Aktuelles Schlagwort:
Process Change Patterns

Barbara Weber!, Stefanie Rinderle?, and Manfred Reichert?

LQuality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at
2Inst. Databases and Information Systems, Ulm University, Germany
stefanie.rinderle@uni—ulm.de
3Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

1 Introduction

Process-aware information systems (PAIS) allow for process changes at different
levels. In general, respective changes must be enabled at the process type as well
as the process instance level [1]. While the former become necessary to deal with
the evolving nature of real-world processes (e.g., to adapt the process to legal
changes), the latter are needed to cope with exceptional situations. Vendors often
promise flexible solutions for realizing adaptive PAIS, but force users to realize
process adaptations at a rather low level of abstraction. Apart from this, several
competing paradigms exist, all trying to tackle the need for process flexibility
(e.g., adaptive process management vs. case handling). So far, there has been no
method for systematically comparing the different change frameworks, making
it difficult for PAIS engineers to choose the right technology.

We have studied a variety of processes and process change scenarios from
different domains (e.g. [2,3]). We have further elaborated the change support
features provided by existing tools. Taking these experiences, we have designed
a set of process changes patterns to foster the comparison of existing approaches
with respect to process change definition. More precisely, change patterns al-
low for high-level process adaptations at both the process type and the process
instance level. In this paper we sketch 17 characteristic patterns we identified
as relevant for control flow changes (cf. Fig. 1). Adaptations of other process
aspects (e.g., data or resources) are outside the scope of this paper. Change
patterns reduce the complexity of process change (like design patterns in soft-
ware engineering reduce system complexity) and raise the level for expressing
changes by providing abstractions which are above the level of single node and
edge operations.

As illustrated in Fig. 1, we divide change patterns into adaptation patterns
and patterns for predefined changes. Adaptation patterns allow modifying a pro-
cess schema based on high-level change operations. Generally, adaptation pat-
terns can be applied to the whole process schema; i.e., the region to which they
are applied may be chosen dynamically. By contrast, for predefined changes,

at build-time, the process engineer defines regions in the process schema where
potential changes may be performed during run-time.

For each pattern we provide a name, a brief description, an illustrating ex-
ample, a description of the problem it addresses, a couple of design choices, re-
marks regarding its implementation, and a reference to related patterns. Design
Choices allow for parametrization of patterns keeping the number of distinct
patterns manageable. Design choices which are not only relevant for particular
patterns, but for a whole pattern category, are described only once at the cat-
egory level. Typically, existing approaches only support a subset of the design
choices in the context of a particular pattern. We denote the combination of
design choices supported by a particular approach as a pattern variant.

CHANGE PATTERNS
ADAPTATION PATTERNS (AP)

Pattern Name Scope Pattern Name Scope
AP1: Insert Process Fragment‘*) I/T | AP8: Embed Process Fragment in Loop /T
AP2: Delete Process Fragment 1/T |AP9: Parallelize Process Fragment /T
AP3: Move Process Fragment 1/T |AP10: Embed Process Fragment in Conditional Branch | I/T
AP4: Replace Process Fragment 1/T | AP11: Add Control Dependency /T
AP5: Swap Process Fragment 1/T |AP12: Remove Control Dependency /T
APG6: Extract Sub Process 1/T |AP13: Update Condition /T
AP7: Inline Sub Process /T

PATTERNS FOR PREDEFINED CHANGES (PP)

Pattern Name Scope Pattern Name Scope
PP1: Late Selection of Process Fragments 1/T |PP3: Late Composition of Process Fragments /T
PP2: Late Modeling of Process Fragments I/T |PP4: Multi-Instance Activity /T

I... Instance Level, T ... Type Level
© A process fragment can either be an atomic activity, an encapsulated sub process or a process (sub) graph

Fig. 1. Change Patterns Overview

2 Adaptation Patterns

Adaptation patterns allow to structurally change process schemes. Examples
include the insertion, deletion and re-ordering of activities (cf. Fig. 1). Fig. 2
describes general design choices valid for all adaptation patterns. First, each
adaptation pattern can be applied at the process type or process instance level.
Second, adaptation patterns can operate on an atomic activity, an encapsulated
sub process or a process (sub-)graph (cf. Fig. 2). We abstract from this dis-
tinction and use the generic concept process fragment instead. Third, the effects
resulting from the use of adaptation patterns at the instance level can be per-
manent or temporary. A permanent instance change remains valid until instance
completion (unless it is undone by a user). By contrast, a temporary instance
change is only valid for a certain period of time (e.g. one loop iteration).

We describe four selected adaptation patterns in more detail. These four
patterns allow for the insertion, deletion, movement, and replacement of process
fragments in a given process schema. The Insert Process Fragment pattern (cf.
Fig. 3a) can be used to add process fragments to a process schema. In addition to

Design Choices for Adaptation Patterns
A. What is the scope of the respective pattern?
1. The respective pattern can be applied at the process instance level
2. The respective pattern can be applied at the process type level
B. Where does a respective change pattern operate on? ®
1. On an atomic activity
2. On a sub process
3. Ona process sub-graph
C. What is the validity period of the change?
1. The change can be of temporary nature
2. The change can be of permanent nature
7 Design Choice B is only valid for API-AP10

Design Choice B sub Process | Design Choice C
F1jp{F2j»iF3]
Process Instance |); EE 1st loop iteration
= = Process Instance | l [E}—{D] u!
(e Temporary Change [E ey
ol 7
=L 2nd loop iteration
G =
o g {E} {f
o e ERR
el
Atomic Activity
Sub Graph

Fig. 2. Design Choices for Adaptation Patterns

the general options described in Fig. 2, one major design choice for this pattern
(Design Choice D) describes the way the new process fragment is embedded in
the respective schema. There are systems which only allow to serially insert a
fragment between two directly succeeding activities. By contrast, other systems
follow a more general approach allowing the user to insert new fragments between
two arbitrary sets of activities. Special cases of the latter variant include the
insertion of a fragment in parallel to another one or the association of the newly
added fragment with an execution condition (conditional insert). The Delete
Process Fragment pattern, in turn, can be used to remove a process fragment
(cf. Fig 3b). No additional design choices exist for this pattern. Fig. 3b depicts
alternative ways in which this pattern can be implemented.

The Move Process Fragment pattern (cf. Fig. 4a) allows to shift a process
fragment from its current position to another one. Like for the Insert Process
Fragment pattern, an additional design choice specifies the way the fragment can
be embedded in the process schema afterwards. Though the Mowve pattern could
be realized by the combined use of patterns AP1 and AP2, we introduce it as
separate pattern as it provides a higher level of abstraction to users. The latter
also applies when a fragment has to be replaced by another one. This change is
captured by the Replace Process Fragment pattern (cf. Fig. 4b).

We have only described the most relevant adaptation patterns. Additional
patterns we identified are: swapping of activities (AP5), extraction of a sub
process from a process schema (AP6), inclusion of a sub process into a process
schema (AP7), embedding of an existing process fragment in a loop (APS),
parallelization of process fragments (AP9), embedding of a process fragment in
a conditional branch (AP10), addition of control dependencies (AP11), removal
of control dependencies (AP12), and update of transition conditions (AP13). A
detailed description of these patterns can be found in [4, 5].

a) Pattern AP1: Insert Process Fr t
Description: A process fragment is added to a process schema.
Example: For a particular patient an allergy test has to be added due to a drug incompatibility.
Problem: In a real world process a task has to be accomplished which has not been modeled in
the process schema so far.
Design Choices (in addition to the ones in Fig. 3):
D. How is the additional process fragment X embedded in the process schema?
1. Xis inserted between 2 directly succeeding activities (serial insert)
2. X s inserted between 2 activity sets (insert between node sets)
a) Without additional condition (parallel insert)
b) With additional condition (conditional insert)

1t x>0
X [X] x>0 AXS
% e [¥ /
{B] (XI-{B] {B} {B} prmnl=1
seriallnsert parallelinsert conditionallnsert

Implementation: The insert adaptation pattern can be realized by transforming the high level
insertion operation into a sequence of low level change primitives (e.g., add node, add control
dependency).

b) Pattern AP2: Delete Process Fragment

Description: A process fragment is deleted from a process schema.

Example: For a particular patient no computer tomography is performed due to the fact that he
has a cardiac pacemaker (i.e., the computer tomography activity is deleted).

Problem: In a real world process a task has to be skipped or deleted.

2
Bk _HERE EREHTHEHE
(D}

Implementation: Several options for implementing the delete pattern exist: (1) The fragment is
physically deleted (i.e., corresponding activities and control edges are removed from the process
schema), (2) the fragment is replaced by one or more null activities (i.e., activities without
associated activity program) or (3) the fragment is embedded in a conditional branch with
condition false (i.e., the fragment remains part of the schema, but is not executed).

Fig. 3. Insert (AP1) and Delete (AP2) Process Fragment patterns

a) Pattern AP3: Move Process Frag t

Description: A process fragment is moved from its current position in the process schema to
another position.

Example: Usually employees are only allowed to book a flight, after getting approval from the
manager. For a particular process instance the booking of a flight is exceptionally done in
parallel to the approval activity (i.e., the book flight activity is moved from its current position to
a position parallel to the approval activity).

Problem: Predefined ordering constraints cannot be completely satisfied for a set of activities.

|§|‘|§1A 3
Design Choices:

D. How is the process fragment X embedded in the process schema?
1. Xis inserted between 2 directly succeeding activities (serial move)
2. X is inserted between 2 activity sets (move between node sets)
a) Without additional condition (parallel move)
b) With additional condition (conditional move)
Implementation: This adaptation pattern can be implemented based on Pattern AP1 and AP2
(insert / delete process fragment).
Related Patterns: Swap adaptation pattern (AP5) (not detailed in the paper)

b) Pattern AP4: Replace Process Fragment

Description: A process fragment is replaced by another process fragment.

Example: Instead of the computer tomography activity, the X-ray activity shall be performed for
a particular patient.

Problem: A process fragment is no longer adequate, but can be replaced by another one.

<5
A

Implementation: This adaptation pattern can be implemented based on Pattern AP1 and AP2
(insert / delete process fragment).

Fig. 4. Move (AP8) and Replace (AP4) Process Fragment patterns

3 Patterns for Predefined Changes

The applicability of adaptation patterns is not restricted to a particular process
part a priori. By contrast, the following patterns predefine constraints concern-
ing the parts that can be changed; i.e., at run-time changes are only permitted
within these parts. In this category we have identified 4 patterns, Late Selection
(PP1), Late Modeling (PP2), Late Composition (PP3) and Multi-Instance Activ-
ity (PP4) (cf. Fig. 5). The Late Selection pattern (cf. Fig. 6) allows to select the
implementation for a particular process step at run-time either based on prede-
fined rules or user decisions. The Late Modeling pattern (cf. Fig. 7a) offers more
freedom and allows to model selected parts of the process schema at run-time.
The Late Composition pattern (cf. Fig. 7b) enables the on-the fly composition
of process fragments (e.g., by dynamically introducing control dependencies be-
tween them). Finally, the Multi-Instance Activity pattern allows to determine
the number of instances created for a particular process activity at run-time.

P
T;:z;ess Pattern PP1 Pattern PP2

s1 5]
C
Pr. Fragments for
Level E.’ \mplementation of F E’
(D} (0]

Process
Instance
Level

How to realize step B for
rocess e 112

Pattern PP4

Process
Type
Level

Process
Instance
Level

Fig. 5. Patterns for Predefined Changes (Overview)

4 Related Work

Patterns were first used to describe solutions to recurring problems by Alexander,
who applied them to descibe best practices in architecture [6]. Patterns also have
a long tradition in computer science. Gamma et al. applied the same concepts
to software engineering [7].

In the area of workflow management, patterns have been introduced for an-
alyzing the expressiveness of process modeling languages (i.e., control flow pat-
terns [8]). In addition, data patterns [9] describe different ways for modeling the
data aspect in PAIS. The introduction of these patterns has had significant im-
pact on the design of PAIS and has contributed to their systematic evaluation.
However, to evaluate the powerfulness of a PAIS regarding its ability to deal
with changes, the existing patterns are important, but not sufficient. In addi-
tion, a set of patterns for the aspect of workflow change is needed. Further, the

Pattern PP1: Late Selection of Process Fragments
Description: For particular activities the corresponding implementation (activity program or sub
process model) can be selected during run-time. At build time only a placeholder is provided,
which is substituted by a concrete implementation during run-time (cf. Fig. 6).
Example: For the treatment of a particular patient one of several different sub-processes can be
selected depending on the patient’s disease.
Problem: There exist different implementations for an activity (including sub-processes), but for
the selection of the respective implementation run-time information is required.
Design Choices:
A. How is the selection process done?
1. Automatically based on predefined rules
2. Manually by an authorized user
3. Semi-automatically: options are reduced by applying some predefined rules; user
can select among the remaining options
B. What object can be selected?
1. Atomic activity
2. Sub process
C. When does late selection take place?
1. Before the placeholder activity is enabled
2. When enabling the placeholder activity
Implementation: By selecting the respective sub process or activity program, a reference to it is
dynamically set and the selected sub-process or activity program is invoked.
Related Patterns: Prerequisite for Pattern Late Modeling of Process Fragment (PP2)

Fig. 6. Late Selection of Process Fragments (PP1)

degree to which control flow patterns are supported provides an indication of
how complex the change framework under evaluation is.

In [10] exception handling patterns are proposed. In contrast to change pat-
terns, exception handling patterns like Rollback only change the state of a process
instance (i.e., its behavior), but not its schema. The patterns described in this
paper do not only change the observable behavior of a process instance, but
additionally adapt the process structure. For a complete evaluation of flexibility,
both change patterns and exception handling patterns must be considered.

5 Summary and Outlook

We designed 17 change patterns which allow to assess the power of a particu-
lar change definition framework. Future work will include change patterns for
aspects other than control flow (e.g., data or resources) and patterns for more
advanced adaptation policies (e.g., the accompanying adaptation of the data
flow when introducing control flow changes).

References

1. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems — a survey. Data and Knowledge Engineering 50 (2004) 9-34

2. Lenz, R., Reichert, M.: IT support for healthcare processes - premises, challenges,
perspectives. Data and Knowledge Engineering (2007) 39-58

3. Mueller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release man-
agement processes in the automotive industry. In: Proc. 4th Int’l Conf. Business
Process Management (BPM’06), Vienna (2006) 368—-377

10.

a) Pattern PP2: Late Modeling of Process Fr
Description: Parts of the process schema have not been defined at build-time, but are modeled during
run-time for each process instance (cf. Fig. 6). For this purpose, placeholder activities are provided,
which are modeled and executed during run-time. The modeling of the placeholder activity must be
completed before the modeled process fragment can be executed.
Example: The exact treatment process of a particular patient is composed out of existing process
fragments at run-time.
Problem: Not all parts of the process schema can be completely specified at build time.
Design Choices:
A. What are the basic building blocks for late modeling?
1. All process fragments (including activities) from the repository can be chosen
2. A constraint-based subset of the process fragments from the repository can be chosen
3. New activities or process fragments can be defined
B. What is the degree of freedom regarding late modeling?
1. Same modeling constructs and change patterns can be applied as for modeling at the
process type level
2. More restrictions apply for late modeling than for modeling at the process type level
C. When does late modeling take place?
1. When a new process instance is created
2. When the placeholder activity is instantiated
3. When a particular state in the process is reached (which must precede the instantiation
of the placeholder activity)
D. Does the modeling start from scratch?
1. Late modeling may start with an empty template
2. Late modeling may start with a predefined template which can then be adapted
Implementation: After having modeled the placeholder activity with the editor, the fragment is
stored in the repository and deployed. Finally, the process fragment is dynamically invoked as an
encapsulated sub-process. The assignment of the respective process fragment to the placeholder
activity is done through late binding.
Related Patterns: necessitates Late Selection of Process Fragments (PP1) of the dynamically
modified fragment
© Which of the adaptation patterns are supported within the placeholder activity is determined
by the expressiveness of the used modeling language.

b) Pattern PP3: Late Composition of Process Fr

Description: At build time a set of process fragments is defined out of which a concrete process
instance can be composed at run time. This can be achieved by dynamically selecting fragments and
adding control dependencies on the fly (cf. Fig. 6).

Example: Several medical examinations can be applied for a particular patient. The exact
examinations and the order in which they are performed are defined for each patient individually.
Problem: There exist several variants of how process fragments can be composed. In order to reduce
the number of process variants to be specified by the process engineer during build time, process
instances are dynamically composed out of fragments.

Fig. 7. Late Modeling (PP2) and Late Composition of Process Fragments (PP3)

Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features
in process-aware information systems. In: Proc. 19th Int’l Conf. on Advanced
Information Systems Engineering (CAIiSE’07). (2007) 574-588

Weber, B., Rinderle, S., Reichert, M.: Identifying and evaluating change patterns
and change support features in process-aware information systems. Technical Re-
port Report No. TR-CTIT-07-22, CTIT, Univ. of Twente, The Netherlands (2007)
Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Oxford Univer-
sity Press, New York (1977)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14 (2003) 5-51

Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow data
patterns. Technical Report FIT-TR-~2004-01, Queensland Univ. of Techn. (2004)
Russell, N., van der Aalst, W.M., ter Hofstede, A.H.: Exception handling patterns
in process-aware information systems. In: CAiSE’06. (2006)

