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Abstract. Introducingprocess-aware information systems(PAIS) in enterprises
(e.g., workflow management systems, case handling systems) is associated with
high costs. Though cost estimation has received considerable attention insoft-
ware engineering for many years, it is difficult to apply existing approaches to
PAIS. This difficulty particularly stems from the inability of existing estimation
techniques to deal with the complex interplay of the many technological, orga-
nizational and project-driven factors which emerge in the context of PAIS. In
response to this problem, this paper proposes an approach which utilizessimu-
lation models for investigating the dynamic costs of PAIS engineering projects.
We motivate the need for simulation, discuss the development and execution of
simulation models, and give an illustrating example. The present work hasbeen
accomplished in the EcoPOST project, which deals with the development of a
comprehensive evaluation framework for analyzing PAIS engineering projects
from a value-based perspective.

Keywords: Cost Modeling, Simulation Models, Method Engineering.

1 Introduction

Process-aware information systems(PAIS) separate process logic from application code
and orchestrate processes according to their defined logic at run-time [1]. To enable their
realization, numerous process support paradigms (e.g., workflow management, service
flows, case handling), process modeling standards (e.g., BPEL4WS, BPML), and tools
(e.g., ARIS Toolset, Staffware) have been introduced [2].

While the benefits of PAIS are typically justified by improved business process per-
formance [3–5] and cheaper process implementation [6], there exist no approaches for
systematically analyzing related costs. Though software cost estimation has received
considerable attention during the last decades and has become an essential task in in-
formation system engineering, it is difficult to apply existing estimation approaches to
PAIS. This difficulty stems from the inability of these approaches to cope with the nu-
merous technological, organizational and project-drivenevaluation factors which have
to be considered in the context of a PAIS (and which do only partly exist in projects de-
veloping data- or function-centered information systems)[7]. As an example, consider
costs for analyzing and redesigning business processes [8]. Another challenge results
from the dependencies between evaluation factors. Activities related tobusiness pro-
cess redesign, for example, can be influenced by impact factors like available process
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knowledgeor end user fears. These dependencies result in dynamic economic effects
which can influence the overall costs of a PAIS engineering project significantly. Exist-
ing techniques are typically not able to deal with such dynamic effects as they rely on
static models based upon snapshots of the analyzed softwaresystem.

What is needed is a comprehensive approach that enables system engineers to model
and investigate the complex interplay between the cost and impact factors that arise in
the context of PAIS. In [9, 10], we have focused on the evaluation models underlying
our approach. This paper, by contrast, deals with the simulation of the dynamic costs
of PAIS engineering projects. We motivate the need for simulation, discuss constituting
elements of simulation models and their execution, and givean illustrating example.

Section 2 describes background information necessary for understanding the paper.
Section 3 deals with simulation as envisioned in our approach. Section 4 presents related
work. Section 5 concludes with a summary.

2 Background Information: The EcoPOST Framework

In [9, 10] we have introduced a model-based approach for systematically investigating
the complex cost structures of PAIS engineering projects. Section 2.1 describes the
terminology used by this approach, and Section 2.2 introduces our basic model notation.

2.1 Basic Terminology

Basically, we distinguish between different kinds of evaluation factors that have to be
considered when dealing with the costs of PAIS engineering projects.Static Cost Fac-
tors (SCF) represent costs that can be precisely quantified in terms of money. The value
of a SCF does not considerably change during a PAIS engineering project (except for
its time value, which is not further considered in this paper). Thus, the value of a SCF
can be considered as constant. As typical examples of SCF consider software license
costs, hardware costs, or costs for external consultants.

Dynamic Cost Factors(DCF), in turn, represent costs that are determined by activ-
ities related to a PAIS engineering project. These activities cause measurable efforts.
The (re)design of business processes prior to the introduction of PAIS, for example,
constitutes such an activity. The value of a DCF varies alongthe activities it represents.
A DCF ”Costs for Business Process Redesign”, for instance, may be influenced by an
intangible factor ”Willingness of Staff Members to supportRedesign Activities”. Ob-
viously, if staff members do not contribute to a redesign project by providing needed
information (e.g., about process details), any redesign effort will be ineffective and will
increase costs. If staff willingness is additionally varying during the redesign activity
(e.g., due to a changing communication policy), the DCF ”Costs for Business Process
Redesign” will be subject to more complex effects. In the EcoPOST framework, intan-
gible factors like ”Willingness of Staff Members to supportRedesign Activities” can be
represented by so calledimpact factors.

Impact Factors(ImF) are intangible evaluation factors that influence DCF (or more
precisely, that influence the activities underlying a DCF).In particular, ImF lead to the
evolution of DCF, which makes the estimation and analysis ofDCF a difficult task
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to accomplish. As examples consider factors such as ”End User Fears”, ”Availability
of Process Knowledge”, or ”Ability to redesign Business Processes”. Opposed to SCF
and DCF, the values of ImF are not quantified in monetary terms, but in a qualitative
manner. More specifically, we use qualitative scales describing the degree of an ImF
(ranging from ”low” or ”high”). As cost factors, ImF can be classified intostatic and
dynamicImF. The value of a static ImF (ImFS) does not considerably evolve (like the
value of a SCF). The value of a dynamic ImF (ImFD), by contrast, may be changing
along the considered time frame. Like the evolution of DCF, the evolution of dynamic
ImF is caused by (both static and dynamic) ImF.

2.2 Economic-driven Evaluation Models

To better understand the evolution of DCF as well as DCF interference through ImF,
we useeconomic-driven evaluation models. In particular, each DCF is represented and
analyzed by exactly one evaluation model. These models are specified using the System
Dynamics [11, 12] notation (cf. Fig. 1A) [7].

Model Notation. An evaluation model comprises a set ofmodel variableswhich
are denoted asevaluation factors. In our context SCF, DCF, and ImF correspond to
evaluation factors. Different types of variables exist.State variablescan be used to
represent dynamic factors, i.e., to capture changing values of DCF (e.g., the ”Costs
for Business Process Redesign”; cf. Fig. 1B) and dynamic ImF(e.g., a certain degree of
”Process Knowledge”). A state variable is graphically denoted as rectangle (cf. Fig. 1B),
and its value at timet is determined by the accumulated changes of this variable from
starting pointt0 to present momentt (t > t0); similar to a bathtub which accumulates -
at a defined momentt - the amount of water which has been poured into it in the past.
Each state variable needs to be connected to at least onesourceor sink. Both sources
and sinks are graphically denoted as cloud-like symbols (cf. Fig. 1B).
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Fig. 1.Evaluation Model Notation, Mapping Rules, and initial Examples.

Values of state variables change through inflows and outflows. Graphically, both flow
types are depicted by twin-arrows which either point to (in the case of an inflow) or
out of (in the case of an outflow) the state variable (cf. Fig. 1B). Picking up again the
bathtub image, aninflow is a pipe that adds water to the bathtub, i.e., inflows increase
the value of a state variable. Anoutflow, by contrast, is a pipe that purges water from
the bathtub, i.e., outflows decrease the value of a state variable. The DCF ”Costs for
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Business Process Redesign” shown in Fig. 1C, for example, increases through its inflow
(”Cost Increase”) and decreases through its outflow (”Cost Decrease”). Returning to the
bathtub image, we further need ”water taps” to control the amount of water flowing into
the bathtub, and ”drains” to specify the amount of water flowing out. For this purpose,
a rate variableis assigned to each flow (graphically depicted by a valve; cf.Fig. 1B).

Besides state variables, evaluation models may compriseconstantsandauxiliary
variables(which are both graphically represented by their name). Constants are used
to represent static evaluation factors, i.e., SCF and static ImF in our context. Auxiliary
variables, in turn, represent intermediate variables. As an example consider the auxiliary
variable ”Process Definition Costs” in Fig. 1C. Both are integrated into an evaluation
model with links (not flows), i.e., with labeled arrows. Apositive link(labeled with a
”+”) between x and y (with y as dependent variable) indicatesthat y will tend in the
same direction if a change occurs in x. Anegative link(labeled with a ”-”) denotes that
the dependent variable y will tend in the opposite directionif the value of x changes.

Illustrating Example . Fig. 2 shows a model which describes the influence of the
dynamic ImF ”End User Fears” on the DCF ”Costs for Business Process Redesign”.
More specifically, this model reflects the assumption that the introduction of a PAIS
may cause end user fears, e.g., due to a high degree of job redesign and due to changed
social clues. Such end user fears can lead to emotional user resistance. This, in turn,
results in a decreasing ability to acquire process knowledge. Reason is that an increas-
ing emotional resistance makes profound process analysis (e.g., based on interviews
with process participants) a difficult task to accomplish. Adecreasing ability to acquire
process knowledge results in a decreasing ability to redesign business processes.

NotationIllustrating Example: The Impact of „End User Fears“ on „Costs for Business Process Redesign“

Flows

Auxiliary Variables

Rate Variables

Dynamic Cost Factors

Links

Sources and Sinks

End User

Fears

Emotional

Resistance

Fear

Growth

Rate

Resistance

Growth Rate

Ability to redesign

Business ProcessesDegree of Job

Redesign

Social Clue and

Interactions

BEFORE

Impact due to

Job Redesign

Impact due to Changes

concerning Social Clue

and Interactions

+

+

+

Social Clue and

Interactions

AFTER Change of

Social Clue and

Interactions

+

+

+

Decreasing Ability to
redesign Business

Processes

+

Communication

Communication

Growth RateFear Reduction

Rate

+

Ability to acquire

Process

Knowledge

Increasing Ability
to acquire
Process

Knowledge
-+

Costs for Business

Process Redesign

Cost Rate

+

Dynamic Impact Factors

[Text]

[+|-]

Empirically

validated

Empirically

validated

-

Static Cost Factor [Text]

Static Impact Factor [Text]

Fig. 2.Dealing with the Impact of End User Fears.

To empirically confirm our assumptions as represented in this (and other) evaluation
models we conduct empirical and experimental research activities (see [13, 14]).

3 Simulating EcoPOST Evaluation Models

Evaluation models like the one depicted in Fig. 2 are of significant value for PAIS
engineers. However, the evolution of DCF and dynamic ImF is difficult to comprehend.
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For this reason, we added components for analyzing these dynamic implications to our
overall evaluation framework. More precisely, this section describes how evaluation
models can be simulated in order to unfold their dynamic effects. Section 3.1 explains
why simulation is needed in our context. Section 3.2 illustrates the general computation
of a simulation. Based on this, Section 3.3 deals with the specification of simulation
models. Section 3.4 gives an illustrating example.

3.1 Feedback Loops

The change of DCF and dynamic ImF is caused by the interplay ofthe different el-
ements of an evaluation model, i.e., the complex interdependencies between dynamic
and static evaluation factors, flows and links. In this context, feedback loops are of
particular importance.

Feedback Loops. A feedback loop is aclosed cycleof causes and effects. Within
this cycle, past events (like the change of a DCF or dynamic ImF) are utilized to control
future actions (like another change of the same evaluation factor). In other words, if a
changeoccurs in a model variable which is part of a feedback loop, this change will be
propagated around the loop [12].

As an example consider the feedback loop depicted in Fig. 2. Basic to this model
is a cyclic structure connecting the four dynamic ImF ”End User Fears”, ”Emotional
Resistance”, ”Ability to acquire Process Knowledge”, and ”Ability to redesign Business
Processes”. As aforementioned, it reflects the assumption that the introduction of a PAIS
may cause end user fears, e.g., due to a high degree of job redesign. Such end user fears
lead to increased emotional resistance. Increased resistance decreases the ability to get
support from end users during process redesign. This, in turn, decreases the ability to
effectively redesign business processes. Finally, a lowerability to redesign business
processes results in decreased end user fears. Reason is that the end users will be less
afraid of change if the ability to redesign processes decreases.

We distinguish between two types ofloop polarities. First, positive(or self-rein-
forcing) loops generate growth of DCF and dynamic ImF (cf. Fig. 3A). Second,nega-
tive (or self-correcting) loops counteract and oppose growth (cf. Fig. 3B). If evaluation
models contain both positive and negative feedback loops, more complex effects may
emerge (cf. Fig. 3 C-E).

The polarity of a feedback loop is equivalent to thesign of the open loop gain.
”Gain” refers to the strength of the change returned by a loopand ”open loop” means
that the gain is calculated for just one feedback cycle by opening the closed loop at
some point [15]. Consider Fig. 3F which shows a closed feedback loop consisting of
four variablesx1, ...,x4. Assume that we open the loop atx1 (though any other variable
of the loop can be used as well). Opening the loop atx1 splits this variable into aninput
variable (xI

1) and anoutput variable(xO
1 ). The open loop gain is then defined as the

(partial) derivative ofxO
1 with respect toxI

1, that is, the feedback effect of a change in a
variable as it is propagated around a loop. Thus, the polarity of loop can be calculated
as SGN(δxO

1 /δxI
1), whereSGN() is the sign function, returning +1 if the argument is

positive, and -1 otherwise (if the open loop gain is zero, there is no loop).
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Fig. 3.Feedback in Evaluation Models: Overview of potential dynamic Effects.

It is important to mention that all dynamic effects caused byfeedback loops are
typically not easily understandable [16]. For this reason,we investigate the effects of
feedback loops through simulation1 of respective evaluation models.

3.2 Computing a Simulation

In the EcoPOST framework, simulation is based on the step-by-step numerical solution
of algebraic equations specifying how to start a simulationfrom an existingstart con-
dition and how to computesucceeding conditions. In other words, the equations define
how the variables of an evaluation model change over time [17].

Illustrating Example . Consider Fig. 4 which depicts the simulation of two dynamic
evaluation factors: aDCF and a dynamicImF. The condition at timet0 has been calcu-
lated and the condition at timet1 is now being evaluated.DT stands for ”Difference in
Time” and denotes the length of the time interval between twoconditions.

DCF.t0 and ImF.t0 designate the two values ofDCF and ImF at time t0 (cf. Fig.
4A). R1.I .[t0, t1[ is a rate variable specifying the inflow ofDCF within the time inter-
val [t0, t1[. Similarly, the rate variablesR2.I .[t0, t1[ andR2.O.[t0, t1[ specify the inflow
respectively outflow ofImF within the time interval[t0, t1[. Therewith, all information
needed to compute the new values ofDCF andImF is available.

Within the time interval[t0, t1[, the rate variables act onDCF and ImF and cause
them to change. The new values ofDCF andImF at timet1 are calculated by adding and
subtracting the changes represented by these rates (cf. Fig. 4B). Thereby, the sequence
of computation does not matter because bothDCF andImF depend only on their own
previous values and on the rates taking effect within the time interval[t0, t1[. Similarly,
the order in which the rates are computed does not matter because the rates do not

1 For simple evaluation models, it is sometimes possible to analytically solve the simulation model’s equations. In doing
so, it becomes possible to determine a model condition in terms of any futuretime, not just in terms of the short time
intervals between successive computations during a simulation. One wouldbe able to substitute any particular value of
future time and evaluate the future model condition without first proceedingthrough the intervening conditions. How-
ever, analytical solutions are only possible for the minority of our evaluation models. Most evaluation models comprise
nonlinear relationships making the calculation of an analytical solution impossible. For such evaluation models, only the
simulation process based on a step-by-step numerical solution is available.
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depend on each other. Finishing the computation creates thesituation shown in Fig. 4B.
In the following, only these values are needed to compute theforthcoming rates for the
[t1, t2[ interval (cf. Fig. 4C).
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Fig. 4.Computing a Simulation Model.

Behavioral Experiments. Note that the numerical solution of equations does not allow
to directly ”jump” to some future condition without first computing through all pre-
vious conditions, i.e., there exists no general solution (describing all possible effects)
which can be found based on a step-by-step numerical solution. Instead, one step-by-
step numerical solution gives one time history of an evaluation model’s variables based
on given parameters and initial conditions. For deriving additional information, another
full step-by-step computation has to be conducted based on different conditions. There-
with, it becomes possible to conduct behavioral ”experiments” based on a series of
simulation runs. During these simulation runs equations are manipulated in a controlled
manner to systematically investigate the effects of changed simulation parameters.

3.3 Specifying a Simulation Model

In the EcoPOST framework, asimulation modelconsists of a number ofalgebraic equa-
tions- one for each model variable (i.e., dynamic and static evaluation factors as well as
rate variables and auxiliary variables). The basic components of these algebraic equa-
tions are the model variables. However, we use different types of algebraic equations
for the different variables of an evaluation model (cf. Fig.5A):

– Static Evaluation Factors: Static evaluation factors (i.e., SCF and static ImF) are
specified using a numerical value in aconstant equation(e.g., ”Business Process
Redesign Costs = 1000 $/Week”). A specific variant of a constant equation is
an initially computed constant. In fact, it will often become necessary to specify
a constant in terms of another constant if the former dependson the latter and the
former should change in any simulation run where the latter is given a new value.
As an example of an initially computed constant consider thefollowing equation:
Process Redesign Costs = 1000 $/Week * Risk Factor. Note that initially
computed constants need to be evaluated only once at the beginning of a simulation.
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– Dynamic Evaluation Factors: Dynamic evaluation factors (i.e., DCF and dynamic
ImF) are specified byintegral equationsin our approach [16]. Such equations spec-
ify the accumulation of a dynamic evaluation factor from a starting pointt0 to the
present momentt (cf. Fig. 5B). More specifically, DCF and dynamic ImF integrate
their net flow. The net flow during any interval [t1, t2] is the area bounded by the
graph of thenet ratebetween the start and the end of the interval (cf. Fig. 5C).
Thus, the value of a dynamic evaluation factor att2 can be calculated as the sum of
its value att1 and the area under the net rate curve betweent1 andt2. In Fig. 5C, the
value att1 is S1. Adding the area under the net rate curve betweent1 andt2 increases
the value toS2. The net flow is determined by one or several rate variables.
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Fig. 5. Integration of Flows for Dynamic Evaluation Factors.

– Rate Variables: Rate variables are expressed byrate equations. Rate equations
specify the change of dynamic evaluation factors (DCF or dynamic ImF) between
two computed conditions (cf. Section 3.2). More specifically, rate equations for
flows connected to DCF specify the amount of costs flowing to, from, or between
DCF. Rate equations for flows connected to dynamic ImF specify the impact flow-
ing to, from, or between dynamic ImF. In any case, a rate equation uses information
(i.e., values) from other model variables (SCF, DCF, dynamic ImF, and auxiliary
variables) to calculate a specific change. In the context of aspecific rate variable,
the relevant information is represented by those model variables that are connected
to the rate variable by links (cf. Section 2.2).

– Auxiliary Variables: Auxiliary variables are specified byauxiliary equations. Their
constituting elements may be SCF, DCF, dynamic ImF, rate variables, and auxiliary
variables. Auxiliary equations are evaluated after the integral equations on which
they depend, and before the rate equations of which they are part.

The total set of equations of a given evaluation model is denoted assimulation model.
For the design of our evaluation models as well as their simulation we have used the
visual modeling and simulation toolVensim[18].

3.4 Specifying nonlinear Relationships through Table Functions

An important part of our evaluation models are ImF (e.g., process knowledge, domain
knowledge, end user fears). Often, an ImF has a nonlinear impact on DCF. Such non-
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linearities have to be represented in our simulation modelsas well. For this purpose, we
use a specific kind of auxiliary equation (implying that nonlinearities require the intro-
duction of additional auxiliary variables in our evaluation models). Specifically, we use
table functions transferring an input value (e.g., a certain degree of process knowledge)
into a corresponding output value (e.g., expressing a specific effect on a DCF). More
specifically, we can define (with Y representing an ImF and X representing a DCF):

Definition A function Y= f (X) is called table function, if it is represented as follows:

– Y = Effect of X on Y,
– Effect of X on Y = Table for Effect of X on Y(X),
– Table for Effect of X on Y =(x1,y1),(x2,y2), ...,(xn,yn),

where(xi ,yi) represents each pair of points defining the relationship.

In other words, the output valueY is calculated dependent on the input valueX through
lookup function f . Linear interpolation is used for values lying between the specified
table values. Fig. 6 illustrates the specification of table functions in Vensim [18], the
visual modeling and simulation tool we use.

Fig. 6.Specifying Table Functions (left) and Table of Values (right) in Vensim [18].

Fig. 7 shows typical table functions. Dependent on the degree of an ImF (represented
by X) a specificimpact ratingis derived (represented byY). An impact rating less than
1 results in decreasing costs (cf. Fig. 7A). A rating equal to1 neither does increase nor
decrease costs. A rating larger than 1 results in increasingcosts (cf. Fig. 7B and Fig.
7C). Quantifications based on such impact ratings are also known from software cost
models like COCOMO [19].

The information needed for specifying the shape and the values of table functions
can be derived from different sources, including, for example, statistical studies, prac-
tical fieldwork, and interviews. Generally, there exists nostandard way of building ro-
bust table functions though a ”best practice” guideline forformulating table functions
is given in [15] (cf. Fig. 8). It is important to mention that the input and output values of
table functions are typically normalized. This means that the input value is a dimension-
less ratio of the input to a reference valueX∗ and the output value is a dimensionless
effect modifying the reference valueY∗, i.e.,Y = Y∗ f (X/X∗).
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Normalize the

input and output.

Normalize the table function so that the input is the dimensionless ratio of the input to a reference

value X* and the output is a dimensionless effect modifying the reference value Y*, i.e., Y=Y*f(X/X*).

Identify reference points.
Indentify the reference points where the values of the function are determined by definition. In

normalized functions, the function usually must pass through the point (1,1) so that Y=Y* when X=X*.

Identify reference

policies.

Reference policies are lines or curves corresponding to standard or extreme policies. The reference

policy f(X/X*)=1, for example, represents the policy that X has no effect on Y. The 45° line represents

the policy that Y varies 1% for every 1% change in X and is often a meaningful reference policy.

Consider extreme

conditions.

What values must the function take at extremes? If there are multiple nonlinear effects in the

formulation, check that the formulation makes sense for all combinations of extreme values and that

the slopes of the effects at the normal operating points conform to any reference policies and

constraints on the overall response of the output.

Specify the domain for the

independent variable.

Specify the domain for the independent variable so that it includes the full range of possible values,

including extreme conditions, not only the normal operating region.

Identify the plausible

shapes for the function.

Identify the plausible shapes for the function within the feasible region defined by the extreme

conditions, refeence points, and reference policy lines. Select the shape you believe best corresponds

to the data (numerical and qualitative). Justify any inflection points. Interpret the shapes in terms of the

physical constraints and policies of the decision maker.

Specify the values for

your best estimate

of the function.

Use increments small enough to get the smoothness you require. Examine the increments between

values to make sure there are no kinks you cannot justify. If numerical data are available you can

often estimate the values statistically. Otherwise, make a judgmental estimate using the best

information. Often, judgmental estimates provide sufficient accuracy, particularly early in a project, and

help focus subsequent modeling and data collection efforts.

Run and test the model

Run the model and test to make sure the behavior of the formulation and nonlinear function is

reasonable. Check that the input varies over the appropriate range (e.g., that the inputs is not

operating off the ends of the function at all times).

Test the sensitivity

of your results.

Test the sensitivity of your results to plausible variations in the values of the function. If sensitivity

analysis shows that the results change significantly over the range of uncertainty in the relationship,

you need to gather more data to reduce the uncertainty. If the results are not sensitive to the assumed

values, then you do not need to spend additional resources to estimate the function more accurately.

1

9

8

7

6

5

4

3

2

Fig. 8.Guideline for building Table Functions [15].
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3.5 Illustrating Example

Fig. 9A shows a simple evaluation model. Assume that the evolution of the DCF ”Costs
for Business Process Redesign” (caused by the dynamic ImF ”End User Fears”) shall
be analyzed (ignoring other potential ImF). The model reflects the assumption that the
redesign of business processes (e.g., prior to the introduction of a PAIS) may be in-
fluenced by end user fears (caused by a high degree of job redesign or changed social
clues). Such end user fears can lead to emotional resistanceof users, and, in turn, to
a lack of support from the users while redesigning business processes, e.g., during an
interview-based process analysis.

A) Evaluation Model

C) Computing a Simulation Run

TIME Change ($) BPR Costs ($)

00 - 0

01 1000 1000

02 1010 2010

03 1020 3030

04 1030 4060

05 1040 5100

06 1050 6150

... ... ...

30 1840 38300

31 1900 40200

32 2020 42220

Notation

Flows

Auxiliary Variables

Rate Variables

Dynamic Cost Factors

Links

Sources and Sinks

Dynamic Impact Factors

[Text]

[+|-]

Static Cost Factor [Text]

Static Impact Factor [Text]

TABLE FUNCTION

EQUATION

Business Process Redesign Costs

60,000

45,000

30,000

15,000

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (Weeks)

Business Process Redesign Costs : without User Fears

Business Process

Redesign Costs

End User

Fears
Fear Growth

Rate

Cost Rate

Impact due to

End User Fears

BPR Costs

per Week

Fear Growth

B) Simulation Model

Equations:
A) BPR Costs per Week[$] = 1000$
B) Cost Rate[$] =
     BPR Costs per Week[$] * Impact due to End User Fears[Dimensionless]
C) Business Process Redesign Costs[$] = Cost Rate[$]
D) Fear Growth = 2[%]
E) Fear Growth Rate[%] = Fear Growth[%]
F) End User Fears[%] = Fear Growth Rate[%]
G) Impact due to End User Fears = LOOKUP(End User Fears/100)

Initial Values:
A) Business Process Redesign Costs[$] = 0$
B) End User Fears[%] = 30%

Cost Rate ($)

1000

1010

1020

1030

1040

1050

1060

...

1900

2020

2140

Change (%)

-

2

2

2

2

2

2

...

2

2

2

User Fears (%)

30

32

34

36

38

40

42

...

90

92

94

D) Graphical Diagramm illustrating Simulation Outcome

Business Process Redesign Costs : with User Fears

Costs

CONSTANT

CONSTANT
EQUATION

EQUATION
EQUATION

Normalization

+ +
+

+

Fig. 9.Dealing with the Impact of End User Fears.

Assume that the business process redesign activities are scheduled for 32 weeks. In
order to simulate the evolution of the resulting costs alongthis time frame, we use the
simulation model depicted in Fig. 9B. Here, the nonlinear impact of end user fears on
the costs of business process redesign is represented through a table function. Fig. 9C
shows the values of the evaluation model’s dynamic evaluation factors over time when
the simulation model is executed. The underlying principles of this computation have
been already described in Section 3.2. Finally, Fig. 9D shows a graphical diagram which
illustrates the outcome of the simulation. As can be seen, there is a significant negative
impact of end user fears on the costs of business process redesign.

4 Related Work

Basically, one can distinguish between six major categories of cost estimation tech-
niques [20]:model-based approaches(e.g., COCOMO, SLIM),expertise-based ap-
proaches(e.g., the Delphi method),learning-oriented approaches(using neural net-
works or case based reasoning),regression-based approaches(e.g., the ordinary least
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squares method),composite approaches(e.g., the Bayesian approach), anddynamic-
based approaches(which explicitly acknowledge that cost factors change over the du-
ration of the system development). Picking up this classification, our framework can be
considered as an example of a dynamic-based approach (the other five categories rely
on static analysis models). Besides, IT evaluation approaches have to be considered as
well. Due to lack of space, we omit further details here and refer to [7].

Recently, equation-based simulation approaches (as envisioned in our EcoPOST
framework) often compete with agent-based simulation. Agent-based simulations are
based on a set of agents (e.g., reactive agents, intentionalagents, social agents) encap-
sulating the behavior of the various variables that make up asystem [21]. During a
simulation, the behavior of these agents is emulated. Generally, agent-based simulation
is less quantitative and more qualitative than equation-based simulation. Invariants do
not come in the form of equations, but in the form of rules, andthis makes agent-based
simulation an interesting alternative, particularly in purely social environments, but also
in environments that include both social and technologicalvariables. When compared to
equation-based approaches, agent-based approaches do notbegin with specifying equa-
tions that relate observed variables to one another, but with behaviors through which
individuals interact [22]. Thereby, agent-based approaches define agent behavior in
terms of variables accessible to individual agents. This leads away from reliance on
system-level information as extensively done by equation-based approaches (since it is
often easier to formulate parsimonious closed-form equations using such quantities).
However, as equation-based simulation is easier to use in practice (which is one ma-
jor requirement guiding the development of the EcoPOST framework), we have not
considered the use of agent-based simulation.

5 Summary

The EcoPOST framework enables PAIS engineers to model the complex interplay be-
tween the numerous cost and impact factors which arise in thecontext of PAIS engi-
neering projects. Fig. 10 depicts the main pillars of the EcoPOST framework [10]. This
paper has focused on the use of simulation to investigate thedynamic effects described
by our evaluation models (particularly the evolution of DCF).

Empirical &

Experimental Research

Economic-driven

Evaluation Models
Simulation

Value-based

Evaluation Patterns

Governance

Guidelines

EcoPOST Cost

Benefit Analyzer

I II III IV V VI

Fig. 10.Main Components of the EcoPOST Framework.

In particular, our paper has illustrated the use of simulation to investigate the dynamic
implications described by EcoPOST evaluation models. We have motivated the use of
computer simulation as a means to analyze the dynamic effects caused by feedback
loops. We have described the constituting elements of EcoPOST simulation models and

12



have discussed the execution of simulation models. Finally, we have given an example
illustrating the basic notion of simulating dynamic evaluation factors.

Note that the expressiveness of simulation always depends on the plausibility and
resilience of the underlying simulation models. Therefore, we have additionally ac-
complished various empirical and experimental research activities (e.g., software ex-
periments, online surveys, case studies) in order to put thequantifications gained from
our simulation models on a more reliable basis (see [13] for examples).
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