
Integrating Case-Based Reasoning with
Adaptive Process Management

Jakob Pinggera1, Stefan Zugal1, Barbara Weber1, Werner Wild2, and Manfred
Reichert3,4

1Quality Engineering Research Group, University of Innsbruck, Austria
2Evolution Consulting, Austria

3Inst. Databases and Information Systems, Ulm University, Germany
4Information Systems Group, University of Twente, The Netherlands

Zusammenfassung The need for more flexiblity of process-aware infor-
mation systems (PAIS) has been discussed for several years and different
approaches for adaptive process management have emerged. Only few of
them provide support for both changes of individual process instances
and the propagation of process type changes to a collection of related
process instances. The knowledge about changes has not yet been ex-
ploited by any of these systems. To overcome this practical limitation,
PAIS must capture the whole process life cycle and all kinds of changes
in an integrated way. They must allow users to deviate from the prede-
fined process in exceptional situations, and assist them in retrieving and
reusing knowledge about previously performed changes. In this paper we
present a proof-of concept implementation of a learning adaptive PAIS.
The prototype combines the ADEPT2 framework for dynamic process
changes with concepts and methods provided by case-based reasoning
(CBR) technology.

1 Introduction

Process-aware information systems (PAIS) allow coordinating the execution of
business processes by providing the right tasks to the right people at the right
time. In order to support a broad spectrum of business processes, PAIS must be
flexible at run-time. Ad-hoc deviations from the predefined process schema as
well as the quick adaptation of the process schema itself due to changes of the
underlying business processes must be supported [7, 13].
When exceptional situations are handled in a too rigid manner, users are forced
to bypass the system, resulting in limited traceability and information loss. So-
me PAIS recognize the need for more flexible systems and support the definition
of ad-hoc modifications for a single process instance, as well as changes of the
underlying business processes [7, 11, 8]. However, when the same or similar ex-
ceptions occur more than once, a new ad-hoc modification has to be defined each
time. In addition, the knowledge about exceptions is not kept in the system and
thus lost. Due to this, memorization and reuse of exceptional knowledge is highly
desirable and should be supported by the PAIS. When similar exceptions occur



frequently they should no longer be dealt with in an ad-hoc way, but should be
covered by updating the process model itself. Frequent similar exceptions indi-
cate that the process model does not adequately reflect the real world business
process. The process engineer should then be supported by the PAIS to utilize
the collected knowledge for improving the process model at hand [14, 12]. To
tackle this problem the conversational case-based reasoning (CCBR) Tool has
been developed.
ADEPT2 [10, 9, 8] as a PAIS allows ad-hoc changes as well as changes at the
process type level. In addition, ADEPT2 supports the migration of running in-
stances to a new schema version. CCBR Tool enhances this functionality with the
ability to trace information about the modifications. In the context of ADEPT2,
CCBR Tool is responsible for annotating details about the performed changes.
This information in turn is used for an intelligent reuse of modifications. In-
tegrating CCBR Tool in ADEPT2 combines the functionalities of both tools,
supplementing one another perfectly. This report shows how the integration has
been accomplished and gives a guide on using CCBR Tool in the context of
ADEPT2.

This report should help to quickly get familiar with the architecture and
usage of CCBR Tool. The first part (Section 1 and 2) consists of a user manual,
which is intended for users who only want to use CCBR Tool. It contains a
user guide describing CCBR Tool’s main functionality and explains the usage of
CCBR Tool and how to get started with it. The second part (Developer Manual)
deals with more technical details of CCBR Tool and is for anyone who wants
to extend or integrate CCBR Tool in some 3rd party application. It gives an
overview of CCBR Tool’s architecture and design (cf. Section 3.2, 3.4), describes
how 3rd party applications can communicate with CCBR Tool (cf. Section 3.5,
3.6) and shows how it can be extended (cf. Section 3.7)

2 User Manual

The user manual is for persons who just want to use CCBR Tool. It shows how
CCBR Tool can be installed and started quickly. In addition, it describes the
major use cases of CCBR Tool.

2.1 Quickstart

On the following pages all tasks, which have to be fulfilled in order to start
CCBR Tool for the first time, are described.

Installation of CCBR Tool CCBR Tool is implemented as a bundle of Eclipse
[1] plugins, consequently an installation of Eclipse 3.2 is necessary.
To install CCBR Tool, import all plugins (see Table 3.4) in your workspace.
If there is no need for a database configuration (as in most cases the default
settings work fine), Section 2.1 can be skipped and proceeded with Section 2.1.



Database Connection CCBR Tool uses the Hibernate Framework [2], thus a
wide variety of databases is supported. Currently CCBR Tool is tested with two
of them. On the one hand with MySQL [5] Server and on the other hand with
HSQLDB [3] database. By default the HSQLDB database is used. If you like to
switch to another database, see Section 2.1.

Generate Database Schema In order to create the database schema launch the
GenerateSchema class, which is located the package org.cbrflow.cbr.ser-
ver.generate, as a normal Java Application. By default the schema is build
on the HSQLDB database.

Generate Test Data To generate test data simply run the GenerateCaseBa-
se class in the org.cbrflow.cbr.server.generate package as a normal Java
Application.

Configure Database Connection The database connection is configured in the
hibernate.cfg.xml file, which can be found in the org.cbrflow.cbr.server.
hibernate package. Currently there is a configuration for the MySQL database
and one for the HSQLDB database implemented. By default the MySQL confi-
guration is commented out.
To switch to MySQL, remove the comment tags around the MySQL configura-
tion and comment out the one for HSQLDB. Please ensure that your MySQL
database contains a schema called“cbr”and a user“cbr”with password“cbr”. For
a different user / password, just edit the corresponding tags in the configuration
XML (change the property tags with name =”hibernate.connection.username”
and “hibernate.connection.password”). As your database is schema is empty, you
need to create the tables for persisting data - this is explained in Section 2.1.

Starting CCBR Tool After importing all plugins in your Eclipse workspace,
open the plugin org.cbrflow.cbr.cbrToolRCP and open the file cbrtool.pro-
duct by doubleclicking. Pressing the button “Launch the product” (left bottom
of the editor) will start the application. If you want to use XML-RPC commu-
nication, additionally product xmlRpc.product needs to be started, since this
product represents the remote CCBR Client.

Starting ADEPT TestClient with CCBR Tool Beside CCBR Tool you
will need to download following plugins constituting ADEPT:

– Additional ADEPT Files
– ADEPT2Plugin
– de.aristaflow.adept2.ui.editor
– de.aristaflow.adept2.ui.editor.loggerView
– de.aristaflow.adept2.ui.instanceview
– de.aristaflow.adept2.processrepositorymanagerplugin
– de.aristaflow.adept2.processvisualizationplugin



– de.aristaflow.adept2.ui.swtgui
– FormEnvironmentPlugin
– OpenOfficeIntegration
– TestClient
– WorklistVisualizationPlugin
– org.cbrflow.cbr.adeptintegration

In order to start ADEPT TestClient with CCBR Tool from within Eclipse
several tasks have to be fulfilled.

– Copy conf folder The conf folder has to be copied from the TestClient plu-
gin to the location of your current Eclipse installation (e.g. C:\Programme\
Eclipse). This has to be done only once.
Please note that the conf folder may not be visible in the Java perspective
of Eclipse. Nevertheless, it can be discovered using the Resource perspective.

– Create X: drive In order to use the OpenOffice [6] integration of ADEPT
use your command prompt to switch to the Additional ADEPT files folder,
which is available from CVS, and execute subst X: . . This creates a new
drive, which has to contain a folder called Innsbruck. This has to be done
after each restart of the system. OpenOffice should be installed to the default
location in order to use it.

– Edit MS Office path To use Microsoft Office with ADEPT the path to
your Office installation has to be adapted. Check the Trip.template file in
ADEPT2Plugin_2.0.0.jar in the

– ADEPT2Plugin plugin. The Trip.template file is located in the folder de/ari-
staflow/adept2/july. Replace all occurences of the path to an Office in-
stallation with the path of your installation. Be aware of spaces in the path,
which could cause trouble.

ADEPT can be started by opening the TestClient.product and pressing
the launch button.

2.2 CCBR Tool Major Components

Figure 1 shows the major components of CCBR Tool and how it interplays with
ADEPT.

Abbildung 1. CCBR Tool, -Client and -Server



CCBR Client CCBR Client allows for the adding of new cases as well as for the
retrieval and reuse of existing ones. As a rich client it does not only consist of a
graphical user interface, but also contains business logic.

CCBR Server The server is responsible for data persistency, what makes CCBR
Tool independent of the persistency provided by a 3rd party application. Fur-
thermore CCBR Server offers a interface for communication with CCBR Client.

CCBR Tool CCBR Tool denotes the combination of CCBR Client and CCBR
Server.

ADEPT ADEPT [8], which is shown on the left hand side, offers the functionali-
ties of a Process Management System, which enables the user to model, execute
and monitor processes. Additionally ADEPT provides an exception handling
mechanism, which allows the user to perform appropriate actions. This is sup-
ported by CCBR Tool, which simplifies the retrieval of similar exceptions and
known solution. In order to gain the benefits of CCBR Tool ADEPT invokes the
functionalities offered by CCBR Server.

2.3 CCBR Tool Manual

In combination with ADEPT one has the possibility to use two features of CCBR
Tool. On the one hand the user can reuse cases by calling retrieve case and on
the other hand he is able to create a new case. In order to launch CCBR Tool
the user has to select an item in the ADEPT Worklist and click afterwards on
the CBR button (cf. Fig. 2), which opens the retrieve user interface (cf. Chapter
2.3).

Abbildung 2. The ADEPT worklist

Retrieve Case After starting CCBR Tool the graphical user interface for case
retrieval is opened. The table located on the upper half of the screen (cf. Fig.
3) contains all questions of the visible cases and offers the user the possibility to
select the possible answers by using the drop down boxes included on the right
hand side of the table. By selecting several answers the case list is reordered
to show the best matching case on the first position. The ordering is calculated



Abbildung 3. Retrieve a Case

retrieve case

create case

add feedback

cancel

execute case

Abbildung 4. Possible executions of CCBR Tool.

by dividing the number of correctly answered questions minus the number of
incorrectly answered questions by the total number of questions in the case. As
a result one can easily find cases, which accomplish his needs.
For each case in the table the user can take a closer look by clicking the Show
button (cf. Chapter 2.3).
In retrieval mode the user has two options (cf. Fig. 4):

– Execute Case If one has found a similar case, he can select the respective
case and press the Execute button on the bottom left side. As a consequence
ADEPT receives the change operations, which are defined in the case, and
invokes them. If the change operation invocation was successful, the user has
the possibility to add a feedback in the dialog shown in Figure 9. On the top
of the form one can select a feedback grade which indicates the quality of
the case and in the box below additional comments can be entered, which
can be useful for later viewers.



– Cancel Alternatively, if one does not find a case satisfying his needs, he can
abort the interaction with CCBR Tool by pressing the Cancel button, which
offers the user the possibility to restart CCBR Tool in the case creation mode
to construct a new case according to his wishes (cf. Chapter 2.3).

Show Case After selecting one element in the case list, the user can take a closer
look to the case by pressing the show button at the bottom of the window. This
switches to another, three tabbed, user interface.

– Basic Information The basic information tab (cf. Fig. 5) offers the user in-
formation like the case name, its description and about the action associated
to the case. Additionally facts like the creation date or the date of the last
execution are announced. Note that there is no way to edit this data.

– Question Answer Pairs On the second tab one can find information about
the question and answer pairs associated with the case (no screenshot). All
pairs are shown in the table in the middle of the window.

– History The third tab (cf. Fig, 6) is responsible for displaying given feed-
backs. Basically there are two different feedback types. On the one hand
evaluation feedbacks, which are created by a user and contain a feedback
grade and a comment, and on the other hand auto generated feedbacks,
which are written, for example, on case creation. Again, it is not possible to
add feedbacks in the show mode, which we are currently in.

By pressing the OK button at the bottom of the window the user returns to
the already known retrieve user interface (cf. Fig. 3).

New Case After aborting the case retrieval process by pressing the cancel
button or invoking the close functionality of the CCBR Tool Tab the user is
asked whether he wants to create a new case (cf. Fig. 7).
On the first sight the user interface looks identical to the one used in the Show
Case mode (cf. Chapter 2.3). This is true in Case Creation mode except the fact
that the user is now able to edit all fields but the ADEPT change operations,
which are not entered by CCBR Tool, but via the graphical editor of ADEPT
and then passed to CCBR Tool at its start.
The second difference is the button bar at the bottom of the window, which
offers the user the following options (cf. Fig. 8).

– Save Saves the newly created case to the database. In order to save a case,
all necessary information must have been entered. Incorrect input or missing
data results in an error message.

– Save and Execute Saves the case as described above and executes it imme-
diately (cf. Chapter 2.3).

– Cancel Cancels the interaction with CCBR Tool and shows the ADEPT user
interface without any changes on the business process.



Abbildung 5. Basic Information for the case

Abbildung 6. Feedbacks for the case



Abbildung 7. Start CBR Tool in case creation mode

Abbildung 8. Create a new case



Abbildung 9. Add Feedback



3 Developer Manual

The developer manual provides more detailed information about the implemen-
tation of CCBR Tool. It is intended for readers who want to integrate CCBR
Tool in some 3rd party application or extend its functionality.

3.1 Naming conventions

Some frequently used names became quite long in order to follow the plugin
naming conventions of Eclipse [1]. To make life easier for the reader, some ab-
breviations have been introduced.
The prefix of a package is always the same as the name of the plugin where it
can be found. The org.cbrflow.core plugin contains for example the packa-
ge org.cbrflow.core.coreObjects.actions. Although CCBR Tool consists of
quite a number of plugins, one should easily find the desired classes. Plugins com-
prising CCBR Tool are generally prefixed with “org.cbrflow.cbr”. For brevity’s
sake the prefix is omitted, if it is clear, which plugin is meant.

3.2 CCBR Tool Structure

Figure 10 gives an overview of the structure of CCBR Tool and its integration
into ADEPT2.
ADEPT2 consists among others of the WorklistVisualizationPlugin plugin,
which is used to invoke CCBR Tool. This is done by calling the offered functio-
nalities of CCBR Server, which is seamlessly integrated into ADEPT. For more
detailed information about the communication between ADEPT and CCBR Ser-
ver take a look at Chapter 3.5.
On the right hand side CCBR Tool is shown, which contains CCBR Server and
CCBR Client. Note that there is no direct connection between ADEPT and CC-
BR Client. The communication between the CCBR Server and the CCBR Client
is described in Chapter 3.6.
At the bottom of Figure 10 all included plugins are listed and assigned to the
specific parts of CCBR Tool. Detailed descriptions of all plugins can be obtained
from Section 3.4 on page 14.

3.3 Three-tier architecture

CCBR Tool implements the three tier architecture (cf. Fig. 11). This section
deals with each layer in more detail and discusses design decisions.

Presentation Tier The presentation tier is responsible for presenting data in
a way the user can convienently work with. According to the three tier archi-
tecture model (cf. Fig. 11), the presentation layer is not allowed to know any
business functionality. In addition, direct communication with the data tier is



Abbildung 10. Structure of CCBR Tool

Presentation Tier

Logic Tier

Data Tier

Abbildung 11. Three-tier architecture

prohibited.

CCBR Tool deploys the technology of SWT, in particular it makes use of
the JFace framework [1]. Besides eclipse offers user interface components, like
Views and Perspectives, which were also frequently used during the development
of CCBR Tool.

Logic Tier The underlying logic tier is responsible for coordinating the behavior
of the application as well as the evaluation of data.

Core Model The main entry point to the core model is CaseBase which is used
to store a various amount of Cases. Each CaseBase has a unique schema id,
which indicates to which process schema the CaseBase is attached.
Every Case in the CaseBase consists of three parts.

– QAPair A Case contains a set of observations, which are simply a map-
ping between Questions and Answers. These Question and Answer pairs



Abbildung 12. CCBR Core Model



(QAPair) are used during case retrieval to find Cases which are relevant for
the user in his actual situation.

– Action On the other hand the Case class contains an Action, at the moment
there are two Action types implemented. On the one hand manual Action,
which simply contains a textual description and a name, and on the other
hand ADEPT2 Action, which are used by ADEPT2 to store the so called
ChangeOperations.

– History Additionally we implemented a Case history for each case, which
can be used to evaluate Cases and which contains entries for facts like Case
creation. Evaluation entries additionally contain a FeedbackGrade, which
allows the user to rate the Case.

When implementing the logic tier it has been of paramount importance to
develop objects, which do not depend on the database or their graphical re-
presentation. By obeying this design guideline, core classes can be used in the
client or server plugin as well as for the XML communication (cf. Section
3.6). Furthermore this allows the core classes to focus on their business rules
they must implement, in turn leading to code which is not “contaminated” with
GUI or database specific code. Additionally the communication between CCBR
Client and Server belongs to the logic tier. Section 3.6 discusses this topic in
detail.

Data Tier All functionality regarded to data persistency can be found in the
data tier. CCBR Tool deploys databases for storing information. Since quite a
number of different databases are available and each one has its own peculiari-
ties, Hibernate [2] has been used to introduce a uniform storing mechanism.

Hibernate simplifies the support of a multiplicity of databases (CCBR Tool
actually supports MySQL [5] and HSQLDB [3]), since supporting a new da-
tabase merely requires adding the corresponding jdbc driver and changing the
connection URL. In addition, hibernate works as a O/R (object to relational)
mapping framework. In order to save a business class in a relational database,
XML files must be defined. These mapping files specify, which fields of the class
need to be saved or what is the primary key of the class. The time which is lost
due to definition of mapping files is nevertheless well invested because in turn
Hibernate manages tedious work like caching of objects and cascading.

3.4 Plugins

This Section describes all plugins used in CCBR Tool and how they fit to the
three-tier application model.

Plugin architecture As described in Section 3.3, CCBR Tool is designed to
fit the three-tier application model. According to this architecture, the plugins
can be grouped in the following way:



Abbildung 13. Three - tier architecture

– Presentation Tier The client and console plugins are associated with the
presentation tier.

– Logic Tier The core plugin belongs to this layer, representing the object
model of CCBR Tool. Parts of the core plugin have been extracted to the
plugin defaultSimilarityCalculator to allow a more flexible calculation
of the case similarity. Furthermore plugins communication.plugin and com-
munication.xmlRpc realize the communication between CCBR Server and
Client, thus also belonging to the logic tier. Finally the client plugin should
be mentioned, since it also contains application logic.

– Data Tier The server plugins realizes persistency demands.

Figure 13 depicts this grouping. Plugins serverView, adeptintegration and
cbrToolRCP do not belong to any group - they can be considered as supplemen-
tary plugins: serverView represents a 3rd party application, adeptintegration
contains all classes needed for integrating CCBR Tool in ADEPT and cbrTool-
RCP depicts CCBR Tool, already integrated in a host application (the server-
View plugin). Consequently these plugins do not constitute CCBR Tool, they
merely serve demonstration and integration purposes.

The current implementation of CCBR Tool consists of several plugins. Basi-
cally there are two groups of plugins - the ones which were implemented by the
developers of CCBR Tool and the assisting plugins (like Hibernate [2] or JDOM
[4]). The latter ones are merely extracted .jar files, which were transformed to
plugins to better fit the plugin model of Eclipse [1].
Table 3.4 contains a complete list of all plugins constituting CCBR Tool.



Name of plugin impl. assis

org.cbrflow.cbr.client x
org.cbrflow.cbr.core x
org.cbrflow.cbr.core.defaultSimilarityCalculator x
org.cbrflow.cbr.communication.plugin x
org.cbrflow.cbr.communication.xmlRpc x
org.cbrflow.cbr.console x
org.cbrflow.cbr.server x
org.cbrflow.cbr.serverView x
org.cbrflow.cbr.adeptintegration x
org.cbrflow.cbr.cbrToolRCP x
com.mysql.jdbc x
org.apache.commons.logging x
org.apache.xmlRPC x
org.hibernate.eclipse x
org.hsqldb x
org.jdom x
org.log4j x
org.vafada.swtcalendar x

Tabelle 1. All plugins

org.cbrflow.cbr.client The graphical user interface of CCBR Tool is placed
in this plugin. If you want to extend CCBR Tool with your own extensions (cf.
Section 3.7), this plugin is the right place. Of course, if your new functionality
require persistency support, the server plugin must be adapted too.

org.cbrflow.cbr.core The business classes of CCBR Tool are separated into
this plugin. They represent the notion of cases, casebases, questions and more.
For detailed information see Chapter 3.3.

org.cbrflow.cbr.server The server represents a reference implementation of
CCBR Server, which is integrated into ADEPT2 (or any other 3rd party ap-
plication which wants to use CBR functionality). The server is responsible for
persisting data as well as the communication with ADEPT and CCBR Client.

org.cbrflow.communication.plugin This plugin is used for the communica-
tion between CCBR Server and CCBR Client assuming that both parts run
within the same Java Virtual Machine. It provides a well defined interface for
data exchange and triggering of CCBR Tool’s functionality (retrieving cases,
creating a case, . . . ). More information about the communication architecture
can be found in Section 3.6.

org.cbrflow.communication.xmlRpc Plugin communication.xmlRpc is used
for the communication between CCBR Server and CCBR Client assuming that



both parts do not run within the same Java Virtual Machine. The plugin de-
monstrates the usage of XML RPC for data exchange. If you are interested to
implement your own communication protocol, read Section 3.6.

org.cbrflow.cbr.console The org.cbrflow.cbr.console plugin provides a
console view to display additional debugging information during the execution
of CCBR Tool.

org.cbrflow.server.serverView The serverView plugin adds a graphical user
interface to the server, which makes it possible to test CCBR Client with the
provided server, simulating a 3rd party application.

org.cbrflow.cbr.adeptintegration The adeptintegration plugin offers an
interface for the interaction between ADEPT2 and the server plugin, in order
to enable ADEPT2 to invoke the functionalities of CCBR Tool. Basically the
incoming requests are simply forwarded to the server plugin. Additionally the
adeptintegration plugin saves information, which cannot be processed by the
CCBR Tool (actually the process template id). This information is returned
afterwards to ADEPT2 with CCBR Tool’s reply. For further information about
the communication with the server take a look at Chapter 3.5.

org.cbrflow.cbrToolRCP All plugins of CBR Tool are bundled in cbrTool-
RCP: The client constituting the user interface, plugins core, communicati-
on.plugin and communication.xmlRPC comprising the logical tier and plugin
server for data persistency. Additionally plugin serverView is added to simu-
late a 3rd party application, facilitating to run CBR Tool without ADEPT.

3.5 Communication with CCBR Server

In order to communicate with CCBR Server the offered methods by the Server-
Controller have to be invoked and the IServerControllerCallback interface
implemented to treat the callbacks from the server plugin. The methods defined
in this interface are invoked on case execution, case creation, case adaption, after
editing a case or after deleting a case. Additionally there is a callback if the user
cancels the interaction with CCBR Tool.

Retrieve in Detail The sequence diagram in Figure 14 shows the execution of
a case launched by ADEPT2 (actually launched from the CallCCBRToolAction
class).

Call CCBR Tool First ADEPT2 has to create a RetrieveCCBRCallback which
methods are invoked after execution of the CCBR Tool. This callback has to be
passed together with the templateId, which will be called also schemaId in fur-
ther processing, and the instanceId to the AdeptServerCommunicator. This



class is part of a plugin, called org.cbrflow.cbr.adeptintegration, which
works as an adapter between ADEPT2 and the CCBR Server. It is used to save
the instanceId for returning it to ADEPT2 after execution of CCBR Tool. This
is necessary, because the instanceId is not saved on the server and the CCBR
Client is not able to receive and return the instanceId in order to pass it to
ADEPT2 after invocation.
The ADEPT2 integration plugin creates now an instance of ServerControl-
lerCallback and passes it together with the schemaId and instanceId to the
CCBR server, which invokes the CCBR Client. Afterwards the server executes
actionPerformed on the given callback. Note that there is only a schemaId, the
caseId and a XML string containing the action returned. The ServerControl-
lerCallback now adds the instanceId and passes it together with the obtained
results from the CCBR Server to the RetrieveCCBRCallback, which was created
by ADEPT2 at the beginning of the invocation process.

Execute Change Operations The above described RetrieveCCBRCallback calls
executeChangeOperations in the CallCCBRToolAction, which receives the in-
stanceId and a list containing ChangeOperationXMLWrappers. At this point
ADEPT2 executes the given change operations, and returns true, if successful,
to the RetrieveCCBRCallback, which triggers the increase of the reuse counter.
This is done by invoking increaseReuseCounter(long schemaId, long cas-
eId) in the AdeptServerCommunicator, which simply forwards the request to
the ServerController. Note that there is no callback for increasing the reuse
counter, thus ADEPT2 does not know if the counter was really increased.

Add Feedback After executing a case the user has the possibility to add a feed-
back to the case. If the user decides to do so, the addFeedbackToCase method
in the CallCCBRToolAction is invoked, which needs two parameters, the sche-
maId and the caseId. The feedback request is forwarded to the AdeptServer-
Communicator by executing addFeedback with the same parameters as given
before and additionally the username for the current user. The AdeptServer-
Communicator opens now a feedback dialog, where the user could enter a com-
ment and a grade for the case, which indicates its quality. Afterwards a history
entry is created and forwarded, together with the schemaId and the caseId, to
the ServerController, which saves the history entry to database. Note that
there is no callback to ADEPT for adding a feedback.

New Case in Detail If the user is in retrieval mode and cancels the interaction
with CCBR Tool by clicking the Cancel button in CCBR Client, one has the
possibility to create a new case (cf. Fig. 15).

Call CCBR Tool Until the user presses the Cancel button, the execution stack
is identical to the one described in Chapter 3.5. The CCBR server invokes in-
stead of the actionPerformed method the canceled(long schemaId) method.
The adept integration plugin, in fact the ServerControllerCallback adds the



Abbildung 14. Retrieve Case from ADEPT

instanceId to the result and triggers the canceled method in the RetrieveCC-
BRCallback, which asks the user if he likes to create a new case. If desired the
CCBR Tool is restarted in Case Creation mode.

Case Creation Mode The RetrieveCCBRCallback invokes the newCase(long
processTypeTemplateId, long instanceId) method in the CallCCBRAction.
Note that the processTypeTemplateId equals the schemaId returned by the
CCBR server.
The CallCCBRToolAction creates an instance of NewCaseCCBRCallback and
passes it together with the given processTypeTemplateId and the instanceId
to the AdeptServerCommunicator. Additionally ADEPT2 has to add change
operations to the request, which have to be encoded as a JDOM Element in the
following format.

<ACTION_TO_PERFORM ID="0" TYPE="ADEPTAction">
<ACTION_NAME />
<ACTION_DESCRIPTION />
<CHANGEOPERATIONS>
<CHANGEOPERATIONS type="InsertXORBlockOperation"
description="Insert XOR block (a, b)
between Start and End" />
<CHANGEOPERATIONS type="InsertANDBlockOperation"



description="Insert AND block (c, d)
between a and Default" />

</CHANGEOPERATIONS>
</ACTION_TO_PERFORM>

The action name and description will be entered by the user in CCBR Client
and the id of the action will be changed when the action is saved to the CCBR
database. At this point of development change operations are hard coded in the
CallCCBRToolAction.

The AdeptServerCommunicator creates, like in the retrieve request, an in-
stance of ServerControllerCallback and passes it with the schemaId, the
instanceId and the change operations, contained in the XML described abo-
ve, to the ServerController. The server invokes CCBR Client, where the user
enters all mandatory data about the new case. CCBR Client sends this crea-
ted case back to the server, which triggers caseCreated(long schemaId, long
caseId) in the ServerControllerCallback. The callback executes the operati-
on caseCreated in the NewCaseCCBRCallback with the given parameters and the
saved instanceId. The callback informs ADEPT2, by calling caseSaved(long
templateId, long instanceId, long caseId).
Please note that schemaId is called templateId in this context.
Additionally it is possible that the user likes to execute the newly created case,
which leads to an additional performAction callback and the possibility to add
a feedback to the case (cf. Section 3.5).

3.6 Communication with CCBR Client

Basically the communication with CCBR Client is defined by a XML document,
described in Chapter 3.6, which has to be passed when invoking one of its func-
tionalities.

Plugin Layer In order to support several communication technologies like XML-
RPC [15] we decided to introduce a layer of plugins between the server and
CCBR Client. This layer contains a plugin for each supported technology. By
default the communication over XMLRPC and the direct communication within
the same Eclipse [1] runtime is implemented.

Request to CCBR Client Figure 16 shows the communication of CCBR Server
with CCBR Client in case of a retrieve request. The ServerController crea-
tes a new instance of ServerControllerCallback, which is passed together
with the request, described in chapter 3.6, as arguments to the PluginServer-
Communicator. These classes are all located in the org.cbrflow.cbr.server
plugin. The PluginServerCommunicator creates a CBRListener instance and
forwards it together with the XML request to the Communicator class, which
is located in the org.cbrflow.cbr.communication.plugin plugin, by calling
retrieve. This plugin is one member of the above mentioned layer between
CCBR Server and CCBR Client. In this case the server and CCBR Client run in



Abbildung 15. New Case from ADEPT

the same Eclipse [1] runtime environment. As a result the plugin simply forwards
the request to the CBRCommunicator, which is part of CCBR Client plugin. CC-
BR Client opens the graphical user interface, where the user can select a case,
which fits his requirements. For a more detailed description of the user interface
take a look at Section 2.3.

Response from CCBR Client When the user has found a appropriate case he
presses the execute button, which invokes the response(String xmlResponse)
method of the CBRListener, which contains the formerly created instance of the
ServerControllerCallback. This callback will be later used to inform users of
CCBR Server about the actions, like described in Chapter 3.5.
This callback is passed together with the XML response to the ServerController
by calling processResponse(String xmlResponse, IServerControllerCall
back callback). The commands encoded in the XML reply are perfomed by
the ServerController, which invokes the appropriate methods in the Server
ControllerCallback.
Note that there is no fixed interface for calling the communication plugins. Eve-
rybody is free to implement an own protocol in order to communicate with



Abbildung 16. Communication with CCBR Client - Sequence Chart

CCBR Client. Of course it is possible to communicate with classes from CCBR
Client directly. Although it is recommended to use the communication.plugin
plugin as intermediate layer, because it isolates changes in the client plugin
communication classes. An example is shown in Figure 17.

CCBR Clientcommunication.plugin

communication.xmlRpc

communication with internal class

CCBR Server

Abbildung 17. Communication with CCBR Client - Plugin Structure

XML Schema This section describes the XML schema, which are used to
communicate between the server and CCBR Client. There exist basically two
types of schema. On the one hand for sending a request to CCBR Client, and
on the other hand the response, which is returned by the CCBR Client.



XML Request The XML request, which is send to CCBR Client, is surrounded
by a REQUEST element as root. This item contains exactly one casebase, which has
a name, a description and a locale. Besides every CASEBASE element consists of
an ID and SCHEMA_ID attribute and a CASES element which contains an arbitrary
number of cases. The request shown in the following example contains only one
case in order to retrieve a compact representation.

<?xml version="1.0" encoding="UTF-8"?>
<REQUEST>
<CASEBASE ID="1" SCHEMA_ID="123">
<LOCALE>de_AT</LOCALE>
<DESCRIPTION>The basic casebase.</DESCRIPTION>
<NAME>Casebase basic</NAME>
<CASES>
<CASE ID="1">

<NAME>No hotel needed</NAME>
<DESCRIPTION>No hotel needed because private
accommodation is available.</DESCRIPTION>
<CREATEDDATE>2006-11-06 20:19:18 UTC</CREATEDDATE>
<CREATEDUSER>Chuck</CREATEDUSER>
<MODIFIEDUSER>John</MODIFIEDUSER>
<MODIFIEDDATE>2006-11-06 20:19:18 UTC</MODIFIEDDATE>
<VALIDFROM>2006-11-06 20:19:18 UTC</VALIDFROM>
<VALIDTO>2007-11-06 20:19:18 UTC</VALIDTO>
<EXECDATE>2006-11-06 20:19:18 UTC</EXECDATE>
<EXECCOUNTER>1000</EXECCOUNTER>
<RATING>0</RATING>
<QAPAIRS>
<QAPAIR ID="1">

<QUESTION ID="1">Night events ?</QUESTION>
<ANSWER ID="1">Many</ANSWER>
<TYPE>CAN</TYPE>

</QAPAIR>
<QAPAIR ID="2">
<QUESTION ID="2">Distance from conference center?
</QUESTION>
<ANSWER ID="2">Very Short</ANSWER>
<TYPE>CAN</TYPE>

</QAPAIR>
</QAPAIRS>
<ACTION_TO_PERFORM ID="0" TYPE="ADEPTAction">
<ACTION_NAME>Book no hotel</ACTION_NAME>
<ACTION_DESCRIPTION>Book no hotel, because it

is not necessary.</ACTION_DESCRIPTION>
<CHANGEOPERATIONS>
<InsertXORBlockOperation



type="InsertXORBlockOperation"
description="Insert XOR block (a, b)
between Start and End"/>

<InsertANDBlockOperation
type="InsertANDBlockOperation"
description="Insert AND block (c, d)
between a and Default"/>

<InsertXORBranchOperation
type="InsertXORBranchOperation"
description="Add branch with condition=(5)
to the XOR block (a, b)"/>

</CHANGEOPERATIONS>
</ACTION_TO_PERFORM>
<HISTORY>
<HISTORY_ENTRY ID="2" TYPE="EXECUTE">

<TIMESTAMP>2006-11-07 16:21:18 UTC</TIMESTAMP>
<USER>John</USER>
<FEEDBACK>
<GRADE>HIGHLY_POSITIVE</GRADE>
<COMMENT>/* no comment */</COMMENT>
</FEEDBACK>
</HISTORY_ENTRY>
<HISTORY_ENTRY ID="1" TYPE="CREATE">
<TIMESTAMP>2006-11-06 20:19:18 UTC</TIMESTAMP>
<USER>Chuck</USER>
</HISTORY_ENTRY>

</HISTORY>
</CASE>

</CASES>
</CASEBASE>
</REQUEST>

The most important part of the request is the CASE element, which has similar
to the CASEBASE item an ID attribute. Additionally every case contains several
data like name, description, the last execution date or the execution counter.
For a full list of elements of the casebase take a look at the above shown XML.
Additionally a Case consists of the following parts:

– QAPAIRS This element consists of all question and answer pairs used by
the case. A question and answer pair contains of a question, an answer, both
with a unique id and an ID attribute for the question and answer pair itself.
The QAPAIRS item can contain an arbitrary number of pairs.

– ACTION TO PERFORM On the other hand the case contains a ACTION_
TO_PERFORM element, which includes the action of the case. There are two
attributes for an action, the ID and the TYPE. In connection with ADEPT2 [8]
only ADEPTActions are used. Every action consists of an ACTION_DESCRIPTION,



an ACTION_NAME and the ADEPT2 change operations, which are located in
the CHANGEOPERATIONS item. This element can contain an arbitrary number
of change operations, which contain of a type and a description attribute.

– HISTORY The HISTORY element consists of HISTORY_ENTRY items, which
are defined by a unique ID and a TYPE attribute. Additionally a timestamp
and the user, who created the history entry, either by creating or evaluating
the case, is part of the entry. In case of an evaluation entry the user has the
possibility to add a feedback, which is saved in a FEEDBACK item and consists
of a GRADE and a COMMENT element.

XML Response The response by CCBR Client is designed quite similar to the
request, except that the REQUEST item is replaced by a RESPONSE element as root,
which contains the casebase, like described in request part of Chapter 3.6. Note
that in most circumstances only the case to handle (save or execute) is sent back
with the response. Only if the user canceled the interaction with CCBR Client
the whole casebase is returned. The following example shows such a response.

<?xml version="1.0" encoding="UTF-8"?>
<RESPONSE>
<CASEBASE ID="1" SCHEMA_ID="123">
<LOCALE>de_at</LOCALE>
<DESCRIPTION>The basic casebase.</DESCRIPTION>
<NAME>Casebase Basic</NAME>
<CASES>
<CASE ID="0">
<NAME>Cancel travelling.</NAME>
<DESCRIPTION>Skip the booking and the payment, because
nothing appropriate was found.</DESCRIPTION>
<CREATEDDATE>2006-11-06 20:49:52 UTC</CREATEDDATE>
<CREATEDUSER>Chuck</CREATEDUSER>
<MODIFIEDUSER>Chuck</MODIFIEDUSER>
<MODIFIEDDATE>2006-11-06 20:49:52 UTC</MODIFIEDDATE>
<VALIDFROM>2006-11-06 20:49:52 UTC</VALIDFROM>
<VALIDTO>2006-11-06 20:49:52 UTC</VALIDTO>
<EXECDATE>2006-11-06 20:49:52 UTC</EXECDATE>
<EXECCOUNTER>0</EXECCOUNTER>
<RATING>0</RATING>
<QAPAIRS>
<QAPAIR ID="0">
<QUESTION ID="0">Anything found?</QUESTION>
<ANSWER ID="0">No</ANSWER>
<TYPE>CAN</TYPE>

</QAPAIR>
</QAPAIRS>
<ACTION_TO_PERFORM ID="0" TYPE="ADEPTAction">
<ACTION_NAME>Skip booking and payment.</ACTION_NAME>



<ACTION_DESCRIPTION>Skip the booking and payment
nodes.</ACTION_DESCRIPTION>
<CHANGEOPERATIONS>
<InsertANDBlockOperation
type="InsertANDBlockOperation"
description="Insert AND block (c, d) between
a and Default" />
<InsertXORBlockOperation
type="InsertXORBlockOperation"
description="Insert XOR block (a, b) between
Start and End" />
<InsertXORBranchOperation
type="InsertXORBranchOperation"
description="Add branch with condition=(5)
to the XOR block (a, b)" />

</CHANGEOPERATIONS>
</ACTION_TO_PERFORM>
<HISTORY />

</CASE>
</CASES>

</CASEBASE>
<SERVER_COMMANDS>
<BY_USER USERNAME="Chuck">
<NEW_CASE ID="0" />
<PERFORM_ACTION ID="0" />

</BY_USER>
</SERVER_COMMANDS>
</RESPONSE>

Additionally to the casebase a SERVER_COMMANDS item can be found in the re-
sponse, which indicates what the server has to do, and who wants the server
to perform this commands. In the above shown example the user, who triggers
the server commands, is called Chuck. This information can be obtained by the
USERNAME attribute in the BY_USER item. Basically it is possible, that several
users trigger commands in one response, but in fact CCBR Client supports only
one user per response. The BY_USER item includes an arbitrary number of server
commands. In connection with ADEPT2 [8] only NEW_CASE and PERFORM_ACTION
are used, like shown in the above example. Every server command has an ID at-
tribute which indicates on which case the action should be performed.

3.7 Extensions for CCBR Tool

CCBR Tool provides several extension mechanisms, which enable other plugins
to react on events during the execution of CCBR Tool.



XML Converter Extension On the one hand CCBR Client offers an exten-
sion mechanism, which makes it possible for additional plugins to interfere with
the XML request handling and the creation of the XML reply. This technique
allows to augment the XML with additional data, which can be used by plugins
extending CCBR Client.
In order to write a new XML Converter the XMLConverter extension point offe-
red by the client plugin has to be implemented. This extension point contains
the IXMLConverter interface, which is located in the package org.cbrflow.
cbr.client.extension. This interface defines two methods. On the one hand
fromXML(Element root), which is called whenever a XML request is send to
CCBR Client. The additional plugin should extract needed information from
the request in this method. On the other hand the toXML(Response response)
method is defined, which is the counterpart to the fromXML operation. CCBR
Client calls it on every registered plugin before sending the reply back to the
server. The plugin has now the possibility to add information to the response.

EventHandler Extension The second offered extension point of CCBR Client
is the EventHandler extension point, which informs registered plugins whenever
an event occurs. At the moment only the execution of cases is supported.
Plugins which like to implement this extension have to register at the org.
cbrflow.cbr.client.eventHandlers extension point. This contains the IExe
cuteHandler interface which defines the operation handleExecute(Case case
ToExecute). This method is called by CCBR Client whenever a case is executed
in order to enable specific reactions of the registered plugins.

Similarity Calculation Extension The Similarity extension point can be used
to customize the similarity calculation of CCBR Client. For this purpose one has
to register at the org.cbrflow.cbr.core.Similarity extension point, which
enforces the programmer to implement the ISimilarityCalculator interface in
the org.cbrflow.cbr.core.extension package. This interface contains a single
method, which is called for every case when the similarity score is calculated.
Additionally a set containing all QAPairs, which are currently selected by the
user, is passed to the method, which has to calculate the score for the given case
and return it as a double value.
It is important that there is exactly one plugin registered at this extension point
at runtime. Otherwise the similarity score can not be calculated and an Illegal-
SimilarityCalculatorAmountException is thrown.

3.8 Additional Database Information

This section contains additional information about database decisions we made,
which can be useful for setting up CCBR Tool on another database.

– Because of the fact that Date objects are saved differently on a MySQL
database and HSQLDB (HSQLDB saves millis whereas MySQL does not)



we decided to save all Date objects as Strings in the database. This should
not be a problem on any database.

– At the moment QAPairs, Questions and Answers remain in the database,
when the last parent element in the core hierarchy is deleted. For instance if
there are no more Observations in the database with a specific QAPair, the
QAPair still exists in the database. For more information about the core see
Section 3.3.

Literatur

1. Eclipse. http://www.eclipse.org, 2006.
2. Hibernate. http://www.hibernate.org, 2006.
3. HSQLDB. http://www.hsqldb.org, 2006.
4. JDOM. http://www.jdom.org/, 2006.
5. MySQL. http://www.mysql.com, 2006.
6. OpenOffice. http://www.openoffice.org, 2006.
7. M. Reichert and P. Dadam. ADEPTflex - Supporting dynamic changes of work-

flows without losing control. Journal of Intelligent Inf. Systems, 10(2):93–129,
1998.

8. M. Reichert, P. Dadam, M. Juritsch, U. Kreher, K. Göser, and M.Lauer. Architec-
tural design of flexible process management technology. Technical Report 2008-02,
Univ. of Ulm, 2008.

9. M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management
with ADEPT2. In Proc. ICDE’05, pages 1113–1114, 2005.

10. Manfred Reichert and Peter Dadam. ADEPTflex-supporting dynamic changes
of workflows without losing control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

11. S. Rinderle, M. Reichert, and P. Dadam. Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases, 16(1):91–116, 2004.

12. S. Rinderle, B. Weber, M. Reichert, and W. Wild. Integrating process learning and
process evolution - a semantics based approach. In Proc. BPM’05, pages 252–267,
2005.

13. B. Weber, S. Rinderle, and M. Reichert. Change patterns and change support
features in process-aware information systems. In Proc. CAiSE’07, pages 574–588,
2007.

14. B. Weber, S. Rinderle, W. Wild, and M. Reichert. CCBR–driven business process
evolution. In ICCBR’05, Chicago, 2005.

15. XMLRPC. http://ws.apache.org/xmlrpc, 2006.


