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Abstract. With the increasing adoption of process-aware information
systems (PAIS) large process model repositories have emerged. Over
time respective models have to be re-aligned to the real world busi-
ness processes through customization or adaptation. This bears the risk
that model redundancies are introduced and complexity is increased. If
no continuous investment is made in keeping models simple, changes
are becoming increasingly costly and error-prone. Although refactoring
techniques are widely used in software engineering to address related
problems, this does not yet constitute state-of-the art in business pro-
cess management. Consequently, process designers either have to refactor
process models by hand or can not apply respective techniques at all. In
this paper we propose a set of techniques for refactoring large process
repositories, which are behaviour-preserving. The proposed refactorings
enable process designers to effectively deal with model complexity by
making process models easier to change, less error-prone and better un-
derstandable.
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ity, Process Model Refactoring, Cost of Process Change

1 Introduction

Process-aware Information Systems (PAIS) offer promising perspectives for en-
terprise computing and are increasingly used to support business processes at
an operational level [1]. In contrast to data- or function-oriented information
systems (IS), PAIS strictly separate process logic from application code, rely-
ing on explicit process models which provide the schemes for process execution.
This allows for a separation of concerns, which is a well established principle in
computer science to increase maintainability and to reduce cost of change [2].

With the increasing adoption of PAIS large process repositories have emerged.
Over time corresponding process models have to be adapted at different levels
to meet new business, customer and regulatory needs, and to ensure that PAIS
remain aligned with the processes as executed in the real world. Typical adap-
tations include the customization of (reference) process models to specific needs



of a customer [3, 4] or – at the operational level – the adaptation of running
process instances to cope with exceptional situations [5]. Like software programs
degenerate when adding more and more code or introducing changes by differ-
ent devlopers [6], process adaptations bear the risk that model repositories are
becoming increasingly complex and difficult to maintain over time.

In software engineering (SE) refactoring techniques have been widely used
to address related problems and to ensure that code bases remain maintainable
over time [7, 8]. Refactoring allows programmers to restructure a software sys-
tem without altering its behaviour. Refactoring is typically used to improve code
quality by removing duplication, improving readability, simplifying software de-
sign, or adding flexibility [9]. Examples of SE refactoring techniques include the
renaming of a class to foster understandability or the extraction of a method
from an existing code block to remove redundant code fragments.

Process modeling is often referred to as programming in the large [10, 11].
Thereby, a process schema is comparable to a software program specifying the
inputs and outputs of activities as well as the control and data flow between
them. Despite these similarities refactoring is not yet established in the field of
business process management (BPM) and existing process modeling tools only
provide limited refactoring support. Consequently, process designers either have
to refactor process models by hand or can not apply respective techniques at all.

This paper adopts SE refactoring techniques to the needs of process modeling
and complements them with additional refactorings specific to BPM. In partic-
ular, we describe techniques suitable for refactoring large process repositories,
where we can find both collections of inter-related process models and process
variants derived from generic models (e.g., reference process models). The former
consist of a set of models, which may refer to each other (e.g., a parent process
refers to child process) resulting in model trees. In contrast, process variants are
part of a process model family, and are derived from a generic process model
through a sequence of adaptations. This approach is often referred to as model
customization or configuration [3, 4]. Like in SE, tool support is essential as a
refactoring applied to one model might require changes in other models as well.
As a contribution towards more effective tool support, we use formal notions to
reason about the validity of the proposed refactorings.

In this paper we focus on refactoring techniques for control flow. For each
proposed refactoring we describe its intent, give examples for its applicability
and use (similar to code smells in SE [8]), and discuss its effects in respect to
process model quality metrics (e.g., measuring control flow complexity) [12, 11].
None of the proposed techniques is dependent on a specific process meta-model.

Section 2 provides background information. Section 3 then gives an introduc-
tion into refactoring of process models and presents refactoring techniques for
process composition. Section 4 suggests a refactoring to effectively deal with gen-
eralization and Section 5 introduces advanced refactorings considering process
history data. Related work is discussed in Section 6. Finally, Section 7 concludes
with a summary and an outlook.



2 Background Information

In this section we describe basic concepts and notions used in this paper.

2.1 Basic Concepts and Notions

A PAIS is a specific type of information system which provides process support
functions and allows for the separation of process logic and application code. At
build-time process logic has to be explicitly defined in a process schema, while
at run-time the PAIS orchestrates processes according to their defined logic.

For each business process to be supported, a process type represented by a
process schema S has to be defined. In the following, a process schema corre-
sponds to a directed graph, which comprises a set of nodes – representing ac-
tivities or control connectors (e.g, XOR-Split, AND-Join) – and a set of control
edges between them. The latter specify precedence relations. Further, activities
can be atomic or complex. While an atomic activity is associated with an in-
vokable application service, a complex activity contains a sub process or, more
precisely, a reference to a (sub) process schema S′. This allows for the hierar-
chical decomposition of schemes resulting in a process model tree (cf. Fig. 1a).
Generally, different schemes S1 . . . Sn may refer to a (sub) process schema S′.
Fig. 1a shows a schema S modeled in BPMN notation [13] consisting of seven
nodes. Thereby, A, B and D are atomic activities, C and E are complex activities
referring to (sub) process schemes S1 and S2 respectively, and XOR-split and
XOR-Join are control connectors. S2 itself refers to schema S3 resulting in a
process model tree with depth three.

Process schemes can either be created from scratch or through configuration,
i.e., customization of a generic process model (e.g., a reference model). From
such a generic model several process variants (each with its schema) may be
derived based on a restricted set of change operations [5, 14]. Thereby, for a
given variant we denote the set of change operations needed to transform the
generic model into the variant as bias. Usually, the aim is to minimize the number
of operations required in this context. The total set of all variants derived from
a generic process model is called process model family. Fig. 1b shows a generic
process schema SG and four variants V1, . . . , V4 derived from it. For example,
the transformation of SG to V1 requires deletion of Activity G.

Most refactoring techniques are not only applicable to activities, but also to
sub process graphs with single entry and exit nodes (also denoted as hammocks
[15]). We use the term process fragment as generalizing concept for all these
granularities; e.g., in Fig. 1b the sub-graph of schema S containing Activities
B, C, and D and the two control connectors constitutes a hammock. Based on
schema S, at run-time new process instances can be created and executed, which
is reflected by the instance trace.

Definition 1 (Execution Trace). Let PS be the set of all process schemes
and let A be the total set of activities (or more precisely activity labels) based on
which schemes S ∈ PS are specified (without loss of generality we assume unique
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labelling of activities). Let further QS denote the set of all possible execution
traces producible on schema S ∈ PS. A trace σ ∈ QS is then given by σ =
< a1, . . . , ak > (with ai ∈ A) where the temporal order of ai in σ reflects the
order in which activities ai were completed over S.

For example, σ1 = < A,B,D,C,E, F > and σ2 = < A,B,C,D,E, F > both
constitute traces producible by process variant V1 in Fig. 1b.

Schemes S and S′ are called trace equivalent if and only if the same set of
execution traces can be produced based on S and S′.

Definition 2 (Trace Equivalence). Two process schemes S and S′ are trace
equivalent iff QS = QS′ .

To determine whether two (hierarchically) composed process schemes S and
S′ are trace equivalent, the respective process model trees need to be expanded.
For this, each complex activity needs to be replaced by the (sub) process schema
it refers to. Consequently, the trace of an activity does not contain the complex
activity directly, but the trace of the associated sub process. A possible execution
trace for schema S in Fig. 1a is σ1 = < A,B, J,K,M,N >.



2.2 Quality Metrics for Business Process Models

We describe selected quality metrics for process models, and use them in the
following to discuss effects of the proposed refactorings (cf. Fig. 2). In SE, metrics
have been used since the 60s to measure software quality. Main purpose is to
improve software design, resulting in better understandable and maintainable
code [16, 17]. BPM research has recently started to adopt quality metrics to
specific needs of process modeling [10, 11, 18, 19] and to empirically validate these
metrics [10, 12]. We use these metrics and complement them with further ones
measuring cost of process change in terms of change distance [20] (cf. Fig. 2).

Quality Metrics for Business Processes 
Let S = (N, E) be a process model with N denoting the set of nodes and E the set of edges.  

Metric Description Metrics calculated 
for Fig. 1 
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Fig. 2. Selected Quality Metrics for Process Models

Though refactoring decisions have to be made by designers, quality metrics
help them to identify quality problems or deviations from the norm. Refactoring
techniques can be applied to improve the quality of a process model. Its effects
on model quality, in turn, can be measured based on respective quality metrics.
As the application of a particular refactoring may affect several schemes it is
not sufficient to look only at the quality metrics of a single schema in isolation,
but to apply metrics to the entire collection of schemes as well. For this purpose
we introduce functions sum and avg, which we will use later on for comparing
process models before and after refactorings.

sum : 2PS ×Metrics× Params 7→ N0 with sum(mset,m, p) :=
∑

S∈mset

m(S, p)

avg : 2PS×Metrics×Params 7→ R+
0 with avg(mset,m, p) :=

sum(mset,m, p)
|mset|

For example, the total change distance for the process family depicted in Fig.
1b is sum({V1, . . . , V4}, Dist, SG) = 6, while the average change distance is 1.5.



3 Refactorings for Process Composition

This paper describes 11 refactoring techniques which allow process designers to
improve the quality of process models (cf. Fig. 3). In our context refactorings
constitute model transformations based on well-defined change patterns [14, 21],
which are behaviour-preserving if certain pre- and postconditions are met. We
use trace equivalence (cf. Def. 2) as formal notion for most refactorings to ensure
that no errors are introduced through their application. If for a model tree with
root Si, which shall be refactored, the same trace sets can be produced before
and after the respective refactoring process behaviour will be preserved.

We divide our refactorings into basic ones, which can be applied to a sin-
gle schema, and composed refactorings applicable to a collection of inter-related
process schemes. Basic refactorings transform a schema S into a new schema S′

by applying a refactoring operation op. This transformation might also imply
changes of a model tree if, for example, a fragment is extracted from a process
model and replaced by a reference to a sub process. Composed refactorings, in
turn, refer to a collection of process schemes S1 . . . Sn and apply basic refactor-
ings to them if they meet the respective pre-conditions.

For each of the proposed refactorings we describe its intent, give examples,
provide a description of the refactoring operation (with pre- and postconditions)
and its implementation, and describe their effects on selected quality metrics. We
organize our refactorings into three groups. The first one contains refactorings for
process composition and is introduced in this section. The second one suggests a
refactoring to effectively deal with generalization (cf. Section 4). The third group
describes model refactorings considering process history data (cf. Section 5).

First we describe 8 refactorings for process composition. Refactoring
RF1 (Rename Activity) can be applied when the name of an activity is not in-
tention revealing and RF2 (Rename Process Schema) allows altering the name of
a schema. Using RF3 (Substitute Process Fragment) process designers can sub-
stitute a fragment within a schema by another one which is simpler in structure,
but has the same behaviour. RF4 (Extract Process Fragment) allows extracting
a process fragment into a sub process to remove model redundancies, to fos-
ter reuse, and to reduce the size of a schema. Applying RF5 (Replace Process
Fragment by Reference) a process fragment can be replaced by a complex activ-
ity referring to a (sub) process schema containing the respective fragment. RF6
(Inline Process Fragment) can be applied to collapse the hierarchy by inlining a
fragment. RF7 (Re-Label Collection) is a composed refactoring, which supports
re-labelling of certain activities within an entire process collection. Finally, RF8
(Remove Redundancies) allows for combined use of RF4 and RF5 to remove
redundant fragments from multiple schemes in a model collection at once.

RF1 (Rename Activity). RF1 allows altering the name of an activity x
to y if x is not intention revealing. RF1 is comparable to the Rename Method
refactoring in SE [8]. Renaming an activity does not alter the behaviour of the
schema S as only labels are changed. However, the notion of trace equivalence
is not suitable in this context. Instead, we use a correctness notion based on the
Replace Process Fragment change pattern [14, 21]. For each trace σ produced on
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Fig. 3. Refactoring Catalogue



schema S with an entry of x there exists a respective trace µ on S′ which is iden-
tical to σ, except that for every x in σ a y in µ can be found at the same position.
Applying RF1 does not have effects on the quality metrics described in Fig. 2.
However, names which reveal the intention of process designers more clearly im-
prove understandability of the model and consequently result in decreased cost
of change and reduced errors [22].

RF2 (Rename Process Schema.) RF2 allows designers to rename a
schema S to S′. A similar refactoring in SE is Rename Class [23]. To guaran-
tee that RF2 does not alter process behaviour, all references to S are updated.
Obviously, equivalence can be used as formal notion for RF2 ensuring that the
behaviour of the model collection remains unchanged. Like RF1 this refactoring
does not affect quality metrics, but improves model clarity.

RF3 (Substitute Process Fragment). RF3 allows substituting a frag-
ment by another one with simpler structure, but the same behaviour. Applying
RF3 requires both fragments to contain activities with the same labelling. The
Substitute Algorithm refactoring [8] known from SE is comparable to RF3. Sce-
narios in which RF3 is useful include unnecessarily complex parallel branchings
(cf. Fig. 4a) or unneeded control edges due to transitive relations. RF3 can be im-
plemented based on change pattern Replace Process Fragment [14, 21]. As formal
criterion trace equivalence can be used (cf. Def. 2). Substituting a fragment by a
simpler one allows designers to improve model quality along several dimensions:
by removing unnecessary parallel branchings and edges not only model clarity
is increased, but also size and control-flow complexity (CFC) are decreased.

RF4 (Extract Process Fragment). RF4 can be used to extract a process
fragment from a schema S, e.g., to eliminate redundant fragments or to reduce
size of S. The fragment to be extracted must constitute a hammock. The intent
of RF4 is similar to Extract Method [8] as known from SE. It results in the
creation of a new (sub) process schema S1 containing the respective fragment.
In addition, the fragment is replaced by a complex activity referring to S1. As
formal notion for reasoning about behaviour preservation trace equivalence is
used again. RF4 can be implemented based on change pattern Extract Process
Fragment [14, 21]. In many cases extracting parts of a schema results in a reduced
CFC (cf. Fig. 5). Similarly, in SE the Extract Method refactoring is suggested as
remedy for high cyclomatic complexity [24]. RF4 can also be used to reduce the
size of large schemes and the overall number of nodes in the process repository
by removing redundancies. Further, removing redundancies also reduces cost of
future process changes as the same changes do not have to be performed at
multiple places.

RF5 (Replace Process Fragment by Reference). RF5 is used to replace
a process fragment by a complex activity referring to a trace equivalent (sub)
process schema. RF5 is often used in combination with RF4. It can be imple-
mented based on change pattern Replace Process Fragment [14, 21]. Regarding
qualitiy metrics similar considerations hold than for RF4.

RF6 (Inline Process Fragment). RF6 can be used to collapse the hier-
archy of a model by inlining the process fragment, e.g., if it is not justifying its



induced overhead. Similarly, in SE Inline Method [8] allows programmers to in-
line the body of a method. By inlining a fragment S1 into S the complex activity
referring to S1 is substituted by the fragment corresponding to S1. Again trace
equivalence can be used as a formal notion. RF6 can be implemented based on
the Inline Process Fragment change pattern [14, 21]. In particular, RF6 allows
designers to collapse the hierarchy of a process model tree resulting in a decrease
of levels. Note that metrics Size and CFC might increase when applying RF6.

RF7 (Re-Label Collection). RF7 is a composed refactoring based on RF1
and can be used for re-labelling a particular activity in all schemes of a model
collection. For this, RF1 is applied to all schemes containing the activities to be
re-labelled.

RF8 (Remove Redundancies). RF8 is a composed refactoring based on
RF4 and RF5. It can be applied to a collection of schemes S1 . . . Sn to remove
redundancies. For this, RF4 is applied to one of these schemes to extract the
redundant fragment. To all other schemes, RF5 is applied for replacing the re-
spective fragment by a reference to the (sub) process schema created before.

Example. Fig. 4 shows the combined usage of the basic refactorings described
so far. For instance, for schema S activity A is renamed to A’ using RF1. RF2 is
used to rename schema S3 to S3′. As process schemes S and S1 contain complex
Activity M referring to S3 the references in M need to be updated to S3′. A further
refactoring option is given by schemes S, S1 and S2, all containing a process
fragment with same behaviour. However, the fragment in schema S has a more
complex structure than the ones in S1 and S2. First, RF3 is used to replace
the fragment in S with the one of S1 or S2. Next, RF4 is applied to either S,
S1 or S2 to extract the redundant process fragment to a (sub) process schema
S5. Finally, RF5 is applied to the two other schemes to replace the respective
fragment by a reference to S5. Instead of RF4 and RF5 the composed refactoring
RF8 could be used alternatively. Schema S4 only consists of a single activity and
is therefore inlined in schema S2 using RF6.

Effects on Quality Metrics. Usually, refactorings are not applied in isola-
tion, but in combination with other refactorings and with respect to a collection
of models. Consequently, refactoring has an impact on the collection of process
models. For example, in Fig. 4 the combined use of refactorings RF3, RF4, RF5
and RF6 reduces the total number of nodes in the given model collection from
34 to 20 and also decreases average CFC of the schemes by factor 1:4 (cf. Fig. 5).
Note that in all cases no changes of the model behaviour have been performed. In
particular, application of RF3 allows for the removal of two unnecessary connec-
tor nodes, reducing size by two and CFC by one; RF4 and RF5 remove existing
redundancies leading to an additional saving of 11 nodes. Finally, RF6 reduces
size by one.

As illustrated in Fig. 5 the proposed refactorings do not only result in smaller
and less complex models, but also reduce costs of future changes by remov-
ing redundancies. For example, assume that activity D in Fig. 4 shall be re-
placed by a sequence consisting of activities D1 and D2. Without the described
refactoring this change would require to modify schemes S, S1 and S2 by ap-



a) Model Repository before Refactoring 

b) Model Repository after Refactoring the Model Collection from a)

RF1: RenameActivity(S,A,A‘)

RF2: RenameSchema(S3,S3‘)

RF3: SubstituteFragment(S,G,G1)

RF4: ExtractFragment(S1,G1,L,S5)

RF5: ReplaceFragment(S,G1,L,S5)

RF5: ReplaceFragment(S2,G1,L,S5)

RF6: InlineFragment(S2,K)

Used Refactoring Operations

G G1

G1

XOR-Split

Fig. 4. Refactorings for Process Composition

plying three change operations to each of these schemes resulting in a total
change distance of 9. In contrast, considering the refactoring only schema S5
needs to be modified (Delete(S5,G), SerialInsert(S5,D1,XOR-Split) and
SerialInsert(S5,D2,D1)) reducing the total change distance by 66,67 % to
3. Removing redundancies does not only result in smaller change distance, but
also reduces the risk of introducing inconsistencies or errors. Finally, the exact
change distance depends on the intended change and the used meta-model.

The scenario depicted in Fig. 4 constitutes a toy example. For more realistic
scenarios refactoring effects become greater as our case studies in domains like
healthcare and automotive engineering revealed. When elaborating 30 process
models of a Women’s hospital, for example, we detected redundancies in more
than 60% of the models [25]. Particularly, larger models with more than 20 activ-
ities often contained redundant process fragments (e.g., for making appointments
with medical units or for exchanging medical reports). As we learned, these re-
dundancies could be abolished using the proposed refactorings. Due to lack of
space we omit further details.

4 Refactoring for Generalization

Another challenge is to manage the process variants belonging to a process family
(cf. Fig. 1b). Usually, respective variants are derived from a generic schema SG



 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
 

Before Refactoring (Fig. 4a) After Refactoring (Fig. 4b) 
 Size CFC Levels  Size CFC Levels
S 11 2 2 S 3 0 2 
S1 10 1 2 S1 4 0 2 
S2 9 1 2 S2 3 0 2 
S3 3 0 - S3 3 0 - 
S4 1 0 - S4    
S5    S5 7 1 - 
Sum 34 4  Sum 20 1  
Avg. 6.8 0.8  Avg. 4 0.2  

Before Refactoring After Refactoring 
 Size CFC Levels  Size CFC Levels 
S 9 3 1 S 7 2 1 

Before Refactoring After Refactoring 

  
Before Refactoring After Refactoring 

Fig. 5. Effects on Quality Metrics (with respect to Fig. 4)

by applying a set of change operations to it. In general, configuration of new
variants and adaptation of existing variants can be done most effectively when
the average change distance (cf. Section 2) between generic schema SG and its
variants V1, . . . , Vn is minimal (i.e., the average number of change operations
needed to transform SG to Vi is minimal). However, to keep thr average change
distance small, continuous efforts have to be made to evolve the generic model
over time. Otherwise, more and more redundant changes have to be performed
to different variants to keep them aligned with the real-world processes. Though
respective variants are often similar, slight differences make refactorings RF4
and RF5 inapplicable in many situations. Therefore, an additional refactoring
technique is needed, which supports designers in maintaining generic models.

RF9 (Generalize Variant Changes). RF 9 allows designers to pull changes,
which are common to several variants, up to the generic model (similar to Pull
Up Method and Push Down Method in SE [8]). This allows removing redundan-
cies and decreasing cost of future changes. As example consider Fig. 1b, which
shows a generic model SG and four variants V1, . . . , V4 derived from it. Analysis
of SG and its variants shows that Activity G has been deleted for 3 of the 4 vari-
ants. Refactoring GeneralizeVariantChanges(SG,{V1, . . . , V4},{Delete(G)})
can be applied to generalize the respective change by pulling the deletion of G
up to the generic model SG (not shown in Fig. 1b). As Activity G is deleted from
the generic model, G needs to be inserted in variant V4 to keep the behaviour of
variant V4 unchanged. This results in a reduction of the total change distance
from 6 to 4 and a decrease of the average change distance from 1.5 to 1.0.

In case studies we conducted in healthcare, for example, we identified 10
variants for medical order handling with similar behaviour [25]. Though respec-
tive variants were similar, slight differences existed and redundant fragments
could not be extracted to (sub) processes. However, by applying RF9 redun-
dancies could be significantly reduced resulting in easier to configure and better
maintainable variants.

The implementation of RF9 necessitates a sophisticated framework for coping
with generic schemes and variants derived from them. First, advanced techniques
for analyzing/mining process variants and for identifying variant changes to be
pulled up to the generic model are needed. In MinADEPT [26], for example, a



generic model S′G can be derived from a set of variants VariantSet such that the
change distance between S′G and the variants becomes minimal. Second, when
applying RF9 the change operations in ChangeSet are applied to SG resulting
in a new version of the generic model S′G. All variants in VariantSet need to
be re-linked from SG to S′G and for each variant Vi ∈ VariantSet its bias must
be re-calculated in respect to S′G [27]. Third, effective techniques are needed for
internally representing generic models, its variants and related biases (e.g., [20]).
Note that RF9 does not alter variant behaviour. Applying the updated bias of a
variant Vi to S′G results in the same variant-specific schema as applying the old
bias to SG. Thus trace equivalence can be used as formal notion.

5 Refactorings Considering Process History Data

This section describes refactoring techniques, which become applicable when
process models are executed by PAIS and historic data on process instances is
available in execution and/or change logs [28, 20]. These logs can be analyzed
and mined to discover potential refactoring options. In this context RF10 (Re-
move Unused Branches) allows process designers to remove unused paths from
a process model and RF11 (Pull Up Instance Change) enables generalization
of frequent instance changes by pulling them up to the process type level. Sev-
eral process mining methods for discovering such situations already exist [28,
26]. We therefore do not look at mining techniques, but use them for realizing
refactorings based on historical data.

RF10 (Remove Unused Branches). RF10 allows designers to remove
unused process fragments from a schema S. It can be implemented based on
change pattern Delete Process Fragment [14, 21] and on standard process min-
ing techniques. Note that trace equivalence is not suitable as formal basis since
the behaviour producible on the respective process schema is always altered by
RF10. Therefore we use the notion of compliance in connection with RF10. It
ensures that the observed behaviour remains unchanged. More precisely, RF10
can be applied to schema S if the related execution log L is compliant with the
resulting schema S′; i.e., each instance trace σ ∈ L, which was produced on S,
is re-producible on S′. Obviously, compliance can be ensured when removing
unused execution paths from a schema. RF10 is not applied automatically, but
the designer has to ensure that the misalignment between model and log was not
caused by design errors or an execution log not covering all relevant traces. De-
pending on the concrete application scenario the time window for which events
from the log are considered can be narrowed. Applying RF10 decreases both
model size and control flow complexity. Fig. 6a shows a schema S with its exe-
cution log comprising the traces of completed instances. When mining this log
it will be discovered that the path with activities E and F was never executed.
RF10 could then be applied to remove the unused fragment. This reduces size
of S from nine to seven and CFC from three to two. After removing activities E
and F all instances in the log are still compliant with schema S′.



RF11: RemoveUnusedBranch(S,{E,F})

Instance 1: A, D, G
Instance 2: A, B, C, G
Instance 3: A, D, G
Instance 4: A, D, G
Instance 5: A, B, C, G

…

Execution Log

unused branch

a) Remove Unused Branch

b) Pull Up Instance Change

Instance 1: ParallelInsert(X,B), Delete(E)
Instance 2: ParallelInsert(X,B)
Instance 3: ParallelInsert(X,B)
Instance 4: ParallelInsert(X,B), Delete(D)
Instance 5: ParallelInsert(X,B)

Bias before Refactoring (total change distance = 7)

RF12: PullUpInstChange(op1)
op1:= ParallelInsert(X,B)

Instance 1: Delete(E)
Instance 2: -
Instance 3: -
Instance 4: Delete(D)
Instance 5: -

Bias after Refactoring (total change distance = 2)

Fig. 6. Remove Unused Branch and Pull Up Instance Change Refactorings

RF11 (Pull Up Instance Change). RF11 can be used to generalize fre-
quently occurring instance changes by pulling them up to the process type level
(similar to RF9 where variant changes are generalized). Like for RF9 the overall
goal is to reduce average and total change distance between type schema and
instance-specific schemes; e.g., to learn from instance changes and to reduce the
need for adapting future instances [27]. The implementation of RF11 is similar
to RF9. In contrast to RF9, however, trace equivalence can not be used to ensure
that no errors are introduced when applying RF11. By pulling changes from the
instance level to the type level behaviour producible on the respective schema is
always altered. Therefore, compliance is used as a formal notion like in RF10.

Fig. 6b shows a process schema S1 and for each process instance I1, . . . I5
its deviation from schema S1. Activity X was inserted parallel to B for each of
these instances. For I1 activity E was additionally deleted and for I4 activity
D was deleted. To pull up the insertion of activity X (which is common to all
instances) to the type level and to reduce the need for future instance adaptations
RF11 could be applied. Using RF11 reduces the total change distance from
sum({I1, . . . , I5}, Dist, S1) = 7 to sum({I1, . . . , I5}, Dist, S1′) = 2.



6 Related Work

Refactoring techniques for improving software design were first proposed by
Opdyke [7]. He suggested a set of refactorings for C++ which are semantic
preserving if certain preconditions are met. The first notable refactoring tool
has been the Refactoring Browser [23] for Smalltalk, which automatically per-
forms the refactorings proposed by Opdyke plus some additionally techniques
[29]. As all refactorings provided by this tool constitute behaviour-preserving
transformations it is ensured that no errors or information losses are introduced.
Tool support for languages like C++ and Java recently emerged. The provided
refactorings are usually not provably behaviour-preserving. Therefore, refactor-
ings need to be backed up by automated regression tests to detect behavioural
changes in the software and to avoid errors [8].

Similar to program refactorings, model refactorings constitute transforma-
tions, which are behaviour-preserving if certain pre-/post-conditions are met.
Existing approaches focus on UML model transformations [30], while the appli-
cation of refactoring techniques to process models has not yet been elaborated in
detail. In [31] first refactoring techniques for event-driven process chains (EPCs)
are described. By introducing further control flow constructs EPCs can be sim-
plified. In contrast, our refactorings are meta-model independent and do not
require any advanced control-flow constructs. Refactoring techniques are also
discussed in [32] in the context of model merging. The proposed transformations
aim at improved process design, but are not necessarily behaviour-preserving.

This paper complements existing work dealing with process redesign [33] or
process adaptation [5]. Both refactoring and process redesign [33] may require
model transformations. However, scope of process redesign is much broader and
goes beyond structural adaptations. Redesign is primarily business driven and
aims to improve one or more performance dimensions of a process (e.g., time,
quality, costs or flexibility) [33]. Therefore, process redesign often affects exter-
nal quality of a PAIS and its results are visible to the customer. In contrast,
refactoring techniques primarily impact the internal quality of the PAIS, ensure
conceptual integrity, and foster maintainability. Similar to refactorings, process
adaptations [5] refer to structural changes of a process schema (e.g., using change
patterns) [14, 21, 5]. In contrast to refactorings, process adaptations are usually
affecting the behaviour of a process model. We build upon existing research in
this area and extend it to be applicable for process model refactorings.

Existing BPM tools only provide limited refactoring support. Renaming of
activities and process schemes is supported by most tools (e.g., ARIS). However,
more advanced refactoring support is missing.

7 Summary and Outlook

We proposed 11 refactoring operations specifically suited for the refactoring of
large process repositories. These techniques allow process designers to better
deal with model complexity and to make process models easier to change, less



error-prone and better understandable. With the increasing adoption of PAIS
and the emergence of large process repositories systematic support for model
management is getting increasingly important. We are currently working on a
reference implementation of a tool for refactoring process models. In particular,
we want to support users in both identifying refactoring options and in apply-
ing behaviour-preserving or compliance-ensuring refactorings. We further plan
to integrate this with our previous work on change patterns [14, 21], model evo-
lution [34], and process change mining [26] to provide integrated support for the
management of process models throughout the entire process life cycle.
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