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Abstract. In today’s dynamic business world, success of an enterprise
increasingly depends on its ability to react to changes in a quick and
flexible way. In response to this need, process-aware information systems
(PAIS) emerged, which support the modeling, orchestration and mon-
itoring of business processes and services respectively. Recently, a new
generation of flexible PAIS was introduced, which additionally allows
for dynamic process and service changes. This, in turn, has led to large
number of process and service variants derived from the same model,
but differs in structures due to the applied changes. This paper pro-
vides a sophisticated approach which fosters learning from past process
changes and allows for determining such process variants. As a result we
obtain a generic process model for which the average distances between
this model and the process variants becomes minimal. By adopting this
generic process model in the PAIS, need for future process configuration
and adaptation will decrease. The mining method proposed has been im-
plemented in a powerful proof-of-concept prototype and further validated
by a comparison between other process mining algorithms.

1 Introduction

In today’s dynamic business world, success of an enterprise increasingly de-
pends on its ability to react to changes in its environment in a quick, flexible,
and cost-effective way.Along this trend a variety of process and service support
paradigms (e.g., service orchestration, service choreography, adaptive processes
and services) and corresponding specification languages (e.g., WS-BPEL, WS-
CDL, WSDL) have emerged. In addition, different approaches for flexible and
adaptive processes exist [9, 28, 4]. Generally, process and service adaptations are
not only needed for configuration purposes at build time, but also become nec-
essary during runtime to deal with exceptional situations and changing needs;
i.e., for single instances of composite services and processes respectively, it must
be possible to dynamically adapt their structure (i.e., to insert, delete or move



activities during runtime). In response to this need adaptive process manage-
ment technology has emerged, which allows for such dynamic process and service
changes [5].

The ability to adapt and configure process models at the different levels will
result in a collection of model variants (i.e., configurations [1]). Such variants
are created from the same process model, but slightly differing from each other.
Fig. 1 depicts an example. The left hand side shows a high-level view on a
patient treatment process as it is normally executed: a patient is admitted to
a hospital, where he first registers, then receives treatment, and finally pays.
In emergency situations, however, it might become necessary to deviate from
this model, e.g., by first starting treatment of the patient and allowing him to
register later during treatment. To capture this behavior in the model of the
respective process instance, we need to move activity receive treatment from
its current position to a position parallel to activity register. This leads to an
(instance-specific) process model variant S’ as shown on the right hand side of
Fig. 1. Generally, a large number of process model variants (process variants for
short) derived from the same original process model might exist [24].

TecaNE
lAdmitted register treatment pay

[:ﬂ AND-Split
Hj AND-Join

treatmedt  A=Move (S, register, admitted, pay)
e=<admitted, receive treatment, register, pay>
a) S: original process model b) S’ final execution & change

Fig. 1. Original Process Model S and Process Variant S’

In most approaches supporting the adaptation and configuration of process
models each resulting process variant has to be maintained by its own, and
even simple changes within a domain or organization (e.g. due to new laws
or re-engineering efforts) might require manual re-editing of a large number of
process variants. Over time this might lead to degeneration and divergence of
the respective process models [3], which aggravates maintenance significantly.

Although some efforts on process flexibility have been made to make the
process configuration and customization easier [9,13,4,2].0ur goal is to learn
from the process changes applied in the past and to merge the resulting process
variants into a generic process model which covers the existing process variants
best. By adopting this generic process model within the PAIS, cost of change
and need for future process adaptations will decrease.

Based on the two assumptions that: (1) process models are block-structured
[9] and (2) all activities in a process model have unique labels, this paper deals
with the following fundamental research question:



Given a set of process variants, how to derive a generic reference model out of
them, such that the average distance between the reference model and the process
variants becomes minimal?

The distance between two process models is measured by the number of
change operations needed to transform one process model into another one.
Therefore, this figure can directly represent the effort for process adaptation and
customization. (further explanation of distance is available in Section 2). Clearly,
when the process variants are given, setting different model as the reference
model would result in different average distance. The challenge is to find the
best reference model, i.e. the one with minimal average distance to the process
variants.

The reminder of this paper is organized as follows: Section 2 gives background
information needed for understanding this paper. Section 3discusses major goals
of process variants mining and shows why it is different from traditional process
mining. In Section 4 we shows a method to represent a process model using a
matrix called order matrix. After that, shows the algorithm to perform process
varints mining at Section 5 and further validate the algorithm at Section 6.
We further extend it to handle mining with different activity set at Section 7.
The algorithm and prototype are afterwards given in Section 8.1. This paper
concludes with a summary ad an outlook in Section 10.

2 Backgrounds

We first introduce basic notions needed in the following: process model, process
change, process distance and bias and trace.

Process Model Let P denote the set of all correct process models. A particular
process model S = (N, E,...) € P is defined as a well-structured Activity Net [9].
N constitutes a set of activities a; and E is a set of control edges linking them.
To limit the scope, we assume Activity Net to be block structured. Examples
are provided by Fig 1.

Process change We assume that a process change is accomplished by applying
a sequence of change operations to a given process model S over time [9]. Such
change operations modify the initial process model by altering the set of activities
and/or their order relations. Thus, each application of a change operation results
in a new process model. We define high-level change operations on a process
model as follows:

Definition 1 (Process Change and Process Variant). Let P denote the
set of possible process models and C the set of possible process changes. Let
S, S’ € P be two process models, let A € C be a process change, and let 0 =
(A1, Ag, ... A,) € C* be a sequence of process changes performed on initial model
S. Then:



— S[A)S" iff A is applicable to S and S’ is the process model resulting from
the application of A to S. We also denote S’ as variant of S.

— Slo)S" iff 3.51,89,...5,+1 € P with S =51, 8" = Spt1, and S;[A)S;11 for
ie{l,...n}.

Examples of high-level change operations include insert activity, delete ac-
tivity, and move activity as implemented in the ADEPT change framework [9].
While insert and delete modify the set of activities in the process model, move
changes the position of an activity and thus the structure of the process model.
For example, operation move(S,A, B, C) means to move activity A from its
current position within process model S to the position after activity B and be-
fore activity C, while operation delete(S, A) expresses to delete activity A from
process model S. Issues concerning the correct use of these operations as well as
formal pre- and post-conditions are described in [9]. Though the depicted change
operations are discussed in relation to ADEPT, they are generic in the sense that
they can be easily applied in connection with other process meta models as well
[5]. For example, a process change as described in the ADEPT framework can be
mapped to the concept of life-cycle inheritance as known from Petri Nets [10].
We refer to ADEPT in this paper since it covers by far most high-level change
patterns and change support features when compared to other approaches [5].

Definition 2 (Bias and Distance). Let S, S’ € P be two process models.
Then: The distance d(g,s) between S and S’ corresponds to the minimal number
of high-level change operations needed to transform process model S into process
model S'; i.e., dig gy = min{|o| | o € C* A S[0)S'}. Furthermore, a sequence
of change operations o with Slo)S’ and |o| = d(g g is denoted as bias between
S and S’.

The distance between two process models S and S’ is the minimal number
of change operations needed for transforming S into S’. The corresponding se-
quence of change operations is denoted as bias between S and S’.* Obviously,
the shorter the distance between two process models, the more similar their
control flow structure is. Generally, the distance between two process models
measures the complexity for process model transformation or configuration. As
example take Fig. 1. Here, the distance between S and S’ is one, since we only
need to perform one change operation move(S, receivetreatment, admitted, pay)
to transform S into S’. In general, determining bias and distance between two
process models is rather difficult. The complexity is at NP level [12]. We omit
further details and refer to [12].

Here we use high-level change operations rather than change primitives (basic
changes like adding/removing nodes and edges) to measure the distance between

4 Generally, it is possible to have more than one minimal set of change operations to
realize the transformation from S into ', i.e., given two process models S and S’
their bias is not necessarily unique. A detailed discussion of this issue is out of the
scope of this paper since we are more interested in the change distance. We refer
readers to [10,12] for details.



process models. The reason is that using high-level change operations can guar-
antee soundness and provide more meaningful measure of the distance. Due to
the limited space, we omit the details are refer readers to [27].

Trace

Definition 3 (Trace). Let S = (N, E,...) € P be a process model. We can
define t as a trace of S iff:

—t =< ay,a9,...,a5 >, a; € N, be a sequence of activities, which is a valid
and complete execution sequence based on the control flow in S. We define
Ts be a set which contains all the traces process model S can produce.

— t(a < b) is denoted as precedence relationship between activities a and b in
trace t =< ai,az,...,a > iff X <j:a;=aNa; =0.

Here, we only consider traces composing ‘real’ activities, but no events related
to silent activities (i.e. activity nodes which contain no operation and exist only
for control flow purpose). A detailed discussion about silent activity can be found

n [12]. At this stage, we consider two process models as being the same if they
are trace equivalent, i.e. S = S’ iff Ts = Ts:. The stronger notion of bi-similarity
[11] is not required in our context.

3 Mining Process Variants: Goals and Comparison with
Process Mining

In this section, we first motivate the major goal behind mining process variants,
namely to derive a reference process model out of a given collection of process
variants. This shall be done in a way such that the different process variants can
be efficiently configured out of the reference model. The letter is of particular
importance if we want to learn from process instance deviations, derive an opti-
mized process model from them, and migrate the already running instances to
the newly derived model afterwards [28]. We measure the efforts for respective
process configurations by the number of high-level change operations needed to
transform the reference model into the respective model variant. The challenge
is to find a reference model such that the average number of change operations
needed (i.e., the average distance) becomes minimal.

To make this more clear, we compare process variants mining with traditional
process mining. Process mining based on execution log has been researched inten-
sively during the past few years [6]. An overview on existing techniques is given
in [16]. In a nutshell, these approaches are trying to discover the underlining pro-
cess model from execution logs which typically record the starting/completion
events of each process activities. Obviously, input data for process and process
variants mining differ. While traditional process mining operates on execution
logs, mining of process variants is based on change logs (or the process variants
we can obtain from them). Of course, such high-level consideration is insufficient



to prove that existing mining techniques do not provide optimal results with re-
spect to the above goal. In principle, methods like alpha algorithm or genetic
mining can be applied to our problem as well. For example, we could derive all
traces producible by a given collection of process variants [15] and then apply
existing mining algorithms to them. Or, if there are enough instances for each
process model variant, we can mine their traces to discover a corresponding pro-
cess model. To make the difference between process and process variants mining
more evident, in the following, we consider behavioral similarity between two
process models as well as structural similarity based on their bias.

The behavior of a process model S can be represented by the set of traces
Ts it can produce (c.f. Def. 3). Therefore, two process models can be compared
based on the difference between their trace sets [6, 15, 16]. By contrast, biases can
be used to express the (structural) distance between two process models, i.e., the
minimal number of high-level change operations needed to transform one model
into the other [12]. While the mining of process variants addresses structural
similarity, traditional process mining focuses on behavior. Obviously, this leads
to different choices in algorithm design and also suggest different mining results.
Fig. 2 shows two examples.

& Focus on behavior >
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45 instances S ﬂ n Biases exist: 100  Executions cover: 100%
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a) Example 1
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Fig. 2. Mining focusing either on Behavior or on Minimization of Biases



Consider Example 1 (c.f. Fig. 2a)) which shows two process variants S; and
Ss. Assume that 55 process instances are running on S; and 45 instances on Ss.
We want to derive a reference process model such that the efforts for configuring
the 100 process instances out of the reference model become minimal. If we focus
on behavior, like existing process mining algorithms do, the discovered process
model will have a structure like S; all traces producible on S; and S5 respectively
can be produced on S as well, i.e. 7g, C 75 and 7g, C 7g. However, if we adopt
S as reference model and relink instances to it, all instances running eon S; or Sy
will have a non-empty bias. The average weighted distance between S and S; (S
and Sy) is one; i.e., for each process instance we need on average one high-level
change operation to configure S into S; and S5 respectively. More precisely, we
would need to move either B or C in S to either obtain S; or Ss; i.e., S[o1)S]
with o1 = move(S,B,A,C) (c.f. Def. 1 for detail parameterization) and S[o2)S2
with o9 = move(S,B,C,D). We describe a method to compute biases in [12].

By contrast, if the goal is to reduce the average bias between reference model
and process (instance) variants, we should choose S’ as reference model. Though
S’ does not cover all traces S; and Ss can produce (i.e., Tg, € Tg/) the average
distance between reference model and process instances becomes minimal with
this approach. More precisely, the average distance between S’ and instances
running either on Sy or Sy corresponds to 0.45; i.e., while no adaptations become
necessary for the 55 instances running on S7, we need to move activity B for the
45 instances based on Ss, i.e. S’[¢”)Sy with ¢/ = move(S’,B,C,D). Though S’
cannot cover all traces process variants S; and Ss can produce, adapting S’
rather than S as the new reference process model requires less efforts for process
configuration, since the average weighted distance between S’ and the instances
running on both S; and Ss is 55% lower than when using S.

Regarding Example 2 (c.f. Fig. 2), activity X is only present in Sy, but not in
S1. When applying traditional process mining, we obtain process model S (with
X being contained in a conditional branch). If focus is on minimizing average
change distance, S’ will have to be chosen as reference model. Note that in Fig. 2
we have chosen rather simple process models to illustrate basic ideas. Of course,
our approach works for process models with more complex structure as well, see

Sec. 5.

Our discussions on the difference between behavioral and structural simi-
larity also demonstrate that current process mining algorithms do not consider
structural similarity based on bias and change distance (we will quantitatively
compare our mining approach with existing algorithms in Section 5). First, a
fundamental requirement for traditional process mining concerns the availabil-
ity of a critical number of instance traces. An alternative method is to enumerate
all the traces the process variants can produce (if it is finite) to represent the
process model, and to use these traces as input source for process mining algo-
rithms based on process logs. Unfortunately, this does also not satisfy our need
on reducing biases since it focuses on covering execution behavior as captured
in execution log (recall Example 1 and 2). Clearly, enumerating all the traces
would be also a tedious and expensive job. For example, if an AND-split and



AND-join block contains five branches and each branch contains five activities,
the number of traces for such a structure is (5 x 5)!/(5!)% = 623360743125120.

4 Represent Process Model Logic as an Order Matrix

After showing the goal for process variant mining, we start describing the ap-
proach to perform the mining. The theoretical backgrounds of high-level change
operations have been discussed in ADEPT technique which is based on WSM net
[9], and life-cycle inheritance which is based on Petri net [10]. One key feature
of our ADEPT change framework is to maintain the structure of the unchanged
parts of a process model [9]. For example, if we delete an activity, this will neither
influence the successors nor the predecessors of this activity, and also not their
control relationships. To incorporate this feature in our approach, rather than
only looking at direct predecessor-successor relationships between two activities
(i.e. control flow edges), we consider the transitive control dependencies between
all pairs of activities; i.e. for every pair of activities a;,a; € N(N', a; # a;,
their execution order compared to each other is examined. Logically, we check
the execution orders by considering all traces a process model can produce (c.f.
Sec. 2). Results can be formally described in a matrix A, x, with n = |N [ N’|.
Four types of control relations can be identified (cf. Def. 4):

Definition 4 (Order matrix). Let S = (N,E,...) € P be a process model
with N = {a1,aq9,...,a,}. Let further Ts denote the set of all traces producible
on S. Then: Matriz A,xy is called order matrixz of S with A;; representing
the relation between different activities a;,a; € N iff:

— Aij =1’ Zﬁ (Vt € Ts with ai, a5 € t = t(ai < aj))
If for all traces containing activities a; and aj, a; always appears BEFORE
a;, we denote A;; as '1’, i.e., a; is predecessor of a; in the flow of control.
— AU =0’ Zﬁ Nt S TS with aj, a5 € t = t(a]’ =< CLZ))
If for all traces containing activity a; and a;, a; always appears AFTER a;,
then we denote A;j as a ’0’, i.e. a; is successor of a; in the flow of control.
— Aij = ¥ iff th € 1s, with ai,a; € t1 /\tl(ai < aj)) AN (ﬂtg € T1s, with
i, a; € to /\tQ(a]‘ =< al))
If there exists at least one trace in which a; appears before a; and at least
one other trace in which a; appears after a;, we denote A;; as '*’, i.e. a;
and a; are contained in different parallel branches.
— Aij = L’iﬁ(ﬁﬂtelfg ra; €N aj Et)
If there is no trace containing both activity a; and a;, we denote A;; as -’
i.e. a; and a; are contained in different branches of a conditional branching.

Figure 3 shows an example. Besides control flow edges which shows direct
predecessor-successor relationship, process model S also contains four types of
control flows: AND-Split, AND-Join, XOR-Split and XOR-join. The order ma-
trix can represent all these relationship in the matrix. For example activity A
and activity B would never appear in one trace since they are in two different
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Fig. 3. Order matrix for process model S

branches of an XOR block. It is denoted as ’-’ in the matrix at A,y and Ap,.
Similarly, we can denote all the execution orders between every pair of activ-
ities. The main diagonal in the matrix is empty since we do not compare an
activity with itself. As one can see, elements A;; and Aj; can be derived from
each other. If activity a; is a predecessor of activity a;, (i.e. 4;; = 1), we can
always conclude that Aj; = 0 holds. Similarly, if A;; € {™*-’}, then we will
obtain Aj; = A;;. Please note that order matrix is different from the adjacency
matrix as used in graph theory [18]. The reasons include that it differentiates
AND and XOR block, does not contain unnecessary silent activities, and handle
loop differently [12].

Under certain constraints, an order matrix A can uniquely represent the
process model, based on which it was built on. This is stated by Theorem 1.
Before giving this theorem, we need to define the notion of substring of trace:

Definition 5 (Substring of trace). Let t and t’' be two traces. We define t is
a sub-string of t' iff Na;, a; € t, t(a; < a;) = a;, aj € ' ANt'(a; < a;)] and
[Elak € N: ag §ét/\ak Gt/],

Theorem 1. Let S, S’ € P be two process models, with same set of activities
N = {ai,a9,...,a,}. Let further Tg, Tg: be the related trace sets and A, xn,
Al ., be the order matrices of S and S'. Then S # 5" & A # A’ if (—3t1,¢] €

Ts: t1 is a substring of t}) and (—3te,th € Tgr: to is a substring of th).

According to Theorem 1, there is a one-to-one mapping between a process
model S and its order matrix A, if the substring constraint is met. A proof of
Theorem 1 can be found in [12]. The substring constraint is also not very strong
since we can easily detect and handle it [12]. Thus, analyzing order matrix (cf.
Def. 4) would be sufficient for analyzing a process model, since an order matrix
can uniquely represent the process model.

The order matrix can also help on determining blocks: if the internal execu-
tion orders of the activities in the same block are ignored, these activities should
have the same execution orders to the rest of activities. Take the order matrix
in Fig. 3 for example. If we ignore the internal relationship between activities
A and B, the execution orders between A and the rest of activities are the same
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as the execution orders between B and the rest of activities (as marked up in
yellow in Fig. 3, the first two rows are the same if we ignore the execution order
between A and B). Therefore, without knowing the process model, we can already
determine a block with activities A and B, which are in different branches of an
XOR block.

We therefore can apply the similar idea on designing the mining algorithm.
When two activities have the same or similar execution orders to the rest of
activities, we therefore can cluster them together as a block. And if we repeat it
again and again, then activities will form a small blocks, and small blocks will
form bigger ones, and we can therefore mine a process model out by clustering
activities or blocks. The following sections will give a detail explanation of our
method.

5 Discovering Generic Process Reference Model

The goal of this paper is to mine the process variants in order to derive a new
reference model which is easier configurable. Since we restrict ourselves on han-
dling block-structured process models, we can build a process model by enlarging
blocks, i.e. some activities can form blocks, and the block is enlarged by merging
other blocks. If all the activities and blocks are linked together, we therefore can
get a process model which represent the new reference process models.
Therefore, our general approach for mining process variants is as follows:

1. Represent process variants by a Type-level Order Matrix (Section 5.1).

2. Determine which activities should be clustered together to form a block,
based on the type-level order matrix. (Section 5.3).

3. Make respective change of the type-level order matrix after building a block
in step 2 (Section 5.4).

4. Repeat 2,3 until all activities (blocks) are clustered together.

5. Evaluation the fitness of the resulting process model (Section 5.5).

An illustrative example is given in Fig. 4. It contains five process variants
S; € P,) =00, €,...v as well as the weight of each variance based on number of
execution. In our example, 30% of instances were executed according to process
variant S7, while 15% instance according to variant Ss. In another scenario, for
example, when we only have the process variants derived from the same reference
model, but no information about the instance executions, we can assume the
variants are un-weighted. i.e. every process variant will have the same weight
1/n, where n is the number of process variants in the system. So far, our example
is given based on the assumption that each process variant has the same activity
set. See Sec. 7 for a relaxation of this constraint.

5.1 Type-level Order Matrix

When given a set of process variants, we first need to compute the order matrices
for these process variants. To our case, we need to draw five order matrices
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Weight of process variant
. 0, ’
Ss: 20% B m based on number of executions

Fig. 4. Tllustrative example for our mining approach

according the five process variants in the system (c.f. Fig. 5). Afterwards, we can
analyze the execution orders between every pair of activities shown in different
order matrices. As the execution order between two activities may not be unique
in all order matrices, this is not a fixed relationship but a distribution value of
the four types of execution orders. For example, activity C is 65% successor
of activity B (as in S, S2, Si), 20% predecessor of B (as in S3) and 15% in
different XOR-split branching with B (as in S5). We therefore can define the
execution order between two activities a and b, as a four dimensional vector,
Vab = (Vabo, Vab1, Vabs, Vap— ), which corresponds to the frequency of the four
types of execution orders (°0’, ’1’, "*’, ’-’) as specified in Def. 4. For example,
vep; shows the percentage where activities C, B have relationship ’1’, i.e. activity
C is a predecessor of B. Clearly, vap0 + Uab1 + Vaps + Vap— = 1. To our case,
Ves = (0.65,0.2,0,0.15).
We can formally define a type-level order matrix as follows:

Definition 6 (Type-level Order Matrix).

Let S; = (Ni,...) € P, i = (1,2,...,n) be a set of process variants. A;
is the order matrixz for S; and w; represents the number of instances executed
according to S;. The Type-level Order Matrix for the process models is defined as
a 8-dimensional matric Vi, xm with m = ||JN;| and Vi, = (Vjk0, Vjik1, Vjks, Vik—)
being a four dimensional vector. vjry = Zi:(l,..i,n),Aijk:'O' w;/ Zi:(l,...,n) w; for

VS; € P :aj,ar € N; Aj# k. Similarly we can compute vjg1,Vjke and vji—.

In a type-level order matrix, Vj, shows the percentage value of the four
types of execution orders in all the process models containing activity a; and
ar (j # k). Please note that we do not necessarily constrain all process models
to have the same activity set. We will further describe how we handle such
situation in Section 7. To our example, the type-level order matrix V for the
process variants shown in Fig. 4 is depicted in Fig. 5.

In the type level order matrix, the main diagonal is empty since we do not
specify the execution order between an activity and itself. For the rest of ele-
ments, when the value in a certain dimension is empty, it means it is 0.
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Fig. 5. Type-level order matrix

In Sec. 4, we have shown that we can use order matrix to determine blocks
in a process model. i.e. two activities can be clustered together to form a block
if the execution order between them and the rest of activities are same (c.f. Sec.
4). Similar idea can be applied, when analyzing type-level order matrix. The
following sections will describe the methods in details.

5.2 Two Measures for Block Detection: Cohesion and Separation

A naive approach would be to make an order matrix based on the type-level order
matrix by setting the execution orders to the one with the highest frequency in
the vector. For example, because Vo = (0.65,0.2,0,0.15) the execution order
of C, B should be successor, since Vapgg is 0.65 which is the highest among the
four. If we apply it to every pair of execution order, we can then generate an
‘order matrix’, based on which we can build one process model. Unfortunately it
will not work, since an ’order matrix’ determined in this way does not necessarily
represent a valid process model. Take the order matrix in Fig. 3 for example, if
we change Ay g from 1 to 0, there would be no process model representing such
order matrix. This has triggered us to think of other methods.

As described in the general process at the beginning of this section, whenever
we need to determine a block, we need to know which activities (blocks) should
be in such block, and what execution order should the activities in the blocks
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be? In this section, we will introduce two measures: cohesion and separation as
the answer of these two questions.

Before we define cohesion and separation, we first need to define a function
f(a, B) which shows the closeness between two vectors a = (z1, 3, ..., ) and

ﬂ = (ylay27 "'7y7b):

(o, B) a-f Dot TiYi

ol x o i— —
lal > 181 fyvimn a2 o\ [yizny2

f(a, B) computes the cosine value of the angle 6 between the two vectors «, 5
in an Euclid space. The value range of if this function is [0, 1] where 1 means
two vector a, 0 precisely match in their directions and 0 when they are precisely
vertical.

Cohesion Cohesion measures how closely related the objects in a cluster are.
In our context: it indicates how strong the relationship between two activities
is.

In the type level order matrix, if, for instance, we decide to cluster activity B
and E together to form a block, the relationship between the two activities B, E
in the block, is determined by the vector Vgg. This vector shows the execution
order between B and E. We then can compare Vpp with the four benchmarking
vectors (which corresponding to the four axes in the four-dimensional space):
Vo = (1,0,0,0), V3 = (0,1,0,0),V, = (0,0,1,0),Vo = (0,0,0,1). To which of the
four axes Vpg is closest, we can define it as the execution order between B and
E. And the credibility is therefore determined by the cosine value between these
two vectors. For example, Vg = (0,0.7,0.3,0), so the closest vector is V7, and
the closeness which is evaluated by the cosine value equals 0.919.

Since cohesion is determined by angle between a vector and its closest axis,
the value range of the cohesion value is not [0,1] but to some degree smaller.
We can also normalize cohesion to a value between 0 and 1. It is not difficult
to find that when a vector equals to (0.25,0.25,0.25,0.25), the cohesion equals
to the minimal one which is 0.5. Therefore the cluster cohesion, which shows
the credibility of the relationship between the two activities (blocks) in a block,
equals:

Cohesion(A, B) = 2 x max(f(Vas, Vo), f(Vap, V1), f(Vag, V), f(Vap,V-)) —1

In this way, we can determine and measure the internal relationship between
two activities (blocks) by a value between 0 to 1. Regarding to the example given
above, Cohesion(B,E) therefore equals 0.838, and the execution order between
activities B, E is predecessor.

Separation Separation measures how distinct or well-separated a cluster is
from other clusters. In our context, we indicate how well two activities (blocks)
are suited to be clustered together, i.e. to form a block.
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This factor Seperation(A, B) is determined by how similar the execution
orders of activity A and B when compared with the rest of activities. As to our
case shown in Fig. 4, Seperation(A, B) is determined by the closeness (measured
by the cosine value) of f(Vac,Vee), f(Vap,Vep) and f(Vag, Vpg). Therefore,
we can define cluster separation equals:

Yvemiany 2 (Vas, Vbe)

Separation(A, B) = N[—2

In the formula of separation, N is the set of activities. The reason to square
the cosine value is to emphasize the differences between the two compared vec-
tors, like most clustering algorithms do [14]. And dividing the formula by |N|—2
can normalize the value to a range between [0, 1]. As to our example in Fig. 4,
Seperation(A, B) = 0.905.

5.3 Detecting Activities to Form a Block

After introducing Cohesion and Separation in Section 5.2, we can apply these
two measures to determine: which two activities should be clustered together,
and what the relationship between them should be.

The idea is similar to Agglomerative Hierarchical Clustering as introduced
in the field of data ming [14]. Similar to clustering algorithm in data ming which
measures the distance between each pair of nodes in a dataset, we measure the
distance between each activity pair by computing the separation value between
them. The higher the separation value is, the more likely two activities tend
to be clustered together. Regarding to our case in Fig. 4, the separation values
between every pair of activities are shown in Fig. 6. We denote this table as
separation table.

0.905

0.561| 0.936

0.430] 0.447] 0.729

m O O W

0.308| 0.695| 0.908| 0.935

A B C D

Fig. 6. The separation table of the type-level order matrix in Fig. 5

Regarding the separation table, it becomes clear that activity B and C have
the highest separation value (marked up in grey). To be more precise, the sep-
aration between B and C is 0.936. Since it is the highest one, we can already
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determine the activities in our first block: activity B and C. However, when deal-
ing with complex examples, there can several maximal separation values. For this
case, we also need to compute the cohesion between the pairs with the highest
separation values. The pair with highest cohesion shall be selected, since the re-
lationship of the two activities (measured by the cohesion) is most significant. If
separation and cohesion are both the same for two blocks, we do not differentiate
which one should be first.

After we determined the activities to form a block, we need to determine
which execution order should activity B and C have, as well as the cohesion value
which indicates how strong the relationship is (c.f. Cohesion). Cohesion(B, C) =
0.867, and the closest axis is V4 which identifies that activity B is a predecessor
of activity C.

5.4 Re-compute the Type-level Order Matrix

After we cluster activities B and C, we need to decide the relationship between
this new block and the result of activities. In the traditional clustering tech-
niques, the distance (separation, as to our case) between this block and the
node out side this block is either the maximal, or the minimal or the average
of the distances between that node and the nodes in the cluster [14]. For ex-
ample, according to Agglomerative hierarchical clustering [14], after activities B
and C are clustered together, the distance (separation) between this block and
another activity (e.g. A) is either the minimal (0.561) or the maximal (0.905) or
the average (0.733) of separation(A,B) = 0.905 and separation(A,C) = 0.561.
Unfortunately, such technique will not work in our context because we do not
simply consider each activity as a high dimensional vector. When two activities
are clustered together, we actually moved the positions of the activities in the
process variants so that they could be linked together to form a block. There-
fore, rather than simply modify the separation values, we need to re-compute
the execution orders between the activities in the block and the activities out-
side the block. We do it by compute the means. For example, activity B is 100%
predecessor of D, while activity C is 15% successor, 65% predecessor and 20%
AND-Split with C (c.f. Fig. 5). After we cluster activity B and C, the execution
order of block (B,C) to activity D, turn to be 7.5% successor, 82.5% predecessor
and 10% AND-split. We can formally describe it as follows: after activity a, b
are clustered together, the new type-level order matrix V(’n C1)x(n—1) equals:
1. V(’a,b)w =1/2(Vay + Vi) and Vai(a’b) =1/2(Vye + Vi) for all x € N\ {a, b}
2. V5, = Vyy forall z,y € N\ {a,b}

The new type-level order matrix V' after clustering activity B and C is shown

in Fig. 7.

5.5 Mining Result and Evaluation

After we get a new type-level order matrix, we can repeat the following two pro-
cess as described in Section 5.3 and Section 5.4, i.e. first determine the activities



16

A (B,C D E
A 100% 100% 100%
(B,C) 100% 7.5% :82.5%| 7.5% :62.5%)
10% 30%
D 100% 82.5%: 7.5% 65% i 20%
10% 15%
E 100% 62.5%: 7.5% | 20% : 65%
30% 15%

Fig. 7. The new type-level order matrix after clustering B and C

(blocks) to be cluster together, and then re-compute the type-level order matrix.
The iteration will continue until all activities and blocks are clustered together
(the number of iteration equals the number of activities minus two). The final
result after all iteration is shown in Fig. 8.

Figure 8 shows the process model S” we mined out. The result does not only
show a process model, but also shows how the process model been built up in
each iteration ( shown as a number at the right-bottom corner of each block)
and what the credibility of the control flow is. For example, the credibility of the
successor relationship between activity E and block with activity C and D is 0.792,
which is relatively low when compared to the other control flows. It reflects that:
based on the instances described in Fig. 4, the relationship between activity C
and E has been configured more than others. And the credibility of activity C is
a predecessor of activity E is not very strong.

Since we follow a strict block structure so far, the result can also be visualized
in an expression tree as proposed in [25]. Similar tree structure can also be found
in hierarchical clustering algorithm [14]. The tree structure of the process model
in Fig. 8 is depicted in Fig. 9.

0.867 0.792 0939
i = D]
(2)

Fig. 8. The resulting process model S’
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(8] [C] [E] [D] [A]

Fig. 9. The binary tree representation of process model S’

The rectangle in Fig. 9 represents the activities and the circle in the root rep-
resents the execution order. The execution order shows the relationship between
the left subtree and the right sub tree. For example, the relationship between
activity B and C is 1, which means B is a predecessor of C. The tree can grow as
the blocks grow in our algorithm. Whenever a block is created, the new activities
being included in the block will become the new right subtree of old one. For
example, after activity B and C are clustered with the relationship of predecessor,
the existing tree has two subtrees B and C and a root with execution order ”1”.
After the first iteration, the algorithm decided to cluster the block with B and C
with the activity E. The new activity will then be listed as the right subtree of
the new tree with the execution order of ”1” shown on the root.

If we perform an inorder traversal (details is available in [25]) of the tree,
we can also represent the process model in a linear structure like an arithmetic
expression. For this case the expression is: (((B 1 C) 1 E) 1 D) 0 A). In this
expression, 0,1 represent the execution order just like ”4” ”-” in arithmetics.
Therefore B 1 C means activity B is a predecessor of C.

5.6 Two Evaluation Measures

Besides the cohesion which evaluate the local fitness of a certain block, we can
also define global evaluation measures which show the ”goodness” of the process
model we mined out. The measures include: accuracy and precision.

We first can build an order matrix A’ based on the process model S’ which
we mined out (c.f. Fig. 8). After that, we can also build a type-level order matrix
V' only based on A’. For instance, if A}, = 0, then the corresponding element
in the type-level order matrix is a vector V;; = (1,0,0,0). Or, if A}; = 1, we can
determine the vector to be V;; = (0,1,0,0). Based on the comparison between
the type-level order matrix V' (c.f. Section 5.1) and V| the accuracy and precision
can be defined as follow:

Zai,a]‘GN,i;éj,Vij:V’ij 1
N|x (IN|=1)

Accuracy(S’) measures how accurate the mined out process model S’ is when
compared to the process variants. It is determined by how many execution or-

Accuracy(S") =
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ders have been perfectly satisfied compared with all the activities pairs. We
define two vectors V;; and VZ’J perfectly match if Vi; = VZ’J To our example,
10 execution orders satisfy this relationship out of 20 activity pairs. Therefore,
Accuracy(S’") = 0.5.

Yijeniti sy §° Vi, Viy)
1

Precision(S") =
2o JEN i Vi £V

Precision(S’) shows how precise the execution orders in S’ are when com-
pared to the process variants in the system. When computing the precision,
only the none-perfect match cases are counted. Precision(S’) equals the average
square of the similarities (measured by the f function in Section 5.2) between
the none-perfect match element in V' and V’. We define two vectors V;; and V;
not perfectly match if Vj; # VJ;. The reason to square the cosine measure is
to emphasize the different, as most data mining measures do [14]. In our case,
precision(S’) = 0.837.

Clearly, a more precise way to evaluate the resulting model is to really com-
pute the distances between the mined model and the process variants. However,
as computing the distance between two given process models is at NP level
[12], it is not very sufficient to do so. Therefore, we introduce the two measures
accuracy and precision to give an approximate result. In the following section,
we will also compare these two different methods for measuring the goodness of
the resulting model.

6 Validation

The complexity of the process variants mining algorithm described above is
O(n?). Like other clustering algorithms in data mining [14], this algorithm is
trying to solve a complex combinatory optimization problem in polynomial time.
This leads to the benefit that it can solve a problem with large scale, as well as
the disadvantage that it only searches for local optimal but not global optimal.
Therefore, it is not possible to systematically prove that the algorithm really
does what we want, i.e. reduce the number of biases in the system by improving
the reference process model.

However, we can compare the process model we mined out with some other
models. The comparison is based on: how many biases would exist in the system
if we set different models as the new reference process model. To emphasize again,
the biases are evaluated by the number change operations need to transform the
reference model to the variants. It is also same to the largest common divider
as defined in [13] i.e., how many activities we need to remove from the process
variants to make it as a life-cycle inheritance of the reference process model [10].
For example, if we compare the e S; in Fig. 4 with the process model S’ as we
mined out in Fig. 8. We only need to move one activity E to the position after
C and before D (i.e. move(S1,E, C, D) in ADEPT [9]) in order to transform Sy
to S’. If we apply the life-cycle inheritance as Aalst defined in Petri-net world



19

[13,10] we only need to remove activity E in S; so that S; could be an life-cycle
inheritance process model of S’. In this way, we can define that if we set the
process model S’ as the new process template, there is only one bias existing in
each instance running according to process model S;. By applying the similar
technique, we can compute the biases in other variants if we set S’ as the new
type level order matrix.

There are two groups of process models that can be the candidates for the
new reference process model. The first group contains all the process models we
already know. Clearly, the five process variants S, S2, S3, 54, S5 shown in Fig.
4 belong to this group. In addition, we can also assume that there exists an
original reference process model. Lets assume it is S in Fig. 10. Comparing these
existing models with the one we obtained through our approach, for example,
already shows that it will be not sufficient to simply set the reference model to
the most frequently used process variant (S7 in our example).

(A B> C»DJ>E]

S: Original process model

S1:30% : AEBCD, ABECD, ABCED
S,:15% : ABDEC, ABEDC

S3:20% : ACBED

S4:20% : ABCDE, ABDCE

S5:15% : ABED, ACED
Saip: Alpha, Alpha ++, algorithm ShrsiHeuristics mining

Fig. 10. The candidate process models

The second group of process models includes the process models that we
discovered using different algorithms. Clearly, the process model S’ from Fig. 8,
as obtained using our process variants algorithm is in this group. In addition,
we can compare the process models discovered using traditional process mining
algorithms based on traces [16]. Since a process model can be represented by
the set of traces it can produce, we have calculated all traces producible by all
process variants in Fig. 4, and use these traces as the input of the traditional
mining algorithms (c.f. Fig. 10 for all the traces). The mining algorithms we
applied here includes Alpha algorithm [20], Alpha++ algorithm [21], Heuristics
mining [22] and Genetic mining [23]. (These are some of the most well-known
algorithms for discovering process models from execution logs). Both Alpha and
Alpha++ algorithm result in model Sg;,, whereas Heuristics mining provides
model Sh,s. We do no consider the model discovered by genetic mining, since
it is too different: genetic mining resulted in a complex model with six silent
activities (and the distances to each process variant is higher than three).

Given the two groups of process models, the comparison is also made based
on two methods. Clearly, the first option is to compute the distances between
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the process candidates and the five process variants. The average weighted dis-
tance can therefore represent how close each process candidate is to the process
variants. This method would be very precise since it directly matches the goal
of the algorithm, i.e., to reduce the biases in the system. However, this method
is also very expensive since computing the distance between two process models
is an AP problem [12]. The comparison result is shown in Fig. 11.

An alternative way is to compare the accuracy and precision of each process
model (c.f. Section 5.5), since these two measures can represent the closeness
between a process model and a type-level order matrix which represents a group
of process variants. The advantage of comparing accuracy and precision is that
they can be computed in polynomial time, so the comparison would be fast and
scalable. However, the disadvantage is that the approximative comparison may
not be very precise.

The comparison result for the two groups of process models based on two
methods described above is shown in Fig. 11.

Shrs Salp S' S 85 84 83 Sz 81

1 2 1 1 2 2 2 2 0 [Distance to S, (30%)

2 2 2 2 2 2 2 0 2 |Distance to S, (15%)

2 2 1 2 1 2 0 2 2 |Distance to S; (20%)

2 2 1 1 2 0 2 2 2 |Distance to S4 (20%)

2 2 1 2 0 2 1 2 2 |Distance to S5 (15%)

1.7 2 [1145] 15| 15| 1.6 | 1.45]| 1.7 | 1.4 |Average distance

0.5 05|05 ] 05| 05] 05| 05] 05 0.5 |Accuracy

0.422] 0.1 [0.837]0.679]|0.672|0.521]|0.679|0.372]| 0.596|Precision

Fig. 11. The number of biases when adapting different models

The matrix in Fig. 11 shows how many biases would exist if we set different
process models as the new reference process model. For example, if we set Sp
as the new reference model, we therefore can find biases existing in So, S3, Sy,
and S5, and the distances between S; to them all equal 2. When given the
percentage of each variants as the weight, we can compute the average weighted
distances between S; and the five variants in the repository. The number is 1.4
as shown in Fig. 11. We can interpret it as follows: if setting S; as the new
reference model, we need to perform on average 1.4 changes to the reference
process model in order to configure it to the process variants in the repository.
Similarly, we can compute the average distance when setting other models as the
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reference model. The result shows that S’ (c.f. Fig. 8), the process model mined
out using the method we suggested, has the shortest average weighted distance
to the variants. It means, setting S’ as the new reference process model would
require the least amount effort for process configuration, i.e. we only need to
perform on average 1.15 changes to configure S’ into the five process variants.
Please note that the process models S, and Sh,s, which are produced by the
process mining algorithms based on traces, are in fact the two of the worst ones
concerning the number of biases in the system. This result also corresponds the
analysis we shown in Section 3.

When comparing the accuracy and precision of each process models, the
mined out process model, S’, is still the best one. Although the accuracy for
each process model all equals to 0.5, S’ has the highest precision value, 0.837
as shown in Fig. 11, which shows that S’ fits closer to the process variants in
the repository. In addition, according to the results in Fig. 11, we can generally
claim that the higher the precision value is, the shorter the average distance
it has compared to the process variants. However, it does not always hold, for
instance, S5 has both higher precision value and average weighted distance when
compared to S;. Such occasional in-consistency is not surprising due to the NP
nature of the distance measure.

Clearly, it is not possible to enumerate all process models available, since it
can be infinite. Therefore we can not prove that the process model we mined
out are the best one. It is also possible that there exists better ones since the
algorithm only search for local optimal as most data mining algorithms do [14].
However, as identified In Fig. 11, the mined out process model is at least better
than all the process models currently known and the process models which can
be produced by process mining algorithms based on executions. Keeping our
search at local optimal will also make our approach applicable to really case,
since we therefore can limit the complexity at polynomial level.

7 Mining Process Variants with Different Activity Set

In Section 5 we introduced our method to mine process variants with the same
set of activities. In practise, it is often the case that different process variant
has different set of activities. In this section, we will discuss the technique to
handle this situation. We explain our method by using two examples F; and F»
as described in Fig. 12. We will show how we mine the process variants with
different activity set and why we do it in the proposed way.

In Fig. 12, we shows two examples. In example E;, there are two process
variants S1; and Sp2 which corresponding to 40% and 60% of the instances in
the system. There are two activities: activity B and activity C that do not appear
together in any of the instances. Therefore, there is no process variant which can
specify the execution order between activity B and C. However, when compared
to the rest of activities, the execution order of B in Sy; are the same as the
execution order of C in Sis.
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Mining example E;: Mining example E;:

$11:40%| A |»{ B [>{ D | S21:40% | A [ B ]
$12:60% A | D] $22:60% A | | D]

Fig. 12. Two example cases wit different set of activities

In example F5, there are also two activities, B and D which do not appear
together in any of the process variants. Therefore, there is no direct indication of
which execution order between B and D should be. However, the execution order
has been indirectly specified since activity B is a predecessor of C while activity
D is a successor of D.

As different process variants have different activity sets, we first need to
determine which activities appear more often in the process variants so that can
ignore the trivial activities. In addition, we also need to see how often a pair
of activities appear together in the process variants, since whenever it happens,
we can determine the execution order between them. The result based on Fj is
shown in Fig. 13. As the matrix is symmetric, only the lower triangle together
with the main diagonal are shown.

In this matrix, the main diagonal shows how frequent each activity appears
in the instances. For example,in example F; activity A, B, E exists in all the
instances while activity B and C only appear in 40% and 60% of the instances.
We therefore can define a threshold value to determine which activities should
be included in the reference process model. In this way, we can ignore trivial
activities in the process variants. For example, only if one activity appears in
more than 40% of the instance, we will consider it as an activity in the type
level process model. Clearly, determining the threshold value would involve end
users, since users would know more about the process model and whether a lot
of new activities would or would not be preferable.

Besides the main diagonal, the lower triangle shows how often one pair of
activities appears together in the instances. For example, activity A and B appears
together in all the instances, while activity A and C only appears together in 60%
of the instances. We can use this value to compute the type-level order matrix
as described in Section 5.1. Since not all the activities will appear in all the
instances, the execution order counted in each instance will be discounted by the
occurrence value. For example, although activity A is a predecessor of activity
B in only 40% of the instances, such execution order should be discounted since
activity A and B only appear together in 40% of the instances. Therefore, the
execution order between A and B should be Vip = (0,1,0,0), since in all the
instances containing both A and B, activity A is always a predecessor of B. This
is also reflected in the definition of Type-level order matrix (c.f. def 6).

To discount the execution order by the appearance value will not threaten
our mining method as discussed in Section 5. The reason is that we are trying to
mine a process model out which only represent the structure of all the activities.
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It is possible that one activity does not appear very often in the instances, so
that the appearances between this activity and the rest of activities together are
low. However, if the appearances of such activity is higher than the threshold
value, we therefore only care where we need to put such activity, i.e. how such
activity should be incorporated in the process model. And where the activity
should be only depend on its execution order compared to others. Therefore, it
is possible that the appearance of one activity is low while the position of such
activity is rather stable.

100%

40%| 40%

60%| 0%] 60%

100%| 40%| 60%] 100%

m O O W »

100%| 40%| 60%]| 100%] 100%

A B C D E

Fig. 13. Occurrence matrix

7.1 Unclear Execution Orders

It is possible that two activities never appear in any process instances so that
is not execution order defined in the type-level order matrix. For example, in
example F1, activity B and C never appears together in one instances so that their
appearances value is 0. Therefore it is not possible to determine the relationship
between them. There are several ways to handle it:

1. Option 1. We can define the execution order of these activity pairs in the
type-level order matrix. We do it by setting the un-specified execution order
to (0.25,0.25,0.25,0.25). Which means the execution order between two ac-
tivities is not clear (i.e. the cohesion is 0 in this case). As vg+v +v.+v_ = 1,
we can still re-compute the new type-level order matrix by taking the mean,
if new block has been created (c.f. Section 5.4).

2. Option 2. As no execution order has been specified, we can leave the unclear
execution order to (0,0,0,0). However, f(«, ) (c.f. Section 5.2) is invalid if
any of the vector equals to (0,0,0,0). Therefore, we can define f(a,3) =0
if « or B8 =(0,0,0,0). In addition, if we need to re-compute the type-level
order matrix after a block been created (c.f. Section 5.4), we then do not
take such unclear execution order into account. For example, if V; and V5
are to be merged, and V; = (0,0,0,0), then the new execution order after
merging V7, V5 equals V5.
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3.

4.

Option 3 is similar to option 3, but we define the unclear relationship to 1,
which is another extreme. i.e. f(o, ) =1if @ = (0,0,0,0) or 5= (0,0,0,0).
Option 4. We can still leave the unclear execution order to (0,0,0,0), but
unlike option 2 and 3, we then ignore this execution order in our computa-
tion. i.e. whenever we have such execution order, we define the cohesion to
0 and ignore such vector in computing the separation value (c.f. cohesion,
separation in Section 5.2). We also ignore such unclear execution order when
we re-compute the type-level order matrix similar to option 2.

We therefore can compare the results if we adept different options in our

mining algorithm. Fig. 14 shows the comparison results.

Mining example 1: Mining example 2:

s.40% AT B 1D .40 [A 5[]
s60% A 0] Sni60% (A 0]

Option 1: 0.0
Set th | 1.0 1.0 1.0 1.0 0.98,
e lI?II io3E])| || 0]

(0.25, 0.25, 0.25, 0.25)

Se?mieogoz‘:ne 1.0 20 .0 1.0 I 1.0 0.89 1.0, ‘10
llg-ll D I3{E]|| | (A (51+0]]

Option 3:

L J

value to 1

Option 4:

Fig. 14. Different strategy to handle unclear relationship

We therefore can compare the different results when handling the unclear

relationship according to the 4 options listed above.

1.

If we apply option 1, i.e. set the unclear execution order to (0.25, 0.25,
0.25, 0.25), E; and FE, all fit well since the mined out model confirm to
our understanding. In E1, the relationship between B and C are unclear (the
cohesion is 0.0, which means any type of the execution order is possible),
well the relationship towards other’s are fixed (i.e. the cohesion to other
activities are 1). For Fs, the in-direct relationship between B and D are also
mined out with the cohesion of 0.98. However, it is not 1.0 since it is an
indirect relationship. In both examples F; and Fs, the average distance
between the mined out model and the variants equal to 1.

If we apply option 2, i.e. set f(a, ) to 0 if any of the vector equals to
(0,0,0,0). E; works the same as if we apply option 1, but the second one
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does not work as we expected. To be more precise, activity A is immediate
clustered with C. And this result in an increase in the average distance to 1.4.
The reason is that: since the cosine value is set to 0, the closeness between
B and D is therefore considered as very low. So, adapting option 2 could lead
to missing indirect relationship as specified through other activities.

3. If we apply option 3, i.e. set f(«,3) to 1 if any of the vector equals to
(0,0,0,0), Eo works as we expected while F7 does not provide us a model
we expected. As activity A and B are cluster and activity C and D are cluster,
the relationship between these two blocks is very strong, with cohesion of
1.0. However, it should not be the case since the relationship between B and C
are actually unclear. In fact, the strong relationship between the two blocks
containing A,B and C,D only shows the execution order between activity A
and D. The reason is that: since we set the cosine value to 1, activities will be
easily clustered to its neighbors, which leads to incorrect cohesion values. So,
adapting option 3 will exaggerate the relationship between unclear activities
therefore reduce the credibility of the mining result.

4. If we apply option 4, i.e. ignore unclear relationship, the result is similar
as option 3. In this case, activities with unclear relationship will be easily
clustered with their neighbors, and the relationship between two unclear
activities will be also be exaggerated as explained in option 3.

Please note that, here we deliberately give examples process variants in se-
quential structure (needless to say, the proposed method is also available if pro-
cess variants contain complex control flow like AND or XOR blocks). The reason
is to make difference between process mining based on execution clearer. For ex-
ample, If we apply mining algorithm based on execution, F; will mine a process
model similar to our result only with activity B and C in two branches of an
XOR block. In fact, our method can also mine such process model out since the
cohesion between the block with activity B and C is 0, which means any four
types of execution orders is possible. However, as our method is focusing on
mining process variants rather than traces which only have sequential structure,
we do not make such assumption that if two activities never appear together in
a log, then they should be in an XOR block. The reason is that two activities
does not appear together in an instance does not necessary mean only one of
them can be executed. Instead, we do it by setting the cohesion value which
shows the credibility of a certain structure to 0. Please also refer to the detailed
comparison between execution and biases as discussed in Section 3.

8 Algorithm and Prototype

8.1 Algorithm

To give an overview of the method we described in Section 5 and Section 7. We
can formally define the algorithm to perform process variants mining as follows:

The mining starts by deciding the set of activities to be included in the
type level process model. If the appearance of an activity is larger than a given
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Data: a set of process variants
Result: new type level process model
Do statistics of the appearance of each activity;
if appearanceOfActivityl > threshold value then
‘ Set activity I in the type level order matrix;
end
Compute order matrix for each process variance;
Build type-level order matrix based on these selected activities;
Do statistics to the appearance of each pair of activities;
if appearanceA;; # 0 then
‘ Compute execution order of V;; based on process variants;
else
| Set Ai; to (0.25,0.25,0.25,0.25).
end
while {Iteration < numberOfActivity -1} do
Compute similarity table;
Determine block, execution order and cohesion;
Generate the block in the out put model;
Recompute the type-level order matrix;
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end
compute precision;
compute accuracy;
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Algorithm 1: Process mining based on process variants

threshold, we will include this activity in the reference model. Then we build
the type-level order matrix based on the order matrices of each process variants.
If the execution order between a pair of activity is not define, we set it to the
value of (0.25, 0.25, 0.25, 0.25). After we build the order matrix, we continue
cluster activities (blocks) until all the activities are clustered together. In each of
these iterations, we need to compute the similarity table to decide which activity
to be clustered together, as well their execution order and cohesion. After two
activities are blocked together, we need to re-compute the type-level order matrix
for the next iteration. The iteration will continue until all activities and blocks
are clustered together. After the process model is build up, we can evaluate the
model by computing the precision and accuracy of that model.

8.2 Prototype

The algorithm has been tested and implemented using Java. Figure 15 shows an
screen shot of the prototype.

We use ADEPT2 Process Template Editor [26] as the tool to generate process
variants. For each process model, the editor can generate an XML document with
all the information of a process model (like nodes, edges, blocks) been marked
up. We therefore store all the process variants in the folder ”instances” (c.f.
Figure 15) for mining.
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Fig. 15. Screen shot of the prototype

The mining algorithm is developed as an stand-alone Java program, indepen-
dent from the process editor. It can read the process variants and generate the
result model according to the XML schema of the process editor. The resulting
model is stored in the folder "miningResult” and therefore been visualized using
the editor. The advantage of using ADEPT2 process template editor is that it
can handle the layout of a process model automatically. Therefore, we can just
focus on the structure of a process model.

9 Related Work

A variety of techniques for process mining has been suggested in literature [16, 22,
23,20]. As illustrated in this paper, traditional process mining is different from
process variants mining due to its different goal and inputs. [2] presents a method
to mine configurable process model based on event logs, however, it still focusing
on discovering process model through even log rather than reducing the effort
for process configuration. In addition, a few techniques have been proposed to
learn from process variants by mining change primitives. [29] measures process
model similarity based on change primitives and suggests mining techniques
using this measure. However, this approach does not consider important features
of our process meta model; e.g., it is unable to deal with silent activities or loop
backs, and does also not differentiate AND- and OR-splits. Similar techniques for
mining change primitives exist in the fields of rule mining [14] and maximal sub-
graph mining [17] as known from graph theory [18]; here common edges between
different nodes are discovered to construct a common sub-graph from a set of
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graphs. To mine high level change operations, [7] presents an approach based on
process mining techniques, i.e., the input consists of a change log, and process
mining algorithms are applied to discover the execution sequences of the changes
(i.e., the change meta process). However it simply considers each change as an
individual operation so that the result is more like a visualization of changes
rather than mining them. [24] presents a method for retrieving process variants
using a query model but not mining process variants. None of the discussed
approaches aims at creating a reference process model, which allows for easy
and optimized configuration for process variants.

10 Summary and Outlook

In this paper, we provide an approach to mine block-structured process variants
with the goal of reducing the number of biases in the system. The first contri-
bution of this paper is to provide one new process mining direction which is to
reduce the number of process variants so that the supporting information system
for process models is easy manageable. Based on quantitative comparisons, we
have shown that this mining goal is different to the one of traditional process
mining techniques which try to discover a process model representing all the
execution behaviors shown from the execution log [16, 6].

In addition, we provides one polynomial algorithm to perform the mining.
Like most of data mining algorithm, the algorithm we suggested also only looks
for local optimal. However, in this way we can solve a complex combinatory
problem in polynomial time, which provides us the opportunity to scale up on
solving real-life problem. We also validate our result in Section 6 that the mined
out model is better than all the process models existing in the system, as well as
the models derived from the existing process mining algorithms [16]. This paper
is, to our knowledge, the first paper to provide algorithm support of process
variants mining with the goal of minimizing biases.

The approach looks promising but there are still several questions left open.
First is to include more sentential control flow types, like synchronization edge or
loop back edge as proposed in ADAPT technique [9] or BEPL [19]. In addition,
it is also interesting to design search or heuristic algorithm to limit the difference
between the original process model and the process model we mined out. In this
way, the process re-engineering effort would be limited so that the mined out
process model would be relatively easier to be acceptable.
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