
Discovering Reference Process Models by Mining Process Variants

Chen Li
University of Twente

The Netherlands
lic@cs.utwente.nl

Manfred Reichert
University of Ulm

Germany
manfred.reichert@uni-ulm.de

Andreas Wombacher
University of Twente

The Netherlands
a.wombacher@utwente.nl

Abstract

Recently, a new generation of adaptive Process-Aware
Information Systems (PAIS) has emerged, which allows for
dynamic process and service changes (e.g., to insert, delete,
and move activities and service executions in a running pro-
cess). This, in turn, has led to a large number of process
variants derived from the same model, but differing in struc-
ture due to the applied changes. Generally, such process
variants are expensive to configure and difficult to maintain.
This paper provides a sophisticated approach which fosters
learning from past process changes and allows for mining
process variants. As a result we obtain a generic process
model for which the average distance between this model
and the respective process variants becomes minimal. By
adopting this generic model in the PAIS, need for future
process configuration and adaptation decreases. We have
validated the proposed mining method and implemented it
in a powerful proof-of-concept prototype.

1 Introduction

In today’s dynamic business world, success of an enter-
prise increasingly depends on its ability to react to changes
in its environment in a quick, flexible and cost-effective
way. Along this trend a variety of process and service sup-
port paradigms as well as corresponding specification lan-
guages (e.g., WS-BPEL, WS-CDL) have emerged. In ad-
dition, different approaches for flexible and adaptive pro-
cesses exist [9, 11]. Generally, process and service adap-
tations are not only needed for configuration purposes at
buildtime, but also become necessary during runtime to deal
with exceptional situations and changing needs; i.e., for sin-
gle instances of composite services and processes respec-
tively, it must be possible to dynamically adapt their struc-
ture (e.g. to insert, delete or move activities during runtime).

In response to this need adaptive process management

0Supported by the Netherlands Organization for Scientific Research
(NWO) under contract number 612.066.512

technology has emerged [17]. It allows to adapt and config-
ure process models at different levels. This, in turn, results
in large collections of process model variants (process vari-
ants for short), which are created from the same process
model, but slightly differ from each other in their structure.
Generally, a large number of process variants may exist in
a Process-Aware Information System (PAIS) [8]. As ex-
ample take an automotive supply chain where a supplier of
car parts requires different process variants per car manu-
facturer and potentially per car model. This results in a
high number of process variants, which is comparable to the
number of customers of the supplier. To support the differ-
ent choreographies the supplier requires the same number of
orchestrations, i.e., process variants which have to be mod-
eled and maintained. This number further increases when
considering concrete cases as well. Here ad-hoc deviations
from the standard processes occur frequently at process in-
stance level, resulting in a multitude of process variants.

In most approaches which allow to adapt and config-
ure process models, the resulting process variants have to
be maintained separately. Then even simple changes (e.g.
due to new laws) might require manual re-editing of a large
number of process variants. Over time this leads to de-
generation and divergence of the respective process models,
which aggravates maintenance significantly [4].

Though considerable efforts have been made to ease pro-
cess configuration and customization [9, 11, 4], we do not
yet utilize the knowledge resulting from these process adap-
tations. Fig. 1 describes the goal of this paper. We aim at
learning from past process changes by ”merging” process
variants into one generic process model, which ”covers”
these variants best. By adopting this generic model as ref-
erence process model within the PAIS, cost of change and
need for future process adaptations will decrease.

Based on the two assumptions that (1) process models
are well-formed (i.e., block-structured like in BPEL) and
(2) all activities in a process model have unique labels, this
paper deals with the following fundamental research ques-
tion: Given a set of process variants, how to derive a refer-
ence process model out of them, such that the average dis-

1

…

Reference process model S

customization & adaptation

Process variant S1 Process variant S2 Process variant Sn

mining & learning

Reference process

model S’ as learned

from process variants

Feedback

evaluation

Figure 1. Mining a new reference model with
less expected changes

tance between the reference model and the process variants
becomes minimal?

The distance between the reference process model and
a process variant is measured by the number of high-level
change operations (e.g., to insert, delete or move activities
[9]) needed to transform the reference model into the vari-
ant. Furthermore, change distance directly represents the ef-
forts needed for process adaptation and customization. Ob-
viously, the challenge is to find the ”best” reference model,
i.e., the one with minimal average distance to the variants.

Sec. 2 gives background information needed for under-
standing this paper. In Sec. 3 we introduce a method to
represent process models in a way such that they can be
mined effectively. Sec. 4 presents our algorithm for min-
ing process variants. We validate it in Sec. 5 and sketch
a proof-of-concept prototype in Sec. 6. Sec. 7 discusses
related work. We conclude with a summary in Sec. 8.

2 Backgrounds

We first introduce basic notions needed in the following:
Process Model: Let P denote the set of all sound process

models. A particular process model S = (N,E, . . .) ∈ P
is defined as well-structured Activity Net [9]. N consti-
tutes the set of process activities and E the set of control
edges (i.e., precedence relations) linking them. To limit the
scope, we assume Activity Nets to be block-structured (like
in BPEL). An example is depicted in Fig. 2.

Process change: We assume that a process change is ac-
complished by applying a sequence of change operations to
a given process model S over time [9]. Such change opera-
tions modify the initial process model by altering the set of
activities and their order relations. Thus, each application
of a change operation results in a new process model. We
define process change and process variants as follows:

Definition 1 (Process Change and Process Variant) Let
P denote the set of possible process models and C be the
set of possible process changes. Let S, S′ ∈ P be two
process models, let Δ ∈ C be a process change, and let

σ = 〈Δ1,Δ2, . . . Δn〉 ∈ C∗ be a sequence of process
changes performed on initial model S. Then:

• S[Δ〉S′ iff Δ is applicable to S and S′ is the (sound)
process model resulting from the application of Δ to
S. We also denote S′ as variant of S.

• S[σ〉S′ iff ∃ S1, S2, . . . Sn+1 ∈ P with S = S1, S′ =
Sn+1, and Si[Δi〉Si+1 for i ∈ {1, . . . n}.

Examples of high-level change operations include insert
activity, delete activity, and move activity as implemented
in the ADEPT change framework [9]. While insert and
delete modify the set of activities in the process model,
move changes activity positions and thus the structure of the
process model. For example, operation move(S,A,B,C)
moves activity A from its current position within process
model S to the position after activity B and before activ-
ity C. Operation delete(S,A), in turn, deletes activity A
from process model S. Issues concerning the correct use
of these operations, their generalizations, and formal pre-
/post-conditions are described in [9]. Though the depicted
change operations are discussed in relation to ADEPT, they
are generic in the sense that they can be easily applied in
connection with other process meta models as well [17]. For
example, a process change as realized in the ADEPT frame-
work can be mapped to the concept of life-cycle inheritance
known from Petri Nets [14]. We refer to ADEPT since it
covers by far most high-level change patterns and change
support features when compared to other approaches [17].

Definition 2 (Bias and Distance) Let S, S′ ∈ P be two
process models. Then: Distance d(S,S′) between S and S′

corresponds to the minimal number of high-level change
operations needed to transform S into S′; i.e., d(S,S′) :=
min{|σ| | σ ∈ C∗ ∧ S[σ〉S′}. Furthermore, a sequence
of change operations σ with S[σ〉S′ and |σ| = d(S,S′) is
denoted as bias between S and S′.

The distance between process models S and S′ is the
minimal number of high-level change operations needed
for transforming S into S′. The corresponding sequence
of change operations is denoted as bias between S and S′.1

Usually, the distance between two process models measures
the complexity for model transformation or configuration.
As example take Fig. 3. Here, distance between model S
and variant S1 is one, since we only need to perform one
change operation move(S,E,A,D) to transform S into S1

[7]. In general, determining the bias and distance between
two process models has complexity at NP level [7].

Here, we use high-level change operations rather
than change primitives (i.e., elementary changes like
adding/removing nodes and edges) to measure the distance

1Generally, it is possible to have more than one minimal set of change
operations to realize the transformation from S into S′, i.e., given process
models S and S′ their bias needs not to be unique. A detailed discussion
of this issue can be found in [14, 7].

2

between process models. This allows to guarantee sound-
ness of process models and also provides a more meaning-
ful measure for distance [7].

Trace: A trace t on process model S = (N,E, . . .)
denotes a valid and complete execution sequence t ≡<
a1, a2, . . . , ak > of activities ai ∈ N on S according to the
control flow set out by S. All traces process model S can
produce are summarized in trace set TS . t(a ≺ b) is denoted
as precedence relation between activities a and b in trace
t ≡< a1, a2, . . . , ak > iff ∃i < j : ai = a ∧ aj = b. Here,
we only consider traces composing ’real’ activities, but no
events related to silent ones (i.e., activity nodes which con-
tain no operation and exist only for control flow purpose
[7]). Finally, we will consider two process models being the
same if they are trace equivalent, i.e., S ≡ S′ iff TS ≡ TS′ .

3 Represent Process Models as Order Matrices

Theoretical backgrounds of high-level change operations
have been extensively discussed in ADEPT [9]. One key
feature of our ADEPT change framework is to maintain
the structure of the unchanged parts of a process model
[9]. For example, if we delete an activity this will neither
influence the successors nor predecessors of this activity,
and therefore also not their order relations. To incorpo-
rate this feature in our approach, rather than only looking at
direct predecessor-successor relationships between two ac-
tivities (i.e., control edges), we consider the transitive con-
trol dependencies between all activity pairs; i.e., for process
model S = (N,E, . . .) ∈ P , for every pair of activities
ai, aj ∈ N , ai 	= aj their order relations compared to each
other are examined. Logically, we determine order relations
by considering all traces the respective process model can
produce (cf. Sec. 2). Results are aggregated in a matrix
A|N |×|N |, which considers four types of control relations
(cf. Def. 3):

Definition 3 (Order matrix) Let S = (N,E, . . .) ∈ P be
a process model with N = {a1, a2, . . . , an}. Let further TS
denote the set of all traces producible on S. Then: Matrix
A|N |×|N | is called order matrix of S with Aij representing
the order relation between activities ai,aj ∈ N , i 	= j iff:

• Aij = ’1’ iff (∀t ∈ TS with ai, aj ∈ t ⇒ t(ai ≺ aj))
If for all traces containing activities ai and aj , ai al-
ways appears BEFORE aj , we denote Aij as ’1’, i.e.,
ai always precedes of aj in the flow of control.

• Aij = ’0’ iff (∀t ∈ TS with ai, aj ∈ t ⇒ t(aj ≺ ai))
If for all traces containing activities ai and aj , ai al-
ways appears AFTER aj , we denote Aij as a ’0’, i.e.,
ai always succeeds of aj in the flow of control.

• Aij = ’*’ iff (∃t1 ∈ TS , with ai, aj ∈ t1∧ t1(ai ≺ aj))
∧ (∃t2 ∈ TS , with ai, aj ∈ t2 ∧ t2(aj ≺ ai))
If there exists at least one trace in which ai appears
before aj and another trace in which ai appears after

aj , we denote Aij as ’*’, i.e., ai and aj are contained
in different parallel branches.

• Aij = ’-’ iff (¬∃t ∈ TS : ai ∈ t ∧ aj ∈ t)
If there is no trace containing both activity ai and aj ,
we denote Aij as ’-’, i.e., ai and aj are contained in
different branches of a conditional branching.

A

C

B

E

F

GD

Process model S Order matrix of S

Activities in a

same block

AND-Split

AND-Join

XOR-Split

XOR-Join

‘0’ : successor

‘1’ : predecessor

‘*’ : AND-block

‘-’ : XOR-block

Figure 2. Process model and its order matrix

Fig. 2 shows an example. Besides control edges, which
express direct predecessor-successor relationships, model S
also contains four kinds of control connectors: AND-Split
and AND-Join (corresponding to flow in BPEL), XOR-Split
and XOR-join (corresponding to switch or pick in BPEL).
The order matrix can represent all these relationship. For
example, activities A and B never appear in the same trace
since they are contained in different branches of an XOR
block. Therefore, we assign ’-’ to matrix element AAB .
Similarly, we obtain the relation for each pair of activities.
The main diagonal of the matrix is empty since we do not
compare an activity with itself.

Under certain conditions, an order matrix uniquely rep-
resents the process model it was created from. This is stated
by Theorem 5. Before giving this theorem, we need to de-
fine the notion of substring of trace:

Definition 4 (Substring of trace) Let S ∈ P be a process
model and let t, t′ ∈ TS be two traces on S. We denote t
as sub-string of t′ iff [∀ai, aj ∈ t, t(ai ≺ aj) ⇒ ai, aj

∈ t′ ∧ t′(ai ≺ aj)] and [∃ak ∈ N : ak /∈ t ∧ ak ∈ t′].
Theorem 5 Let S, S′ ∈ P be two process models with
same activity set N = {a1, a2, . . . , an}. Let further TS ,
TS′ be the related trace sets and An×n, A′

n×n be the or-
der matrices of S and S′. Then S 	= S′ ⇔ A 	= A′, if
[¬∃t1, t

′
1 ∈ TS : t1 is a substring of t′1] and [¬∃t2, t

′
2 ∈

TS′ : t2 is a substring of t′2].
We give a proof of Theorem 5 in [7]. According to The-

orem 5, there will be a one-to-one mapping between a pro-
cess model S and its order matrix A, if the substring con-
straint is met. (Note that the substring constraint can be
easily checked and handled [7]); i.e., if the conditions of
Theorem 5 are met, the order matrix will uniquely represent
the process model. Analyzing its order matrix (cf. Def. 3)
will then be sufficient in order to analyze the process model.

Using the order matrix, we can easily identify activities
belonging to the same block. In particular, such activities
have the same order relations with respect to activities from
outside this block. As example, take the order matrix de-
picted in Fig. 2. If we ignore the internal relation between

3

activities A and B, the order relations between A and all
other activities are the same as for B (as marked up in Fig.
2, where the first two rows are identical when ignoring the
order relation between A and B). Based on the order matrix,
we can determine a process block containing A and B; fur-
ther these activities are contained in different branches of
an XOR-block (as indicated by AAB = ’-’). Our algorithm
for mining process variants (cf. Sec. 4) utilizes the sketched
representation form and block concept.

4 Discovering Reference Process Models

We present a sophisticated algorithm for mining a col-
lection of process variants. Our goal is to derive a new ref-
erence model which is easier configurable than the current
one. Since we restrict ourselves to block-structured pro-
cess models, we can build the new reference model by en-
larging blocks, i.e., we first identify two activities that can
form a block, then we merge this block with other activ-
ities and blocks respectively to form a larger block. This
procedure continues until all activities and blocks respec-
tively are merged into one single block. This block and its
internal structure then represent the new reference process
model, we are looking for.

Our approach for mining process variants is as follows:

1. For all process variants calculate their order matrices
and aggregate them to one high-dimensional matrix
representing the whole variant collection (Sec. 4.1).

2. Based on this high-dimensional matrix, determine ac-
tivities to be clustered in a block (Sec. 4.2).

3. Determine the order relation the clustered activities
shall have within this block. (Sec. 4.3).

4. After building a new block in Steps 2 and 3, re-
flect the clustering of activities by adjusting the high-
dimensional matrix accordingly (Sec. 4.4).

5. Repeat Steps 2, 3 and 4 until all activities are clus-
tered together, i.e., until the new process model is con-
structed by enlargement of blocks.

These five steps are explained in the following. An il-
lustrative example is given in Fig. 3. Reference model
S has been configured into five process variants Si ∈ P
(i = 1, 2, . . . 5), which are weighted based on the number
of process instances created from them. In our example,
30% of all process instances were executed according to
variant S1, while 15% of the instances did run on S2. If
we only know process variants, but have no runtime infor-
mation about related instance executions, we will assume
the variants to be equally weighted; i.e., every process vari-
ant has weight 1/n, where n corresponds to the number of
variants in the system.

We can easily compute the distances (cf. Def. 2) be-
tween reference model and process variants. For example,

when comparing S with S1 we obtain distance one (cf. Fig.
3). Note that we only need to perform one change oper-
ation (i.e., move(S,E,A,D); cf. Def. 1) to transform S
into S1. Or when comparing S with S2, needed change op-
erations are move(S,D,B,C) and move(S,E,B,C), and
distance between S and S2 is two. Based on the weight
of each variant, we can compute average weighted distance
between reference model S and its variants; e.g., the dis-
tances between S and Si are 1(i=1), 2(i=2), 2(i=3), 1(i=4),
and 2(i=5); and the weights are 30%, 15%, 20%, 20%, and
15% (cf. Fig. 3). Thus average weighted distance equals
1×0.3+2×0.15+2×0.2+1×0.2+2×0.15 = 1.5. This
means we need to perform on average 1.5 change operations
to configure the reference model to a process variant or re-
lated instance respectively. Generally, the average weighted
distance between a reference model and the process variants
represents how ”close” they are. The goal of our mining al-
gorithm is to discover a reference model for a collection of
(weighted) process variants with minimal average weighted
distance to these process variants. In the following, we as-
sume that each process variant has the same activity set (for
a relaxation of this constraint see [6]).

Process configuration

S1: 30%

S2: 15%

S3: 20%

S4: 20%

S5: 15%

B C

E

A D

DA C B E

A

D

E

B C

B EA

C

D

A E

B

C

D

Weight of process variant,

based on number of executions

Distance (S, S1) = 1

Distance (S, S2) = 2

Distance (S, S3) = 2

Distance (S, S4) = 1

Distance (S, S5) = 2

Average weighted distance = 1.5 change / instance

A B C D E

S: reference process model

AND-Split AND-Join XOR-Split XOR-Join

Figure 3. Illustrative example
4.1 Aggregated Order Matrix

For the given collection of process variants, we first com-
pute the order matrix (cf. Def. 3) for each process variant.
In our case, we need to determine five order matrices (cf.
Fig. 4). Afterwards, we analyze the order relation for each
pair of activities considering all order matrices derived be-
fore. As the order relation between two activities might be
not the same in all order matrices, this analysis does not re-
sult in a fixed relationship, but provides a distribution for
the four types of order relations (cf. Def. 3). Regarding
our example, activity C is in 65% of all cases a successor
of activity B (as in S1, S2, S4), in 20% of all cases a pre-
decessor of B (as in S3), and in 15% of the cases B and C

4

are contained in different branches of an XOR block (as in
S5) (cf. Fig. 4). Therefore, we can define the order re-
lation between two activities a and b as a 4-dimensional
vector Vab = (v0

ab, v
1
ab, v

∗
ab, v

−
ab): each field then corre-

sponds to the frequency of the respective relation type (’0’,
’1’, ’*’ or ’-’) as specified in Def. 3. Take our example
from Fig. 4; here v1

CB corresponds to the frequency of all
cases with activities B and C having order relationship ’1’,
i.e., where C is predecessor of B. In our example, we obtain
VCB = (0.65, 0.2, 0, 0.15).

We define an aggregated order matrix as follows:

Definition 6 (Aggregated Order Matrix) Let Si ∈ P ,
i = 1, 2, . . . , n be a collection of process variants with
same activity set N . Let further Ai be the order ma-
trix of Si, and let wi represent the number of process in-
stances being executed based on Si. The Aggregated Order
Matrix of all process variants is defined as 2-dimensional
matrix Vm×m with m = |N | and each matrix element
vjk = (v0

jk, v1
jk, v∗

jk, v−
jk) being a 4-dimensional vector. For

τ ∈ {0, 1, ∗,−}, element vτ
jk expresses to what percentage,

activities aj and ak have order relation τ within the collec-
tion of process variants Si. Formally: ∀aj , ak ∈ N, aj 	=
ak : vτ

jk = (
∑n

i=1,Aijk
=′τ ′ wi)/(

∑n
i=1 wi).

The aggregated order matrix V for the process variants
from Fig. 3 is shown in Fig. 4.

In an aggregated order matrix, main diagonal is always
empty since we do not specify the order relation of an ac-
tivity with itself. For all other elements, a non-filled value
in a certain dimension means it corresponds to zero.

In Section 3 we have shown that we can use an order
matrix to determine blocks in a process model: i.e., two ac-
tivities can be clustered into a block if they have same order
relation with respect to other activities. As we will show,

0 1

* -

‘0’ : successor

‘1’ : predecessor

‘*’ : AND-block

‘-’ : XOR-block

S1: 30% S2: 15% S3: 20% S4: 20% S5: 15%

V

VCB = (0.65, 0.20, 0, 0.15)

‘0’ : 65%

‘1’ : 20%

‘*’ : 0%

‘-’ : 15%

O
rd

e
r

m
a
tric

e
s

A
g
g
re

g
a
te

d

o
rd

e
r m

a
trix

Figure 4. Aggregated order matrix V

similar idea can be applied when analyzing an aggregated
order matrix. Our goal is to derive an optimal reference
process model for the given variants from this representa-
tion form.

4.2 Determine Activities to Be Clustered

This subsection describes how to derive blocks of our
reference model based on an aggregated order matrix.
There are two issues we have to consider. First, we have to
decide which activities shall be blocked. Second, we must
choose an order relation for them. This subsection deals
with the first issue, the second one is addressed in Sec. 4.3.

In an order matrix, two activities can be clustered in a
block if they have same order relations with respect to the
other activities (cf. Sec. 3). We can apply similar idea
when analyzing an aggregated order matrix. However, in an
aggregated order matrix, the relationship between two ac-
tivities is expressed as 4-dimensional vector showing the
distributions of the order relations over all process vari-
ants. When determining the activities that can be clustered
in a block, it would be too restrictive to require precise
matching as in the case of an order matrix. For this rea-
son, we first introduce function f(α, β) which expresses
the closeness between two vectors α = (x1, x2, ..., xn) and
β = (y1, y2, ..., yn):

f(α, β) =
α · β

|α| × |β| =
∑n

i=1 xiyi√∑n
i=1 x2

i ×
√∑n

i=1 y2
i

f(α, β) ∈ [0, 1] computes the cosine value of the an-
gle θ between the two vectors α and β in Euclid space. If
f(α, β) = 1 holds, α and β will exactly match in their
directions; f(α, β) = 0 means, they do not match at all.
When comparing closeness between vBE and vCE, for in-
stance, we obtain f(vBE, vCE) = 0.968. This high value im-
plies that these two vectors are close to each other, though
they are not the same.

Based on f(α, β) we introduce Separation. It indi-
cates how well two activities of an aggregated order matrix
are suited for being clustered in a block. More precisely,
Separation(A,B) expresses how similar order relations of
activities A and B are when compared to the rest of activ-
ities. In our example from Fig. 3, Separation(A,B) is
determined by the closeness (measured by the cosine value)
of f(vAC, vBC), f(vAD, vBD) and f(vAE, vBE). Generally, we
define cluster separation as follows:

Separation(a, b) =

∑
x∈N\{a,b} f2(vax, vbx)

|N | − 2

N corresponds to the set of activities. Like most cluster-
ing algorithms [13], we square the cosine value to empha-
size the differences between the two compared vectors. Fi-
nally, by dividing this expression by |N | − 2, we normalize

5

its value to a range between [0, 1]. Regarding our example
from Fig. 3, we obtain Separation(A,B) = 0.905.

We determine the pair of activities mostly suited to form
a block by measuring how much each pair of activities is
separated from the others. We accomplish this by comput-
ing the separation value for each activity pair. The higher
this value is, the more suited the two activities are for be-
ing clustered. For our example from Fig. 3, the separation
values are shown in Fig. 5. We denote this table as sepa-
ration table. It becomes clear that activities B and C have
the highest separation value 0.936 (marked up in grey). We
therefore choose B and C for creating our first block.

Highest

separation value

for B and C

Figure 5. Separation table of the aggregated
order matrix in Fig. 4

4.3 Determine Internal Order Relations

After having decided that activities B and C shall be first
clustered in a block, we have to determine the order rela-
tion these two activities shall have. In addition, we measure
how good such choice is. For this purpose, we introduce
Cohesion, which indicates how significant particular order
relations between two activities of the same cluster are.

In our aggregated order matrix, the relationship between
activities B and C is depicted as a 4-dimensional vector
vBC = (0.2, 0.65, 0, 0.15). It shows the distribution values
of the four types of order relations in a 4-dimensional space.
Obviously, when building a reference process model, only
one of the four order relations can be chosen. Therefore, we
want to choose that type of order relation which is most sig-
nificant when compared to the others. Regarding our exam-
ple, the significance of each order relation can be evaluated
by the closeness vBC and the four axes in the 4-dimensional
space have. These four axes can be represented by four
benchmarking vectors: v0 = (1, 0, 0, 0), v1 = (0, 1, 0, 0),
v∗ = (0, 0, 1, 0), and v− = (0, 0, 0, 1). Therefore, we can
compute the significance of each order relation using for-
mula f(α, β) (cf. Sec. 4.2), where α = vBC and β is one of
the four benchmarking vectors. Regarding our example, the
closest axis to vBC is v1 (f(vBC, v1) = 0.933). Therefore, we
decide that B shall precede C within the derived block (cf.
Def. 2).

We can use cohesion to evaluate how good our choice is:

Cohesion(a, b) =
2×max{f(vab, v

0), f(vab, v
1), f(vab, v

∗), f(vab, v
−)}−1

The measure has value range [0,1]. Cohesion(a, b) will
equal one if there is a dominant order relation, i.e., vab

is on one of the four axes. Cohesion(a, b) will equal
zero if vab is (0.25, 0.25, 0.25, 0.25), i.e., no order rela-
tion is more significant than others. Regarding our example,
Cohesion(B,C) equals 0.867. This indicates high signifi-
cance for setting B as predecessor of C.

4.4 Recompute the Aggregated Order
Matrix

We have discovered the first block of our reference pro-
cess model, which contains B and C. We have further de-
cided that B shall precede C, and that the significance of
this order relation is 0.867. We now have to decide on the
relationship between this newly created block and the other
activities.

Regarding the process variants from Fig. 3, B and C do
not always constitute an elementary block (i.e., a block only
containing B and C). To be more precise, B and C represent
an elementary block in S1, S3 and S5, but not in S2 and
S4. Nevertheless, B and C are most suited to form a block
based on our analysis of the aggregated order matrix. This
requires adaptation of the original aggregated order matrix
in order to represent the situation in which B and C are clus-
tered in a block.2 We accomplish this adaptation by com-
puting the means of the order relations between {B, C} and
the remaining activities. For example, as vBD = (0, 1, 0, 0)
and vCD = (0.15, 0.65, 0.2, 0) hold, the order relation be-
tween the newly created block (B,C) and activity D will be
(vBD + vCD)/2 = (0.075, 0.825, 0.1, 0). Such computation
is applied to all remaining activities outside this block.

Generally, after clustering activities a and b, the new
aggregated order matrix V ′ can be calculated as follows:

1. ∀x ∈ N \ {a, b} :

{
v′
(a,b)x = (vax + vbx)/2

v′
x(a,b) = (vxa + vxb)/2

2. ∀x, y ∈ N \ {a, b} : v′
xy = vxy

The aggregated order matrix V ′ we obtain after cluster-
ing B and C is shown in Fig. 6. Since B and C are replaced
by a block containing them, the matrix resulting after the re-
computation is one dimension smaller than V . Afterwards,
we treat this block like a single activity.

4.5 Mining Result and Evaluation

After obtaining a newly aggregated order matrix, we re-
peat the three steps as described in Sec. 4.2, 4.3 and 4.4;
i.e., first identify the activities (and blocks respectively) to
be clustered, then determine their order relation within the
block, and finally re-compute the aggregated order matrix
considering the newly determined block. In every iteration,

2Our approach is different to traditional clustering algorithms [13], in
which only distances are re-computed, but not the original dataset. We give
a discussion why we need to change the original dataset in [6].

6

A (B,C) D E

A 100% 100% 100%

(B,C) 100% 7.5% 82.5% 7.5% 62.5%

10% 30%

D 100% 82.5% 7.5% 65% 20%

10% 15%

E 100% 62.5% 7.5% 20% 65%

30% 15%

Figure 6. New aggregated order matrix V ′ af-
ter clustering B and C

we merge two activities (and blocks respectively) into a big-
ger block. This iterative clustering continues until all activ-
ities (and blocks respectively) are clustered; then we have
constructed the new reference model. Obviously, the num-
ber of required iterations equals the number of activities mi-
nus one. The final result after all iterations is shown in Fig.
7.

Fig. 7 shows the process model S′ we have discovered
through mining the variants from Fig. 3. It also shows how
such result is constructed after every iteration (shown as a
number at the right-bottom corner of each block). In itera-
tion 1, B and C are clustered to form a block; in the next it-
eration, such block is enlarged by clustering activity E with
it. Finally, after the fourth iteration, all activities have been
clustered together into a single block, i.e., we have obtained
our new reference model. Fig. 7 also shows cohesion val-
ues, which reflect the significance of the order relations we
haven chosen in the different iteration.

5 Validation

The complexity of the mining algorithm described in
Sec. 4 corresponds to O(n3). Like most clustering algo-
rithms in data mining [13], this algorithm is trying to solve
a complex combinatorial optimization problem in polyno-
mial time. This leads to the benefit that it can solve a prob-
lem with large scale, but has the disadvantage that it only
searches for a local, but not global optimum. Therefore, it
is not possible to prove that the algorithm really does what
we want, i.e., to reduce biases in the system by improving
the reference process model.

However, we can compare the process model discovered
with our mining method with some other models. This com-
parison is based on how many high-level change operations

0.867

B C E D
0.9390.792

A
1.0

1
2

3

4

Figure 7. The resulting process model S′

are required to configure the respective process variants out
of the reference model (cf. Def. 2). For this purpose,
for each candidate model Scan, we assume that it is con-
sidered as the new reference model and then calculate the
average weighted distance between Scan and the five vari-
ants S1 − S5; e.g., in Fig 3 the average weighted distance
between S and the five variants is 1.5, which reflects how
close the current reference model is to the process variants.
Using same method, we can compute the average weighted
distance between candidate reference model Scan and vari-
ants S1 − S5.

There are two groups of process models that are candi-
dates for becoming the new reference process model. The
first group contains all models we already know. Clearly,
reference model S and the five variants S1, S2, S3, S4 and
S5 (cf. Fig. 3) belong to this group. Comparing these exist-
ing models with the one we obtained through process vari-
ant mining, for example, already shows that it is not suf-
ficient to simply set the reference model to the most fre-
quently used process variant (S1 in our example).

The second group includes the process models we can
discover through mining. Clearly, process model S′ (cf.
Fig. 7), as obtained with our algorithm for process vari-
ant mining, belongs to this group. So far there has been no
algorithm directly supporting the mining of process vari-
ants. Therefore, we apply traditional techniques from the
field of process mining [15], and compare them with our
approach. The goal of process mining techniques is to dis-
cover process models from execution log. An execution log
typically documents the start and/or end of each activity in
a PAIS, and therefore reflects PAIS’s behavior. In our case,
we assume that the behavior of all process variants is fully
covered by an execution log, i.e., we enumerate all traces
producible by each process variant from Fig. 3 (cf. Fig.
8). We then use them as input for different process mining
techniques. We consider Alpha algorithm [16], Alpha++
algorithm [19], Heuristics Mining [18], and Genetic Min-
ing [2], which are some of the most well-known algorithms
for discovering process models from execution logs. The
discovered process models are shown in Fig. 8. Both Al-
pha and Alpha++ algorithm result in model Salp, whereas
Heuristics mining provides model Shrs. We do no consider
the model discovered by genetic mining, since it is too dif-
ferent; i.e., genetic mining resulted in a complex model with
six silent activities (and the distances to each process variant
is higher than three).

Salp: Alpha, Alpha ++, algorithm

A

E

C

B D A D

E

C

B

Shrs:Heuristics mining

S1:30% : {AEBCD, ABECD, ABCED}

S2:15% : {ABDEC, ABEDC}

S3:20% : {ACBED}

S4:20% : {ABCDE, ABDCE}

S5:15% : {ABED, ACED}

Process

mining

Trace sets

Figure 8. The candidate process models

7

We now compute the distances between each candidate
model Scan from the two groups and the five process vari-
ants S1 − S5. Further, we compute the average weighted
distance. Comparison results are depicted in Fig. 9. For ex-
ample, if we consider process variant S1 as reference model,
the distance between this model and variants S2, S3, S4, and
S5 will equal 2, and average weighted distance between S1

and the five process variants will be 1.4 (cf. column S1 in
Fig. 9). This means that when choosing S1 as new reference
model we would need to perform on average 1.4 changes to
configure the process variants out of S1. Similarly, we can
compute distances for the other candidate models. Alto-
gether, results from Fig. 9 show that S′ (cf. Fig. 7) –the
process model resulting from the approach we suggested
–has the shortest average weighted distance to the given
process variants. This means, setting S′ as new reference
process model would require lowest efforts for configuring
the variants. More precisely, we only need to perform on
average 1.15 changes to configure a process variant out of
S′. Note that process models Salp and Shrs, we discov-
ered by applying conventional process mining algorithms
(based on traces), show the largest average distance to the
five variants. We obtained similar results when mining other
collections of process variants.

Comparison results do not imply that process variant
mining is better than process mining. Each of them has
different inputs and goals. Compared to process mining,
which tries to discover the underlying process model by
learning from the behavior of a system, process variant min-
ing focuses on discovering a reference process model which
can be easily configured to the different process variants. If
we apply the process mining evaluation criteria to measure
the result of process variant mining, the discovered process
model S′ (cf. Fig. 7) is also not good in terms of behav-
ior, since the behavior of S′, which can be expressed by
the trace set producible by S′, is limited when compared to
the trace sets the variants can produce. We give a detailed
comparison in [6].

Obviously, it is not possible to enumerate all process
models, since the number of process models can be infi-
nite. However, as depicted In Fig. 9, the discovered process

Figure 9. The average weighted distance be-
tween candidate models and the variants

model is at least better than the process models currently
known and the process models which can be produced by
process mining algorithms based on traces. Keeping our
search at local optimum will also make our approach appli-
cable to real cases, since we can limit complexity at poly-
nomial level.

6 Proof-of-Concept Prototype

The described approach has been implemented and
tested using Java. Figure 10 shows a screenshot of our pro-
totype. We use ADEPT2 Process Template Editor [10] as
the tool to create process variants. For each process model,
the editor can generate an XML document with all infor-
mation about the process model (like nodes, edges, blocks)
being marked up. We store created variants in the variants
repository folder ”instances” (cf. Fig. 10) for mining.

The mining algorithm has been developed as stand-alone
Java program, independent from the process editor. It can
read the process variants and generate the result model ac-
cording to the XML schema of the process editor. The re-
sulting model is stored in the folder ”miningResult” and can
be visualized using the ADEPT2 editor.

7 Related Work

A variety of techniques for process mining has been
suggested in literature [15, 18, 2, 16]. As illustrated in
Sec. 5, traditional process mining is different from pro-
cess variant mining due to its different goals and inputs.
[5] presents a method to mine configurable process mod-
els based on event logs, but is still focusing on discover-
ing process models from event logs rather than reducing
efforts for process configuration. In addition, a few tech-
niques have been proposed to learn from process variants
by mining change primitives. [1] measures process model
similarity based on change primitives and suggests mining
techniques using this measure. However, this approach does
not consider important features of our process meta model;
e.g., it is unable to deal with silent activities and it does

Figure 10. Screenshot of the prototype

8

also not differentiate AND- and XOR- branchings. Similar
techniques for mining change primitives exist in the field of
association rule mining [13] and maximal sub-graph min-
ing [13] as known from graph theory [12]; here common
edges between different nodes are discovered to construct
a common sub-graph from a set of graphs. To mine high
level change operations, [3] presents an approach based
on process mining techniques, i.e., the input consists of a
change log, and process mining algorithms are applied to
discover the execution sequences of the changes (i.e., the
change meta process). However, this approach simply con-
siders each change as individual operation so that the result
is more like a visualization of changes rather than mining
them. [8] presents a method for retrieving process variants
using a query model, but does not provide any mining sup-
port. None of the discussed approaches aims at creating a
reference process model, which allows for easy and opti-
mized configuration for process variants in future.

8 Summary and Outlook

In this paper, we provide a sophisticated approach to
mine block-structured process variants in order to discover
a reference process model which can be easily configured
to these variants. The proposed algorithm has polynomial
complexity (O(n3)), which allows us to scale up when solv-
ing real-world problems. Based on a quantitative analysis,
we have shown that the reference model discovered with our
approach is better (i.e., requires a low number of change op-
erations for configuring the variants) than all process mod-
els known in the system. It is also better than all models we
can discover based on conventional process mining algo-
rithms [15]. The validation result also implies that current
process mining techniques cannot fulfill the goal of discov-
ering a process model which is easily configurable. To our
best knowledge, this paper has provided the first algorithm
to support the mining of process variants with the goal of
obtaining a reference model which is easily configurable.

Our approach looks promising, but there are still several
questions left open. First we have to include more control
structures (like loops or synchronization constraints for par-
allel activities) as proposed in ADEPT [9] or BPEL. In ad-
dition, we want to design search or heuristic algorithms to
limit differences between original reference process model
and the one we discover through variant mining. In this
way, we can also limit the costs to update the old reference
model to the new one.

References

[1] J. Bae, L. Liu, J. Caverlee, and W.B. Rouse. Process mining,
discovery, and integration using distance measures. In ICWS
’06, pages 479–488, Washington, DC, USA, 2006.

[2] A.K. Alves de Medeiros. Genetic Process Mining. PhD the-
sis, Eindhoven University of Technology, NL, 2006.

[3] C.W. Günther, S. Rinderle, M. Reichert, and W.M.P. van der
Aalst. Change mining in adaptive process management sys-
tems. In CoopIS’06, pages 309–326, 2006.

[4] A. Hallerbach, T. Bauer, and M. Reichert. Managing process
variants in the process lifecycle. In ICEIS ’08, to appear,
2008.

[5] M.H. Jansen-Vullers, W.M.P. van der Aalst, and M. Rose-
mann. Mining configurable enterprise information systems.
Data Knowl. Eng., 56(3):195–244, 2006.

[6] C. Li, M. Reichert, and A. Wombacher. Discovering pro-
cess reference models from process variants using clustering
techniques. Technical Report TR-CTIT-08-30, University of
Twente, Enschede, March 2008.

[7] C. Li, M. Reichert, and A. Wombacher. On measuring pro-
cess model similarity based on high-level change operations.
In ER ’08, 2008.

[8] R. Lu and S.W. Sadiq. Managing process variants as an in-
formation resource. In BPM’06, pages 426–431, 2006.

[9] M. Reichert and P. Dadam. ADEPT flex -supporting dynamic
changes of workflows without losing control. Journal of In-
telligent Info. Sys., 10(2):93–129, 1998.

[10] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive
process management with ADEPT2. In ICDE ’05, pages
1113–1114. IEEE Computer Society, 2005.

[11] M. Rosemann and W.M.P. van der Aalst. A configurable
reference modelling language. Inf. Syst., 32(1):1–23, 2007.

[12] K.H. Rosen. Discrete Mathematics and Its Application.
McGraw-Hill, 2003.

[13] P.N. Tan, M. Steinbach, and V. Kumar. Introduction to Data
Mining. Addison-Wesley, 2005.

[14] W.M.P. van der Aalst and T. Basten. Inheritance of work-
flows: an approach to tackling problems related to change.
Theor. Comput. Sci., 270(1-2):125–203, uary.

[15] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst,
L. Maruster, G. Schimm, and A.J.M.M. Weijters. Workflow
mining: a survey of issues and approaches. Data Knowl.
Eng., 47(2):237–267, 2003.

[16] W.M.P van der Aalst, T. Weijters, and L. Maruster. Workflow
mining: Discovering process models from event logs. IEEE
Trans. on Knowl. and Data Eng., 16(9):1128–1142, 2004.

[17] B. Weber, S. Rinderle, and M. Reichert. Change patterns and
change support features in process-aware information sys-
tems. In CAiSE’07, pages 574–588, 2007.

[18] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering
workflow models from event-based data using little thumb.
Integr. Comput.-Aided Eng., 10(2):151–162, 2003.

[19] L. Wen, J. Wang, and J. Sun. Detecting implicit dependen-
cies between tasks from event logs. In APWeb’06, pages
591–603, 2006.

9

