
Managing the Life Cycle of Access Rules in CEOSIS

Stefanie Rinderle-Ma, Manfred Reichert
Institute of Databases and Information Systems, Ulm University, Germany

{stefanie.rinderle, manfred.reichert}@uni-ulm.de

Abstract

The definition and management of access rules (e.g., to
control the access to business documents and business func-
tions) is an important task within any enterprise informa-
tion systems (EIS). Many EIS apply role-based access con-
trol (RBAC) mechanisms to specify access rules based on
organizational models. However, only little research has
been spent on organizational changes even though they of-
ten become necessary in practice. Examples comprise the
evolution of organizational models with subsequent adap-
tation of access rules or direct access rule modifications.
In this paper, we present a change framework for the con-
trolled evolution of access rules in EIS. Specifically, we de-
fine change operations which ensure correct modification
of access rules. Finally, we define the formal semantics of
access rule changes based on operator trees which enables
their unambiguous application; i.e., we can precisely de-
termine which effects are caused by respective adaptations.
This is important, for example, to be able to efficiently adapt
user worklists in process-aware information systems. Al-
together this paper contributes to comprehensive life cycle
support for access rules in (adaptive) EIS.

1 Introduction

A fundamental aspect in the design of any enterprise in-
formation systems (EIS) concerns access control, i.e., grant-
ing certain rights to specific users; e.g., the right to access
a certain business document for a restriced group of users
in an EIS. There is a multitude of models for defining such
access control mechanisms; e.g., GRANT / REVOKE state-
ments in DBMS or Role Based Access Control (RBAC)
[5] in process-aware information systems (PAIS). Usually
such models comprise a set of access rules which are de-
fined based on organizational models capturing organiza-
tional entities and their relationships. Access rules control
which rights shall be granted to which users. In case of
PAIS, for example, access rules specify which tasks (i.e.,
work items) shall be offered to which users in their work-

lists during the execution of a particular process.
Due to changes of the organization or evolving security

policies, access rules have to be frequently adapted. This,
in turn, must be effectively handled by the EIS in order to
be able to cope with organizational changes in a quick, flex-
ible, and reliable (secure) way. So far, only little research
has been spent on the evolution of access rules and the re-
sulting effects on the underlying EIS. In particular, access
rules might be subject to the following kind of changes:

1. Organizational Change: Access rule adaptations
might become necessary after changes of organiza-
tions and organizational models respectively [10, 11].
Assume that access control within a PAIS (i.e., the as-
signment of work items to users) is reflected by the
simple access rules depicted in Fig. 1. Assume that
these rules are based on organizational model OM. To
streamline the organization, units LoanM and LoanH
are merged into organizational unit LoanH’ and role
Clerk is deleted from OM resulting in organizational
model OM’. Obviously, access rule AR1 is not af-
fected by the organizational change whereas access
rules AR2 and AR3 now refer to entities no longer
present in OM’. If the affected access rules were not
adapted this could threaten robustness or security con-
straints of the PAIS. Worst case, for access rules which
cannot be resolved properly, the associated task is of-
fered to unauthorized users (e.g., process administra-
tor, users working on preceding tasks, etc.).

2. Direct Changes: Generally, it must be also possible to
adapt access rules directly within EIS (cf. Fig. 2). This
often becomes necessary, for example, for access rules
not specified precisely enough. Either the access rule
covers a too broad range of users (i.e., only a subset of
the users qualifying for the access rules actually work
on the associated work items) or it is too narrow (e.g.,
the related task is always delegated to substitutes). In
both cases, the specified access rules do not reflect the
real situation. As a consequence, task assignment is
handled outside the system and thus might be not prop-
erly documented. Furthermore, manual task assign-

b) Access control within
process-aware information system:

For task1: AR1 (Role = Secretary)

For task2: AR2 (Role = Clerk)

For task3: AR3 (OrgUnit = LoanM OR OrgUnit = LoanH)

MERGE

OrgUnit=
Bank

OrgUnit=
LoanD

OrgUnit=
InvestD

OrgUnit=
LoanS

OrgUnit=
LoanM

OrgUnit=
LoanH

Role=
Clerk

Role=
Secr.

ACTORS

a) Organizational
Model OM:

Δ

OrgUnit=
Bank

OrgUnit=
LoanD

OrgUnit=
InvestD

OrgUnit=
LoanS

OrgUnit=
LoanH‘

Role=
Secr.

ACTORS

Organizational
Model OM‘:

not affected by Δ

affected by Δ

affected by Δ

DELETE

task1 task2 task3

AR1 AR2 AR3

Figure 1. Organizational changes affecting access rules

ment or adaptation can be complex and error-prone.

1) Access Rule
Acquisition

2) Access Rule
Definition

3) Access Rule
Deployment

4) Access Rule
Evaluation

Access Rule Mining

Direct Access
Rule Changes

Figure 2. Access rule life cycle

In [10, 11] we presented an approach for specifying or-
ganizational models and for propagating changes of such
models to access rules. In particular, such adaptations be-
come necessary to maintain correctness and consistency of
access rules; e.g., avoiding the situation where no actor
qualifies for a specific access rule anymore. However, our
previous work has not considered direct changes of access
rules so far; i.e., changes which are independent of whether
the underlying organizational model is changed. This will
become necessary, if access rules are to be optimized or
corrected (e.g., if a work item within a PAIS is manually
assigned to a more specialized role as the current one).

One approach for the (semi-) automatic determination of
access rule optimizations is access rule mining [8, 14] (cf.
Fig. 2). Using special mining techniques, it can be detected
whether and how users deviate from the pre-modelled ac-
cess rules within daily business life. As first example as-
sume that a work item within a PAIS is always passed to a
subtitute. Another example could be that two users A and

B qualify for a particular task (i.e., work item), but the task
is always selected by A. Then, the associated access rules
should be optimized by applying direct access rule changes.

In this paper we present our CEOSIS1 framework for
evolving access rules in a controlled and secure way. There
are two basic requirements for such a framework. First
of all, access rule changes must be conducted in a correct
way; i.e., they must not violate any structural constraints
set out by the access rule specification. To fulfill this re-
quirement we base the definition of access rule changes on
an operator tree representation and equip respective opera-
tors with formal pre- and post-conditions which ensure their
correct application. Second, the formal semantics of access
rule changes must be specified. This guarantees their un-
ambigous application and supports the precise analysis of
change effects. To achieve this, we base the semantics of
access rule changes on the effects they have on associated
valid actor sets; i.e., the set of actors who qualify for the par-
ticular access rule. This enables, for example, the analysis
of access rule change effects on user worklists in PAIS.

The remainder of this paper is organized as follows: In
Sect. 2 we provide background information. Sect. 3 defines
change operations for access rules and Sect. 4 provides their
formal semantics. In Sect. 5 we discuss related work. We
close with a summary and outlook in Sect. 6.

2 Organizational models and access rules

In this section we provide information needed for the for-
mal underpinning of our work.

1CEOSIS: Controlled Evolution of Organizational Structures in
Information Systems

2.1 Organizational (meta) model

An organizational meta model captures all entities and
relations an organizational model may consist of (i.e.,
the meta model can be seen as the schema which can
be instantiated by concrete organizational models). The
organizational meta model OMM used in this paper is
based on the Role Based Access Control Model (RBAC)
[6]. As depicted in Fig. 3 it consists of entity types
OrganizationalUnit, Actor, and Role. Concrete
organizational units (e.g., clinic) can be hierarchically
related to each other by relation is subordinated.
Similarly, concrete roles can be specialized by introducing
sub roles (relation specializes); i.e., the sub role inher-
its all abilities of the superior role, but may have additional
ones. Finally, actors can have roles (relation has) and be-
long to organizational units (belongs to).

OrgUnits Actors Roles

is subordinated

has

specializes

belongs to

(0,1)

(0,n) (0,1) (0,n) (0,n)

(0,1) (0,n)(0,n)

Figure 3. Org. meta model (in ER notation)

In this paper, we use a well-established, but rather sim-
ple organizational meta model OMM to focus on core issues
related to access rule changes. In principle, OMM and the
subsequent considerations can be transferred to more com-
plex organizational meta models as well (e.g., capturing en-
tities such as abilities or substitution relations) [11].

Based on our OMM concrete organizational models can
be defined, i.e., an organizational model OM is an in-
stance of OMM (cf. Def. 1). One example is depicted
in Fig. 4a. OM captures three organizational units, where
treatment area and administration are hierar-
chically subordinated to unit medical clinic. The
most general role used in this model is staff which
is specialized by roles internist, assistant, and
secretary. Finally, actors are assigned to roles and be-
long to an organizational unit (e.g., actor Hunter has role
secretary and belongs to unit administration).

Definition 1 (Organizational model) An organizational
model is a tuple OM = (Actors, Roles, OrgUnits,
has, belongs to, is subordinated,
specializes), where:

• Actors corresponds to the set of actors (i.e., the people
performing activities or accessing data objects),

• Roles corresponds to the set of roles,

• OrgUnits corresponds to the set of organizational units,

• has ⊆ Roles × Actors corresponds to the relation
linking actors to roles,

• belongs to ⊆ OrgUnits × Actors corresponds
to the relation linking actors to organizational units,

• is subordinated ⊆ OrgUnits × OrgUnits de-
fines the organizational hierarchy, and

• specializes ⊆ Roles × Roles defines the role hi-
erarchy.

Furthermore, the following notions on relations are needed:

- R(x) := {y ∈ X | (x,y) ∈ R} for any relation
R ⊆ X × Y ∈ {has, belongs to, specializes,
is subordinated} and any x ∈ X

- R∗ is the transitive closure of R

Consider Fig. 4. An example for generic relation
R(x) given in Def. 1 is has(assistant) = Black
(with R = ’has’). The semantics of the two relations
is subordinated and specializes can be defined
as follows: All actors belonging to an organizational unit
also belong to its superordinated organizational units (e.g.,
actors Smith, Black, Hunter, and Dr.Smith all be-
long to org. unit medical clinic, Fig. 4). If an actor
has a particular role she will also possess all superior roles
(e.g., actor Black has roles assistant and staff).

2.2 Access rules

We provide a notion for access rules and specify their
formal semantics. We need this information later in order
to be able to reason about access rule changes.

Definition 2 (Elementary access rule) Let OM =
(Actors, ...) be an organizational model (cf. Def. 1).
An elementary access rule EAR on OM is defined as follows:
EAR ≡ (EAR0 ←− τ∗)2 |

(EAR1 ←− (Role = r)) |
(EAR2 ←− (OrgUnit = o)) |
(EAR3 ←− (Role+ = r)) |
(EAR4 ←− (OrgUnit+ = o)).

Formal semantics of elementary access rule EAR is defined over
the set of valid actors qualifying for EAR based on OM. We denote
this set as VAS(OM, EAR) ⊆ Actors with

• VAS(OM, EAR0) = ∅
• VAS(OM, EAR1) = has(r) (where has(r) corre-

sponds to the set of actors with role r, cf. Def. 1)

• VAS(OM, EAR2) = belongs to(o) (i.e., the set of
actors belonging to unit o)

• VAS(OM, EAR3) = has(specializes∗(r))
(where has(specializes∗(r)) corresponds to the set
of actors having role r or a more specialized one, cf. Def. 1)

• VAS(OM, EAR4) = has(is subordinated∗(o))
(i.e., the set of actors belonging to organizational unit o or
a subordinated one).

2τ∗ denotes an empty term.

OrgUnit = medical clinic

OrgUnit = administrationOrgUnit = treatment area

Actor = Dr. Smith Actor = Black Actor = Hunter

Role = internist Role = secretary

is _subordinated is subordinated

belongs_tobelongs_to

Role = assistant

belongs_to

has

Role = staff

has

specializesspecializes

has

a) Organizational Model OM:

b) Access Rules on OM:

AR1 Role+=‘staff’
AR2 OrgUnit=‘treatment area’
AR3 (Role=’secretary’) OR (Role=’assistant’)
AR4 NOT(OrgUnit+=’medical clinic’)

specializes

Actor = Jones

has

OrgUnit = therapy center

Actor = Walter

Role = therapist

is _subordinated

belongs_to

has

Actor = Ward

belongs_to

c) Valid Actor Sets:

VAS(OM,AR1) = {Dr. Smith, Black, Hunter, Jones}
VAS(OM,AR2) = {Dr. Smith, Black}
VAS(OM,AR3) = {Black, Hunter, Jones}
VAS(OM,AR4) = {Jones}

Figure 4. Organizational model, access rules, and valid actor sets

Fig. 4b+c show two elementary access rules AR1 and
AR2 and the associated valid actor sets based on organi-
zational model OM. Taking Def. 2 the general notion of
access rules can be formalized. It is based on elementary
access rules which can be combined by logical operators
AND, OR, and NOT. Note that we restrict the complex-
ity of access rules by using negation only in the context of
elementary access rules. However, this constitutes no re-
striction regarding the expressiveness of access rules. Any
negation contained within an access rule AR can be always
pushed to the elementary access rules contained within AR.

Definition 3 (Access rule) Let OM be an organizational
model. An access rule AR is defined as concatenation of other
access rules by using logical operators AND, OR, and NOT. For-
mally:

AR ≡ EAR | NAR | CAR | DAR
where

• EAR constitutes an elementary access rule (cf. Def. 2),

• NAR ←− (NOT (EAR)) where EAR is an elementary ac-
cess rule,

• CAR ←− (AR1 AND AR2) where AR1 and AR2 are
access rules, and

• DAR ←− (AR1 OR AR2)where AR1 and AR2 are ac-
cess rules.

Formal semantics of EAR has been given in Def. 2, the one of
NAR, CAR and DAR is defined as follows:

• VAS(OM,NAR) = Actors \ VAS(OM,AR) corre-
sponds to the set of actors not qualifying for access rule
AR,

• VAS(OM,CAR) = VAS(OM,AR1) ∩ VAS(OM,AR2)
corresponds to the set of actors qualifying for access rules
AR1 and AR2,

• VAS(OM,DAR) = VAS(OM,AR1) ∪ VAS(OM,AR2)
corresponds to the set of actors qualifying for access rules
AR1 or AR2

AROM denotes the set of all access rules over OM.

Fig. 4b depicts two non-elementary access rules AR3
and AR4.

3 Access rule changes

To be able to analyze the effects of changes of an
organizational model we introduced respective change op-
erations with precise formal semantics in [10, 11]. Sim-
ilarly, in this section, we define operations for changing
access rules directly; e.g., deleting AND-terms. The formal
semantics of these change operations is presented in Sect. 4.
It is based on the valid actor sets of the access rules before
and after the changes.

3.1 An operator-tree-based representa-
tion for access rules

In order to precisely define access rule changes, it is nec-
essary to base their definition on a representation other than
the intuitive one presented in Def. 3. Using the notion given
in Def. 3 it would be difficult to express at which substruc-
ture level of nested access rule structures, a new AND-term
shall be added. Thus we have to find a representation which

allows for the convenient access to any substructure level of
an access rule. For an access rule AR, a suitable represen-
tation for this is provided by operator tree OPAR = (O,L).
O denotes the set of all operator nodes and L denotes the
set of all elementary access rules AR is built of. OPAR can
be determined similarly to building the operator-tree for a
formula or SQL-statement. An example of an access rule
with corresponding operator-tree is shown in Fig. 5. Fig. 6
shows another example for an imbalanced operator tree.

AND

O R NO T

Role='secretary Role='assistant OrgUnit='administration'

AR (((Role = ’secretary’) OR (Role = ’assistant’)) AND
 (NOT(OrgUnit = ’administration’)))

OPAR

O

L

Figure 5. Access rule and operator tree

OPAR = (O,L) has the following characteristics.

• OPAR is a binary tree

• O corresponds to the set of non-leaf nodes (including
the tree root) and L corresponds to leaf nodes

• The tree has to be traversed in inorder to build the as-
sociated access rule term.

• NOT is only used as direct predecessor node of a leaf
(remember that NOT can be only used in the context
of elementary access rules in CEOSIS, cf. Def. 3).

How an operator tree can be built based on a given access
rule is shown in the next section.

3.2 Basic access rule change

We introduce a complete set of basic change operations
on access rules3 and their operator-tree representation re-
spectively. Before we define basic notions on operator trees:

Definition 4 (Functions on op trees) Let AR ∈ AROM be
an access rule and let OPAR be its operator tree. Then:

• The empty tree τ consists of one void node; i.e., it reflects
empty access rule EAR0 ←− τ∗.

• Let OPOM denote the set of all operator trees for access
rules over an organizational model OM. Let further N de-
note the total set of nodes belonging to any operator tree
from OPOM . Then:

3Complete means that any access rule AR ∈ AROM can be trans-
formed in any other access rule AR’ ∈ AROM by applying a sequence
of change operations <op1, . . . , opn>.

– pred: OPOM ×N 	→N with pred(OPAR, n) = p de-
termines direct predecessor node p of node n inOPAR

– root: OPOM 	→ N determines the root node of oper-
ator tree OPAR.

• Merge: OPOM ×OPOM × {AND,OR,VOID4}	→ OPOM

Merge(S,T,op=[AND|OR|V OID]) = S’ merges two oper-
ator trees S and T using op, where T = OPEAR with EAR
being an elementary access rule. Root of S’ is op, left child
tree is S, right child tree is OPEAR

• Substitute: OPOM × OPOM × OPOM 	→ OPOM

Substitute(T,S,S’) = T’ substitutes sub tree S in T by sub tree
S’ resulting in T’ (cf. Fig. 6, Step 1).

• Optimize: OPAR 	→ OPAR

Optimize(T) = T’ works as follows: If operator tree T con-
tains empty tree τ then T can be optimized by merging τ and
its sibling tree S resulting in optimized tree T’. More pre-
cisely: Let O be the predecessor of τ and S. Then O, τ , and
S can be merged to S (cf. Fig. 6, Step 2).

Our set of basic change operations allows for adding,
deleting, and negating terms within operator trees. We
claim that these change operations can only be applied to
correct access rules resulting in correct access rules again
(i.e., access rules ∈ AROM). Structural correctness is pre-
served by formal pre- and postconditions for the change op-
erations. Within our ADEPT process management technol-
ogy [12, 13], we additionally ensure compliance with the
underlying organizational model OM by forbidding access
rule changes which refer to entities not being present in OM
(e.g., referring to Role=’clerk’ in Fig. 4).

Definition 5 (Basic change operations on access rules)
Let AR ∈ AROM be an access rule with operator tree OPAR.
Let further EAR be an elementary access rule with operator tree
OPEAR. Assume that AR is transformed into another access rule
AR’ ∈ AROM (represented by OPAR′) by applying change
op ∈ {addTerm, deleteTerm, negateTerm} with

• addTerm(OPAR, S, [AND|OR|V OID],EAR) = OPAR′

Precond.: S is sub-tree of OPAR

Postcond.: OPAR′ =

Optimize(Substitute(OPAR,S,Merge(S,OPEAR)))

• deleteTerm(OPAR,S) = OPAR′

Precond.: S is sub-tree ofOPAR and S does not contain the
root node (the root node is deleted by tree merging if a direct
sub tree of the root node is deleted)
Postcond.: OPAR′ = Optimize(Substitute(OPAR,S,τ))

• negateTerm(OPAR,S) = OPAR′

Precond.: S is leaf node; i.e., S = OPEAR and
pred(OPAR,EAR) �= NOT (the second condition is neces-
sary to achieve operator trees where NOT is only used in
connection with leaf nodes according to the definition of ac-
cess rules.).
Postcond.: OPAR′ = Substitute(OPAR,S,OPNOT (EAR))

4VOID represents the empty operator.

An example for applying the delete operation is depicted
in Fig. 6. First the sub tree reflecting elementary access rule
EAR ← Role=’secretary’ (cf. Fig. 5) is substituted
by empty tree τ . Then the optimization function is run on
the resulting tree which eliminates τ by lifting up remaining
elementary access rule EAR’ ← Role=’assistant’
to the next level within the operator tree.

AND

NOTRole='assistant'

OrgUnit='administration'

a) AR (((Role = ’secretary’) OR (Role = ’assistant’)) AND
 (NOT(OrgUnit = ’administration’)))
op = deleteTerm(OPAR, OPEAR) with EAR (Role = ‘secretary’)

b) Step 1: Substitution by
OPAR’:AND

OR NOT

Role='assistant' OrgUnit='administration'

Step 2: Optimization

OPAR:

Figure 6. Delete operation with subsequent
optimization

Generally, a sequence of basic change operations
<op1, . . . , opn> can be used to built up the operator tree
for an access rule starting with the empty tree. Consider ac-
cess rule AR as given in Fig. 5. Then the following basic
change operations build OPAR starting from empty tree τ :

op1: OP1 = addTerm(τ , τ , VOID, Role=’secretary’)
op2: OP2 = addTerm(OP1, OP1, OR, Role=’assistant’)
op3: OP3 = addTerm(OP2, OP2, AND, OrgU-
nit=’administrator’)
op4: OPAR = negateTerm(OP3, OPOrgUnit=′assistant′)

Formal semantics of these change operations is pre-
sented in Sect. 4.

3.3 High-level access rule changes

For better user support we have defined some high-
level change operations based on the basic change oper-
ations introduced in Def. 5. As an example consider
substituteAccessRules(OPAR,S,T) where sub tree S of op-
erator tree OPAR is substituted by another sub tree T.
At access rule level this means to substitute a part of
the access rule by another access rule. A substitution of
access rules can be accomplished by applying operation
deleteTerm(OPAR,S) first, followed by a sequence of add-
Term operations. They build up T within OPAR by insert-
ing the elementary access rules T consists of. The pre- and
postconditions of high-level change operations can be de-
rived by aggregating the pre- and postconditions of the un-
derlying basic change operations. Due to lack of space we
omit further details here.

4 Semantics of access rule changes

The formal semantics of access rule changes can be ex-
pressed based on the effects these changes have on valid
actor sets (cf. Sect. 2.2). In particular, we are interested
in statements such as ”the valid actor set of access rule AR
is reduced, expanded, or not affected by the change”. Note
that for the following considerations on semantics we as-
sume direct access rule changes; i.e., the underlying organi-
zational model is not modified.

Definition 6 (Reduction / Expansion of Actor Sets) Let
AR ∈ AROM be an access rule (over organizational model
OM) and let ΔAR be a change which transforms AR into
another access rule AR’ ∈ AROM . Then the effect of
ΔAR on AR is called

• reduction iff VAS(OM,AR’) ⊂ VAS(OM,AR)

• expansion iff VAS(OM,AR’) ⊃ VAS(OM,AR)

• zero effect iff VAS(OM,AR’) = VAS (OM,AR)

4.1 Root level and substructure level
changes

For elementary access rules the analysis of change
effects is easy to accomplish. For example, let EAR
←− (Role = ’doctor’) and EAR’ ←− (Role =
’therapist’) be two elementary access rules with op-
erator trees OPEAR and OPEAR′ respectively. Let further
change op = addTerm(OPEAR, OPEAR, AND, EAR’) =
AR transform EAR into AR. Then the effect on the actor set
of EAR is a reduction, more precisely, the actor sets of AR
can be determined as intersection of the actor set of EAR
and EAR’.

Things will become more complicated if the access rules
to be changed are more complex. Consider, for exam-
ple, access rule AR in Fig. 5 and elementary rule EAR’
←− (Role = ’therapist’). If we apply change
operation opa = addTerm(OPAR,OPAR,AND,EAR’) (cf.
Fig. 7a) the effect can be determined as intersection
of the actor set of AR and EAR’ again. However,
when applying change operation opb = addTerm(OPAR,
OPNOT (OrgUnit=′administration′), AND,EAR’) (cf. Fig.
7b), effects on the valid actors sets of AR cannot be deter-
mined straightforward. Note that opa operates at the root
level of AR (the formal meaning is described in the follow-
ing), whereas opb operates at a substructure level of AR.
The notions of root level and substructure level changes of
access rules are presented in Def. 7.

Definition 7 (Root vs. substructure level changes) Let
OPAR be the operator tree representation of access rule

OPAR:

a) OPAR
a:

opa = addTerm(OPAR, OPAR, AND, Role=’therapy)

b) OPAR
b:

opb = addTerm(OPAR, OPNOT(OrgUnit=’administration*), AND, Role=’therapy)

AND

OR NOT

Role='secretary' Role='assistant' OrgUnit='administration

AND

OR NOT

Role='secretary' Role='assistant' OrgUnit='administration

AND

Role='therapy'

AND

OR

NOTRole='secretary' Role='assistant'

OrgUnit='administration

Role='therapy'

AND

sub tree S

Figure 7. Access rule changes

AR ∈ AROM and let op be a basic change operation which
transforms AR into another access rule AR’ ∈ AROM . Then we
denote op as

• root level change if either a new root is added to operator
tree OPAR or the root of OPAR is deleted (e.g., by tree
merging after applying the delete operation). This holds for
• op = addTerm(OPAR,OPAR,[AND|OR|V OID],EAR)

• op = deleteTerm(OPAR,S) with
pred(root(S)) = root(OPAR)
• op = negateTerm(OPEAR, OPEAR) with
EAR being an elementary access rule

• substructure level change otherwise

The root level change depicted in Fig. 7a) shows
that operator tree OPAR grows by adding a new
root node, whereas the substructure level change (cf.
Fig. 7b) is conducted by substituting sub tree S =
OPNOT (OrgUnit=′administration′) by sub tree S’ =
OP(NOT (OrgUnit=′administration′))AND(Role=′therapist′).
As it can be seen new root AND has been added to S.

4.2 Basic access rule changes

The basic idea of our approach for determining the ef-
fects of access rule changes on valid actor sets (in terms
of reduction, expansion, or zero effect) is as follows: First,
it must be checked how root level changes affect valid ac-
tor sets of respective access rules. Second, for substructure

level changes the following observation can be made: A
substructure level change is a root change regarding the af-
fected sub tree (cf. Fig. 9); i.e., we can determine effect e
∈ {reduction, expansion, or zero effect} on the affected sub
tree. Effect e can then be ”propagated” upwards to the root
of the new operator tree. Then, the question is if, for exam-
ple, a reduction on the affected sub tree remains a reduction
when being propagated to the root level.

Thus, for determining the effects of basic access rule
changes on valid actor sets a first step is to present the ef-
fects of root level changes on operator trees.

Proposition 1 (Effects of root level changes) Consider the
following elements:

• OPAR: Operator tree of access rule AR over organi-
zational model OM with S and T being sub trees of
OPAR with pred(OPAR,root(S)) = pred(OPAR,root(T)) =
root(OPAR). S corresponds to access rule ARS and T to
access rule ART

• EAR: Elementary access rule with operator tree OPEAR

• op: root level change which transforms AR into another ac-
cess rule AR’ with operator tree OPAR′

Then: The effect (i.e., formal semantics) of operation op on
OPAR can be determined as follows (see Fig. 8):

op: addTerm(OPAR,OPAR,[AND|OR],EAR) = OPAR′

• op: addTerm(OPAR, OPAR, AND, EAR) = OPAR′ :
VAS(OM,AR’) = VAS(OM,AR) ∩ VAS(OM, EAR)
=⇒ Reduction
• op: addTerm(OPAR, OPAR, OR, EAR) = OPAR′ :
VAS(OM,AR’) = VAS(OM,AR) ∪ VAS(OM,EAR)
=⇒ Expansion

op: deleteTerm(OPAR,S) = OPAR′

• root(OPAR) = AND:
VAS(OM,AR) = VAS(OM,ART) ∩ VAS(OM,ARS)
⊆ VAS(OM,ART) = VAS(OM,AR’)
=⇒ Expansion
• root(OPAR) = OR:
VAS(OM,AR) = VAS(OM,T) ∪ VAS(OM,S)
⊇ VAS(OM,T) = VAS(OM,AR’)
=⇒ Reduction

op: negateTerm(OPEAR, OPEAR) = OPAR′ :
VAS(OM,AR’) = Actors \ VAS(OM,EAR)
=⇒ effect cannot be determined in terms of
expansion, reduction, or zero effect

Fig. 8 illustrates the different cases covered by Prop. 1.
So far, we have only considered root level changes. For

substructure level changes, we first determine the (mini-
mal) sub tree which is affected by the respective change
(affected sub tree). The effects of the substructure change
on the affected sub tree can be determined using Prop. 1
for root level changes and are reflected by the resulting sub
tree (cf. Def. 2). According to Prop. 1, it is not possible
to derive the effects of negation in terms of reduction, ex-
pansion, or zero effect. We know that VAS(OM,AR) and

OPAR’: AND

EAR

1a) OPAR: OPAR’: AND

EAR

1b) OPAR:

2a) OPAR: AND

T S

OPAR’:

T

2b) OPAR: OR

T S

OPAR’:

T

OPAR’: NOT

EAR

3) OPAR:

EAR

addTerm addTerm

deleteTerm deleteTerm

negateTerm Illustration of Proposition 1

Figure 8. Effects of root level changes

VAS(OM,AR’) are disjoint which can be used to describe
the semantics of the negation operation. To describe the
semantics of substructure level changes, the effects on the
affected sub tree are propagated to the root. In this paper,
we show how this can be done for effects reduction, expan-
sion, and zero effect. Obviously, for other effects (such as
disjoint) other techniques have to be applied in order to an-
alyze the effects of substructure level changes. Thus, in this
paper, we focus on operations addTerm and deleteTerm and
leave negateTerm to future work.

Proposition 2 (Effects of substructure level changes)
Let OPAR be the operator tree of access rule AR over organi-
zational model OM. Let further op be a change operation which
transforms AR into another access rule AR’ with operator tree
OPAR′ . Then: The affected and resulting sub trees of op on
OPAR can be determined as follows (see Fig. 9):

1. op: addTerm(OPAR,S,[AND|OR|V OID],EAR) = OPAR′

=⇒
• affected sub tree of op on OPAR is S
• resulting sub tree of op on OPAR is S’ with root(S’) =
pred(OPAR′ ,root(S)) having sub trees S and OPEAR

2. op: deleteTerm(OPAR, S) = OPAR′ =⇒
• affected sub tree of op on OPAR is S’ with root(S’) =
pred(OPAR,root(S))
• resulting sub tree of op on OPAR is T with T being a sib-
ling tree of S based on S’ in OPAR

To determine the overall effect of a substructure level
change on the whole access rule AR, the effect on the af-
fected sub tree has to be pushed towards the root node of
the operator tree of AR’. Pushing means that we climb up
the tree over the different operators and check the impact
on the effects. We start with pushing the effect over the pre-
decessor node of the root of the affected sub tree (one step
push) and extend this to a multi step push towards the root
afterwards. To specify the one step push we introduce no-
tion embracing tree of the affected sub tree. An example for
an embracing tree is shown in Fig. 10.

1) op: addTerm(OPAR, S, [AND|OR|VOID], EAR) = OPAR’

OPAR: OPAR’:

EAR
Affected sub tree

Resulting sub tree S’

2) op = deleteTerm(OPAR, S)

OPAR:
Affected sub tree S’

Resulting sub tree

OPAR’:

S

S

S
T

T

Figure 9. Affected and resulting sub trees

Definition 8 (Embracing tree) Let OPAR be an operator
tree and let S be a sub tree of OPAR. Then we denote T as
the embracing tree of S in OPAR iff
• T is sub tree of OPAR or T = OPAR

• root(T) = pred(OPAR,root(S))

Based on Def. 8, the one step push can be formalized.

Proposition 3 (One step push) LetOPAR be the operator
tree of access rule AR over organizational model OM. Let
further op be a change operating at substructure level with
affected sub tree S. Assume that the effect of op on S corre-
sponds to e ∈ {Reduction, Expansion, Zero effect}. Then:
One step push of e towards root(OPAR) means to lift up e
over root(T) where T denotes the embracing tree of S’; i.e.,
we analyze how e is affected by lifting it over the next oper-
ator node on the way to the root. The effect of the one step
push remains e; i.e., e is not affected by a one step push.

For example, if the effect on the affected sub tree is a
reduction, intuitively the effect remains a reduction if we
”climb over” an OR node. The effects of a one step push
over an AND node is illustrated by Fig. 10. The valid ac-
tor set of affected sub tree S is reduced according to Prop.
1; i.e., VAS(OM,S’) ⊆ VAS(OM,S). Lifting this effect
over the root node of the embracing sub tree T’, which is an
AND node, keeps the effect of reduction.

Finally, it has to be analyzed how a multiple step push
towards the root affects the effects of substructure level
changes. As stated in Prop. 3, a one step push does not
affect them. A multi step push can be seen as a one step
push which is applied several times. Each time the initial
effect of the substructure level change remains the same.
Thus, overall, the multi step push does not affect the effect
of the substructure level change. This means that the se-
mantics of a substructure level change can be determined as
easily as for a root level change. Thus, for any complex ac-
cess rule and any basic change operation, the effect can be

OPAR:

op: addTerm(OPAR, S, AND, EAR) = OPAR’ with EAR OrgUnit='therapy center'

OPAR’:

AND

OR

NOTRole='secretary' Role='assistant'

OrgUnit='administration

AND

AND

OR

NOT

Role='secretary' Role='assistant'

OrgUnit='administration'

Role='therapy'

AND

OrgUnit='therapy center'AND

resulting sub tree S’
of op on OPAR

S

One step push over root
node of embracing sub
tree T’ of S’

VAS(OM,T) = {Walter}
 Reduction

Embracing tree T of S on OPAR

VAS(OM,T) = {Walter, Ward}

OrgUnit='therapy center'

VAS(OM,S’) = {Walter}
 Reduction

VAS(OM,S) = {Walter,
Ward, Dr. Smith, Black}

Figure 10. Effects of one step push (example)

determined quickly. This is important, for example, in the
context of adapting user worklist in PAIS as we will discuss
in Sect. 4.4.

Proposition 4 (Multi step push) Let OPAR be the oper-
ator tree of access rule AR over organizational model OM.
Let further op be a substructure level change operation with
affected sub tree S and resulting sub tree S’. Assume that the
effect of op on S is e ∈ {Reduction, Expansion,Zero effect}.
Then: Multi step pushing e towards root(OPAR) means to
lift up e over all nodes on the path to root(OPAR) starting
from root(T) where T denotes the embracing tree of S’. The
effect of a multi step push towards the root remains e; i.e., e
is not affected by the multi step push.

4.3 High-level access rule changes

A high-level access rule change Δ can be understood
as an ordered sequence of basic access rule changes
op1, . . . , opn. Thus, it can be tried to aggregate the effects
of op1, . . . , opn in order to determine semantics of Δ. How-
ever, such aggregation might be impossible; e.g., if the ef-
fect of opi is a reduction and the effect of opj is an expan-
sion (i �= j). In this case, valid actor sets before and after the
high-level change have to be re-calculated and compared.
Generally, re-calculation could be used for determining the
effects of basic change operations as well. However, as we
will show in Sect. 4.4, in many applications it is benefi-
ciary to have a ”quick check” on the effects of access rule
changes. For example, if we know that a change has ef-
fect expansion or zero effect, we can delay the adaptation

of user worklists in PAIS until the system is offline. Con-
trary, it can be expensive to always recalculate the new valid
actor sets immediately.

Several optimizations exist regarding high-
level access rule changes. For high-level change
substituteAccessRules(OPAR,S,T), for example, ad-
ditional information from the underlying organizational
model can be used to determine the effects on the valid ac-
tor sets of the changed access rules. Assume, for example,
that for access rule AR ← Role=’R1’, we substitute R1
by role R2 resulting in AR’← Role=’R2’. Then, if we
knew from the underlying organizational model that R2
is a sub role of R1, it can be concluded that the effect on
the valid actor set of AR is either zero effect or reduction.
Reason is that the same set of actors or less actors will
be assigned to a sub role when compared to the superior
one. Vice versa, if a role is substituted by a superior one
within an access rule, the effect on the valid actor set will
be zero effect or an expansion. Same considerations hold
for the hierarchial relations between organizational units.
We omit formal definitions here.

4.4 Discussion

Using our CEOSIS approach, any basic substructure
level change can be treated as root level change since the ef-
fect remains the same when being pushed towards the root.
Thus, the effect of any access rule change can be precisely
determined in terms of reduction, expansion, or zero effect
of valid actor sets. One big advantage in the context of ac-
cess control and user worklist management in PAIS is the
following: If access rules are changed, the effects on the
valid actor sets have to be propagated to user worklists at
some point in time. This point in time can be chosen de-
pending on the particular change effect. If, for example,
the valid actor set is reduced, this poses a potential security
threat on the system: Either work items might be offered to
users who are no longer qualified or, if the valid actor set
becomes empty, no actor will be qualified anymore. Hence,
user worklists should be adapted immediately. Contrary, if
the valid actor set is expanded, the only consequence might
be that work items are not offered to all qualified users.
Since this poses no security threat on the PAIS, the prop-
agation of the access rule change to user worklists may be
delayed; e.g., done offline when no user is working on the
PAIS. Finally, in case of zero effect no action is required
at all. Thus, for direct access rule changes, the approach
presented in this paper supports a quick check on the ef-
fects such that adequate action can be taken; e.g., a delayed
propagation. For access rule changes triggered by organi-
zational modifications we have precisely determined the ef-
fects on the valid actor sets in [11]. For the third possibility,
i.e., the interplay between organizational modifications and

direct access rule changes, interesting effects on each other
might occur, on which we will report in future papers.

5 Related work

In literature many approaches have been presented deal-
ing with challenging issues related to access control (e.g.,
[7, 1, 18, 17]). Most of these approaches apply Role-Based
Access Control (RBAC) models for defining and manag-
ing user privileges [6, 9, 1, 5]; e.g., to control the access
to business documents and database objects, or to resolve
the set of actors that qualify for a newly activated task
in a PAIS [3, 2, 16, 18, 17]. Practical issues related to
RBAC (e.g., NIST’s proposed RBAC standard, integration
of RBAC with EIS infrastructures, RBAC in commercial
products) are summarized in [5].

There are only few approaches [15, 7, 4] which address
the problem of organizational change. In [7] eight cate-
gories of structural changes on organizational models are
identified which can be captured by our change framework
as well. We additionally follow a rigorous formal approach
in order to be able to derive the effects of organizational
changes on related access rules as well. The approach in-
troduced in [4] deals with the evolution of access rules in
workflow systems. However, only very simple scenarios
are described without any formal foundation. Furthermore,
the compact definition of access rules is aggravated by the
lack of adequate abstraction mechanisms (e.g., hierarchical
structures). In [15] important issues related to the controlled
change of organizational models are discussed. However,
no concrete solution approach is provided (like, for exam-
ple, formal change operators with well-defined semantics or
mechanisms for adapting access rules after model changes).

6 Summary and outlook

In this paper, we introduced an approach for managing
the life cycle of access rules. In our previous work, the im-
pact of organizational changes on access rules have already
been elaborated. Here, we focused on direct access rule
changes (e.g., due to optimizations or access rule mining).
To be able to directly change access rules, a complete set
of change operations was presented. Furthermore, we pre-
cisely defined the formal semantics of these change opera-
tions in order to avoid any ambiguity when applying these
operations. The correct definition of change operations re-
quired the introduction of a tree-based representation of ac-
cess rules with associated tree operations.

In future work, we will elaborate the effects of access
rule changes (direct or due to organizational changes) on
user worklists in process-aware information systems. For
this we plan to build up cost models to measure the effi-

ciency of different adaptation strategies. Furthermore, we
will dig deeper into the area of access rule mining.

References

[1] E. Bertino. Data security. Data & Knowl. Eng., 25(1–
2):199–216, March 1998.

[2] E. Bertino, E. Ferrari, and V. Alturi. The specification and
enforcement of authorization constraints in WFMS. ACM
Trans. on Inf. and Sys. Sec., 2(1):65–104, 1999.

[3] R. Botha and J. Eloff. A framework for access control in
workflow systems. Information Management and Computer
Security., 9(3):126–133, 2001.

[4] D. Domingos, A. Rito-Silva, and P. Veiga. Authorization
and access control in adaptive workflows. In Proc. ES-
ORICS’03, pages 23–28, 2003.

[5] D. Ferraiolo and D. Kuhn. Role based access control. In
15th National Computer Security Conference, 1992.

[6] D. Ferraiolo, D. Kuhn, and R. Chandramouli. Role–Based
Access Control. Artech House, 2003.

[7] J. Klarmann. A comprehensive support for changes in or-
ganizational models of workflow management systems. In
Proc. ISM’01, pages 375–387, 2001.

[8] T. Ly, S. Rinderle, P. Dadam, and M. Reichert. Mining staff
assignment rules from event-based data. In Int’l Workshop
BPI’05, pages 177–190, 2005.

[9] NIST. Proposed Standard for Role-Based Access Control.
http://csrc.nist.gov/rbac/rbacSTDACM.pdf, 2004.

[10] S. Rinderle and M. Reichert. On the controlled evolu-
tion of access rules in cooperative information systems. In
CoopIS’05, pages 238–255, 2005.

[11] S. Rinderle and M. Reichert. A formal framework for adap-
tive access control models. Int’l Journal of Data Semantics,
IX(9):82–112, 2007.

[12] S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria
for dynamic changes in workflow systems – a survey. Data
and Knowl. Engineering, 50(1):9–34, 2004.

[13] S. Rinderle, M. Reichert, and P. Dadam. Flexible support of
team processes by adaptive workflow systems. Distributed
and Parallel Databases, 16(1):91–116, 2004.

[14] S. Rinderle-Ma and W. van der Aalst. Life-cycle support
for staff assignment rules in information systems. Techni-
cal Report WP-213, Beta Research School for Operations
Management and Logistics, TU Eindhoven, 2007.

[15] W. v.d. Aalst and S. Jablonski. Dealing with workflow
change: Identification of issues an solutions. Int’l Journal
of Comp. Systems, Science and Eng., 15(5):267–276, 2000.

[16] J. Wainer, P. Barthelmess, and A. Kumar. W–RBAC – a
workflow security model incorporating controlled overrid-
ing of constraints. International Journal of Collaborative
Information Systems, 12(4):455–485, 2003.

[17] B. Weber, M. Reichert, W. Wild, and S. Rinderle. Balanc-
ing flexibility and security in adaptive process management
systems. In CoopIS’05, pages 59–76, 2005.

[18] M. zur Muehlen. Resource modeling in workflow applica-
tions. In 1999 Workflow Management Conf., pages 137–153,
1999.

