9,11,10]. Generally, process engineers can accomplish process type
changes by applying a set of change operations to the current schema version S
of type T [14]. This results in a new schema version S’ of T. Execution of future
process instances is usually based on S’. In addition, for long-running instances

1 An entry of a particular activity can occur multiple times due to loopbacks.



it is often desired to migrate them to the new schema S’ in a controlled and
efficient manner [11, 12]. By contrast, changes of individual process instances are
usually performed by end users. They become necessary to react to exceptional
situations [7]. In particular, effects of such changes must be kept local, i.e.,
they must not affect other instances of same type. In both cases, structural and
behavioral soundness have to be preserved. The former can be guaranteed since
the underlying process schema has to be structurally correct again [11]. The
latter, however, has to be explicitly checked. This is accomplished by certain
correctness criteria which are subject to the following sections.

3 Revisiting Instance Compliance in Adaptive PAISs

Problems such as dynamic change bug (cf. Sect. 1) show that it is crucial to pro-
vide adequate correctness criteria in connection with dynamic process changes.
Basically, the challenge is to correctly and efficiently migrate process instances
to a modified schema. In particular, no instance should be unnecessarily ex-
cluded from such migration except this would lead to severe flaws (i.e., violation
of soundness) later on. We first summarize fundamental requirements any cor-
rectness notion for dynamic process change should fulfill. Let S be the process
schema which is transformed into another schema S’ by change A; i.e., S[A>S".

Req. 1: Any criterion should guarantee correct execution of process instances
on S after migrating them to S’; i.e., soundness has to be preserved; e.g., by
ensuring correctly supplied inputs and correct instance states afterwards [12].
Req. 2: The criterion should be generally valid; i.e., it should be applicable
independent of a particular process meta model.

Req. 3: The criterion should be implementable in an efficient way.?

Req. 4: The number of process instances running on S, which can correctly
migrate to S’, should be maximized.

Following considerations start with the compliance criterion which is a widely
used correctness notion [4]. A detailed comparison of compliance and other cor-
rectness criteria can be found in [12]. In [12,15] it has been shown that this
criterion guarantees Req. 1. Furthermore it presumes no specific process meta
model, but is based on traces. Thus Req. 2 is fulfilled as well [11]. In addition,
compliance can be checked for arbitrary change patterns [1,14], contrary to cri-
teria which are only valid in connection with a restricted set of change patterns
[9]. We have also demonstrated that it can be implemented efficiently [11,12]
(cf. Req. 3). However, the traditional compliance criterion does not adequately
deal with Req. 4; i.e., it needlessly excludes certain instances from being mi-
grated, though this would be possible without affecting soundness. We relax this
criterion by introducing different compliance classes to increase the number of

2 A discussion on the efficiency of correctness checks and a comparison of existing
correctness criteria can be found in [12]. In the context of compliance, for example,
it should be avoided to access whole trace information for each instance.



migratable instances. Usually, one cannot decide on such relaxation automati-
cally, but has to consider the particular application context as well. However,
the possibility to choose between different compliance classes and to relax cor-
rectness constraints on demand enables us to provide advanced user support in
connection with process schema evolution.

3.1 Compliance Class TC: Traditional Compliance
The essence of the following criteria is the notion of compliance:

Definition 3 (Compliance). Let S, S’ € PS be two process schemas. Further let
I be a process instance running on S with trace o5 . Then: I is compliant with S iff o5
can be replayed on S'; i.e., all events logged in o7 could also have been produced by an

instance on S’ in the same order as set out by o7.

In the context of process change, compliance can be used as basis for the
following correctness criterion:

Compliance Criterion 1 (Traditional Compliance TC) Let S be a process
schema and I be an instance on S with trace of. Let further S be transformed into
another schema S’ by change A; i.e., S[A>S’. Then: If I is compliant with S" (cf. Def.
3), this instance can correctly migrate to S’. Specifically, the instance state of I on S’
can be logically obtained by replaying o7 on S'. This state is correct again [12, 15].

Compliance Crit. 1 fulfills Req. 1-3 since it forbids changes not compliant
with instance histories (reflected by their traces). In special cases, changes of
already passed regions do not affect traces and are therefore not prohibited [11,
12]. Assume, for example, that at process schema level activity X is inserted into
a branch of an alternative branching. If this branch is skipped for a particular
instance I at runtime, I will be compliant with the new schema even though its
execution has passed the insertion point of X. Reason is that activities of the
skipped branch and X do not write any entries into JIS . Therefore trace O"IS' can
be replayed on S’; i.e., I is compliant with the modified schema.

Crit. 1 does not meet Req. 4 in a satisfactory way since it is too restrictive in
several respects. Often instances are excluded from migration to the new schema
version even though this would not lead to violation of soundness. Consider, for
example, changes applied to loops. Even if an instance is compliant within the
current loop iteration, according to Crit. 1 it will be considered as non-compliant,
if at least one loop iteration took place. Thus, in the following we investigate how
traditional compliance can be relaxed to allow for more migratable instances.

3.2 Compliance Class LTC: Loop-tolerant Compliance

Crit. 1 will unnecessarily restrict the number of migratable instances if the in-
tended process change affects loop constructs as the following example shows:

Example (Restrictiveness of Crit. 1 in conjunction with loops) Consider process
schema S from Fig. 2a and assume that activity X is inserted between activities



A and B (situated within a loop construct). Assume that instance I has trace o7

as shown in Fig. 2b. Following Crit. 1 change A cannot be propagated to I since
no trace entries for X have been written in the first two (already completed)
iterations of the loop within o7. According to Crit. 1, therefore, I is considered
as being non-compliant with new schema S’ even though migration of I to S’
would not violate soundness. Consequently, using Crit. 1 only instances which
are in the first iteration of the loop construct might be compliant with S’.

a) Process Schema S: Process Schema S’:
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B Change A
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Fig. 2. Process Change Affecting Loop Construct

In most practical cases it would be too restrictive to prohibit change propaga-
tion for in-progress or future loop iterations only because their previous execution
is not compliant with the new schema. Think of, for example, medical treatment
cycles running for months or years [2]. Any process management system which
does not allow to propagate such schema changes (e.g., due to the development
of a new medical drug) to already running instances (e.g., related to patients
expecting an optimal treatment) would not be accepted by medical staff [2].
Therefore, we have to improve the representation of o9 in order to exterminate
its current restrictiveness in conjunction with loops. The key to solution is to
differentiate between completed and future executions of loop iterations. From
a formal point of view there are two possibilities. The first approach (lineariza-
tion) is to logically treat loop structures as being equivalent to respective linear
sequences. Doing so allows us to apply Crit. 1 (with full history information).
However, this approach has an essential drawback — explosion of graph size. Thus
we adopt another approach which works on a projection on relevant trace infor-
mation, i.e., it maintains the loop construct, but restricts necessary evaluation
to relevant parts of the trace. In this context, relevant information includes the
actual state of a loop body, but excludes all data about previous loop iterations
(cf. Fig. 2¢). Note that the projection on relevant information does not physi-
cally delete the information about previous loop iterations, but logically hides
them (i.e., traceability is not affected).

To realize the desired projection we logically discard all entries from the
instance trace produced by a loop iteration other than the actual one (if the
loop is still executed) or the last one (if the loop execution has been already
finished). For the sake of simplicity we presume nested loops here. However, the



described projection can be obtained for arbitrary loop structures as well. We
denote this logical view on traces as the loop-purged trace.

Definition 4 (Loop-purged Trace). Let S € PS be a process type schema and
A be the set of activities based on which schemas are specified. Let further I be a process
instance running on S with trace 07 =< eo,...,ex > (with e; €{Start(a), End(a)},
ac€ A, i=1,....k, k € N). The loop-purged trace Uflp can be obtained as follows:
In absence of loops aflp is identical to of. Otherwise, a}glp is derived from o7 by
discarding all entries related to loop iterations other than the last one (completed loop)
or the actual one (running loop).

Based on this, we define the notion of loop compliance:

Compliance Criterion 2 (Loop-tolerant Compliance LTC) Let S be a pro-
cess schema and I be a process instance on S with trace 0% . Let further S be transformed
into another schema S’ by change A; i.e., S|JA>S’. Then: We will denote I as loop-
tolerant compliant with S’ if the loop-purged trace a?lp of I can be replayed on S’. If I
is loop-compliant with S’, it can correctly migrate to S’.

As shown in [15], Crit. 2 fulfills Req. 1 — 3. In addition, it potentially in-
creases the number of migratable instances when compared to Crit. 1. Thus
it contributes to Req. 4. In Sect. 3.4 we measure the effects of switching from
Compliance Class TC to Compliance Class LTC.

3.3 Compliance Class RLC: Relaxed Loop-tolerant Compliance

Further relaxation of Compliance Class LTC (cf. Sect. 3.2) can be achieved when
exploiting the semantics of the applied change. Specifically, certain changes (e.g.,
deleting activities) can be applied independently of the particular instance traces
since their application does not affect behavorial soundness of instances. Con-
trary, inserting or moving activities within completed instance regions might af-
fect behavorial soundness (e.g., causing deadlocks or livelocks). Consider Fig. 3a:
Schema S is transformed into schema S’ by applying change A. More precisely,
A deletes two activities with a data dependency between them (in practice, for
example, the first deleted activity could collect some customer data, while the
second one just checks this data). Taking Crit. 1, instance I1 is compliant with
S’ whereas 12 is not; i.e., I2 is excluded from migration to S’. However, migrating
I2 to S’ would not result in any violation of soundness; i.e., the state of 12 on S’
would be correct and no deadlocks or livelocks would occur.

How to reflect the deletion of already completed activities within instance
traces? To preserve traceability, entries of such activities cannot be just physi-
cally deleted from traces. Instead, we logically discard them from traces (as for
the loop-purged trace representation):

Definition 5 (Delete-purged Trace). Let S € PS be a process schema and
A be the set of activities based on which schemas are specified. Let further I be an
instance running on S with trace 07 =< eo,... e, > (with e; €{Start(a), End(a)},
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Fig. 3. Changing the Execution History of Process Instances — Example

a€A i=1,...,k, k € N). Assume that a sound schema S is changed into another
sound process schema S’ by change A (i.e., S[A>S"). The delete-purged trace O'ISdp is
obtained as follows: If A does not contain any delete operations U}Sdp is identical to o7 .
Otherwise, a}gdp is derived from of by (logically) discarding all trace entries related to
activities deleted by A. Note that UISdp can be produced on basis of loop-purged trace
J}Slp as well (denoted by a;qlp’dp).

Based on delete-purged and loop-purged traces, we define the notion of re-
laxed (loop-tolerant) compliance:

Compliance Criterion 3 (Relaxed Loop- tolerant Compliance RLC) Let
S be a schema and I be an instance on S with trace 0% . Let further S be a sound schema
which is transformed into another sound schema S’ by change A; i.e., S|[A >S°. Then:
We denote I as relazed loop-tolerant compliant with S’ if the loop-purged and delete-
purged trace Uflp’dp of I can be replayed on S’. If I is relazed loop-tolerant compliant,
it can correctly migrate to S’.

Traceability of delete operations can be realized using flags or time stamps as
well. Consider the example depicted in Fig. 3b. Start/end events of the deleted
activities are not physically deleted from oo but logically discarded. Thus, it still
can be seen from 0}9 that activities B and C had been executed before, but then
were deleted. This is a different semantics from rolling back activities since effects
of the deleted activities are still present (no compensation activities are applied).
Based on Ulsdp, 12 becomes compliant with S’. Thus the number of compliant
instances can be increased again (cf. Req. 4). Though Crit. 3 preserves soundness
of affected instances, it depends on the particular application scenario whether it
should be applied or not. In any case, based on the above considerations we are
able to identify relaxed loop-compliant instances and report them accordingly.
Final decision can be left to the process engineer.



3.4 Relation between Compliance Classes

Fig. 4 shows the different compliance classes discussed before. Obviously, the
number of compliant instances increases the less restrictive the compliance cri-
terion becomes. At the same time, the number of non-compliant process instances
decreases. Formally:

Proposition 1 (Relation between Compliance Classes). Let S be a sound
process schema and InstanceSets be a collection of instances running on S . Let further
A be a change which transforms S into another sound process schema S’. We denote
the set of instances which are compliant with S’ based on compliance class CClass €
{(TC), (LTC), (RLC)} as InstanceSetcciass. Then:

InstanceSet(rcy C InstanceSetrcy C InstanceSetrrcy C InstanceSets

InstanceSet(rc)

Migration Factor C
MFoyiwtor Compliance
AN
: Loop-tolerant

InstanceSet rc) Compliance

InstanceSet(rc,

InstanceSets

InstanceSetric) Relaxed loop-
tolerant

Compliance

InstanceSets

Fig. 4. Compliance Classes

To measure effects when relaxing a compliance class (e.g., TC to LTC), we
use the following metrics:

Definition 6 (Migration Factor). Assumptions as in Prop. 1. Then: The in-
crease in number of instances which can migrate to S’ when going from compliance
class CClass1 to compliance class CClass2 ((CClass1, CClass2) € {(TC, LTC), (LTC,
RLC), (TC, RLC)}) can be measured by the migration factor

[[InstanceSetcciassi| — |[InstanceSetcciass2|]

(1)

MFC’CZassl,C’ClassZ = \InstanceSet |
S

4 On Dealing with Non-Compliant Process Instances

Even though it is possible to increase the number of compliant instances by
switching to the next higher compliance class, the question remains how to deal
with non-compliant instances. At minimum it is required that non-compliant
instances may finish execution according to the schema they were started on or
migrated to earlier. In many cases, however, it is desired to allow instances to
migrate to the new process schema even though they are not compliant at first
sight. For example, this can be crucial in the context of new legal regulations.
Generally, it is desired to let as many instances as possible take benefit from
future process schema changes. This refers to currently applied optimizations,
but also to future ones (applied to the newly designed schema later on).



4.1 Relaxing Compliance

One possibility to deal with non-compliant instances is to relax the underlying
compliance criterion. This means to move instances from a stricter compliance
class to a relaxed one (cf. Fig. 5a). The effect of doing so can be measured by the
migration factor (cf. Def. 6). If relaxation of the compliance class is not possible,
non-compliant instances will have to be treated within their current compliance
class (cf. Fig. 5b). We discuss different possibilities in the following.

a) Relaxing Compliance:

b) Treating within Compliance Class:
InstanceSets ) 9 P

Compliance Class/ | I 1

Method
InstanceSetcompliance (1) Partial Rollback X X
InstanceSet oop compliance Delayed Migration X X
InstanceSetrelaxed Loop Compliance (Il Adjusting Changes X X

Fig. 5. Strategies for Treating Non-Compliant Instances

4.2 Treatment within one Compliance Class

We present different strategies for treating non-compliant instances within their
particular compliance class; i.e., instances for which their execution ”has pro-
ceeded too far”. As illustrated in Fig. 5b, it depends on the kind of compliance
class whether the application of a particular strategy makes sense. Furthermore,
the applicability of the following strategies also depends on the semantics of the
applied change operation. Altogether, based on the classification presented in
Fig. 5b, the adaptive PAIS might suggest the following treatment strategies for
non-compliant instances.

Partial Rollback. Several approaches from literature suggest restoring com-
pliance of non-compliant instances by partially rolling them back in their exe-
cution [8,16]; i.e., applying this policy for instances which have progressed too
far results in a compliant state. Thus a partial rollback is reasonable for com-
pliance classes TC and LTC since both are based on instance states. Contrary,
the essence of compliance class RLC is based on allowing changes of the past
(specifically delete operations). Hence, rollback to earlier instance states does
not make sense here. Generally, (partial) rollback of instances is connected with
compensating activities [8] (e.g., if a flight has been booked, the compensating
activity will be to cancel the booking). An obvious drawback is that it is not
always possible to find compensating activities, i.e., to adequately rollback non-
compliant instances. Furthermore, even if compensating activities can be found,
this will be mostly connected with loss of work and thus will not be accepted by
users.

Delayed Migration. An alternative approach to deal with a non-compliant
instance is to wait until it becomes compliant again: Assume that process change



A affects a loop construct® within schema S. Assume further that for instance
I running on S this loop is currently being executed, but has proceeded too
far to be compliant. However, instance I becomes a candidate for migration
when the loop enters its next iteration; i.e., (relaxed) loop-tolerant compliance
might be satisfied with delay (delayed migration). Such instances can be held as
”pending to migration” until the loop condition is evaluated. As we have learned
in ADEPT2, implementing delayed migration is not as trivial as it looks like at
first glance. At first, if an instance contained regularly or irregularly nested loops
several events (loop backs) might exist to trigger the execution of a previously
delayed migration. Furthermore, the interesting question remains how to deal
with pending instances when further schema changes take place.

Adjusting Change Operations. The above strategies are based on the idea
to reset non-compliant instances into a compliant state. Another approach is to
adjust the intended change itself instead of the instance states. We illustrate this
taking insert operations as example. However, this strategy can be also applied in
the context of other change patterns (e.g., move). The idea is to exploit specific
semantics of the insert operation [14]: When applying it, the user has to specify
the position where to insert the new activities. Basically, this position depends
on two kinds of constraints: first, data dependencies have to be fulfilled (e.g., an
activity writing data element d has to be positioned before an activity reading
d) and second, semantic constraints must be obeyed. Here we focus on handling
data dependencies. Semantic constraints can be treated similarly.

Basically, adjusting changes can take place at the process type and the pro-
cess instance level. Assume that a schema S is transformed into another process
schema S’ by change A. Let further I be an instance running on S which is
not compliant with S’. If A is adjusted to A’ at type level (transforming S into
S’), all instances running on S will be checked for compliance with S” after-
wards (global adjustment). Alternatively, A can be adjusted specifically for I
at instance level. The latter results in bias Ar; i.e., an instance-specific change
which describes the difference between the process schema, I is linked to, and
the instance-specific schema it is running on (instance-specific adjustment).

Global Adjustment: Consider Fig. 6 where change A; inserts activities X and
Y with a data dependency between them into schema S. This results in schema
S’. Instance I running on S is not compliant with S’. Reason is that X would
be inserted before already completed activity B. As a consequence, if X is not
executed, data will not be written and inputs of Y will not be supplied correctly
in the sequel. However, aside any semantic constraints, activity X could be also
inserted between activities B and C (A, transforming S into S”). Reason is that
the writing activity (X) is still inserted before the reading one (Y). Thus all
data dependencies are still fulfilled. When applying As, instance I will become
compliant with S”.

Generally, more instances will become compliant with a changed process
schema, if added activities are inserted "as late as possible”. Most important,
all data dependencies (or, additionally, semantics constraints) imposed by the

3 Thus delayed migration is applicable for compliance classes LTC and RLC.



a) Change applied at process schema level:
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Fig. 6. Global Adjustment of Change Operations — Example

process schema and the intended change must be fulfilled. For the given example
this implies that activities X and Y can be inserted ”later in the process schema”
(i.e., as close to the process end as possible) as long as the data dependency
between them is still fulfilled. Since a process schema might contain more than
one process end node, the formalization of ”later in a process schema” should
not be based on structural properties; i.e., we aim at being independent of a
particular process meta model. As for the compliance criterion, we use process
traces in this context. Due to lack of space we omit a formalization here.

When inserting two or more data-dependent activities as depicted in Fig. 6,
additional constraints must hold. More precisely, it cannot be allowed to move
the insertion position of the writing activity ”behind” the reading activity since
the resulting schema would not be correct anymore.

Instance-specific Adjustment: Consider the example depicted in Fig. 7. Con-
trary to the above example, we do not adjust schema change A; but apply
adjusted instance-specific change A;(S) only to I at instance level. This results
in instance-specific schema S;. The bias between Sy and S’ is captured within
Ap(S’) and reflects moving X to the position between B and Y.

Instance-specific adjustment can be generalized to make any non-compliant
instance compliant with the changed process schema. The idea behind is the
following: Let S be a process schema which is transformed into S’ by change A.
Let further I be an instance on S. So far, A is propagated to I when migrating I
to S (i.e., I reflects A after its migration). However, if I is not compliant with S’,
A must not be applied to I. We still can migrate I to S’ but without propagating
A to 1. This can be achieved by storing an instance-specific bias Ay(S’) which
has to be calculated; e.g., if A inserts activity X at schema level, A;(S”) will
contain the "inverse” delete operation of X.



a) Change applied at process schema level:
A1 = <serialinsert(S, X, A, B), seriallnsert (S, Y, B, C), addDataElement(S, data),
Edge(S, X, data, write), addDataEdge(S, Y, data, read)>

Process Process Schema S’
foosoes »_data ---"""""" !
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b) Change applied at process instance level:
A (S)= < seriallnsert (S, X, B, C), seriallnsert (S, Y, X, C),
addD: (S, data), addD X, data, write), addD: Y, data, read)>

lons: A2 lons’ ;% _data =" |

(Ao~ )0 H e P x B v M e )

Instance-specific schema S,
c) BIAS at process instance level: A (S')= <serialMove(S, X, B, X)>

=)

Fig. 7. Instance-Specific Adjustment of Change Operations — Example

5 The Data Consistency Problem

So far, we have focused on relaxing compliance notions based on the underlying
instance traces to increase the number of migratable instances. For three dif-
ferent compliance classes we have shown that soundness is ensured for affected
instances. Having a closer look at data flow issues, however, it can be observed
that even Crit. 1 is not restrictive enough in some cases.

Example (Inconsistent Read Data Access): We consider the instance depicted
in Fig. 8a. Activity C has been started and therefore has already read data
value 5 of data element d;. Assume now that due to a modeling error read data
edge (C,dy,read) is deleted and new read data edge (C,ds,read) is inserted
afterwards. Consequently, C' should have read data value 2 of data element ds
(instead of data value 5). This inconsistent read behavior may lead to errors if,
for example, the execution of this instance is aborted and therefore has to be
rolled back. Using any representation of trace UIS as introduced so far (i.e., af or
0}9 Ip, dp)7 this erroneous case would not be detected. Consequently, this instance

would be classified as compliant.

a) Process Instance | b) Data-Consistent Representation of
ite dat read data Execution History a°
write data
edge di d, [Events START(A) [ END(A) [ START(B) | END(B) | START(C)
E < . |written - (d1,5) - (d2,2) -
! S\ |data (d,1)
value of data. g \ [elements
object 4 \ [read data - - - - (d1,5)
5," ' | elements

A = (deleteDataEdge(C, d;, read),
R\ addDataEdge(C, d», read))

(oo )

Fig. 8. Data Consistency Problem

We need an adapted form of 0}9 which also incorporates data flow aspects.

Definition 7 (Data-consistent Trace). Let the assumptions be as in Def. 1.
Let further Dg be the set of all data elements relevant in the context of schema S. Then



we denote U}gdc as data-consistent trace representation of o7
with GISdC =<el,...,e>:
e; € {START(a)(41 00 (dnvn) pND(g)(d1v1)ldmvm)y “g e A
where tuple (d;, vi) describes a read/write access of activity a on data element
d; € Dg with associated value v; (i =0,...,k) if a is started/completed.

Using the data-consistent representation of af the problem illutrated in Fig.
8a) is resolved as the following example shows [11, 15]:

Example (Consistent Read Data Access Using aISdC): Consider Fig. 8a. As-

sume that the data-consistent trace o7 % is used instead of o7. Then the in-

tended data flow change A (deleting data edge (C,d;, read) and inserting data
edge (C,dy,read) afterwards) cannot be correctly propagated to I since entry

Start(C)(@1:5) of U;qdc cannot be reproduced on the changed schema.

. . de .
The data-consistent representation o7 can be used as basis for all other

trace representations (cf. Def. 4 — 5). Thus data-consistent compliance works in
combination with the other compliance classes TC, LTC, and RLC.

6 Example and Practical Impact

Consider the example depicted in Fig. 9. Schema S is transformed into schema
S’ by deleting activities B and D and the data dependency between them as well
as by inserting activity X within the loop construct. Assume that instances I,
(k =1,...,1000) are clustered according to their state: For k = 1,...,100, at
maximum, activities A, E, and F are completed (indicated by the grey milestone)
whereas activities of the other parallel branch have not yet been executed. Par-
ticularly, the loop construct is within its first iteration. For k = 101, ..., 200, the
loop has been executed more than once and activities B, C, and D have not yet
been executed. For k = 201, ...,800, activities of both branches have been exe-
cuted, but the parallel branching has not completed yet (i.e., G is not activated).
For k = 801,...,1000 (not depicted), G is either started or completed.

If Crit. 1 is applied to instances I, ..., I1g00, only Iy, ..., I1go are considered
as being compliant with S’. If relaxing to Compliance Crit. 2, additionally in-
stances I101, - - -, I200 become compliant. Thus a migration factor of M Fip) ;1) =
0.1 is achieved, i.e., 10 % more instances can migrate to S’. Finally, if we relax
compliance to Crit. 3, additionally, I501, ..., Isgo are considered as being com-
pliant with S” and a migration factor MF;py ;1) = 0.6 results; i.e., 80% of all
process instances can migrate to S’. The remaining instances are non-compliant.

7 Related Work

There is a plethora of approaches dealing with correctness issues in adaptive
PAISs [9,5,10,17,11, 8]. The kind of applied correctness criterion often depends
on the used process meta model. A discussion and comparison of the particular
correctness criteria is given in [12]. Aside from the applied correctness criteria,



a) Process Schema S: Process Schema S’:
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01 = <A> OR 0® = <A, E> OR 0;° = <A, E, F>
»

k=101,..200 | Tt k=101, ..., 200:
h 0,8 = <A E, F,...,E> OR
[T}m D o’ =<AEF, ... ,E F>

k =201, ..., 800:

0, = <A, B> OR 0,° = <A, E, B> OR 0;° = <A, B, E>
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where [04]||[ 02] means any permutation of o4 and o,

Fig. 9. Example

mostly these approaches do neither address the question of how to increase the
number of migratable instances nor how to deal with non-compliant instances.
Most approaches which treat non-compliant instances are based on partial roll-
back [8,16] (cf. Sect. 4). An alternative approach supporting delayed migrations
of non-compliant instances is offered by Flow Nets [5]. Even if instance I on S is
not compliant with S’ within the actual iteration of a loop, a delayed migration
of I to the new change region is possible when another loop iteration takes place.

Frameworks for process flexibility have been presented in [18,14]. In [18],
different paradigms for process flexibility and related technologies are described.
[14] provides change patterns and evaluates different approaches based on them.
However, [18,14] do not address relaxed soundness criteria for process changes.

8 Summary and Outlook

This paper addressed the question of how to increase the number of process
instances which can migrate to a changed process schema. This is important in
the context of new legal regulations or process optimizations. Thus, we revisited
the notion of compliance — a widely-used correctness criterion in the context of
process change — and introduced several classes of relaxed compliance. We also
showed how the number of compliant instances can be increased by these relaxed
notions. Furthermore, we discussed approaches dealing with non-compliant pro-
cess instances and introduced new strategies in this context. In addition, we
detected that traditional compliance is too relaxed in the context of data flow



correctness and provided an adequate criterion for data-consistent compliance.
Finally we presented a practical example. The concepts of loop-tolerant compli-
ance and data consistency have been implemented in our ADEPT demonstrator
[15]. Currently, the concepts are implemented within the full-blown adaptive
PAIS ADEPT2. In future work we will investigate the relaxation of compli-
ance more deeply: in addition to further relaxation classes, we will elaborate the
strategy of using ad-hoc changes to migrate any non-compliant process instance
(without instance-specific changes) to a changed process schema.
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