Simulation Models for Analyzing the Dynamic Costs
of Process-aware Information Systems

Bela Mutschler and Manfred Reichert

Information Systems Group, University of Twente, The Netherlands
{b.b. mut schl er; mu.reichert }@twente.nl

Abstract. Introducingprocess-aware information systefAIS) in enterprises
(e.g., workflow management systems, case handling systemspisaies with
high costs. Though cost estimation has received considerable attensoift-in
ware engineering for many years, it is difficult to apply existing appgneado
PAIS. This difficulty particularly stems from the inability of existing estimation
techniques to deal with the complex interplay of the many technological; orga
nizational and project-driven factors which emerge in the context d§Ph
response to this problem, this paper proposes an approach which uilizes
lation models for investigating the dynamic costs of PAIS engineering fisojec
We motivate the need for simulation, discuss the development and execfitio
simulation models, and give an illustrating example. The present workdes
accomplished in the EcoPOST project, which deals with the development of a
comprehensive evaluation framework for analyzing PAIS enginggriojects
from a value-based perspective.
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1 Introduction

Process-aware information syste(®\IS) separate process logic from application code
and orchestrate processes according to their defined lbgin-dme [1]. To enable their
realization, numerous process support paradigms (e.gkflee management, service
flows, case handling), process modeling standards (e.gL BR'S, BPML), and tools
(e.g., ARIS Toolset, Staffware) have been introduced [2].

While the benefits of PAIS are typically justified by improvagsmess process per-
formance [3-5] and cheaper process implementation [6letbrist no approaches for
systematically analyzing related costs. Though softwast estimation has received
considerable attention during the last decades and hasneean essential task in in-
formation system engineering, it is difficult to apply ekistestimation approaches to
PAIS. This difficulty stems from the inability of these appobes to cope with the nu-
merous technological, organizational and project-drieealuation factors which have
to be considered in the context of a PAIS (and which do onlflyexist in projects de-
veloping data- or function-centered information systefiik)As an example, consider
costs for analyzing and redesigning business processearnBiher challenge results
from the dependencies between evaluation factors. Aetivielated tdousiness pro-
cess redesigrfor example, can be influenced by impact factors like aléélarocess



knowledgeor end user fearsThese dependencies result in dynamic economic effects
which can influence the overall costs of a PAIS engineeringept significantly. Exist-

ing techniques are typically not able to deal with such dyicaffects as they rely on
static models based upon snapshots of the analyzed softystem.

What is needed is a comprehensive approach that enablessrsiineers to model
and investigate the complex interplay between the costmpadt factors that arise in
the context of PAIS. In [9, 10], we have focused on the evaunatodels underlying
our approach. This paper, by contrast, deals with the stionlaf the dynamic costs
of PAIS engineering projects. We motivate the need for sittiorh, discuss constituting
elements of simulation models and their execution, and @iv#lustrating example.

Section 2 describes background information necessarynienstanding the paper.
Section 3 deals with simulation as envisioned in our apgro&ection 4 presents related
work. Section 5 concludes with a summary.

2 Background Information: The ECOPOST Framework

In [9, 10] we have introduced a model-based approach foesyatically investigating
the complex cost structures of PAIS engineering projectsti®n 2.1 describes the
terminology used by this approach, and Section 2.2 intreglocir basic model notation.

2.1 Basic Terminology

Basically, we distinguish between different kinds of ewdilon factors that have to be
considered when dealing with the costs of PAIS engineeringepts.Static Cost Fac-
tors (SCF) represent costs that can be precisely quantifiedrirstef money. The value
of a SCF does not considerably change during a PAIS engimgeproject (except for
its time value, which is not further considered in this pap€hus, the value of a SCF
can be considered as constant. As typical examples of SCétdawrsoftware license
costs, hardware costs, or costs for external consultants.

Dynamic Cost FactoréDCF), in turn, represent costs that are determined by-activ
ities related to a PAIS engineering project. These aativittause measurable efforts.
The (re)design of business processes prior to the intraductf PAIS, for example,
constitutes such an activity. The value of a DCF varies atbegctivities it represents.
A DCF "Costs for Business Process Redesign”, for instanas, lbe influenced by an
intangible factor "Willingness of Staff Members to suppBedesign Activities”. Ob-
viously, if staff members do not contribute to a redesigriguby providing needed
information (e.g., about process details), any redesifgmtefill be ineffective and will
increase costs. If staff willingness is additionally vawyiduring the redesign activity
(e.g., due to a changing communication policy), the DCF t€ésr Business Process
Redesign” will be subject to more complex effects. In the EOST framework, intan-
gible factors like "Willingness of Staff Members to suppBedesign Activities” can be
represented by so call@éthpact factors

Impact FactorImF) are intangible evaluation factors that influence DGFjore
precisely, that influence the activities underlying a DGR)particular, ImF lead to the
evolution of DCF, which makes the estimation and analysi®GF a difficult task



to accomplish. As examples consider factors such as "End Eksars”, "Availability
of Process Knowledge”, or "Ability to redesign Businessdsses”. Opposed to SCF
and DCF, the values of ImF are not quantified in monetary tebusin a qualitative
manner. More specifically, we use qualitative scales deisgyithe degree of an ImF
(ranging from "low” or "high”). As cost factors, ImF can beadsified intostatic and
dynamiclmF. The value of a static ImArFs) does not considerably evolve (like the
value of a SCF). The value of a dynamic Imlfnfp), by contrast, may be changing
along the considered time frame. Like the evolution of D@E, évolution of dynamic
ImF is caused by (both static and dynamic) ImF.

2.2 Economic-driven Evaluation Models

To better understand the evolution of DCF as well as DCF fistence through ImF,
we useeconomic-driven evaluation models particular, each DCF is represented and
analyzed by exactly one evaluation model. These modelpaified using the System
Dynamics [11, 12] notation (cf. Fig. 1A) [7].

Model Notation. An evaluation model comprises a setrmbdel variablesvhich
are denoted asvaluation factorsin our context SCF, DCF, and ImF correspond to
evaluation factors. Different types of variables exBtate variablesan be used to
represent dynamic factors, i.e., to capture changing satfieDCF (e.g., the "Costs
for Business Process Redesign”; cf. Fig. 1B) and dynamic(lendy, a certain degree of
"Process Knowledge”). A state variable is graphically dedas rectangle (cf. Fig. 1B),
and its value at timé is determined by the accumulated changes of this variabfte fr
starting pointy to present momerit(t > tp); similar to a bathtub which accumulates -
at a defined momertt- the amount of water which has been poured into it in the past.
Each state variable needs to be connected to at leastaumeeor sink Both sources
and sinks are graphically denoted as cloud-like symboldgf 1B).

A) Notation B) State Variables & Flows C) Using Auxiliary Variables as Intermediate Variables
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Fig. 1. Evaluation Model Notation, Mapping Rules, and initial Examples.

Values of state variables change through inflows and outfl@vaphically, both flow
types are depicted by twin-arrows which either point to (ia tase of an inflow) or
out of (in the case of an outflow) the state variable (cf. FB). Picking up again the
bathtub image, amflow is a pipe that adds water to the bathtub, i.e., inflows inereas
the value of a state variable. Ayutflow by contrast, is a pipe that purges water from
the bathtub, i.e., outflows decrease the value of a statablariThe DCF "Costs for



Business Process Redesign” shown in Fig. 1C, for exammleases through its inflow
("Cost Increase”) and decreases through its outflow ("CestrBase”). Returning to the
bathtub image, we further need "water taps” to control theam of water flowing into
the bathtub, and "drains” to specify the amount of water flapdut. For this purpose,
arate variableis assigned to each flow (graphically depicted by a valveFicf. 1B).
Besides state variables, evaluation models may compaastantsand auxiliary
variables(which are both graphically represented by their name).s@uoris are used
to represent static evaluation factors, i.e., SCF andcstaft in our context. Auxiliary
variables, in turn, represent intermediate variables.nfesx@ample consider the auxiliary
variable "Process Definition Costs” in Fig. 1C. Both are gntged into an evaluation
model withlinks (not flows), i.e., with labeled arrows. positive link(labeled with a
"+") between x and y (with y as dependent variable) indicdbeg y will tend in the
same direction if a change occurs in xnAgative link(labeled with a "-") denotes that
the dependent variable y will tend in the opposite directidhe value of x changes.
lllustrating Example . Fig. 2 shows a model which describes the influence of the
dynamic ImF "End User Fears” on the DCF "Costs for Business®ss Redesign”.
More specifically, this model reflects the assumption thatititroduction of a PAIS
may cause end user fears, e.g., due to a high degree of joligedad due to changed
social clues. Such end user fears can lead to emotional esistance. This, in turn,
results in a decreasing ability to acquire process knovdeBgason is that an increas-
ing emotional resistance makes profound process analygjs based on interviews
with process participants) a difficult task to accomplistdekreasing ability to acquire
process knowledge results in a decreasing ability to rgddsisiness processes.

Illustrating Example: The Impact of ,End User Fears" on ,Costs for Business Process Redesign* Notation
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Fig. 2. Dealing with the Impact of End User Fears.

To empirically confirm our assumptions as represented & (dud other) evaluation
models we conduct empirical and experimental researchitaesi (see [13, 14]).

3 Simulating ECOPOST Evaluation Models

Evaluation models like the one depicted in Fig. 2 are of siggt value for PAIS
engineers. However, the evolution of DCF and dynamic ImHfiidlt to comprehend.



For this reason, we added components for analyzing thesadgrimplications to our
overall evaluation framework. More precisely, this settiescribes how evaluation
models can be simulated in order to unfold their dynamicot$teSection 3.1 explains
why simulation is needed in our context. Section 3.2 illatgs the general computation
of a simulation. Based on this, Section 3.3 deals with theifipation of simulation
models. Section 3.4 gives an illustrating example.

3.1 Feedback Loops

The change of DCF and dynamic ImF is caused by the interplapetifferent el-
ements of an evaluation model, i.e., the complex interdégecies between dynamic
and static evaluation factors, flows and links. In this ceiptéeedback loops are of
particular importance.

Feedback Loops A feedback loop is @losed cycleof causes and effects. Within
this cycle, past events (like the change of a DCF or dynami€) lane utilized to control
future actions (like another change of the same evaluatiotof). In other words, if a
changeoccurs in a model variable which is part of a feedback looig,¢hange will be
propagated around the loop [12].

As an example consider the feedback loop depicted in FigaficBo this model
is a cyclic structure connecting the four dynamic ImF "EncetJBears”, "Emotional
Resistance”, "Ability to acquire Process Knowledge”, aAtbility to redesign Business
Processes”. As aforementioned, it reflects the assumjptadrtite introduction of a PAIS
may cause end user fears, e.g., due to a high degree of jefiged8uch end user fears
lead to increased emotional resistance. Increased mesistiecreases the ability to get
support from end users during process redesign. This, m tlacreases the ability to
effectively redesign business processes. Finally, a labdity to redesign business
processes results in decreased end user fears. Reasontisetkad users will be less
afraid of change if the ability to redesign processes dee®a

We distinguish between two types lafop polarities First, positive (or self-rein-
forcing) loops generate growth of DCF and dynamic ImF (cf. Fig. 3/A8c&hd,nega-
tive (or self-correcting loops counteract and oppose growth (cf. Fig. 3B). If eviaduna
models contain both positive and negative feedback loopse momplex effects may
emerge (cf. Fig. 3 C-E).

The polarity of a feedback loop is equivalent to tign of the open loop gain
"Gain” refers to the strength of the change returned by a kagh "open loop” means
that the gain is calculated for just one feedback cycle bynigethe closed loop at
some point [15]. Consider Fig. 3F which shows a closed feddhzop consisting of
four variables«, ..., X4. Assume that we open the loopxat(though any other variable
of the loop can be used as well). Opening the loog &fplits this variable into amput
variable (x;) and anoutput variable(x?). The open loop gain is then defined as the
(partial) derivative ofx? with respect tod}, that is, the feedback effect of a change in a
variable as it is propagated around a loop. Thus, the pylafitbop can be calculated
as SGN(E)x?/ESx'l), whereSG\() is the sign function returning +1 if the argument is
positive, and -1 otherwise (if the open loop gain is zerorehig no loop).



A) Exponential Growth B) Goal-seeking Behavior C) Qscillalion D) S-shaped Growth
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Fig. 3. Feedback in Evaluation Models: Overview of potential dynamic Effects.
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It is important to mention that all dynamic effects causedfdgdback loops are
typically not easily understandable [16]. For this reasee,investigate the effects of
feedback loops through simulatibof respective evaluation models.

3.2 Computing a Simulation

In the ECOPOST framework, simulation is based on the stegtdyy numerical solution
of algebraic equations specifying how to start a simulatiom an existingstart con-
dition and how to computsucceeding condition$n other words, the equations define
how the variables of an evaluation model change over timg [17

lllustrating Example . Consider Fig. 4 which depicts the simulation of two dynamic
evaluation factors: BCF and a dynami¢mF. The condition at timéy has been calcu-
lated and the condition at tintg is now being evaluatedT stands for "Difference in
Time” and denotes the length of the time interval betweendarditions.

DCF.tp andImF.ty designate the two values 8ICF andImF at timetg (cf. Fig.
4A). R1.1.[to,t1] is a rate variable specifying the inflow BICF within the time inter-
val [to,t1]. Similarly, the rate variableB2.1.]to,t1[ and R2.0.[to, t1] specify the inflow
respectively outflow ofmF within the time intervalto,t1[. Therewith, all information
needed to compute the new valuedaiF andimF is available.

Within the time intervalfto,t1[, the rate variables act ddCF andImF and cause
them to change. The new valuedEF andimF at timet; are calculated by adding and
subtracting the changes represented by these rates (cfiB)igThereby, the sequence
of computation does not matter because W@+ andImF depend only on their own
previous values and on the rates taking effect within the timervallto,t;[. Similarly,
the order in which the rates are computed does not mattelubedhe rates do not

1 For simple evaluation models, it is sometimes possible to analytisall’e the simulation model’s equations. In doing
so, it becomes possible to determine a model condition in terms of any fimeenot just in terms of the short time
intervals between successive computations during a simulation. One ualdle to substitute any particular value of
future time and evaluate the future model condition without first proceetiimyigh the intervening conditions. How-
ever, analytical solutions are only possible for the minority of oalwation models. Most evaluation models comprise
nonlinear relationships making the calculation of an analytical solutigogsible. For such evaluation models, only the
simulation process based on a step-by-step numerical solution is available.



depend on each other. Finishing the computation createstttaion shown in Fig. 4B.
In the following, only these values are needed to computéattiecoming rates for the
[t1,t2] interval (cf. Fig. 4C).

A) Attime t,... B) Attime t,... C) Next Rates taking Effect...
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Fig. 4. Computing a Simulation Model.

Behavioral Experiments Note that the numerical solution of equations does notallo
to directly "jump” to some future condition without first cgmating through all pre-
vious conditions, i.e., there exists no general soluti@s¢tibing all possible effects)
which can be found based on a step-by-step humerical soldtistead, one step-by-
step numerical solution gives one time history of an evananodel’s variables based
on given parameters and initial conditions. For derivindiadnal information, another
full step-by-step computation has to be conducted basedfenemht conditions. There-
with, it becomes possible to conduct behavioral "experitsiehased on a series of
simulation runs. During these simulation runs equatioaswanipulated in a controlled
manner to systematically investigate the effects of chdsgrmulation parameters.

3.3 Specifying a Simulation Model

Inthe EcoPOST framework,samulation modetonsists of a number algebraic equa-
tions- one for each model variable (i.e., dynamic and static extadn factors as well as
rate variables and auxiliary variables). The basic compt:ef these algebraic equa-
tions are the model variables. However, we use differeredyqf algebraic equations
for the different variables of an evaluation model (cf. F5é\):

— Static Evaluation Factors Static evaluation factors (i.e., SCF and static ImF) are
specified using a numerical value is@nstant equatioe.g., 'Busi ness Process
Redesi gn Costs = 1000 $/ \Week™). A specific variant of a constant equation is
aninitially computed constantn fact, it will often become necessary to specify
a constant in terms of another constant if the former dependke latter and the
former should change in any simulation run where the lagigiven a new value.
As an example of an initially computed constant considerféliewing equation:
Process Redesign Costs = 1000 $/ Week * Ri sk Factor. Note that initially
computed constants need to be evaluated only once at thanlregydf a simulation.



— Dynamic Evaluation FactorsDynamic evaluation factors (i.e., DCF and dynamic
ImF) are specified bintegral equationsn our approach [16]. Such equations spec-
ify the accumulation of a dynamic evaluation factor from atshg pointtp to the
present momerit(cf. Fig. 5B). More specifically, DCF and dynamic ImF inteigra
their net flow The net flow during any intervaty[,t;] is the area bounded by the
graph of thenet ratebetween the start and the end of the interval (cf. Fig. 5C).
Thus, the value of a dynamic evaluation factoratan be calculated as the sum of
its value at; and the area under the net rate curve betvwgandt,. In Fig. 5C, the
value at; is S;. Adding the area under the net rate curve betwgandt, increases
the value t&S,. The net flow is determined by one or several rate variables.

A) Elements of a Simulation Model B) Specifying Dynamic Evaluation Factors C) Graphical Integration (DCF & dyn. ImF)

DCF = Grey Area

A Changeofthe
Constant Integral - " - —
i J C P DCF )
Set of ' Inflow Outflow /

Net Rate

.
_ Rate YfUXi|iaW DCF(t) = I[Inflow(s) - Outflow(s)]ds+ DCF(t,)
1 1 o
where

- Inflow(s) represents the value of the inflow at any time s

" N . between between the initial time t, and the current time t.

Equation-based Simulation Model - Outflow(s) represents the value of the outflow at any time s
between between the initial time t, and the current time t.

- DCF(t,) represents the initial value of DCF at t;.

o

>
P time

>
»

K

A

Change
of the DCF

»

Value of a DCF

Step-by-Step Execution * also valid for dynamic ImF T > time

Fig. 5. Integration of Flows for Dynamic Evaluation Factors.

— Rate Variables Rate variables are expressed faye equations Rate equations
specify the change of dynamic evaluation factors (DCF otadyic ImF) between
two computed conditions (cf. Section 3.2). More specificaiate equations for
flows connected to DCF specify the amount of costs flowingramf or between
DCF. Rate equations for flows connected to dynamic ImF spéud impact flow-
ing to, from, or between dynamic ImF. In any case, a rate éguases information
(i.e., values) from other model variables (SCF, DCF, dymaimF, and auxiliary
variables) to calculate a specific change. In the contextsyfezific rate variable,
the relevant information is represented by those modehbbes that are connected
to the rate variable by links (cf. Section 2.2).

— Auxiliary Variables: Auxiliary variables are specified tauxiliary equationsTheir
constituting elements may be SCF, DCF, dynamic ImF, ratebkes, and auxiliary
variables. Auxiliary equations are evaluated after thegrdl equations on which
they depend, and before the rate equations of which theyaate p

The total set of equations of a given evaluation model is tighassimulation model
For the design of our evaluation models as well as their sittari we have used the
visual modeling and simulation tobensim18].

3.4 Specifying nonlinear Relationships through Table Funiions

An important part of our evaluation models are ImF (e.g.cpss knowledge, domain
knowledge, end user fears). Often, an ImF has a nonlineaadtrgn DCF. Such non-



linearities have to be represented in our simulation maakeisell. For this purpose, we
use a specific kind of auxiliary equation (implying that rinabrities require the intro-
duction of additional auxiliary variables in our evaluatimodels). Specifically, we use
table functions transferring an input value (e.g., a centigigree of process knowledge)
into a corresponding output value (e.g., expressing a pe&dfect on a DCF). More
specifically, we can define (with Y representing an ImF andptesenting a DCF):

Definition A function Y= f(X) is called table function, if it is represented as follows:

— Y = Effectof Xon Y,
— Effect of X on Y = Table for Effect of X on Y(X),
— Table for Effect of X on Y £x1,¥1), (X2, ¥2), ---, (Xn, ¥n),
where(x;,y;) represents each pair of points defining the relationship.

In other words, the output valt€is calculated dependent on the input vaXughrough
lookup functionf. Linear interpolation is used for values lying between thecified
table values. Fig. 6 illustrates the specification of talbilections in Vensim [18], the
visual modeling and simulation tool we use.
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Fig. 6. Specifying Table Functiondefft) and Table of Valuesright) in Vensim [18].

Fig. 7 shows typical table functions. Dependent on the degfean ImF (represented
by X) a specifiampact ratingis derived (represented bf). An impact rating less than
1 results in decreasing costs (cf. Fig. 7A). A rating equdl teeither does increase nor
decrease costs. A rating larger than 1 results in increasists (cf. Fig. 7B and Fig.
7C). Quantifications based on such impact ratings are alsakifirom software cost
models like COCOMO [19].

The information needed for specifying the shape and thesgattdi table functions
can be derived from different sources, including, for exemsgtatistical studies, prac-
tical fieldwork, and interviews. Generally, there existsstandard way of building ro-
bust table functions though a "best practice” guidelinefesmulating table functions
is given in [15] (cf. Fig. 8). It is important to mention th&i input and output values of
table functions are typically normalized. This means thatihput value is a dimension-
less ratio of the input to a reference valié& and the output value is a dimensionless
effect modifying the reference vall¥g, i.e.,Y = Y*f(X/X").
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Fig. 7. Table Functions for quantifying Impact Factors.

Normalize the
input and output.

Normalize the table function so that the input is the dimensionless ratio of the input to a reference
value X* and the output is a dimensionless effect modifying the reference value Y*, i.e., Y=Y*f(X/X*).

v

Identify reference points.

Indentify the reference points where the values of the function are determined by definition. In
normalized functions, the function usually must pass through the point (1,1) so that Y=Y* when X=X*.

v

Identify reference Reference policies are lines or curves corresponding to standard or extreme policies. The reference
policies —» policy f(X/X*)=1, for example, represents the policy that X has no effect on Y. The 45° line represents
. the policy that Y varies 1% for every 1% change in X and is often a meaningful reference policy.
v
What values must the function take at extremes? If there are multiple nonlinear effects in the
Consider extreme L ! formulation, check that the formulation makes sense for all combinations of extreme values and that
conditions. the slopes of the effects at the normal operating points conform to any reference policies and
constraints on the overall response of the output.
Specify the domain for the L ! Specify the domain for the independent variable so that it includes the full range of possible values,
independent variable. including extreme conditions, not only the normal operating region.
v
Identify the plausible shapes for the function within the feasible region defined by the extreme
Identify the plausible conditions, refeence points, and reference policy lines. Select the shape you believe best corresponds
shapes for the function. e to the data (numerical and qualitative). Justify any inflection points. Interpret the shapes in terms of the
physical constraints and policies of the decision maker.
v
Use increments small enough to get the smoothness you require. Examine the increments between
Specify the values for values to make sure there are no kinks you cannot justify. If numerical data are available you can
your best estimate —» often estimate the values statistically. Otherwise, make a judgmental estimate using the best
of the function. information. Often, judgmental estimates provide sufficient accuracy, particularly early in a project, and
help focus subsequent modeling and data collection efforts.
8 v
Run the model and test to make sure the behavior of the formulation and nonlinear function is
Run and test the model - reasonable. Check that the input varies over the appropriate range (e.g., that the inputs is not
operating off the ends of the function at all times).
s v
Test the sensitivity of your results to plausible variations in the values of the function. If sensitivity
Test the sensitivity L ! analysis shows that the results change significantly over the range of uncertainty in the relationship,
of your results. you need to gather more data to reduce the uncertainty. If the results are not sensitive to the assumed
values, then you do not need to spend additional resources to estimate the function more accurately.

Fig.

8. Guideline for building Table Functions [15].

10



3.5 lllustrating Example

Fig. 9A shows a simple evaluation model. Assume that theutienl of the DCF "Costs
for Business Process Redesign” (caused by the dynamic Im& User Fears”) shall
be analyzed (ignoring other potential ImF). The model rédléite assumption that the
redesign of business processes (e.g., prior to the inttimuof a PAIS) may be in-
fluenced by end user fears (caused by a high degree of jobigadaschanged social
clues). Such end user fears can lead to emotional resistdnesers, and, in turn, to
a lack of support from the users while redesigning businessgsses, e.g., during an
interview-based process analysis.

Notation A) Evaluation Model B) Simulation Model
Dynamic Cost Factors  []
i BPR Costs Kt + Equations:
Dynamic Impact Factors [_] hor Weoke El"‘:il’l“f‘ ‘;ﬁ to A) BPR Costs per Week[$] = 10003
i nd User Fears B) Cost Rate[$] =
Statio Cost Factor  [Text] CONSTANT TABLE FUNCTION BPR Costs per Week[$] * Impact due to End User Fears[Dimensionless]
Static Impact Factor [Text] C) Business Process Redesign Costs[$] = Cost Rate{$]
. Fear Growth D) Fear Growth = 21%]

Sources and Sinks 48] 1 o) E) Fear Growth Rate[%] = Fear Growth[%]

. CONSTANT F) End User Fears[%) = Fear Growth Rate[%]
Rate Variables X - + G) Impact due to End User Fears = LOOKUP(End User Fears/100)
Auxiliary Variables  [Text] —= Business Process . End User - -

Cost Rate Redesign Costs Fears Initial Values: Normalization
Links [+11 EQUATION Fear Growth A) Business Process Redesign Costs$] = 03
E— EQUATION Rate equaTION B) End User Fears[%] = 30%

Flows e

C) Computing a Simulation Run D) Graphical Diagramm illustrating Simulation Outcome

TIME Change ($) BPR Costs (§) | Cost Rate ($) Change (%) User Fears (%) Costs Business Process Redesign Costs
00 - 0 1000 - 30 60,000
01 1000 1000 1010 2 32
02 1010 2010 1020 2 34 45,000
03 1020 3030 1030 2 36 J
04 1030 4060 1040 2 38 30000 -
05 1040 5100 1050 2 40 i ==
06 1050 6150 1060 2 42 15000 =
30 1840 38300 1900 2 90 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
31 1900 40200 2020 2 92 Time (Weeks)

Business P Redesign Costs : without User Fears =============~~

32 2020 42220 2140 2 9 Business Proces Redoign Cons it User Fears |~ ————————

Fig. 9. Dealing with the Impact of End User Fears.

Assume that the business process redesign activities hegligled for 32 weeks. In
order to simulate the evolution of the resulting costs aliigtime frame, we use the
simulation model depicted in Fig. 9B. Here, the nonlineagpact of end user fears on
the costs of business process redesign is representedithaciable function. Fig. 9C
shows the values of the evaluation model's dynamic evalodtictors over time when
the simulation model is executed. The underlying prinaméthis computation have
been already described in Section 3.2. Finally, Fig. 9D shegraphical diagram which
illustrates the outcome of the simulation. As can be se@metis a significant negative
impact of end user fears on the costs of business processigade

4 Related Work

Basically, one can distinguish between six major categoofecost estimation tech-
nigues [20]:model-based approachge.g., COCOMO, SLIM),expertise-based ap-
proaches(e.g., the Delphi method)earning-oriented approache@ising neural net-
works or case based reasoninggression-based approachésg., the ordinary least
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squares methodomposite approachgg.g., the Bayesian approach), agghamic-
based approachesvhich explicitly acknowledge that cost factors changerdkie du-
ration of the system development). Picking up this clas#ifin, our framework can be
considered as an example of a dynamic-based approach [thefioe categories rely
on static analysis models). Besides, IT evaluation ape@bave to be considered as
well. Due to lack of space, we omit further details here arferr® [7].

Recently, equation-based simulation approaches (asi@meds in our ECOPOST
framework) often compete with agent-based simulation.mdpased simulations are
based on a set of agents (e.g., reactive agents, intentigeals, social agents) encap-
sulating the behavior of the various variables that make ggséem [21]. During a
simulation, the behavior of these agents is emulated. @Gépeagent-based simulation
is less quantitative and more qualitative than equatisetdaimulation. Invariants do
not come in the form of equations, but in the form of rules, #risl makes agent-based
simulation an interesting alternative, particularly i@y social environments, but also
in environments that include both social and technologiagbbles. When compared to
equation-based approaches, agent-based approacheswgimoith specifying equa-
tions that relate observed variables to one another, bt lvghaviors through which
individuals interact [22]. Thereby, agent-based appreaatefine agent behavior in
terms of variables accessible to individual agents. Trasldeaway from reliance on
system-level information as extensively done by equaliased approaches (since it is
often easier to formulate parsimonious closed-form equatusing such quantities).
However, as equation-based simulation is easier to useaittipe (which is one ma-
jor requirement guiding the development of the EcoPOST énaark), we have not
considered the use of agent-based simulation.

5 Summary

The EcoPOST framework enables PAIS engineers to model thelea interplay be-

tween the numerous cost and impact factors which arise icghtext of PAIS engi-

neering projects. Fig. 10 depicts the main pillars of theFXa8T framework [10]. This

paper has focused on the use of simulation to investigatéythemic effects described
by our evaluation models (particularly the evolution of DCF

II III) IV ) v ] (vI)
Economic-driven Simulation Value-based Governance EcoPOST Cost Empirical &
Evaluation Models Evaluation Patterns Guidelines Benefit Analyzer Experimental Research

Fig. 10.Main Components of the ECOPOST Framework.

In particular, our paper has illustrated the use of simorfatd investigate the dynamic
implications described by EcoPOST evaluation models. We naotivated the use of
computer simulation as a means to analyze the dynamic eféextsed by feedback
loops. We have described the constituting elements of EEGPImulation models and
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have discussed the execution of simulation models. Finalyhave given an example
illustrating the basic notion of simulating dynamic evdioa factors.

Note that the expressiveness of simulation always depemdiseoplausibility and
resilience of the underlying simulation models. Therefave have additionally ac-
complished various empirical and experimental researthitées (e.g., software ex-
periments, online surveys, case studies) in order to pujdleatifications gained from
our simulation models on a more reliable basis (see [13]{an®les).
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