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Abstract. In today’s dynamic business world economic success of an en-
terprise increasingly depends on its ability to react to internal and exter-
nal changes in a quick and flexible way. In response to this need, process-
aware information systems (PAIS) emerged, which support the modeling,
orchestration and monitoring of business processes and services respec-
tively. Recently, a new generation of flexible PAIS was introduced, which
additionally allows for dynamic process and service changes. This, in
turn, will lead to a large number of process variants, which are created
from the same original process model, but might slightly differ from each
other. This paper deals with issues related to the mining of such process
variant collections. Our overall goal is to learn from process changes and
to merge the resulting model variants into a generic process model in the
best possible way. By adopting this generic process model in the PAIS,
future cost of process change and need for process adaptations will de-
crease. Finally, we compare our approach with existing process mining
techniques, and show that process variants mining is additionally needed
to learn from process changes.

Index Terms—Process Configuration, Process Variants, High-
level Change, process variants mining

1 Introduction

Economic success of enterprises increasingly depends on their ability to react to
changes in a quick, flexible, and cost-effective way. However, current off-the-shelf
enterprise software does not fully meet this fundamental requirement [4]. It is
deployed in different companies, domains, and countries, and therefore tends to
be too generic and rigid. This causes huge customization efforts at the site of
software buyers that exceed the price for software licenses by factor five to ten
[2]. Software vendors, in turn, make endeavors to close this gap [5], and major
progress has been achieved by shifting from function- to process- and service-
centered software design.

Along this trend a variety of process and service support paradigms (e.g.,
service orchestration, service choreography, adaptive processes and services) and
corresponding specification languages (e.g., WS-BPEL, WS-CDL, WSDL) have
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emerged. In addition, different approaches for flexible and adaptive processes
exist [8,12]. Generally, process and service adaptations are not only needed for
configuration purposes at build time, but also become necessary during runtime
to deal with exceptional situations and changing needs; i.e., for single instances of
composite services and processes respectively, it must be possible to dynamically
adapt their structure (i.e., to insert, delete or move activities during runtime).
In response to this need adaptive process management technology has emerged,
which allows for such dynamic process and service changes [6].

Obviously, the ability to adapt and configure processes at the different levels
will result in a collection of process model variants (i.e., configurations [3]) cre-
ated from the same process model, but slightly differing from each other. Fig.
1 depicts an example. The left hand side shows a high-level view on a patient
treatment process as it is normally executed: a patient is admitted to a hospital,
where he first registers, then receives treatment, and finally pays. In emergency
situations, however, it might become necessary to deviate from this model, e.g.,
by first starting treatment of the patient and allowing him to register later dur-
ing treatment. To capture this behavior in the model of the respective process
instance, we need to move activity receive treatment from its current position
to a position parallel to activity register. This leads to an (instance-specific)
process model variant S’ as shown on the right hand side of Fig. 1. Generally, a
large number of process model variants (process variants for short) derived from
the same original process model might exist.
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Fig. 1. Original Process Model S and Process Variant S’

In most approaches supporting the adaptation and configuration of process
models each resulting process variant has to be maintained by its own, and
even simple changes within a domain or organization (e.g. due to new laws
or re-engineering efforts) might require manual re-editing of a large number of
process variants. Over time this might lead to degeneration and divergence of
the respective process models [4], which aggravates maintenance significantly.
In this paper we deal with issues related to the mining of such process variant
collections. Our goal is to learn from the process changes applied in the past and
to merge the resulting process variants into a generic process model which covers
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the existing process variants best. By adopting this generic process model within
the PAIS, cost of change and need for future process adaptations will decrease.

1.1 Full Life Cycle Support in PAIS

We give background information on process life cycle support to illustrate the
setting of our approach. Fig. 2 depicts the life cycle of adaptive processes. It
starts with the design of a process model based on which new process instances
can be created and executed. Relevant execution events (e.g., about start and
completion of process activities) are stored in the ezecution log. In Fig. 1b, for
example, the numbers indicate the order in which the activities were executed.
During runtime, authorized users may deviate from the predefined process model
to deal with exceptional or non-anticipated situations. Such instance-specific
deviations can be realized based on high-level change operations (e.g., to add,
delete or move process activities). Each change may comprise several change
operations (with parameterization) which are stored in the change log in the
order they were applied [7]. Taking the information from execution and change
logs, we can learn from the past and discover opportunities to optimize and evolve
process models. Newly discovered process model versions will then replace the
original one [8]. For long-running process instances it might additionally become
necessary to migrate them to the new process model version [9].
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Fig. 2. The Life Cycle of a PAIS

Many efforts have been undertaken to realize PAIS with full lifecycle support.
In particular, adaptive process management technology like ADEPT [8], WASA2
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[10], or TRAMS[11] has emerged (for an overview see [12]), which provide users
with the needed flexibility to adapt the PAIS to real-world situations at both the
process instance and the process type level. In particular, these systems allow
for dynamic process changes during runtime without affecting robustness and
reliability of the PAIS. Furthermore, process mining techniques [17] have been
introduced for discovering optimized processes based on execution logs. The only
incomplete link with respect to full process life-cycle support in Fig. 2 concerns
Step 5; i.e. so far there have been no advanced techniques which enable process
learning based on change logs.

1.2 Research Question

Process mining has been extensively studied in literature [17]. Its key idea is to
discover a process model by analyzing the execution behavior of (completed) pro-
cess instances as captured in execution logs. Different mining techniques like the
alpha algorithm [24], heuristics mining [26], and genetic mining [27] have been
proposed in this context. When considering the extensive research on process
mining, only little work has dealt with process variants mining so far. Here the
overall goal is to to evolve a process model over time by learning from the changes
applied to corresponding model instances in the past. As aforementioned, process
model adaptations are captured in change logs and can be applied at different
levels; e.g., in the context of process model configurations or in connection with
deviations at the process instance level. In any case, we obtain a collection of
process model variants when applying changes to different instances of a pro-
cess model. By learning from these model variants and by merging them into a
generic process model, effort for future process model configurations as well as
adaptations can be reduced.

This paper deals with the following research questions:

Why is process variants mining needed and what are the differences between
traditional process mining and the mining of process variants?

Our aim is to motivate the need for mining process variants and to discuss
some of the major challenges arising in this context. Details of the mining al-
gorithm itself are out of the scope of this paper. However, we have developed
and implemented respective techniques, and will also utilize them for comparing
variants mining with conventional process mining.

The remainder of this paper is organized as follows: Section 2 gives back-
ground information needed for the understanding of this paper. In Section 3 we
discuss why process changes should be expressed in terms of high-level change
operations. Section 4 discusses major goals of process variants mining and shows
why it is different from traditional process mining. In Section 5 we present a
concrete example to elaborate these differences. The paper concludes with a
summary and an outlook in Section 7.



2 Backgrounds

We first introduce basic notions needed in the following: process model, process
change, and trace.

Process model Let P denote the set of all process models. A single process
model S = (N, E,...) € P isrepresented as Well-Structured Marking Net (WSM
Net) [8], where N corresponds to the set of process activities and E constitutes
the set of causal relations between them (i.e., control edges linking activities). To
limit the scope, we omit other process aspects (e.g., data flow) here. Further, we
assume process-models to be block structured. A detailed description of WSM
Nets and their properties can be found in [21].

Process change We assume that a process variant results from an original
process model S by applying a sequence of changes to it over time [8]. Such
changes modify the initial model S by altering its set of activities or by changing
their order relations through the application of a sequence of change operations.
Thus, each change to a process model results in another (intermediate) process
model.

Definition 1 (Process change). Let P be the set of possible process models
and C be the set of possible process changes. Let S, S’ € P be two process models,
let A € C be a process change, and let 0 = (A1, Aa, ... Ay) € C* be a sequence
of process changes performed on initial process model S. Then we can define:

— S[A)S" iff A is applicable to S and S’ is the process schema resulting from
the application of A to S.

- S[O’>S/ zjj”ﬂ 51,527...Sn+1 € P with S = 51, S/ = Sn+1, and SZ[A,>SH_1
withi={1,...n}. |o| =1

Examples of high-level change operations include insert activity, delete ac-
tivity, and move activity as implemented in the ADEPT change framework [8].
While insert and delete modify the set of activities in the process model, move
changes the position of an activity and thus the structure of the process model.
For example, operation move(S,A, B, C) means to move activity A from its
current position within process model S to the position after activity B and be-
fore activity C, while operation delete(S, A) expresses to delete activity A from
process model S. Issues concerning the correct use of these operations as well as
formal pre- and post-conditions are described in [8]. Though the depicted change
operations are discussed in relation to ADEPT, they are generic in the sense that
they can be easily applied in connection with other process meta models as well
[6]. For example, a process change as described in the ADEPT framework can be
mapped to the concept of life-cycle inheritance as known from Petri Nets [18].
We refer to ADEPT in this paper since it covers by far most high-level change
patterns and change support features when compared to other approaches [6].
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Definition 2 (Bias and Distance). Let S, S’ € P be two process models.
Then: The distance d(g, gy between S and S’ corresponds to the minimal number
of high-level change operations needed to transform process model S into process
model S'; i.e., dig gy := min{|o| | o € C* A S[0)S'}. Furthermore, a sequence
of change operations o with S[o)S’ and |o| = d(g s is denoted as bias between
S and S’.

The distance between two process models S and S’ is the minimal number
of change operations needed for transforming S into S’. The corresponding se-
quence of change operations is denoted as bias between S and S’.* Obviously,
the shorter the distance between two process models, the more similar their
control flow structure is. Generally, the distance between two process models
measures the complexity for process model transformation or configuration. As
example take Fig. 1. Here, the distance between S and S’ is one, since we only
need to perform one change operation move(.S, receivetreatment, admitted, pay)
to transform S into S’. In general, determining bias and distance between two
process models is rather difficult. The complexity is at NP level [20]. We omit
further details and refer to [20].

Trace A trace t on process model S denotes a valid execution sequence t =<
ai,as,...,ar > of activities a; € N on S according to the control flow defined
by S. All traces process model S can produce are summarized in set 7g. Finally,
t(a < b) denotes a precedence relationship between activities a and b in trace
t =< ay,az,...,a; > if and only if 3¢ < j : a; = a A a; = b. Here, traces only
capture events related to 'real’ activities, but not to silent ones (i.e., activity
nodes which contain no operation and exist only for control flow purpose). Fur-
thermore, we consider two process models as being the same if they are trace
equivalent, i.e. S = S’ if and only if 75 = 7s:. Like most existing process mining
algorithms [17], we do not consider the stronger notion of bi-similarity [22] here.

3 On Representing Process Changes

Before we deal with issues related to the the mining of process variants, we
discuss basic aspects concerning the representation of process changes. First,
we explain why process variants mining cannot be solely based on execution
logs, but necessitates change log information as well. Second, we sketch why it
is beneficial to express changes in terms of high-level operations (e.g., to move
an activity) rather than low-level change primitives (e.g., to add/delete nodes
and edges). Third, we discuss how the application of high-level change operation
affects execution behavior of a process model.

4 Generally, it is possible to have more than one minimal set of change operations to
realize the transformation from S into ', i.e., given two process models S and S’
their bias is not necessarily unique. A detailed discussion of this issue is out of the
scope of this paper since we are more interested in the change distance. We refer
readers to [18,20] for details.
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3.1 Why Do We Need a Change Log?

Change and execution logs capture different runtime information on process in-
stances and are not interchangeable. Even if the original process model of a pro-
cess instance is given, it is not possible to convert its change log to its execution
log or vice verse. We refer to our example from Fig. 1. When applying the afore-
mentioned change to original process model S, we obtain process variant S’ (i.e.
S[o)S’) with change log 0 =< move(S, reveive treatment, admitted, pay) >.
Assume that this process variant represents an instance-specific schema and that
the trace of the particular instance is {admitted, receive treatment, register, pay}
(as indicated by the numbers in Fig. 1b). If original process model S and the
instance trace had been the only available information, it would be not possible
to determine the respective change. Note that the process model, which can pro-
duce the given trace, is not unique. For example, a process model with the four
activities contained in four parallel branches could produce this trace as well. By
contrast, it is generally not possible to derive the trace of a process instance from
its change log, because execution behavior of S’ is also not unique. For example,
trace < admitted, register, receive treatment,pay > is also producible on S’.
Consequently, change and execution log capture different runtime information.

3.2 High-level Change Operations vs. Change Primitives

We now discuss why it is beneficial to measure the distance between process
models based on high level change operations rather than on low-level change
primitives. Consider the left-hand side of Fig. 3. It shows an original process
model S which comprises a parallel branching (C and D may be performed con-
currently), a conditional branching (either E or F is executed), and a silent ac-
tivity 7 (depicted as an empty node) connecting these two branching blocks.
Assume that in two different scenarios high-level change operations are applied
to S resulting in the two models S7 and Ss respectively: A; moves activity C
from its current position to the position between activities A and B, resulting
in process variant Sy, i.e., S[A1)S] with A; = move(S,C,A,B). Ag, in turn,
moves activity A to the position between activities B and C, i.e., S[A2)Sy with
Ay = move(S,A,B,C). Note that Fig. 3 additionally depicts the change primi-
tives representing the snapshot differences between original process model S and
process variants S7 and S respectively.

In comparison with low-level primitives, the the use of high-level change
operations offers the following advantages:

1. High-level change operations with formal pre- and post-conditions, as sup-
ported by ADEPT and other process change frameworks, usually guarantee
soundness (i.e., absence of deadlocks and livelocks); i.e., their application to
a sound process model S results in another sound model S” [8]. This also
applies to our example from Fig. 3. By contrast, when applying single primi-
tives (e.g. deleting an edge), soundness cannot be guaranteed in general. For
example, if we delete any of the edges in S, the resulting model will not be
necessarily sound.
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Fig. 3. High-Level Change Operation vs. Change primitives

2. High-level change operations enable more effective user support when com-
pared to low-level change primitives. Generally, a high-level change operation
is based on a set of primitives which collectively realize a particular change
pattern. As example take Ay from Fig. 3. This operation is internally based
on 15 change primitives to delete and add edges, to delete the silent activity,
and to update node types. By defining changes with high-level operations,
cost of change can be significantly reduced. As another benefit, high-level
operations usually perform model optimizations when realizing a process
change. Regarding change A; from Fig. 3, for example, the movement of ac-
tivity C is accompanied by the deletion of silent activity 7, since the parallel
branching is no longer needed afterwards.

3. An important aspect, not discussed so far, concerns the number of change
operations needed to transform a process model S into another model S’.
Regarding our previous example, for instance, we only need one move op-
eration to transform S to either S7 or S3. When using change primitives
instead, migrating S to Sy requires 15 change primitives, while the second
change Ay can be realized with 6 primitives. This also demonstrates that
change primitives do not provide an adequate means to express the differ-
ence between two process models; i.e., the number of primitives needed for
a process model transformation should not be used for expressing change
efforts. As a consequence, we base our approach for process variants mining
on high-level change operations.

4. When representing model changes by means of high-level operations, we can
always derive the corresponding change primitives, but not the other way
around; i.e., with respect to process model S it is sufficient to log the applied
high-level change operations in order to derive the corresponding primitives
and the resulting model variant S’. The change primitives can be derived by
snapshot analysis; i.e., when performing snapshots of S and S’, respective
change primitives can be easily obtained by determining which nodes and
edges have been deleted or added [7]. By contrast, if we only store low-level
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primitives, computing the corresponding high-level change operation will be
difficult. For example, how to determine that the 15 primitives needed to
transform S into S; only represent one single high-level change? Generally,
determining the high level change based on snapshots is an NP hard problem
[20].

For these reasons we propose to use high-level change operations instead of
low-level change primitives when measuring the distance between two process
models.

3.3 How Do High-level Changes Influence Process Behavior?

[14] provides an approach to measure the similarity between two process mod-
els based on their trace sets: More precisely, the behavioral distance between
process models S; and S5 is calculated as the sum of the edit distances of all
possible pairs of traces (t1,t2) with ¢t; € Tg, and t2 € 7Tg,. Obviously, this
method evaluates to what degree the behaviors of the two process models differ
from each other rather than on what the effort for transforming one process
model into another is. On the one hand, application of one high-level change
operation might significantly modify the execution behavior of the respective
process model. On the other hand, several high-level change operations might
be required to realize a smooth change in execution behavior of a given process
model. When considering the two process models from Fig. 1, for example, we
obtain as behavioral distance one. However, when performing another change
S'[A3)S" with Ay = move(S, pay, admitted, receivetreatment) the behavioral
distance between S and the S” will be four. Particularly, when a change moves
or adds activities to parallel branches, the number of possible traces might grow
exponentially.

Based on these considerations, we have decided to focus on the relationship
between behavior of process models and biases. In the next section, we compare
the design strategies for process mining and process variants mining; i.e., we
elaborate the goal for process variants mining and show why it differs from
traditional process mining.

4 Mining Process Variants: Goals and Comparison with
Process Mining

So far, we have motivated the need for representing process changes in terms
of high-level operations. This section discusses the major goal of mining process
variants, namely to derive a generic process model out of a given collection of
process variants. This shall be done in a way such that the different process
variants can be efficiently configured out of the generic model. We measure the
efforts for respective process configurations by the number of high-level change
operations needed to transform the generic model into the respective model
variant. The challenge is to find a generic model such that the average number
of change operations needed (i.e., the average distance) becomes minimal.



To make this more clear, we compare process variants mining with traditional
process mining. Obviously, input data for process and process variants mining
differ. While traditional process mining operates on execution logs, mining of
process variants is based on change logs (or the process variants we can obtain
from them). Of course, such high-level consideration is insufficient to prove that
existing mining techniques do not provide optimal results with respect to the
above goal. In principle, methods like alpha algorithm or genetic mining can be
applied to our problem as well. For example, we could derive all traces producible
by a given collection of process variants [14] and then apply existing mining
algorithms to them. Or, if there are enough instances for each process model
variant, we can mine their traces to discover a corresponding process model. To
make the difference between process and process variants mining more evident,
in the following, we consider behavioral similarity between two process models
as well as structural similarity based on their bias.

The behavior of a process model S can be represented by the set of traces
Ts it can produce. Therefore, two process models can be compared based on the
difference between their trace sets [16, 14, 17]. By contrast, biases can be used to
express the (structural) distance between two process models, i.e., the minimal
number of high-level change operations needed to transform one model into the
other [20]. While the mining of process variants addresses structural similarity,
traditional process mining focuses on behavior. Obviously, this leads to different
choices in algorithm design and also suggest different mining results. Fig. 4 shows
two examples.

Consider Example 1 which shows two process variants S; and S5. Assume
that 55 process instances are running on .S; and 45 instances on S3. We want to
derive a generic process model such that the efforts for configuring the 100 pro-
cess instances out of the generic model become minimal. If we focus on behavior,
like existing process mining algorithms do [17], the discovered process model will
have a structure like S; all traces producible on S; and Ss respectively can be
produced on S as well, i.e. Tg, € 7g and 7g, C 7g. However, if we adopt S as
reference model and relink instances to it, all instances running eon S; or S
will have a non-empty bias. The average weighted distance between S and S; (S
and Sy) is one; i.e., for each process instance we need on average one high-level
change operation to configure S into S7 and Sy respectively. More precisely, we
would need to move either B or C in S to either obtain Sy or Sa; i.e., S[o1)S]
with o1 = move(S,B,A,C) and S[o2)Ss with oo = move(S,B,C,D). We describe
a method to compute biases in [20].

By contrast, if the goal is to reduce the average bias between reference model
and process (instance) variants, we should choose S’ as reference model. Though
S’ does not cover all traces S; and Sy can produce (i.e., Tg, ¢ Tg/) the average
distance between generic model and process instances becomes minimal with
this approach. More precisely, the average distance between S’ and instances
running either on Sy or Ss corresponds to 0.45; i.e., while no adaptations become
necessary for the 55 instances running on S7, we need to move activity B for the
45 instances based on Ss, i.e. S'[¢0”)Sy with ¢/ = move(S’,B,C,D). Though S’
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Example 2

Fig. 4. Mining focusing either on Behavior or on Minimization of Biases

cannot cover all traces the process variants S; and S can produce, adapting S’
rather than S as the new generic process model requires less efforts for process
configuration, since the average weighted distance between S’ and the instances
running on both S; and Sy is 55% lower than when using S.

Regarding Example 2 from the same figure, activity X is only present in
model Sy, but not in S;. When applying traditional process mining focusing on
behavior, we obtain process model S (with X being contained in a conditional
branch). If focus is on minimizing average change distance, S’ will have to be
chosen as reference model. Note that in Fig. 4 we have chosen rather simple
process models to illustrate basic ideas. Of course, our approach works for process
models with more complex structure as well. Further examples are given in
Section 5.

Our discussions on the difference between behavioral and structural similar-
ity also demonstrates that current process mining algorithms do not consider
structural similarity based on bias and change distance (we will systematically
compare our mining approach with existing algorithms in Section 5). First, a
fundamental requirement for traditional process mining concerns the availabil-
ity of a critical number of instance traces. An alternative method is to enumerate
all the traces the process variants can produce (if it is finite) to represent the
process model, and set these traces as the input source for process mining al-
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gorithms based on traces. Unfortunately, this does also not satisfy our need on
reducing biases since it focuses on covering execution behavior as captured in
execution log (recall Example 1 and 2). Clearly, enumerating all the traces would
be also a tedious and expensive job. For example, if an AND-split and AND-join
block contains five branches and each branch contains five activities, the number
of traces for such a structure is (5 x 5)!/(5!)% = 623360743125120.

5 Example and Evaluation

We now give an example (cf. Fig. 5) to illustrate the basic goal as well as rel-
evant issues and challenges for mining process variants. We further compare
process variants mining with traditional process mining techniques in order to
quantitatively validate the claim we made in the former sections.
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Fig. 5. One example
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5.1 Evaluation

Consider Fig. 5 and assume that process model S defines a standard business
process. Six different process variants Si, Ss,S3, 5S4, S5 and Sg have been con-
figured out of S, by applying a respective sequence of change operations to S.
Furthermore, on each of these process variants several instances are running. A
simple statistics is given to show the respective ratio (e.g., 30 % of all process
instances are running on model variant S; and 8 % on model variant S5). Based
on the relative frequency of each process variant (i.e., its weight), the weighted
average number of changes of the six process variants is 1.5. This means we have
to perform on average 1.5 changes on the original process model S in order to
configure these process variants out of it.

The advantages resulting from the use of high-level change operations have
been discussed in Section 3. Here we only give an example. Consider process
variants S and S respectively. Though both variants can be configured out
of S by applying one high-level change operation, the number of corresponding
change primitives is five (transforming S to S7) and seven (S to Sy) respectively.
As behavioral distances, in turn, we obtain siz (S and S1) and two (S and Sy).

When mining the six process variants by our approach, we obtain process
model S as result (cf. Fig. 5). The discovered model S’ is better in the sense
that it can reduce the average distance the process variants have with respect
to a reference process model (if using S’ instead of S’ as reference model). In
our case, the weighted average number of change operations (i.e., the average
distance between reference model and process variants) then decreases from 1.5
to 1.15 (cf. Fig. 5).

The next step in the life cycle is to transform the original process model S
to the newly discovered one S’. Obviously, the efforts for process transformation
should be minimized. In [20] we have described a method, which allows to create
a minimal number of high-level change operations to realize such a transforma-
tion. In our example, the change operation transforming S to S’ corresponds to
A =move(S,D,C,E) (i.e., S[A)S’). When switching to a new (reference) process
model corresponding process variants have to be re-linked to this new model.
This also requires the calculation of the biases between new reference model and
process variants. We omit further details and refer to [21,20]. The new biases,
representing the differences between S’ and the six process variants are listed in
the lower table in Fig. 5.

5.2 Comparing Process Variants Mining with Process Mining

Referring to the theoretical comparison between process mining and process
variants mining from Section 4, we now compare these two paradigms taking our
example from Fig. 5. For this purpose, for each candidate model S.4,,, we assume
that it is considered as new reference process model and therefore calculate
the biases and distances between S.., and the different process variants. For
example, consider process variant S; from Fig. 5 and the process model S’ we
obtained from the mining of the process variants (cf. Fig. 5). Obviously, we only
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need to move activity E to the position between A and D (i.e., move(S’,E, A, D))
in order to transform S’ into S;. Consequently, if we use S’ as new reference
model and relink the process instances based on variant Sy to S’, each of these
instances will have a bias comprising this move operation (i.e., change distance
is one). In the same way, we can re-compute biases and distances between S’
and the other variants. Based on the weight of each process variant (e.g., 30 %
for S7), the average weighted distance between the new reference model S’ and
the process variants expresses how close S’ is its variants.

There are two groups of process models that serve as candidates for an op-
timized reference process model. The first group contains all process models
we already know, like original process model S and the six process variants
S, 52,83,54, 55 and Sg (cf. Fig. 5). Comparing these existing models with the
one we obtained through our approach for process variants mining, for example,
already shows that it will be not sufficient to simply set the reference model
to the most frequently used process variant (S; in our example). The second
group includes the process models we can discover through mining. Clearly, the
process model S’ from Fig. 5, which we obtained with our algorithm for process
variants mining, belongs to this group. In addition, we consider process models
that can be discovered based on traditional process mining techniques [17]. Since
a process model can be represented by the set of traces it can produce, we have
calculated all traces producible by all process variants in Fig. 5 (see Fig. 6 for
all the traces), and then used them as input for different process mining tech-
niques: Alpha algorithm [24], Alpha++ algorithm [25], Heuristics mining [26],
and Genetic mining [27]. (These are some of the most well-known algorithms for
discovering process models from execution logs). The discovered process models
are shown in Fig. 6. Both Alpha and Alpha++ algorithm result in model Sy,
whereas Heuristics mining provides model Sp,.s. We do no consider the model
discovered by genetic mining, since it is too different; i.e., genetic mining resulted
in a complex structure model with six silent activities (and the distances to each
process variant is higher than three).

We compute the distances between the candidate models from the two groups
and the six process variants. The average weighted distance expresses how close
the respective candidate model is to the six process variants. Comparison results
are shown in Fig. 7. Fig. 7 shows the distance between each candidate model
and each process variant. For example, if we consider process variant S; as
reference model, we can see that the distance between this model and the variants
So,53,854, 55, and Sg equals 2. When considering relative frequencies of each
variant as weight, we obtain as average weighted distance between S; and the
six process variants the value 1.4 (cf. column S; in Fig. 7). This means that
when choosing S; as new reference model we need to perform on average 1.4
changes in order to configure the process variants out of S;. Similarly, we can
compute distances for the other candidate models. Altogether, the results from
Fig. 7 show that S’ (see Fig. 5)), as the process model resulting from the the
method we suggested, has the shortest average weighted distance to the different
process variants. This means, setting S’ as the new reference process model would



XV

S1:30% : AEBCD, ABECD, ABCED  S,:15% : ABDEC, ABEDC
S3:20% : ACBED S4:20% : ABCDE, ABDCE
S5:8% : ABED S6:7% : ACED

Process Mining

S.ip: Alpha, Alpha ++, algorithm Shrs:Heuristics mining

Fig. 6. Process Models Resulting from Process Mining

require lowest efforts for configuring the variants; i.e. we only need to perform
on average 1.15 changes to configure a process variant out of S’. Note that the
process models Sq;, and Sy, as discovered by the process mining algorithms
(based on traces), show the largest average distance to the six process variants.
This also complies to our analysis from Section 4.

Shrs| Sap| S'| S | Sg | S5 | Sa| Ss3 | Sz | Sy JReference model

1 2 1 1 2 2 2 2 2 0 [Distance to S; (30%)

2 2 2 2 2 2 2 2 0 2 |Distance to S, (15%)

2 2 1 2 1 1 2 0 2 2 |Distance to S;(20%)

2 2 1 1 2 2 0 2 2 2 |Distance to S, (20%)

2 2 1 2 2 0 2 1 2 2 |Distance to S; (8%)

3 3 1 2 0 2 2 1 2 2 |Distance to Sg (7%)

1.77 | 2.07 | 1.15] 1.5 [ 1.66]1.64 | 1.6 | 1.45| 1.7 | 1.4 JAverage distance

Fig. 7. The number of biases when adapting different models

Comparison results do not imply that process variants mining is better than
process mining. Each of them has different inputs and goals. Compared to process
mining, which tries to discover the underlying process model by learning from
the behavior of a system, process variants mining focus on discovering a genetic
process reference model which is easy configurable for process variants. If we use
the process mining evaluation criteria to measure the result of process variants
mining, the discovered process model S’ (cf. Fig. 5) is also not good in terms of
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behavior, since behavior of S’ is very limited according to the process evaluation
framework [28].

6 Related Work

A variety of techniques for process mining has been suggested in literature [17, 26,
27,24]. As illustrated in this paper, traditional process mining is different from
process variants mining due to its different goal and inputs. A few techniques
have been proposed to learn from process variants by mining change primitives.
[29] measures process model similarity based on change primitives and suggests
mining techniques using this measure. However, this approach does not con-
sider important features of our process meta model; e.g., it is unable to deal
with silent activities or loop backs, and does also not differentiate AND- and
OR-splits. Similar techniques for mining change primitives exist in the fields of
rule mining [30] and maximal sub-graph mining as known from graph theory
[31]; here common edges between different nodes are discovered to construct a
common sub-graph from a set of graphs. To mine high level change operations,
[13] presents an approach based on process mining techniques, i.e., the input
consists of a change log, and process mining algorithms are applied to discover
the execution sequences of the changes (i.e., the change meta process). However
it simply considers each change as an individual operation so that the result
is more like a visualization of changes rather than mining them. None of the
discussed approaches aims at creating a generic process model, which allows for
easy and optimized configuration for process variants.

7 Summary and Outlook

We have motivated the need for process variants mining, discussed its major
goals as well as relevant issues, and elaborated its differences when compared
to traditional process mining. We believe that process variants mining will con-
tribute to business intelligence and allow to learn from adapted processes and
services respectively. Basically, as input our approach takes a collection of pro-
cess variants, and then produces a generic process model as output which covers
these variants best; i.e., the generic model is chosen in a way such that the aver-
age bias between generic model and process variant becomes minimal. Note that
this will reduce adaptation and configuration costs as well. As our evaluation has
shown both process variants mining and process mining are needed to enable full
process lifecycle support in PAIS.

We have compared process variants mining with process mining by means
of an example. This comparison shows that traditional process mining does not
satisfy the need for deriving a process model which is easy configurable. This
justifies the efforts for designing specific algorithms for process variants mining,
which we will present in other papers. Our results are promising, but there are
still many research questions left open. For example, it seems even better to
integrate process mining with process variants mining such that we can consider
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both execution behavior (as captured in execution logs) and past process changes
(as stored in change logs) in order to learn from process executions.
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