
Identifying and Evaluating Change Patterns
and Change Support Features in

Process-Aware Information Systems

Barbara Weber1?, Stefanie Rinderle2, and Manfred Reichert3

1Quality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

2Inst. Databases and Information Systems, Ulm University, Germany
stefanie.rinderle@uni–ulm.de

3Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

Abstract. In order to provide effective support, the introduction of
process-aware information systems (PAIS) must not freeze existing busi-
ness processes. Instead PAIS should allow authorized users to flexibly
deviate from the predefined processes if required and to evolve busi-
ness processes in a controlled manner over time. Many software ven-
dors promise flexible system solutions for realizing such adaptive PAIS,
but are often unable to cope with fundamental issues related to process
change (e.g., correctness and robustness). The existence of different pro-
cess support paradigms and the lack of methods for comparing existing
change approaches makes it difficult for PAIS engineers to choose the
adequate technology. In this paper we suggest a set of changes patterns
and change support features to foster systematic comparison of existing
process management technology with respect to change support. Based
on these change patterns and features, we provide a detailed analysis
and evaluation of selected systems from both academia and industry.

1 Introduction

Contemporary information systems (IS) more and more have to be aligned in a
process-oriented way. This new generation of IS is often referred to as Process-
Aware IS (PAIS) [1]. In order to provide effective process support, PAIS should
capture real-world processes adequately, i.e., there should be no mismatch be-
tween the computerized processes and those in reality. In order to achieve this,
the introduction of PAIS must not lead to rigidity and freeze existing business
processes. Instead PAIS should allow authorized users to flexibly deviate from
the predefined processes as required (e.g., to deal with exceptions) and to evolve
PAIS implementations over time (e.g., due to process optimizations or legal
changes). Such process changes should be enabled at a high level of abstraction
and without affecting the robustness of the PAIS [2].

? This work was done during a postdoctoral fellowship at the University of Twente.

The increasing demand for process change support poses new challenges for
IS engineers and requires the use of change enabling technologies. Contemporary
PAIS, in combination with service-oriented computing, offer promising perspec-
tives in this context. Many vendors promise flexible software solutions for realiz-
ing adaptive PAIS, but are often unable to cope with fundamental issues related
to process change (e.g., correctness and robustness). This problem is further ag-
gravated by the fact that several competing process support paradigms exist,
all trying to tackle the need for more process flexibility (e.g., adaptive processes
[3–5] or case handling [6]). Furthermore, there exists no method for systemat-
ically comparing the change frameworks provided by existing process-support
technologies. This, in turn, makes it difficult for PAIS engineers to assess the
maturity and change capabilities of those technologies. Consequently, this often
leads to wrong decisions and misinvestments.

During the last years we have studied processes from different application
domains and elaborated the flexibility and change support features of numerous
tools and approaches. Based on these experiences, in this paper we suggest a
set of changes patterns and change support features to foster the comparison
of existing approaches with respect to process change support. Change patterns
allow for high-level process adaptations at the process type as well as the process
instance level. Change support features ensure that changes are performed in a
correct and consistent way, traceability is provided, and changes are facilitated
for users. Both change patterns and change support features are fundamental to
make changes applicable in practice. Finally, another contribution of this paper
is the evaluation of selected approaches/systems based on the presented change
patterns and change support features.

Section 2 summarizes background information needed for the understanding
of this paper. Section 3 describes 17 change patterns and Section 4 deals with
6 crucial change support features. Based on this, Section 5 evaluates different
approaches from both academia and industry. Section 6 discusses related work
and Section 7 concludes with a summary.

2 Backgrounds

A PAIS is a specific type of information system which allows for the separation
of process logic and application code. At run-time the PAIS orchestrates the
processes according to their defined logic. Workflow Management Systems (e.g.,
Staffware [1], ADEPT [3], WASA [5]) and Case-Handling Systems (e.g., Flower
[1, 6]) are typical technologies enabling PAIS.

For each business process to be supported a process type represented by a
process schema S has to be defined. In the following, a process schema is repre-
sented by a directed graph, which defines a set of activities – the process steps
– and control connections between them (i.e., the precedence relations between
these activities). Activities can either be atomic or contain a sub process (i.e.,
a reference to a process schema S′) allowing for the hierarchical decomposition
of a process schema. In Fig. 1a, for example, process schema S1 consists of six

activities: Activity A is followed by activity B in the flow of control, whereas C
and D can be processed in parallel. Activities A to E are atomic, and activity
F constitutes a sub process with own process schema S2. Based on a process
schema S, at run-time new process instances I1, . . . , In can be created and ex-
ecuted. Regarding process instance I1 from Fig. 1a, for example, activity A is
completed and activity B is activated (i.e., offered in user worklists). Generally,
a large number of process instances might run on a particular process schema.

PAIS must be able to cope with change. In general, changes can be triggered
and performed at two levels – the process type and the process instance level
(cf. Fig. 1b) [2]. Schema changes at the type level become necessary to deal with
the evolving nature of real-world processes (e.g., to adapt to legal changes). Ad-
hoc changes of single instances are usually performed to deal with exceptions,
resulting in an adapted instance-specific process schema.

BA
C

D
E F

Process Type Level

Process Schema S1 F1 F2 F3

Process Instance Level

Process Instance I1 Process Instance I2 Process Instance I3

(Sub-)Process Schema S2

Changes at the Process Instance Level

X
Y

dI5

X
Y

dI4

X
Y

dI1

BA
C

D
E F

Changes at the Process Type Level

S1‘

BA
D

E FX
Y

d
C X

Y
dI5

X
Y

dI4

X
Y

dI1

change
propagation

schema
evolution

S1

I1

Instance
change

W
ith

ou
t C

ha
ng

e
(a

)
W

ith
 C

ha
ng

e
(b

)

completed

activated

Fig. 1. Core Concepts

3 Change Patterns

In this section we describe 17 characteristic patterns we identified as relevant
for control flow changes (cf. Fig. 2). Adaptations of other process aspects (e.g.,
data or resources) are outside the scope of this paper. Change patterns reduce
the complexity of process change (like design patterns in software engineering
reduce system complexity [7]) and raise the level for expressing changes by pro-
viding abstractions which are above the level of single node and edge operations.
Consequently, due to their lack of abstraction, low level change primitives (add

node, delete edge, etc.) are not considered to be change patterns and thus are
not covered in this section.

As illustrated in Fig. 2, we divide our change patterns into adaptation pat-
terns and patterns for predefined changes. Adaptation patterns allow modifying
the schema of a process type (type level) or a process instance (instance level)
using high-level change operations. Generally, adaptation patterns can be ap-
plied to the whole process schema or process instance schema respectively; they
do not have to be pre-planned, i.e., the region to which the adaptation pattern
is applied can be chosen dynamically. By contrast, for predefined changes, at
build-time, the process engineer defines regions in the process schema where
potential changes may be performed during run-time.

For each pattern we provide a name, a brief description, an illustrating exam-
ple, a description of the problem it addresses, a couple of design choices, remarks
regarding its implementation, and a reference to related patterns. Design Choices
allow for parameterization of patterns keeping the number of distinct patterns
manageable. Design choices which are not only relevant for particular patterns,
but for a whole pattern category, are described only once at the category level.
Typically, existing approaches only support a subset of the design choices in the
context of a particular pattern. We denote the combination of design choices
supported by a particular approach as a pattern variant.

CHANGE PATTERNS
ADAPTATION PATTERNS (AP)

Pattern Name Scope Pattern Name Scope
AP1: Insert Process Fragment(*) I / T AP8: Embed Process Fragment in Loop I / T
AP2: Delete Process Fragment I / T AP9: Parallelize Process Fragment I / T
AP3: Move Process Fragment I / T AP10: Embed Process Fragment in Conditional Branch I / T
AP4: Replace Process Fragment I / T AP11: Add Control Dependency I / T
AP5: Swap Process Fragment I / T AP12: Remove Control Dependency I / T
AP6: Extract Sub Process I / T AP13: Update Condition I / T
AP7: Inline Sub Process I / T

PATTERNS FOR PREDEFINED CHANGES (PP)
Pattern Name Scope Pattern Name Scope

PP1: Late Selection of Process Fragments I / T PP3: Late Composition of Process Fragments I / T
PP2: Late Modeling of Process Fragments I / T PP4: Multi-Instance Activity I / T

I… Instance Level, T … Type Level

(*) A process fragment can either be an atomic activity, an encapsulated sub process or a process (sub) graph

Fig. 2. Change Patterns Overview

3.1 Adaptation Patterns

Adaptation patterns allow to structurally change process schemes. Examples
include the insertion, deletion and re-ordering of activities (cf. Fig. 2). Fig. 3
describes general design choices valid for all adaptation patterns. First, each
adaptation pattern can be applied at the process type or process instance level
(cf. Fig. 1b). Second, adaptation patterns can operate on an atomic activity, an
encapsulated sub process or a process (sub-)graph (cf. Fig. 3). We abstract from

this distinction and use the generic concept process fragment instead. Third,
the effects resulting from the use of an adaptation pattern at the instance level
can be permanent or temporary. A permanent instance change remains valid
until completion of the instance (unless it is undone by a user). By contrast, a
temporary instance change is only valid for a certain period of time (e.g., one
loop iteration) (cf. Fig. 3).

Design Choices for Adaptation Patterns
A. What is the scope of the respective pattern?

1. The respective pattern can be applied at the process instance level
2. The respective pattern can be applied at the process type level

B. Where does a respective change pattern operate on? (*)
1. On an atomic activity
2. On a sub process
3. On a process sub-graph

C. What is the validity period of the change?
1. The change can be of temporary nature
2. The change can be of permanent nature

 (*) Design Choice B is only valid for AP1-AP10

Process Instance I
Temporary Change

B
C

D
E

B D E

B
C

D
E

1st loop iteration

2nd loop iterationBA
C

D
E

F

Process Instance I
F1 F2 F3

Sub Process

G

X Z
X

Atomic Activity
Sub Graph

Design Choice B Design Choice C

Fig. 3. Design Choices for Adaptation Patterns

In the following all 13 adaptation patterns are described in detail. These 13
patterns allow for the insertion (AP1), deletion (AP2), movement (AP3), and
replacement (AP4) of process fragments in a given process schema. They further
allow for the swapping of activities (AP5), extraction of a sub process from a
process schema (AP6), inclusion of a sub process into a process schema (AP7),
embedding of an existing process fragment in a loop (AP8), parallelization of pro-
cess fragments (AP9), embedding of a process fragment in a conditional branch
(AP10), addition of control dependencies (AP11), removal of control dependen-
cies (AP12), and update of transition conditions (AP13).

Adaptation Pattern AP1: Insert Process Fragment. The Insert Process
Fragment pattern (cf. Fig. 5) can be used to add process fragments to a process
schema. In addition to the general options described in Fig. 3, one major design
choice for this pattern (Design Choice D) describes the way the new process
fragment is embedded in the respective schema. There are systems which only

allow to serially insert a fragment between two directly succeeding activities.
By contrast, other systems follow a more general approach allowing the user to
insert new fragments between two arbitrary sets of activities [3]. Special cases
of the latter variant include the insertion of a fragment in parallel to another
one or the association of the newly added fragment with an execution condition
(conditional insert).

Adaptation Pattern AP2: Delete Process Fragment. The Delete Pro-
cess Fragment pattern, in turn, can be used to remove a process fragment (cf.
Fig 6). No additional design choices exist for this pattern. Fig. 5b depicts alter-
native ways in which this pattern can be implemented.

Adaptation Pattern AP3: Move Process Fragment. The Move Process
Fragment pattern (cf. Fig. 7) allows to shift a process fragment from its cur-
rent position to a new one. Like for the Insert Process Fragment pattern, an
additional design choice specifies the way the fragment can be embedded in the
process schema afterwards. Though the Move Process Fragment pattern could be
realized by the combined use of AP1 and AP2 (Insert/Delete Process Fragment),
we introduce it as separate pattern as it provides a higher level of abstraction
to users.

Adaptation Pattern AP4: Replace Process Fragment. This pattern sup-
ports the replacement of a process fragment by another one (cf. Fig. 8). Like
the Move Process Fragment pattern, this pattern can be implemented based on
patterns AP1 and AP2 (Insert/Delete Process Fragment).

Adaptation Pattern AP5: Swap Process Fragments. The Swap Process
Fragment pattern (cf. Fig. 9) allows to swap a process fragment with another
one. This adaptation pattern can be implemented based on AP3 (Move Process
Fragment) or on the combined use of patterns AP1 and AP2 (Insert/Delete Pro-
cess Fragment).

Adaptation Pattern AP6: Extract Sub Process. The pattern Extract Sub
Process (AP6) allows to extract an existing process fragment from a process
schema and to encapsulate it in a separate sub process schema (cf. Fig. 10).
This pattern can be used to add an additional hierarchical level in order to
simplify a respective process schema or to hide information from process partic-
ipants. If no direct support of pattern AP6 is provided a workaround could look
as follows: The new process schema representing the extracted sub process has
to be created manually. As a next step the respective process fragment must be
copied to the new process schema and be removed from the original one. In addi-
tion, an activity referencing the newly implemented sub process must be added
to the original process schema. Further, required input and output parameters
must be manually mapped to the sub process. In general, the implementation of
pattern AP6 should be based on graph aggregation techniques.

Adaptation Pattern AP7: Inline Sub Process. As opposed to pattern AP6,
the pattern Inline Sub Process (AP7) allows to inline a sub process schema into
the parent process schema, and consequently to flatten the hierarchy of the over-
all process (cf. Fig. 11). If no direct support for patterns AP7 is provided a couple
of manual steps will be required as workaround. First the process fragment rep-
resenting the sub process has to be copied to the parent process schema. In a
next step the activity which has invoked the sub process has to be replaced by
the previously copied process fragment. Further, input and output parameters
of the sub process have to manually mapped to the newly added activities.

Adaptation Pattern AP8: Embed Process Fragment in Loop. Using
this pattern an existing process fragment can be embedded in a loop in order to
allow for a repeated execution of the respective process fragment (cf. Fig. 12a).
This patterns can be realized based on Patterns AP1 (Insert Process Fragment),
AP11 and AP12 (Add / Remove Control Dependency).

Adaptation Pattern AP9: Parallelize Process Fragments. This patterns
enables the parallelization of process fragments which were confined to be ex-
ecuted in sequence (cf. Fig. 12b). If no direct support is provided for AP9, it
can be realized by combining patterns AP11 and AP12 (Add / Remove Control
Dependency).

Adaptation Pattern AP10: Embed Process Fragment in Conditional
Branch. Using this pattern an existing process fragment can be embedded in
a conditional branch, which consequently is only executed if certain conditions
are met (cf. Fig. 13a). AP10 can be implemented based on patterns AP1 (Insert
Process Fragment), AP11 and AP12 (Add / Remove Control Dependency).

Adaptation Pattern AP11: Add Control Dependency. When applying
this adaptation pattern an additional control edge (e.g., for synchronizing the ex-
ecution order of two parallel activities) is added to the given process schema (cf.
Fig. 13b). As opposed to the low-level change primitive add edge, the added con-
trol dependency can be associated with attributes when applying pattern AP11.
As an example consider the use of transition conditions. Another parameteri-
zation of AP11 will become necessary if different kinds of control dependencies
(e.g., loop backs, synchronization of parallel activities) have to be considered.
Usually, approaches implementing AP11 also ensure that the use of this pattern
meets certain pre- and post-conditions (e.g., guaranteeing the absence of cycles
or deadlocks).

Adaptation Pattern AP12: Remove Control Dependency. Using this
pattern a control dependency and its attributes can be removed from a process
schema (cf. Fig. 14a). Similar considerations can be made as for pattern AP11.

Adaptation Pattern AP13: Update Condition. This pattern allows to up-
date transition conditions in a process schema (cf. Fig. 14b). Usually, an imple-
mentation of this pattern has to ensure that the new transition condition correct
in the context of the given process schema (e.g., all workflow relevant data el-
ements the transition condition refers to must be present in the process schema).

To put the pattern-based analysis of existing systems on a firm footing we have
defined a formal semantics for adaptation patterns. The description of control
flow patterns [8], for example, is based on Petri Nets. Therefore these patterns
already have an inherent formal semantics. Regarding adaptation patterns, in
turn, we have to find a semantical description which is independent of a particu-
lar process meta model. In our context, we base this description on the behavioral
semantics of the respective process schema before and after its change. One way
to capture behavioral semantics is to use execution traces. For this purpose, first
of all, we provide some preliminary definitions.

Definition 1 (Execution Trace). Let A be a set of activities which can be used
to specify a process schema S. Let further Q be the set of all possible execution
traces over S. A trace σ ∈ Q is defined as σ = < a1, . . . , ak > where ai ∈ A,
i = 1, . . . , k, and the order of ai in σ reflects the order in which activities ai are
completed over S. Then:

– traceSucc(a, σ)1 denotes the function which returns all activities which have
been completed after activity a according to trace σ. Formally:
traceSucc: A × Q 7→ 2A with

traceSucc(a, < a1, . . . , ak, a, ak+1, . . . , an >) = < ak+1, . . . , an >

– analogously tracePred(a, σ) denotes the function which returns all activities
which have been completed before activity a according to trace σ.

Based on this meta-model independent notion of execution traces we exem-
plarily describe the semantics of selected pattern variants in Figure 4.

3.2 Patterns for Predefined Changes

The applicability of adaptation patterns is not restricted to a particular process
part a priori. By contrast, the following patterns predefine constraints concern-
ing the parts that can be changed. At run-time changes are only permitted
within these parts. In this category we have identified 4 patterns, Late Selection
of Process Fragments (PP1), Late Modeling of Process Fragments (PP2), Late
Composition of Process Fragments (PP3) and Multi-Instance Activity (PP4).

Predefined Change Pattern PP1: Late Selection of Process Fragments.
The Late Selection of Process Fragments pattern (cf. Fig. 15) allows to select
the implementation for a particular process step at run-time either based on
1 Note that in this paper, for the definition of functions traceSucc and tracePred we

assume that process schema S is acyclic.

Let TS denote the set of all execution traces producible on a process schema S.
Let further op be an adaptation pattern transforming process schema S into S’. Finally, let x
be the associated inserted / deleted / replaced atomic activity.
AP1: INSERT Activity Preliminaries: op = INSERT(S, x, A, B) where A and B denote activity

sets between which x is inserted
Semantics:

Design Choice: B[1], D[2a] ∀σ ∈ TS′ : x ∈ σ =⇒ A ⊆ tracePred(x, σ) ∧ B ⊆ traceSucc(x, σ)
AP2: DELETE Activity Preliminaries: op = DELETE(S, x)
Design Choice: B[1] Semantics: ∀ σ ∈ TS′ : x 6∈ σ
AP3: MOVE Activity Preliminaries: op = MOVE(S, x, A, B) where A and B denote the activity

sets between which x is moved starting from its current position
Semantics:

Design Choice: B[1], D[2a] ∀σ ∈ TS′ : x ∈ σ =⇒ A ⊆ tracePred(x, σ) ∧ B ⊆ traceSucc(x, σ)
AP4: REPLACE Activity Preliminaries: op = REPLACE(S, x, y)

Semantics:
(replaces activity x by activity y in schema S)

Design Choice: B[1] ∀ σ = < a1, . . . , ak, x, . . . > ∈ TS

=⇒
∃ µ = < a1, . . . , ak, y, . . . > ∈ TS′

AP5: SWAP Activity Preliminaries: op = SWAP (S, x, y)
Semantics:
(swaps activity x and y in schema S)

Design Choice: B[1] (∀ σ = < a1, . . . , ak, x, . . . > ∈ TS

=⇒
∃ σ′ = < a1, . . . , ak, y, . . . > ∈ TS′) ∧
(∀ µ′ = < a1, . . . , al, x, . . . > ∈ TS′
=⇒
∃ µ = < a1, . . . , al, y, . . . > ∈ TS)

Fig. 4. Semantics of Selected Adaptation Patterns

predefined rules or user decisions.

Predefined Change Pattern PP2: Late Modeling of Process Frag-
ments. The Late Modeling of Process Fragments pattern (cf. Fig. 16) offers
more freedom and allows to model selected parts of the process schema at run-
time.

Predefined Change Pattern PP3: Late Composition of Process Frag-
ments. Furthermore the Late Composition of Process Fragments pattern (cf.
Fig. 17) enables the on-the fly composition of process fragments (e.g., by dy-
namically introducing control dependencies between a set of fragments).

Predefined Change Pattern PP4: Multi Instance Activity. In case of
Multi-Instance Activities the number of instances created for a particular ac-
tivity is determined at run-time (cf. Fig. 18). Multi-instance activities enable
the creation of a particular process activity during run-time. The decision how
many activity instances are created can be based either on knowledge available
at build-time or on some run-time knowledge. We do not consider multi instances
of the former kind as change pattern as their use does not lead to change. For
all other types of multi-instance activities the number of instances is determined
based on run-time knowledge which can or cannot be available a-priori to the

Pattern AP1: Insert Process Fragment

Description A process fragment is added to a process schema.

Example For a particular patient an allergy test has to be added due to a drug
incompatibility.

Problem In a real world process a task has to be accomplished which has not been
modeled in the process schema so far.

Design Choices
(in addition to those
described in Fig. 3)

D. How is the additional process fragment X embedded in the process
schema?

1. X is inserted between 2 directly succeeding activities (serial insert)

2. X is inserted between 2 activity sets (insert between node sets)

a) Without additional condition (parallel insert)

b) With additional condition (conditional insert)

X

A B

serialInsert

XA B A B C

X

A B C

X

parallelInsert

A B

X

conditionalInsert

x>0

else

X

A B

If x>0

Implementation The insert adaptation pattern can be realized by transforming the high level
insertion operation into a sequence of low level change primitives (e.g., add
node, add control dependency).

Fig. 5. Insert (AP1) Process Fragment pattern

Pattern AP2: Delete Process Fragment

Description A process fragment is deleted from a process schema.

Example For a particular patient no computer tomography is performed due to the
fact that he has a cardiac pacemaker (i.e., the computer tomography activity
is deleted).

Problem In a real world process a task has to be skipped or deleted.

BA
C

D
E F BA D E F

Implementation Several options for implementing the delete pattern exist: (1) The fragment
is physically deleted (i.e., corresponding activities and control edges are
removed from the process schema), (2) the fragment is replaced by one or
more null activities (i.e., activities without associated activity program) or
(3) the fragment is embedded in a conditional branch with condition false
(i.e., the fragment remains part of the schema, but is not executed).

Fig. 6. Delete (AP2) Process Fragment pattern

Pattern AP3: Move Process Fragment

Description A process fragment is moved from its current position in the process
schema to another position.

Example Usually employees are only allowed to book a flight, after getting approval
from the manager. For a particular process instance the booking of a flight
is exceptionally done in parallel to the approval activity (i.e., the book flight
activity is moved from its current position to a position parallel to the
approval activity).

Problem Predefined ordering constraints cannot be completely satisfied for a set of
activities.

Design Choices D. How is the additional process fragment X embedded in the process
schema?

1. X is inserted between 2 directly succeeding activities (serial insert)

2. X is inserted between 2 activity sets (insert between node sets)

a) Without additional condition (parallel insert)

b) With additional condition (conditional insert)

BA

C

D E B

C

D EA

Implementation This adaptation pattern can be implemented based on Pattern AP1 and AP2
(insert / delete process fragment).

Related Patterns Swap adaptation pattern (AP5)

Fig. 7. Move (AP3) Process Fragment pattern

Pattern AP4: Replace Process Fragment

Description A process fragment is replaced by another process fragment.

Example Instead of the computer tomography activity, the X-ray activity shall be
performed for a particular patient.

Problem A process fragment is no longer adequate, but can be replaced by another
one.

BA

C

D E BA

X

D E

X

Implementation This adaptation pattern can be implemented based on Pattern AP1 and AP2
(insert / delete process fragment).

Fig. 8. Replace (AP4) Process Fragment pattern

Pattern AP5: Swap Process Fragment

Description Two existing process fragments are swapped

Example Regarding a particular delivery process the order in which requested goods
shall be delivered to two customers has to be swapped.

Problem The predefined ordering of two existing process fragments has to be
changed by swapping their position in the process schema.

Implementation This adaptation pattern can be implemented based on AP3 (move process
fragment) or on the combined use of patterns AP1 and AP2 (insert / delete
process fragment).

Related Patterns Move Process Fragment (AP3)

 Fig. 9. Swap Process Fragment (AP5) pattern

Pattern AP6: Extract Sub Process

Description Extract a process fragment from the given process schema and replace it by
a corresponding sub process.

Example A dynamically evolving engineering process has become too large. In order
to reduce complexity the process owner extracts activities related to the
engineering of a particular component and encapsulates them in a separate
sub process.

Problem Large process schema. If a process schema becomes too large, this pattern
will allow for its hierarchical (re-)structuring. This simplifies maintenance,
increases comprehensibility, and fosters the reuse of process fragments.

Duplication across process schemes. A particular process fragment appears
in multiple process schemes. If the respective fragment has to be changed,
this change will have to be conducted repetitively for all these schemes.
This, in turn, can lead to inconsistencies. By encapsulating the fragment in
one sub process, maintenance costs can be reduced.

Implementation In order to implement AP6 graph aggregation techniques can be used.
When considering data aspects as well, variables which constitute input /
output for the selected process fragment have to be determined and
considered as input / output for the created sub-process.

Related Patterns Inline Sub Process (AP7)

Fig. 10. Extract Sub Process (AP6) pattern

Pattern AP7: Inline Sub Process

Description A sub process to which one or more process schemes refer is dissolved.
Accompanying to this the related sub process graph is directly embedded in
the parent schemes.

Example The top level of a hierarchically structured engineering process only gives a
rough overview of the product development process. Therefore, the chief
engineer decides to lift up the structure of selected sub processes to the top
level.

Problem Too many hierarchies in a process schema: If a process schema consists of
too many hierarchy levels the inline sub process pattern can be used to
flatten the hierarchy.

Badly structured sub processes: If sub processes are badly structured the
inline pattern can be used to embed them into one big process schema,
before extracting better structured sub-processes (based on AP6).

Implementation The implementation of this pattern can be based on other adaptation
patterns (e.g., AP1). When also dealing with data aspects, the data context
of the sub process and its current mapping to the parent process has to be
transferred to the parent process schema.

Related Patterns Extract Sub Process (AP6)

Fig. 11. Inline Sub Process (AP7) pattern

a) Pattern AP8: Embed Process Fragment in Loop

Description Adds a loop construct to a process schema surrounding an existing process
fragment

Example Regarding the treatment process of a particular patient a lab test shall be not
only performed once (as in the standard treatment procedure), but shall be
repeated daily due to special risks associated with this patient.

Problem A process fragment is actually executed at most once, but needs to be
executed recurrently based on some condition.

Implementation This adaptation pattern can be implemented based on Patterns AP1 (insert
process fragment), AP11 and AP12 (add / remove control dependency)

Related Patterns Embed Process Fragment in Conditional Branch (AP10)

b) Pattern AP9: Parallelize Process Fragments

Description Process fragments which were confined to be executed in sequence are
parallelized.

Example For a running production process the number of resources is dynamically
increased. Thus, certain activities which were ordered sequentially can now
be processed in parallel.

Problem Ordering constraints predefine for a set of process fragments turn out to be
too strict and shall therefore be removed.

Implementation This adaptation pattern can be implemented based on Patterns AP11 and
AP12 (add / remove control dependency)

Fig. 12. Embbed Process Fragment in Loop (AP8) and Parallelize Process Fragments
(AP9) patterns

a) Pattern AP10: Embed Process Fragment in Conditional Branch

Description An existing process fragment shall be only executed if certain conditions
are met.

Example So far, in company XY the process for planning and declaring a business
trip has required travel applications for both national and international trips.
This shall be changed by asking for a respective travel applications only
when going for an international trip.

Problem A process fragment should only be executed if a particular condition is met.

Implementation This adaptation pattern could be implemented based on patterns AP1 (insert
process fragment), AP11, and AP12 (add / remove control dependency)

Related Patterns Embed Process Fragment in Loop (AP9)

b) Pattern AP11: Add Control Dependency

Description An additional control edge (e.g., for synchronizing the execution order of
two parallel activities) is added to the process schema

Example For a running production process the number of resources is dynamically
decreased. Thus, certain activities which were ordered in parallel now have
to be processed in sequence.

Problem An additional control dependency is needed in the process schema

Related Patterns Remove Control Dependency (AP12), Parallelize Process Fragment (AP9)

Fig. 13. Embbed Process Fragment in Conditional Branch (AP10) and Add Control
Dependency (AP11) patterns

a) Remove Control Dependency

Description A control edge is removed from the process schema

Example Assume that for a medical treatment procedure, usually, test A has to be
finished before test B may be started. In an emergency situation, these two
tests shall be performed in parallel in order to quickly treat the respective
patient

Problem An existing control dependency is not needed anymore in the process
schema

Related Patterns Add Control Dependency (AP11), Parallelize Process Fragments (AP9)

b) Pattern AP13: Update Condition

Description A transition condition in the process schema is updated.

Example In a loan approval process the manager will have to approve a loan if the
amount is larger than 50.000 Euro. Starting from January next year only
loans above 100.000 Euros have to be approved by the manager.

Problem A transition condition has to be modified as it is no longer valid.

Related Patterns Embed Process Fragment in Loop (AP8), Embed Process Fragment in
Conditional Branch (AP10)

 Fig. 14. Remove Control Dependency (AP12) and Update Condition (AP13) patterns

execution of the multi-instance activity. While in the former case the number of
instances can be determined at some point during run-time, this is not possible
for the latter case. We consider multi-instance activities as change patterns too,
since their dynamic creation works like a dynamic schema expansion. A detailed
description of this pattern can be found in [8].

Pattern PP1: Late Selection of Process Fragments

Description For particular activities the corresponding implementation (activity
program or sub process model) can be selected during run-time. At build
time only a placeholder is provided, which is substituted by a concrete
implementation during run-time (cf. Fig. 6).

Example For the treatment of a particular patient one of several different sub-
processes can be selected depending on the patient’s disease.

Problem There exist different implementations for an activity (including sub-
processes), but for the selection of the respective implementation run-time
information is required.

Design Choices A. How is the selection process done?

1. Automatically based on predefined rules
2. Manually by an authorized user
3. Semi-automatically: options are reduced by applying some

predefined rules; user can select among the remaining options

B. What object can be selected?

1. Atomic activity
2. Sub process

C. When does late selection take place?

1. Before the placeholder activity is enabled
2. When enabling the placeholder activity

Implementation By selecting the respective sub process or activity program, a reference to it
is dynamically set and the selected sub-process or activity program is
invoked.

Related Patterns Late Modeling of Process Fragments (PP2)

Fig. 15. Late Selection of Process Fragments (PP1)

 Pattern PP2: Late Modeling of Fragments

Description Parts of the process schema have not been defined at build-time, but are
modeled during run-time for each process instance (cf. Fig. 6). For this
purpose, placeholder activities are provided, which are modeled and executed
during run-time. The modeling of the placeholder activity must be completed
before the modeled process fragment can be executed.

Example The exact treatment process of a particular patient is composed out of existing
process fragments at run-time.

Problem Not all parts of the process schema can be completely specified at build time.

Design Choices A. What are the basic building blocks for late modeling?
1. All process fragments (including activities) from the repository

can be chosen
2. A constraint-based subset of the process fragments from the

repository can be chosen
3. New activities or process fragments can be defined

B. What is the degree of freedom regarding late modeling?
1. Same modeling constructs and change patterns can be applied

as for modeling at the process type level (*)
2. More restrictions apply for late modeling than for modeling at

the process type level
C. When does late modeling take place?

1. When a new process instance is created
2. When the placeholder activity is instantiated
3. When a particular state in the process is reached (which must

precede the instantiation of the placeholder activity)
D. Does the modeling start from scratch?

1. Late modeling may start with an empty template
2. Late modeling may start with a predefined template which can

then be adapted

Implementation After having modeled the placeholder activity with the editor, the fragment is

stored in the repository and deployed. Then, the process fragment is
dynamically invoked as a sub process. The assignment of the respective
process fragment to the placeholder activity is done through late binding.

Related Patterns Late Selection of Process Fragments (PP1)
 (*) Which of the adaptation patterns are supported within the placeholder activity is determined
by the expressiveness of the modeling language.

Fig. 16. Late Modeling of Process Fragments(PP2)

Pattern PP3: Late Composition of Process Fragments

Description At build time a set of process fragments is defined out of which a concrete
process instance can be composed at run time. This can be achieved by
dynamically selecting fragments and adding control dependencies on the fly
(cf. Fig. 6).

Example Several medical examinations can be applied for a particular patient. The
exact examinations and the order in which they are performed are defined for
each patient individually.

Problem There exist several variants of how process fragments can be composed. In
order to reduce the number of process variants to be specified by the process
engineer during build time, process instances are dynamically composed out
of fragments.

Fig. 17. Late Composition of Process Fragments (PP3)

Pattern PP4: Multi Instance Activity

Description This pattern allows the creation of multi instances of a respective activity
during run-time.

Example The scanning activity has to be repeated until all parcels are scanned. The
number of parcels is not known at build-time.

Problem A respective activity has to be executed several times. The number of
instances that have to be created are not at build-time.

Fig. 18. Multi-Instance Activity (PP4)

4 Change Support Features

So far, we have introduced a set of change patterns, which can be used to ac-
complish changes at the process type and/or process instance level. However,
simply counting the number of supported patterns is not sufficient to analyze
how well a system can deal with process change. In addition, change support
features must be considered to make change patterns useful in practice (cf. Fig.
19). Relevant change support features include process schema evolution and ver-
sion control, change correctness, change traceability, access control and change
reuse2. As illustrated in Fig. 19 the described change support features are not
equally important for both process type level and process instance level changes.
Version control, for instance, is primarily relevant for changes at the type level,
while change reuse is particularly useful at the instance level [9].

Change Support Features
Change Support Feature Scope Change Support Feature Scope

Data Consistency (1) F1: Schema Evolution, Version Control and
Instance Migration

T
F3: Traceability & Analysis I + T

No version control – Old schema is overwritten Logging of High-Level Change Operations (1)
Running instances are canceled (1) Logging of Change Primitives (2)
Running instances remain in the system (2) Annotation of Changes (3)

Version control Change Mining (4)
Co-existence of old and new instances without instance
migration (3)

F4: Access Control for Changes I+T

Uncontrolled migration of all process instances (4) Changes in general can be restricted to authorized users (1)
Controlled migration of compliant process instances (5) Application of single change patterns can be restricted (2)

F2: Correct Behavior of Process Instance after
Change

I+T Authorizations can depend on the object to be changed (3)

 F5: Change Reuse I
Control Flow (Deadlock free) (2)

Change Support Features
Change Support Feature Scope Change Support Feature Scope

2. By change primitives F1: Schema Evolution, Version Control and
Instance Migration

T
F3: Correct Behavior of Instances After Change I + T

No version control – Old schema is overwritten F4: Traceability & Analysis I + T
1. Running instances are canceled 1. Traceability of changes
2. Running instances remain in the system 2. Annotation of changes

Version control 3. Change Mining
3. Co-existence of old/new instances, no instance migration F5: Access Control for Changes I+T
4. Uncontrolled migration of all process instances 1. Changes in general can be restricted to authorized users
5. Controlled migration of compliant process instances 2. Application of single change patterns can be restricted

F2: Support for Ad-hoc Changes I 3. Authorizations can depend on the object to be changed
1. By change patterns F6: Change Reuse I

T … Type Level, I … Instance Level

Fig. 19. Change Support Features

4.1 Schema Evolution, Version Control and Instance Migration
(Change Feature F1)

In order to support changes at the process type level, version control for process
schemes should be supported (cf. Fig. 19). In case of long-running processes, in
addition, controlled migration of already running instances, from the old process
schema version to the new one, might be required. In this subsection we describe
different existing options in this context (cf. Fig. 20).

If a PAIS provides no version control feature, either the process designer can
manually create a copy of the process schema (to be changed) or this schema is
overwritten (cf. Fig. 20a). In the latter case running process instances can either
be withdrawn from the run-time environment or, as illustrated in Fig. 20a, they
2 Again we restrict ourselves to the most relevant change support features. Additional

change support features not covered in this paper are change concurrency control
and change visualization

remain associated with the modified schema. Depending on the execution state
of the instances and depending on how changes are propagated to instances
which have already progressed too far, this missing version control can lead to
inconsistent states and, in a worst case scenario, to deadlocks or other errors
[2]. As illustrated in Fig. 20a process schema S1 has been modified by inserting
activities X and Y with a data dependency between them. For instance I1 the
change is uncritical, as I1 has not yet entered the change region. However, I2
and I3 would be both in an inconsistent state afterwards as instance schema and
execution history do not match (see [2]). Regarding I2, worst case, deadlocks or
activity invocations with missing input data might occur.

By contrast, if a PAIS provides explicit version control two support features
can be differentiated: running process instances remain associated with the old
schema version, while new instances will be created on the new schema version.
This approach leads to the co-existence of process instances of different schema
versions (cf. Fig. 20b). Alternatively a migration of a selected collection of process
instances to the new process schema version is supported (in a controlled way)
(cf. Fig. 20c). The first option is shown in Fig. 20b where the already running
instances I1, I2 and I3 remain associated with schema S1, while new instances
(I4-I5) are created from schema S1′ (co-existence of process instances of different
schema versions). By contrast, Fig. 20c illustrates the controlled migration of
process instances. Only those instances are migrated which are compliant3 with
S1′ (I1). All other instances (I2 and I3) remain running according to S1. If
instance migration is uncontrolled (as it is not restricted to compliant process
instances) this will lead to inconsistencies or errors. Nevertheless, we treat the
uncontrolled migration of process instances as a separate design choice since this
functionality can be found in several existing systems (cf. Section 5).

4.2 Other Change Support Features

Support for Ad-hoc Changes (Change Feature F2). In order to deal
with exceptions PAIS must support changes at the process instance level either
through high level changes in the form of patterns (cf. Section 3) or through
low level primitives. Although changes can be expressed in both ways, change
patterns allow to define changes at a higher level of abstraction making change
definition easier.

Correctness of Change (Change Feature F3). The application of change
patterns must not lead to run-time errors (e.g., activity program crashes due to
missing input data, deadlocks, or inconsistencies due to lost updates or vanishing
of instances). In particular, different formal criteria (see [2]) have been introduced
to ensure that process instances can only be updated to a new schema if they
are compliant with it. Depending on the used process meta model, in addition,
(formal) constraints of the respective formalism have to be taken into account

3 A process instance I is compliant with process schema S, if the current execution
history of I can be created based on S (for details see [2]).

Process
Type
Level

Process
Instance
Level

X
Y

d

?

d

B
C

D
E F

X Y
dS1

I1 I2 dI3

A

Process
Type
Level

Process
Instance
Level

BA
C

D
E F

S1 S1‘

BA
D

E FX
Y

d
C

X
Y

dI5

Process
Type
Level

Process
Instance
Level

BA
C

D
E F

S1 S1‘

BA
D

E FX
Y

d
C

X
Y

dI5

Sc
he

m
a

is
 o

ve
rw

rit
te

n
(a

)

C
o-

ex
is

te
nc

e
of

 p
ro

ce
ss

in

st
an

ce
s

of
 d

iff
er

en
t

sc
he

m
a

ve
rs

io
ns

(b
)

In
st

an
ce

 M
ig

ra
tio

n
(c

)

Instances I2 and I3 are in inconsistent sates

X
Y

dI4

X
Y

dI4

X
Y

dI4

X
Y

dI1

?

Type change overwrites S1

Type change results
in a new schema

version S1’

Instances created from S1

I3
I2

I1

Instances created from S1’

Non-compliant instances

Type change results
in a new schema

version S1’

and the
migration of
compliant

instance I1

old instances
remain with

S1

I3
I2

Fig. 20. Version Control

as well when conducting process changes.

Traceability and Analysis (Change Feature F4). To ensure traceability
of changes, they have to be logged. For adaptation patterns the applied changes
have to be stored in a change log as change patterns and/or change primitives.
While both options allow for traceability, change mining [10] becomes easier
when the change log contains high-level information about the changes as well.
Regarding patterns for predefined changes, an execution log is usually sufficient
to enable traceability. In addition, logs can be enriched with more semantical in-
formation, e.g., about the reasons and context of the changes [9]. Finally, change
mining allows for the analysis of changes, for instance, to support continuous
process improvement [10].

Access Control for Changes (Change Feature F5) The support of change
patterns leads to increased PAIS flexibility. This, in turn, imposes security issues
as the PAIS becomes more vulnerable to misuse. Therefore, the application of
changes at the process type and the process instance level must be restricted
to authorized users. Access control features differ significantly in their degree
of granularity. In the simplest case, changes are restricted to a particular group
of people (e.g., to process engineers). More advanced access control components
allow to define restrictions at the level of single change patterns (e.g., a certain
user is only allowed to insert additional activities, but not to delete activities).
In addition, authorizations can depend on the object to be changed, e.g., the

process schema.

Change Reuse (Change Feature F6). In the context of ad-hoc changes ”sim-
ilar” deviations (i.e., combination of one or more adaptation patterns) can occur
more than once [11]. As it requires significant user experience to define changes
from scratch change reuse should be supported. To reuse changes they must be
annotated with contextual information (e.g., about the reasons for the devia-
tion) and be memorized by the PAIS. This contextual information can be used
for retrieving similar problem situations and therefore ensures that only changes
relevant for the current situation are presented to the user [12, 9]. Regarding
patterns for predefined changes, reuse can be supported by making historical
cases available to the user and by saving frequently re-occurring instances as
templates.

5 Change Patterns and Change Support in Practice

In this section we evaluate approaches from both academia and industry regard-
ing their support for change patterns as well as change features.

For academic approaches the evaluation is mainly based on a comprehen-
sive literature study. In cases where it was unclear whether a particular change
pattern or change feature is supported or not, the respective research groups
were additionally contacted. This has also provided us with valuable insights
into the implementation of change patterns and change features in respective
approaches. In detail, the evaluated approaches are ADEPT [3, 13–15], CBR-
Flow [12, 9], WIDE [16, 17], Pockets of Flexibility [18–20], Worklets/Exlets [4,
21], MOVE [22], HOON [23], and WASA [5].

In respect to commercial systems only such systems have been considered
for which we have hands on experience as well as a running system installed.
This allowed us to test the change patterns and change features. As commercial
systems Staffware [1] and Flower [6] are considered in the present evaluation.

Evaluation results are aggregated in Fig. 21. If a change pattern or change
support feature is not supported at all, the respective table entry will be labeled
with ”-” (e.g., no support for adaptation patterns AP4 and AP5 is provided by
ADEPT). Otherwise, a table entry describes the exact pattern variants as sup-
ported by listing all available design choices. As an example take change pattern
PP1 (Late Selection of Process Fragments) of the Worklet/Exlet approach [4,
21]. In Fig. 21 the string ”A[1,2], B[1,2], C[2]” indicates that this change pattern
(cf. Fig. 15) is supported for the Worklet/Exlet approach with design choices A,
B and C. Further, it indicates for every design choice the exact options available.
For example, for design choice A, Options 1 and 2 are supported. Taking the
description from Fig. 15 this means that the selection of the activity implemen-
tation can be be done automatically (based on predefined rules) or manually by
a user. Finally, in case no design choice exists for a supported change pattern, the
respective table entry is simply labeled with ”+” (e.g., support of change pat-

tern PP4 by WIDE). Partial support is labeled with ”◦” (e.g., the Worklet/Exlet
approach supports change feature F3 partially).

Generally, an adaptation pattern will be only considered as being provided, if
the respective system supports the pattern directly, i.e., based on one high-level
change operation. Of course, adaptation patterns can be always expressed by
means of a set of basic change primitives (like add node, delete node, add edge,
etc.). However, this is not the idea behind adaptation patterns. Since process
schema changes (at the type level) based on these modification primitives are
supported by almost each process editor, this is not sufficient to qualify for
pattern support. By contrast, the support of high-level change operations allows
introducing changes at a higher level of abstraction and consequently hides a
lot of the complexity associated with process changes from the user. Therefore
changes can be performed in a more efficient and less error prone way. In addition,
in order to qualify as an adaptation pattern the application of the respective
change operations must not be restricted to predefined regions in the process.

Certain adaptation patterns (e.g., AP3 or AP4) could be implemented by
applying a combination of the more basic ones (e.g., AP1, AP2, AP10 and AP11).
Again, a given approach will only qualify for a particular adaptation pattern, if it
supports this pattern directly (i.e., it offers one change operation for realizing the
respective adaptation pattern). For instance, providing support for adaptation
patterns AP1 (Insert Process Fragment) and AP2 (Delete Process Fragment)
allows to implement pattern AP3 (Move Process Fragment) in a straightforward
way. However, moving activities by using adaptation patterns AP1 and AP2 in
combination with each other is more complicated when compared to the direct
application of AP3 (and does also lead to less meaningful change logs).

Note that missing support for adaptation patterns does not necessarily mean
that no run-time changes can be performed. As long as feature F2 (Support
for Ad-hoc Changes) is provided, ad-hoc changes to running process instances
are possible (for details see [24]). In general, if a respective approach provides
support for predefined change patterns like, for instance, late modeling of pro-
cess fragments (PP1) or late selection of process fragments (PP2) changes to
predefined regions in the process can be performed during run-time. In addition,
the need for structural changes of the process schema can be decreased making
feature F3 less crucial.

All evaluation results are summarized in Fig. 21. A detailed description of
the evaluated approaches is provided in the following sections.

5.1 Evaluation Details: ADEPT / CBRFlow

Support for Adaptation Patterns. Generally, ADEPT enables the appli-
cation of adaptation patterns at both the process type and the process in-
stance level (Design Choice A[1,2]). Supported adaptation patterns may op-
erate on atomic activities, sub processes, and process sub graphs (Design Choice

Change Patterns and Change Support

Academic Commercial Pattern/
Feature ADEPT /

CBRFlow WIDE Pockets of
Flexibility

Worklets /
Exlets MOVE HOON WASA Staffware Flower

Change Patterns

Adaptation Patterns

AP1 A[1, 2], B[1,2,3],
C[1,2], D[1, 2]

A[2], B[1],
C[2], D[1,2] – – – – – – –

AP2 A[1, 2], B[1,2,3],
C[1,2]

A[2], B[1],
C[2] – – – – – – A[2], B[1],

C[2]

AP3 A[1, 2], B[1,2,3],
C[1,2], D[1, 2] – – – – – – – –

AP4 – A[2], B[1],
C[2] – A[1], B[2],

C[1,2] – – – – –

AP5 – – – – – – – – –

AP6 A[1,2], B[3],
C[1,2] – – – – – – – –

AP7 A[1,2], B[2],
C[1,2] – – – – – – – –

AP8 A[1,2], B[1,2,3],
C[2] – – – – – – – –

AP9 A[1,2], B[1,2,3],
C[1,2] – – – – – – – –

AP10 – A[2], C[2] – – – – – – –

AP11 A[1,2], C[1,2] – – – – – – – –

AP12 A[1,2], C[1,2] – – – – – – – –

AP13 A[1,2], C[1,2] A[2], C[2] – – – – – – –

Preplanned Change Patterns

PP1 – – – A[1,2],
B[1,2], C[2] – A[1,2],

B[1,2], C[2] – A[1,2],
B[1,2], C[2] –

PP2 – – A[1,2], B[2],
C[2], D[1,2] – A[1], B[1],

C[3], D[1,2] – – – –

PP3 – – – – – – – – –

PP4 – + – – – – – + +

Change Features

F1 3, 5 3, 5 – 3 – – 3, 5 3, 4 1, 2, 3

F2 1 – 2 2 2 2 2 2 1

F3 + + + ° + + + – –

F4 1, 2, 3 1 1 1 1 1 1 1 1

F5 1, 2, 3 1, 3 1, 2, 3 1, 2, 3 1, 3 1, 2, 3 1 1, 2, 3 1, 2, 3*

F6 + – + + – – – – –
(*) Flower supports Option 2 and 3 of feature F4 only for process instance changes, but not for process type changes

Fig. 21. Change Patterns and Change Support Features in Practice

B[1,2,3]).4 Most adaptation patterns can be applied in both a temporary or a
permanent manner (Design Choice C[1,2]).

In detail: ADEPT supports the insertion of process fragments (AP1), which
can be added serially, conditionally, or in parallel (Design Choice D[1,2(a+b)])
to a process schema or process instance schema respectively. Furthermore, it is
possible to delete process fragments (AP2) or to move them to another position
(AP3). Adaptation patterns AP4 (Replace Process Fragment) and AP5 (Swap

4 There exist some restrictions in this context. For example, adaptation pattern AP6
(Extract Process Fragment) is only applicable to an existing process fragment. The
use of adaptation pattern AP7 (Inline Sub Process), in turn, makes only sense in
connection with sub processes.

Process Fragment) are not directly supported by the current ADEPT system, but
can be realized based on adaptation patterns AP1, AP2, and AP3. With AP6
(Extract Sub Process), AP7 (Inline Sub Process), and AP8 (Embed Process
Fragment in Loop) more complex patterns are supported as well. Adaptation
pattern AP9 (Parallelize Process Fragment) is implemented in ADEPT as a
variant of pattern AP3 (Move Process Fragment). Adaptation pattern AP10
(Embed Process Fragment in Conditional Branch) is not directly supported, but
can be realized with patterns AP1 and AP3. Finally, adaptation patterns AP11
(Add Control Dependency), AP12 (Remove Control Dependency), and AP13
(Update Condition) are supported. Details about respective ADEPT change
operations (e.g., their formal semantics, their implementation, etc.) can be found
in [15, 14].

It is important to mention that the block-structured modeling approach used
in ADEPT (for details see [3]) significantly facilitates the implementation and
use of adaptation patterns.

Support for Predefined Change Patterns. No support for predefined change
patterns is provided.

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). ADEPT enables advanced version control. If a process schema is
changed at the type level, a new process schema version is created. Further it
is checked which process instances can be correctly migrated to the new schema
version, and which instances remain running on the old schema version (F1[3,5]).
In this context, ADEPT uses a well-defined correctness criterion for deciding on
the compliance of process instances with a modified schema version. This cri-
terion is independent of the ADEPT process meta model and is based on a
relaxed notion of trace equivalence (see [25]). It considers all kinds of control
flow changes and works correctly in connection with loop backs as well. In or-
der to enable efficient compliance checks, for each high level change operation
(or adaptation pattern respectively) ADEPT provides precise and easy to check
compliance conditions (for details see [25]). Finally, efficient procedures exist
for correctly adapting the states of compliant process instances when migrating
them to the new schema version.

Ad-hoc Changes (Change Feature F2). From the very beginning, ADEPT
has supported ad-hoc changes at the process instance level (see [3]). These ad-
hoc changes are based on the aforementioned adaptation patterns (F2[1]). In
particular, the introduction of ad-hoc changes does not lead to an unstable sys-
tem behavior, i.e., none of the guarantees (e.g., absence of deadlocks) achieved
by formal checks at build-time are violated due to the ad-hoc change at run-time.
In ADEPT this is achieved based on well-defined pre- and post-conditions for
the high-level change operations. Finally, when introducing an ad-hoc change,
all complexity associated with the adaptation of instance states, the remapping
of activity parameters, or the problem of missing data (e.g., due to activity dele-

tions) is hidden from users.

Correctness of Changes (Change Feature F3). One of the major design
goals of the ADEPT approach was to ensure correctness and consistency when
migrating process instances to a new process schema version or when applying
an ad-hoc change to a particular process instance (for details see [3, 25]). This
goal has been achieved based on the aforementioned compliance rules as well as
on operation-specific pre- and post-conditions (F3[+]).

Traceability and Analysis (Change Feature F4). The ADEPT process
management system enables change traceability by maintaining comprehensive
change logs. These change logs comprise both syntactical and semantical infor-
mation about the performed process changes (F4[1,2]). While the former cap-
ture data about the applied adaptation patterns and their parameterizations,
the latter cover contextual knowledge about the changes (e.g., change reason and
change performer). ADEPT provides powerful support for maintaining, purging,
and utilizing such logs, and for annotating log entries (for details see [26]). In
the ProCycle project, the ADEPT system has been integrated with the conver-
sational case-based reasoning component of CBRFlow [12]. Among other things,
this integration allows to enrich change logs with contextual information [27, 9,
28]. Finally, in the MinADEPT project first techniques and tools for analyzing
and mining ADEPT change logs (F4[3]) have been provided [10].

Access Control (Change Feature F5). In respect to access control ADEPT
allows to restrict changes to authorized users (F5[1]). In addition, authorizations
can be defined at the level of single change patterns. For instance, a particular
user might be authorized to insert, but not delete activities (F5[2]). Authoriza-
tion can also depend on the object to be changed. For instance, a particular
user might be authorized to insert only selected activities (F5[3]). A detailed
description of the access control model provided by ADEPT can be found in [?].

Change Reuse (Change Feature F6). The integration of ADEPT with case-
based reasoning techniques (see above) also enables change reuse. Whenever an
ad-hoc modification becomes necessary the user is assisted in searching for sim-
ilar, previously performed changes, which he then can reuse [9, 28, 11]. If for a
particular situation no change reuse is possible, the user can specify a new ad-hoc
modification using the adaptation patterns provided by ADEPT.

5.2 Evaluation Details: WIDE

Support for Adaptation Patterns. Generally, WIDE enables the application
of adaptation patterns only at the process type level (Design Choice A[2]) and
a change pattern operates on atomic activities (Design Choice B[1]). All change
patterns are applied in a permanent manner (Design Choice C[2]). In detail,
WIDE supports the insertion of process fragments (AP1) which can be added
in a serial and conditional manner (Design choice D[1,2(b)]). Furthermore, it is

possible to delete existing process fragments (AP2) or to replace them (AP4).
The embedding of a process fragment in a conditional branch (AP10) and the
updating of conditions (AP13) are supported as well. Regarding the adaptation
patterns supported by WIDE it is important to mention that one design goal
was minimality; i.e., a change operation will be only provided if it cannot be
realized by the combined use of a set of other change operations [17]. Obviously,
in WIDE non-supported adaptation patterns (e.g., AP3 and AP5) could be eas-
ily implemented by the combined use of existing patterns. For a more detailed
description of the supported adaptation patterns see [17, 16].

Support for Predefined Change Patterns. In terms of predefined change
patterns WIDE provides support for multi-instance activities (PP4) (see [16]).
Thereby the number of activity instances can be fixed during build-time or de-
pend on workflow relevant data, which becomes available at run-time.

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). In WIDE version control of process schemes is supported: If a
process schema is changed, a new process schema version is created (Design
Choice F1[3]) and it is checked which process instances can migrate to the new
version according to the so called compliance criterion (Design Choice F1[5]).

Ad-hoc Changes (Change Feature F2). WIDE does not address ad-hoc
changes of process instances.

Correctness of Changes (Change Feature F3). Correctness and consis-
tency of (compliant) process instances is guaranteed when migrating them to a
new process schema version (process schema evolution). For this, the aforemen-
tioned compliance criterion is used (F3[+]) (for details see [17]).

Traceability and Analysis (Change Feature F4). Process type changes
can be tracked back through the existence of process schema versions (F4[1]).
Change annotations and change mining are not addressed in WIDE.

Access Control (Change Feature F5. WIDE provides a role-based access
control model, which allows restricting access to authorized users. Authoriza-
tions can depend on the process schema to be changed (F5[1,3]).

Change Reuse (Change Feature F6). WIDE does not support change reuse
(F6[-]).

5.3 Evaluation Details: Pockets of Flexibility (PoF)

Basic to this approach is the Pocket of Flexibility (PoF). Essentially, a PoF
constitutes a placeholder activity (within a process schema) which can be sub-
stituted by a dynamically modeled process fragment during run-time [19, 20].

Support for Adaptation Patterns. The provision of adaptation patterns
is not in the focus of the PoF approach. None of the described adaptation pat-
terns is supported through high-level change operations and changes can only
be applied within pre-planned regions. The latter are covered by change pattern
PP2.

Support for Predefined Change Patterns. The PoF approach enables flex-
ibility through change pattern PP2 (Late Modeling of Process Fragments) [19,
20]. Optionally, constraints can be defined restricting the activities that can be
used for late modeling to a subset of the activity repository (Design Choice
A[1,2]). In addition, the order of these activities can be restricted by pre-defined
constraints. Finally, for the late modeling of a PoF during run-time only a re-
stricted set of modeling elements is available, i.e., only sequential and parallel
routing of added activities is supported (Design Choice B[2]). Note that this
facilitates late modeling of process fragments for end users and thus increases
user acceptance.

Late modeling starts when the placeholder activity (so called PoF) is instan-
tiated (Design Choice C[2]). Following this the user can define a corresponding
process fragment using a restricted set of modeling elements. Upon completion
of the late modeling the newly defined process fragment is instantiated. In this
context the modeling of the placeholder activity either can be done from scratch
(Design Choice D[1]) or in case that the placeholder activity contains a prede-
fined template by adjusting this template (Design Choice D[2]).

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). Change feature F1 is not supported by the PoF approach. Instead,
the existence of placeholder activities allows to individually model parts of the
process model or even the whole process model during run-time. Though this
individualization reduces the need for structural changes of the process model,
the need for changing the ”core process” (i.e., the toplevel process) cannot be
completely discarded. This problem is not addressed in the PoF approach.

Ad-hoc Changes (Change Feature F2). As mentioned above the PoF ap-
proach does not provide direct support for any adaptation pattern as no high-
level change operations are provided and changes can only be performed within
pre-planned regions. Furthermore, modeling and execution is not interwoven in
the PoF approach, i.e., the modeling of the process fragment associated with
a placeholder activity has to be completed before before the execution of the
respective process fragment may start.

In particular, this approach does not allow for (ad-hoc) changes of a process
fragment once it has been instantiated, unless this fragment itself contains place-
holder activities.5 In the latter case the functionality provided by adaptation
pattern AP1 (Insert Process Fragment) can be partially ”simulated”. Generally,

5 Generally, it is not always possible for end users to anticipate all future changes
during modeling time.

a placeholder activity can be positioned between two fragments or parallel to an
existing one. By substituting this placeholder activity with a concrete (sub) pro-
cess fragment during runtime, in principle, a serial or parallel insertion becomes
possible (cmp. Design Choice D[1,2] of pattern AP1).

Any fragment substituting a placeholder activity has to be modeled with a
conventional process editor, which only provides basic change primitives (e.g.,
insert/delete node, insert/delete connector) to the user. Another limitation of
this workaround results from the fact that insertion is restricted to pre-modeled
placeholder activities. Finally, adaptation patterns other than AP1 cannot be
simulated with the PoF approach.

Correctness of Changes (Change Feature F3). The PoF approach en-
sures change correctness as the process fragment resulting from late modeling is
validated before it gets instantiated.

Traceability and Analysis (Change Feature F4). Each process fragment
resulting from late modeling is stored in the process repository as process variant.
An advanced querying interface for retrieving process variants from this reposi-
tory is offered. Thus, change traceability can be easily ensured (F4[1]). Change
annotations and change mining are outside the focus of the PoF approach.

Access Control (Change Feature F5). Regarding access control PoF allows
restricting changes to particular users by associating the placeholder activity
with a particular role (F1[1]). In addition, the PoF approach allows for the defi-
nition of constraints for a placeholder activity. Consequently, the kind of changes
that can be applied by an authorized user can be partially restricted (F1[2]). For
each placeholder activity different authorizations can apply (F1[3]).

Change Reuse (Change Feature F6). Change reuse is supported by pro-
viding a querying component for process fragments. So far, this component is
solely based on control flow aspects [18].

5.4 Evaluation Details: Worklets/Exlets

Basic to the Worklet/Exlet approach is the notion of worklets. Essentially, a
worklet is a small, discrete process fragment that acts as a late-bound sub pro-
cess for an enabled activity [4]. In turn, exlets are exception handling processes
for parent process instances, which are invoked if specific events occur [21].
Support for Adaptation Patterns. The Worklet/Exlet approach provides
direct support for adaptation pattern AP4 (Replace Process Fragment). This
is based on the ability to substitute worklet-enabled activities with a process
fragment (see also PP1) [4]. The respective pattern can be applied at the pro-
cess instance level (Design Choice A[1]) and operates on atomic worklet-enabled
activities (Design Choice B[1]). The pattern is applied in a permanent manner
(Design Dhoice C[2]). Other adaptation patterns are not supported directly, as
no high-level change operations are provided. However, certain ad-hoc changes

can be realized by using change primitives (see Change Feature F2).

Support for predefined change patterns. Primarily, the Worklet/Exlet ap-
proach enables process flexibility by supporting late selection of process frag-
ments, i.e., change pattern PP1 is provided [4]. In particular, process activities
can be associated with a worklet selection service. Such a ”worklet-enabled” ac-
tivity does not constitute a placeholder (in contrast to approaches like HOON,
PoF or MOVE), but a valid activity with standard implementation, which can
be (optionally) substituted by a whole process fragment (i.e., worklet) during
run-time (if appropriate). If this does not happen, the worklet-enabled activity
is executed as ”ordinary” task. In general, respective worklets are selected auto-
matically following a rule-based approach (Design Choice A[1]). However, if not
appropriate the proposed selection can be rejected by users and another worklet
can be chosen instead by (dynamically) adding a new selection rule (Design
Choice A[2]). A worklet itself refers to a sub process fragment, consisting of one
or more activities; it is treated as a separate process instance during run-time
(Design Choice B[1,2]). Worklet selection takes place when the worklet-enabled
activity becomes activated (Design Choice C[2]).

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). The Worklet/Exlet approach itself does not address the problem
of process type changes. However, it has been implemented as part of the YAWL
engine, which support version control for process. Thereby, current instances re-
main running on the old schema version until their completion, whereas the
execution of new instances is based the new model version (F1[3]). Note that
the used late selection approach reduces the need for structurally changing the
toplevel process (i.e., the ”parent” schema).

Ad-hoc Changes (Change Feature F2). The Worklet approach provides
direct support for adaptation pattern AP4 (see above) by supporting the sub-
stitution of worklet-enabled activities through worklets. For worklet-enabled ac-
tivities, new worklets can be added or existing ones can be changed as long as
no worklet (i.e., sub-process) is selected and instantiated for them. In princi-
ple, even changes to (parts of) a running process instance will be possible if
the respective instance contains worklet-enabled activities (see below). As one
limitation of the Worklet/Exlet approach, process fragments at the lowest hier-
archical level cannot be changed once they have been instantiated, since they
only contain ordinary activities, but no worklet-enabled ones. Finally, the Exlet
extension provides powerful exception handling mechanisms which allow to cope
with both expected and unexpected exceptions [21].

Pattern AP4 constitutes the only adaptation pattern directly supported in
the Worklet/Exlet approach. However, other adaptation patterns can be realized
based on workarounds and change primitives:

– Adaptation Pattern AP1. In principle, the Worklet/Exlet approach allows to
realize parts of the functionality covered by adaptation pattern AP1 through

its late selection concept. Except for AP4 this is the only adaptation pat-
tern whose functionality can be realized using Worklets without Exlets. The
approach allows for substituting a worklet-enabled task with a process frag-
ment, which basically corresponds to a serial insert (Design Choice D[1]).
As the insertion is restricted to worklet-enabled activities, the position of
the process fragment to be inserted must be pre-planned. In addition, the
approach allows to conditionally insert fragments (Design Choice D[3]) as
well as to insert them in parallel to the worklet-enabled activity (Design
Choice D[2]). Inserting a process fragment in parallel to an existing branch
(consisting of several (worklet-enabled) activities) can only be achieved if
there is an optional placeholder activity defined in parallel to the respective
branch.
Using exlets [21] in addition to worklets allows for additional workarounds
with respect to AP1. For example, exception handling processes can be in-
voked at the occurrence of particular events. The approach allows to dy-
namically add exlets as well as respective selection events. Therefore it is
appropriate for handling expected as well as unexpected exceptions. Exlets
can be associated with a particular process or activity instance (i.e., the
exlet is invoked if pre-constraints or post-constraints of the process or ac-
tivity instance are met). However, they can be also triggered at any point
in the process through user intervention (e.g., realized as external trigger).
This allows to insert additional process fragments at any position in the pro-
cess during run-time. In order to realize a serial insert of activity X before
activity B and after activity A, for example, an exlet has to be invoked after
A has been completed, and B has to be suspended. After the completion of
the exlet containing activity X, activity B can be executed (Design Choice
D[1]). The exlet extension allows for more complex applications of AP1 as
well. However, through the lack of high-level operations changes can become
pretty complex.

– Adaptation Pattern AP2. Like AP1, adaptation pattern AP2 can be realized
through workarounds. An enabled activity Y can be skipped through an
Exlet using the Force Fail WorkItem primitive. Following this the execution
of Y is stopped and its status is set to failed.

– Adaptation Pattern AP3 and AP5. Patterns AP3 and AP5 can be imple-
mented through a combination of AP1 and AP2.

– Adaptation Pattern AP4. The worklet selection service directly allows for
substituting worklet-enabled tasks with a process fragment. Therefore we
consider AP4 as being directly supported in the Worklet/Exlet approach.

– Adaptation Pattern AP6 and AP7. No direct support.
– Adaptation Pattern AP8. Using the Exlets extension a process fragment (i.e.

a worklet) can be repeatedly run while a constraint is satisfied.
– Adaptation Pattern AP9. A sequence of worklet-enabled activities can be

parallelized using an exlet as workaround. The respective exlets sets the
execution state of the respective activities to ”failed”. Using a compensa-
tion primitive in the exlet then allows executing any number of worklets in
parallel.

– Adaptation Pattern AP10. AP10 can be realized through an exlet. If a par-
ticular condition does not hold, this exlet fails the respective activities.

– Adaptation Pattern AP11 - AP13. These patterns can be realized through
exlet rules creating the necessary constraints. In respect to AP13, selection
criteria for worklets can be dynamically added, edited or removed during
run-time.

These workarounds indicate that ad-hoc changes are possible when using the
Worklet/Exlet approach. However, it should be clear that these low-level mod-
ifications will become pretty complex and error prone if no direct support for
adaptation patterns exists. Like in software engineering, the presence of change
patterns will assist users in dealing with recurrent problem situations at a se-
mantically high level.

Correctness of Changes (Change Feature F3). All process fragments in
the Worklet repository are YAWL process models. If only Worklets are used
correctness of changes is ensured through the inbuilt verification and validation
feature of the YAWL Process Editor. In case that exlets are used in addition, it
cannot be guaranteed that the respective process instance can terminate prop-
erly. All compensatory worklets launched from an exlet are executed as distinct
process instances - thus deadlocks are not an issue. However, it is possible for
an exlet to contain a primitive to suspend a process instance and to leave it in
that state (i.e. there is no subsequent un-suspend primitive in the exlet). This
limitation will be corrected in the next version.

Traceability and Analysis (Change Feature F4). Traceability is ensured
through maintaining a process log (F4[1]). Change annotation is supported
through annotating newly added rules with a description of the process instance
which triggered the rule creation (F4[2]). Change mining is currently not sup-
ported.

Access Control (Change Feature F5). The Worklet/Exlet approach allows
restricting changes to particular users. The addition of rules can only be accom-
plished by the administrator (F5[1]). Furthermore, the process fragments that
can be chosen with the worklet selection service are restricted to the worklet
repertoire of the respective worklet-enable activity (F5[2]); i.e., for each worklet-
enabled activity a repertoire (i.e., a collection) of worklets is maintained (i.e., a
worklet repertoire) (F5[3]).

Change Reuse (Change Feature F6). The Worklet/Exlet approach supports
the reuse of changes by supporting the incremental evolution of selection rules.
In addition, worklets themselves may be reused in different worklet repertoires.

5.5 Evaluation Details: MOVE

Support for Adaptation Patterns. MOVE does not provide direct support
for adaptation patterns as changes are restricted to placeholder activities and

consequently have to be pre-planned. All changes that can be performed within
the pre-planned region are covered by pattern PP2.

Support for predefined change patterns (PP2). Similar to the PoF ap-
proach MOVE only allows for changes in restricted and pre-defined process areas
through late modeling. However, the MOVE approach is less powerful in terms
of supported design choices. In general, all activities from the process reposi-
tory can be chosen for late modeling (Design Choice A[1]). In contrast to PoF
no additional constraints can be defined. For modelling the placeholder activity
the same constructs are used than for modelling the rest of the process schema
(Design Choice B[1]). More precisely, modelling is based on a high-level Petri
Net formalism (FunSoft Nets) [29, 30]. The late modelling is triggered when a
particular state in the process is reached (Design Choice C[3]). It can then be
accomplished with the standard process editor either by starting from scratch
(Design Choice D[1]) or by loading a pre-modeled process template and adapting
it (Design Choice D[2]).

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). Like in the PoF approach the need for structural changes of the
process model can be decreased through the late modeling capabilities of MOVE.
However, structural changes of the toplevel process cannot be completely ex-
cluded. The challenges of process type changes and process schema evolution
are not addressed in MOVE.

Ad-hoc Changes (Change Feature F2). Like the PoF approach MOVE
does not support any of the adaptation patterns, but still allows for a certain
degree of run-time flexibility through its late modeling capabilities. Regarding
support for ad-hoc changes similar considerations can be made than for the PoF
approach (see Section 5.3, Change Feature F2).

Correctness of Changes (Change Feature F3). All late-modeled process
fragments are FunSoft process models. Due to the use of this high-level Petri Net
formalism, model correctness can be easily ensured using the FunSoft Process
Editor and its model checking features.

Traceability and Analysis (Change Feature F4). Late-modeled process
fragments are stored in the process repository. As no ad-hoc changes are sup-
ported this is sufficient for traceability (F4[1]). Change annotations and change
mining are not supported.

Access Control (Change Feature F5). Regarding access control MOVE
allows restricting changes to particular users through assigning the placeholder
activity to a particular role (F5[1]). Despite of this, no further restrictions can be
specified in MOVE. For different placeholder activities different authorizations
can apply (F5[3]).

Change Reuse (Change Feature F6). No explicit change reuse is supported
in MOVE.

5.6 Evaluation Details: HOON

Support for Adaptation Patterns. HOON [23] does not provide direct sup-
port for any of the described adaptation patterns as changes are restricted to
placeholder activities and no high-level change operations are considered.

Support for Predefined Change Patterns. HOON enables process flexi-
bility by supporting late selection of process fragments, i.e., the ability to select
a respective activity implementation at run-time. Thus change pattern PP1 is
supported. In particular, this allows for the modification of not yet instantiated
sub-processes. Regarding supported design choices, HOON is comparable with
the Worklets/Exlet approach. The respective activity implementation can be se-
lected in a fully automated way based on well-defined procedures and workflow
runtime data (Design Choice A[1]), but can be also done manually by users (De-
sign Choice A[2]). The activity implementation refers to a sub process consisting
of one or more activities (Design Choice B[1+2]). The decision which activity
implementation shall be selected is made when the placeholder activity is en-
abled (Design Choice C[2]).

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). HOON does not support structural changes of the ”toplevel” pro-
cess schema. However, in principle, the late selection support of HOON allows
to dynamically add new activity implementations or to change existing ones be-
fore associating them with a particular workflow activity during run-time. Thus,
the need for structural changes is lower when compared to process management
systems like ADEPT, WASA, or Staffware.

Ad-hoc Changes (Change Feature F2). Although HOON does not support
any of the adaptation patterns, in principle, modifications of running process in-
stances become possible through the late selection of process fragments (Option
2).

The late selection mechanism allows to dynamically select an activity im-
plementation at the process instance level. Once this has happened and the
respective sub process has been instantiated, changes will be only possible if the
respective sub process itself contains placeholder activities. In any case, the late
selection support reduces the need for structural changes of a process model as
process fragments can be dynamically added and selected during run-time

In terms of structural changes, HOON allows realizing part of the function-
ality described in AP1 through workarounds. It allows selecting an activity im-
plementation for a placeholder activity, which basically corresponds to a serial
insert (Design Choice D[1]). However, the insertion is restricted to the place-
holder activity. If no placeholder activity is available right after the activity

where the process fragment should be added, no insertion can be performed. If
a process fragment shall only be conditionally inserted, the placeholder activity
will have to be embedded in a conditional branch (Design Choice D[3]). Insert-
ing a process fragment in parallel to an existing branch can only be achieved,
if there is an optional placeholder activity defined in parallel to the respective
branch (Design Choice D[2]).

Correctness of Changes (Change Feature F3). Correctness of changes or,
more precisely, correctness of newly defined or adapted process schemes is en-
sured in HOON (through formal analyses of the respective HOON nets). In case
that an activity implementation is not available, alternative activity implemen-
tations will be automatically assigned, or the user will be involved to manually
assign an activity implementation.

Traceability and Analysis (Change Feature F4). Traceability of changes
is supported in HOON through execution logs (F4[1]). Change annotations and
change mining not supported.

Access Control (Change Feature F5). Besides the automated selection of
activity implementations, HOON allows to restrict changes to particular users or
user roles (F5[1]). Further, the set of process fragments that may be selected for
a placeholder activity can be restricted based on the used HOON Net formalism
(F5[2]). Generally, for each placeholder activity different kind of authorizations
can be realized (F5[3]).

Change Reuse (Change Feature F6). No change reuse is supported in
HOON.

5.7 Evaluation Details: WASA

Support for Adaptation Patterns. The design of high-level change opera-
tions was out of the scope of the WASA project. Thus, no direct support for any
of the adaptation patterns is provided (see F2). Nevertheless, WASA enables
structural process changes at both the process type and the process instance
level using change primitives (Design Choice A[1,2]). All change primitives can
operate on atomic activities and sub processes due to the object-oriented ap-
proach followed by WASA (Design Choice B[1,2]). Finally, changes are applied
in a permanent manner (Design Choice C[2]).

Support for predefined change patterns (PP1). No support for prede-
fined change patterns is provided.

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). In WASA advanced support for version control of process schemes
is provided: If a process schema is changed, a new process schema version is cre-
ated (design choice F1[3]) and it is checked which process instances can migrate

to the new version according to a well-defined correntness criterion (called valid
mapping correctness criterion in WASA) (Design Choice F1[3, 5]).

Ad-hoc Changes (Change Feature F2). In WASA ad-hoc changes can be
performed using a workflow editor and change primitives (e.g., insert/delete
node, insert/delete connector) (F2[2]).

Correctness of Changes (Change Feature F3). The correctness of dynam-
ically changed process instances is ensured by the valid mapping correctness
criterion (F3[+]). Based on this well-defined correctness criterion both control
and data flow correctness can be guaranteed.

Traceability and Analysis (Change Feature F4). Traceability in ensured
as for every process instance the process schema version which controlled in-
stance execution is known. In addition, execution logs are provided (F4[1]).

Access Control (Change Feature F5). Access control for applying change
patterns is realized by role-based access control in WASA. For example, only
users with role ’process administrator’ are allowed to perform change patterns
(F5[1]).

Change Reuse (Change Feature F6). Change reuse is not supported in
WASA (F6[-]).

5.8 Evaluation Details: Staffware

In terms of commercial systems Staffware and Flower have been evaluated. The
evaluation of Staffware is based on version 10 of Staffware.

Support for Adaptation Patterns. Staffware does not support any of the
adaptation patterns with high-level change operations.

Support for Predefined Change Patterns Regarding predefined change pat-
terns Staffware provides support for PP1 (Late Selection of Process Fragments)
and PP4 (Multi-Instance Activity). The Late Selection of Process Fragments is
supported through the Graft Activity which is a feature of the Staffware Pro-
cess Orchestrator. The selection of the activity implementation can either be
automated or manually done by the user (Design Choice A[1,2]). The activ-
ity implementation refers to a sub process consisting of one or more activities
(Design Choice B[1+2]). The decision which activity implementation shall be
selected is made when the placeholder activity (i.e., the Graft Activity) is en-
abled (Design Choice C[2]). Pattern PP4 (Multi-Instance Activity), in turn, is
supported through the Dynamic Sub-Procedure Step, which is also provided by
the Staffware Process Orchestrator. The number of activity instances can either
be fixed during build-time or be defined based on workflow relevant data, which
becomes available at run-time.

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). In principle, through the support of change feature F1 process
type changes and instance migration are supported. In general, these changes
can be accomplished with the Staffware process editor, which only supports low-
level change primitives (e.g., the insertion and/or deletion of nodes and control
edges). With Staffware the co-existence of process instances of different schema
versions is possible (F1[1]). In addition, Staffware allows for the migration of
running process instances. However, such an instance migration – through lack
of a formal correctness criteria – cannot be restricted to a subset of process in-
stances. This might lead to severe process inconsistencies or even deadlocks in
some situations (F1[4]).

Ad-hoc Changes (Change Feature F2). Staffware does not provide sup-
port for any of the adaptation patterns as no structural changes to the process
instance schema can be performed. Flexibility is provided through patterns PP1
and PP4. Regarding support for ad-hoc changes similar considerations can be
made than for the HOON approach (see Section 5.10, Change Feature F2).

In addition, the Staffware Process Orchestrator provides exception handling
facilities, which allow for back and forward jumps.

Correctness of Changes (Change Feature F3). Through the absence of a
formal process model and the lack of a formal correctness criterion for instance
migrations bad surprise during run-time cannot be avoided. When testing the
respective instance migration feature of Staffware in our lab, we were easily able
to construct deadlocks and program crashes.

Traceability and Analysis (Change Feature F4). As no ad-hoc changes
are supported an audit trail is sufficient for traceability of process instances.
Additionally, the version management of process schemes allows for traceability
of process type changes as well.

Access Control (Change Feature F5). In Staffware changes can be restricted
to authorized users (F5[1]). Everyone having access to the process designer can
change process schemes and perform instance migrations. In respect to pattern
PP1, further restrictions can be defined, e.g., regarding the process fragments
that can be selected for a placeholder activity (F1[2]). For each placeholder ac-
tivity different authorizations can apply (F1[3]).

Change Reuse (Change Feature F6). The reuse of changes is not supported
in Stafftware.

5.9 Evaluation Details: Flower

Our evaluation of the Flower case handling system is based on version 3.1 of the
software.

Support for Adaptation Patterns. Flower provides explicit support for the
Delete adaptation pattern (AP2) by allowing the skipping of process steps. No
other adaptation patterns are directly supported. The respective pattern can
be applied at the process instance level (Design Choice A[1]) and operates on
atomic activities (Design Choice B[1]). The change pattern is applied in a per-
manent manner (Design Choice C[2]).

Support for Predefined Change Patterns. Pattern PP4 (Multi-Instance Ac-
tivity) is supported through the concept of dynamic subplans. Like in Staffware
and WIDE, the number of activity instances can either be fixed during build-
time or be defined based on workflow relevant data, which becomes available at
run-time.

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). Feature F1 is supported by Flower. First of all, Flower supports
the co-existence of process instances of different schema versions (F1[3]). In ad-
dition, Flower allows to overwrite an existing process schema version. Thereby
the user can remove all running process instances from the system (F1[1]) or let
them remain in the system (F1[2]). In the latter case (uncontrolled) overwriting
of a process schema cannot be avoided leading to inconsistencies. In summary,
both options – removing running instances or overwriting process schemes in an
uncontrolled manner – do not provide a satisfactory solution.

Ad-hoc Changes (Change Feature F2). In Flower direct support for the
skipping of process activities is provided (F2[1]). In addition, moving activities
is indirectly supported. In particular, in Flower users will be enabled to perform
a respective activity earlier as planned if all required input data is available and
certain other conditions are met.

Correctness of Changes (Change Feature F3). In general, correctness
cannot be ensured in all situations. Especially, when overwriting an existing
process schema this can lead to severe inconsistencies if ongoing instances are
not removed from the system. The latter, in turn, is not an adequate option for
practical environments.

Traceability and Analysis (Change Feature F4). Traceability is ensured
in Flower as the completed instances are maintained in the system.

Access Control (Change Feature F5). Flower allows restricting changes
to authorized users (F5[1]). For AP2 changes can be restricted to a particular
user role and activity (F5[2,3]). Process type changes are possible for all users
holding the administrator role.

Change Reuse (Change Feature F6). No change reuse is supported in
Flower.

5.10 Summary of Evaluation Results

Our pattern-based evaluation of selected approaches shows that there exists no
single system which supports all change patterns and features (cf. Fig. 21). In
particular, none of the approaches provides both adaptation patterns and pre-
defined change patterns, which would allow addressing a much broader process
spectrum. While predefined change patterns allow to reduce the need for struc-
tural changes during run-time by providing more flexible models, adaptation
patterns allow for structural changes which cannot be pre-planned. In addition,
they make changes more efficient, less complex and less error-prone through pro-
viding high-level change operations. Though predefined change patterns allow to
”simulate” certain adaptation patterns, change definition takes place at a lower
level of abstraction.

6 Related Work

Patterns were first used to describe solutions to recurring problems by Ch.
Alexander, who applied patterns to desrcibe best practices in architecture [31].
Patterns also have a long tradition in computer science. Gamma et al. applied
the same concepts to software engineering and described 23 patterns in [7].

In the area of workflow management, patterns have been introduced for an-
alyzing the expressiveness of process modeling languages (i.e., control flow pat-
terns [8]). In addition, workflow data patterns [32] describe different ways for
modeling the data aspect in PAIS and workflow resource patterns [33] describe
how resources can be represented and utilized in workflows.

The introduction of workflow patterns has significant impact on the design
of PAIS and has contributed to the systematic evaluation of PAIS and process
modeling standards. However, to evaluate the powerfulness of a PAIS regarding
its ability to deal with changes, the existing patterns are important, but not
sufficient. In addition, a set of patterns for the aspect of workflow change is
needed. Further, the degree to which control flow patterns are supported provides
an indication of how complex the change framework under evaluation is. In
general, the more expressive the process modeling language is (i.e., the more
control flow and data patterns are supported), the more difficult and complex
changes become.

In [34] exception handling patterns which describe different ways for coping
with exceptions are proposed. In contrast to change patterns, exception han-
dling patterns like Rollback only change the state of a process instance (i.e., its
behavior), but not its schema. The patterns described in this paper do not only
change the observable behavior of a process instance, but additionally adapt the
process structure. For a complete evaluation of flexibility, both change patterns
and exception handling patterns must be evaluated.

7 Summary and Outlook

In this paper we proposed 17 change patterns and 6 change support features,
which in combination allow to assess the power of a particular change frame-
work. In addition, we evaluated selected approaches and systems regarding their
ability to deal with process changes. We believe that the introduction of change
patterns complements existing workflow patterns and allows for more meaningful
evaluations of existing systems and approaches. In combination with workflow
patterns the presented change framework will enable (PA)IS engineers to choose
process management technologies which meet their flexibility requirements best
(or to realize that no system satisfies them at all).

Future work will include change patterns for aspects other than control flow
(e.g., data or resources) and patterns for more advanced adaptation policies
(e.g., the accompanying adaptation of the data flow when introducing control
flow changes) as well as the evaluation of additional systems and approaches.

Acknowledgements. We would like to thank Shazia Shadiq, Michael Adams, Matthias

Weske and Yanbo Han for their valuable feedback regarding the evaluation of their ap-

proaches. In addition, we would like to thank Shazia Shadiq and Michael Adams for

the many fruitful discussions, which helped us to significantly improve the quality of

this paper.

References

1. Dumas, M., ter Hofstede, A., van der Aalst, W., eds.: Process Aware Information
Systems. Wiley Publishing (2005)

2. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering 50 (2004) 9–34

3. Reichert, M., Dadam, P.: ADEPTflex – supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

4. Adams, M., ter Hofstede, A.H.M., Edmond, D., v. d. Aalst, W.M.: A service-
oriented implementation of dynamic flexibility in workflows. In: Coopis’06. (2006)

5. Weske, M.: Workflow management systems: Formal foundation, conceptual design,
implementation aspects. University of Münster, Germany (2000) Habil Thesis.

6. van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for
business process support. Data and Knowledge Engineering. 53 (2005) 129–162

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

8. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14 (2003) 5–51

9. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: BPM 2005. (2005) 252–267

10. Günther, C., Rinderle, S., Reichert, M., van der Aalst, W.: Change mining in
adaptive process management systems. In: CoopIS’06. (2006) 309–326

11. Weber, B., Wild, W., Lauer, M., Reichert, M.: Improving exception handling by
discovering change dependencies in adaptive process management systems. In:
Business Process Management Workshops 2006. (2006) 93–104

12. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational cbr. In: ECCBR’04, Madrid (2004) 434–448

13. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive Process Management
with ADEPT2. In: ICDE’05. (2005)

14. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,
University of Ulm (2004)

15. Reichert, M.: Dynamic Changes in Workflow-Management-Systems. PhD thesis,
University of Ulm, Computer Science Faculty (2000) (in German).

16. Casati, F.: Models, Semantics, and Formal Methods for the design of Workflows
and their Exceptions. PhD thesis, Milano (1998)

17. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

18. Lu, R., Sadiq, S.W.: Managing process variants as an information resource. In:
BPM06. (2006) 426–431

19. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specifications.
In: Proc. Int’l Entity–Relationship Conf. (ER’01), Yokohama (2001) 513–526

20. Sadiq, S., Sadiq, W., Orlowska, M.: A framework for constraint specification and
validation in flexible workflows. Information Systems 30 (2005) 349 – 378

21. Adams, M., ter Hofstede, A.H.M., Edmond, D., v. d. Aalst, W.M.: Dynamic and
extensible exception handling for workflows: A service-oriented implementation.
Technical Report BPM Center Report BPM-07-03, BPMcenter.org (2007)

22. Hagemeyer, J., Hermann, T., Just, K., Rüdiger, S.: Flexibilität bei Workflow-
Management-Systemen. In: Software-Ergonomie ‘97. (1997) 179–190

23. Han, Y.: Software Infrastructure for Configurable Workflow Systems. PhD thesis,
Univ. of Berlin (1997)

24. Weber, B., Rinderle, S., Reichert, M.: Identifying and evaluating change patterns
and change support features in process-aware information systems. Technical Re-
port Report No. TR-CTIT-07-22, CTIT, Univ. of Twente, The Netherlands (2007)

25. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

26. Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On representing, purging, and
utilizing change logs in process management systems. In: BPM’06. (2006) 241–256

27. Weber, B., Rinderle, S., Wild, W., Reichert, M.: CCBR–driven business process
evolution. In: ICCBR’05, Chicago (2005) 610–624

28. Weber, B., Reichert, M., Wild, W.: Case-base maintenance for ccbr-based process
evolution. In: ECCBR’06. (2006)

29. Deiters, W., Gruhn, V.: The funsoft net appoach to software process management.
Int’l Journal of Software Engineering and Knowledge Engineering 4 (1994) 229–256

30. Gruhn, V.: Validation and Verification of Software Process Models. PhD thesis,
University of Dortmund (1991)

31. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Oxford Univer-
sity Press, New York (1977)

32. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow data
patterns. Technical Report FIT-TR-2004-01, Queensland Univ. of Techn. (2004)

33. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow resource
patterns. Technical Report WP 127, Eindhoven Univ. of Technology (2004)

34. Russell, N., van der Aalst, W.M., ter Hofstede, A.H.: Exception handling patterns
in process-aware information systems. In: CAiSE’06. (2006)

