
Mining Based on Learning from
Process Change Logs

Chen Li1?, Manfred Reichert2, and Andreas Wombacher3

1 Information System group, University of Twente, The Netherlands
lic@cs.utwente.nl

2 Institute of Databases and Information System, Ulm University, Germany
manfred.reichert@uni-ulm.de

3 Database group, University of Twente, The Netherlands
a.wombacher@utwente.nl

Abstract. In today’s dynamic business world economic success of an
enterprise increasingly depends on its ability to react to internal and
external changes in a quick and flexible way. In response to this need,
process-aware information systems (PAIS) emerged, which support the
modeling, orchestration and monitoring of business processes. Recently,
a new generation of flexible PAIS was introduced, which additionally
allows for dynamic process changes. This, in turn, leads to a large number
of process variants, which are created from the same original model, but
might slightly differ from each other. This paper deals with issues related
to the mining of such process variant collections. Our overall goal is to
learn from process changes and to merge the resulting model variants
into a generic process model in the best possible way. By adopting this
generic process model in the PAIS, future costs of process change and
need for process adaptations will decrease. We compare process variant
mining with conventional process mining techniques, and show that it is
additionally needed to learn from process changes.

1 Introduction

Economic success of enterprises increasingly depends on their ability to react to
changes in a quick, flexible, and cost-effective way. However, current off-the-shelf
enterprise software does not meet this fundamental requirement. It is deployed
in different companies, domains, and countries, and therefore tends to be too
generic and rigid. This in turn, causes huge customization efforts at the site of
software buyers that exceed the price for software licenses by factor five to ten.
Major progress has been achieved by shifting from function- to process- and
service-centered software design. Along this trend a variety of process support
paradigms (e.g., process orchestration, process choreography) and corresponding
specification languages have emerged. In addition, different approaches for flex-
ible and adaptive processes exist [1, 3]. Generally, process adaptations are not
? Work done in the MinAdept project which is Supported by the Netherlands Orga-

nization for Scientific Research (NWO) under contract number 612.066.512



only needed for configuration purposes at build time, but also become necessary
during runtime to deal with exceptional situations and changing needs; i.e., for
single process instances, it must be possible to dynamically adapt their structure
(i.e., to insert, delete or move activities).

Obviously, the ability to adapt and configure processes at the different levels
will result in a collection of process model variants created from the same process
model, but slightly differing from each other. Fig. 1 depicts an example. The
left hand side shows a high-level view on a patient treatment process as it is
normally executed: a patient is admitted to a hospital, where he first registers,
then receives treatment, and finally pays. In emergency situations, however,
it might become necessary to deviate from this model, e.g., by first starting
treatment of the patient and allowing him to register later during treatment. To
capture this behavior in the model of the respective process instance, we need to
move activity receive treatment from its current position to a position parallel
to activity register. This leads to an instance-specific process model variant S′

as shown in Fig. 1b. Generally, a large number of process model variants (process
variants for short) derived from the same original process model might exist [16].

In most approaches supporting the adaptation and configuration of process
models each resulting process variant has to be maintained by its own, and even
simple changes within a domain or organization (e.g. due to new laws or re-
engineering efforts) might require manual re-editing of a large number of process
variants. Over time this leads to degeneration and divergence of the respective
process models, which aggravates maintenance significantly. In this paper we
deal with issues related to the mining of such process variant collections. Our
goal is to learn from the process changes applied in the past and to merge the
resulting process variants into a generic process model which covers the existing
process variants best. By adopting this generic process model within the PAIS,
cost of change and need for future process adaptations will decrease.

Process mining has been extensively studied in literature. Its key idea is to
discover a process model by analyzing the execution behavior of (completed)
process instances as captured in execution logs [8]. Different mining techniques
like alpha algorithm [8], heuristics mining [10], and genetic mining [11] have been
proposed in this context. When considering the extensive research on process
mining, only little work has dealt with process variant mining so far. Here the
overall goal is to evolve a process model over time by learning from the changes
applied to corresponding model instances in the past. By learning from these

S[∆>S’receive treatmentAdmitted 
a) S: original process model

register pay 
b) S’: final execution & change

registerreceive treatment pay AND-Split AND-Joinadmitted ∆=Move (S, register, admitted, pay) 
e=<admitted, receive treatment, register, pay> 

Fig. 1. Original Process Model S and Process Variant S’



model variants and by merging them into a generic process model, efforts for
future process model configurations as well as adaptations can be reduced. This
paper deals with the following research question:

Why is process variant mining needed and what are the differences between
traditional process mining and the mining of process variants?

Our aim is to motivate the need for mining process variants and to discuss
some of the major challenges arising in this context. Details of the mining al-
gorithm itself are out of the scope of this paper. However, we have developed
and implemented respective techniques (see [15]), and will also utilize them for
comparing variants mining with conventional process mining.

Sec. 2 gives background information needed for the understanding of this
paper. Sec. 3 discusses why process changes should be expressed in terms of
high-level change operations. Sec. 4 discusses major goals of process variant
mining and shows why it is different from traditional process mining. In Sec. 5
we present a concrete example to elaborate these differences and in Sec. 6, we
discuss related work. The paper concludes with a summary in Sec. 7.

2 Backgrounds

We first introduce basic notions needed in the following:
Process model. Let P denote the set of all process models. A single process

model S = (N, E, . . .) ∈ P is represented as Well-Structured Marking Net (WSM
Net) [3], where N corresponds to the set of process activities and E constitutes
the set of causal relations between them (i.e., control edges linking activities).
To limit the scope, we omit other process aspects (e.g., data flow) here. Further,
we assume process-models to be block structured (cf. Fig. 1).

Process change. We assume that a process variant results from an original
process model S by applying a sequence of changes to it over time [3]. Such
changes modify the initial model S by altering its set of activities or by changing
their order relations through the application of a sequence of change operations.
Thus, each change to a process model results in another (intermediate) model.

Definition 1 (Process change). Let P be the set of possible process models
and C be the set of possible process changes. Let S, S′ ∈ P be two process models,
let ∆ ∈ C be a process change, and let σ = 〈∆1,∆2, . . .∆n〉 ∈ C∗ be a sequence
of process changes performed on initial process model S. Then we can define:

– S[∆〉S′ iff ∆ is applicable to S and S′ is the process schema resulting from
the application of ∆ to S.

– S[σ〉S′ iff ∃ S1, S2, . . . Sn+1 ∈ P with S = S1, S′ = Sn+1, and Si[∆i〉Si+1

with i = {1, . . . n}. Further |σ| = n.

Examples of high-level change operations include insert activity, delete ac-
tivity, and move activity as implemented in the ADEPT change framework [3].
While insert and delete modify the set of activities in the process model, move
changes the position of an activity and thus the structure of the process model.
For example, operation move(S, A, B, C) means to move activity A from its



current position within process model S to the position after activity B and be-
fore activity C, while operation delete(S, A) expresses to delete activity A from
process model S. Issues concerning the correct use of these operations as well as
formal pre- and post-conditions are described in [3]. Though the depicted change
operations are discussed in relation to ADEPT, they are generic in the sense that
they can be easily applied in connection with other process meta models as well
[1]. For example, a process change as described in the ADEPT framework can
be mapped to the concept of life-cycle inheritance as known from Petri Nets [6].
We refer to ADEPT in this paper since it covers by far most high-level change
patterns and change support features when compared to other approaches [1].

Definition 2 (Bias and Distance). Let S, S′ ∈ P be two process models.
Then: The distance d(S,S′) between S and S′ corresponds to the minimal number
of high-level change operations needed to transform S into S′; i.e., d(S,S′) :=
min{|σ| | σ ∈ C∗ ∧ S[σ〉S′}. Furthermore, a sequence of change operations σ
with S[σ〉S′ and |σ| = d(S,S′) is denoted as bias between S and S′.

The distance between two process models S and S′ is the minimal number of
high-level change operations needed for transforming S into S′. The correspond-
ing sequence of change operations is denoted as bias between S and S′.4 Each
change operation the same weight, i.e., we do not consider some changes being
more important or more expensive than others. Generally, the distance between
two process models measures the complexity for model transformation or config-
uration. As example take Fig. 1. Here, distance between S and S′ is one, since we
only need to perform one change operation move(S, receivetreatment, admitted, pay)
to transform S into S′. We describe a method to compute biases in [7].

Trace A trace t on process model S denotes a valid execution sequence
t ≡< a1, a2, . . . , ak > of activities ai ∈ N on S according to the control flow
defined by S. All traces process model S can produce are summarized in set TS .
We consider two process models as being the same if they are trace equivalent,
i.e., S ≡ S′ if and only if TS ≡ TS′ .

3 On Representing Process Changes

3.1 Why Do We Need a Change Log?
Change and execution logs capture different runtime information on process
instances and are not interchangeable. Even if the original model of a process
instance is given, it will be not possible to convert its change log to its execution
log or vice verse. We refer to our example from Fig. 1. When applying the
aforementioned change to original model S, we obtain variant S′ (i.e. S[σ〉S′)
with change log σ =< move(S, reveive treatment, admitted, pay) >. Assume
that this variant represents an instance-specific schema and that the trace of
the particular instance is {admitted, receive treatment, register, pay}. If S and

4 Generally, it is possible to have more than one minimal set of change operations
to transform S into S′, i.e., given two process models S and S′ their bias is not
necessarily unique. A detailed discussion of this issue can be found in [6, 7].



the instance trace had been the only available information, it would be not
possible to determine the respective change. Note that the process model, which
can produce the given trace, is not unique; e.g., a process model with the four
activities contained in four parallel branches could produce this trace as well. By
contrast, it is generally not possible to derive the trace of a process instance from
its change log, because execution behavior of S′ is also not unique. For example,
trace < admitted, register, receive treatment, pay > is also producible on S′.

3.2 High-level Change Operations vs. Change Primitives
We now discuss why it is beneficial to measure the distance between process
models based on high level change operations rather than on low-level change
primitives. Consider the left-hand side of Fig. 2. It shows an original process
model S which comprises a parallel branching (C and D may be performed con-
currently), a conditional branching (either E or F is executed), and a silent ac-
tivity τ (depicted as an empty node). Assume that in two different scenarios
high-level change operations are applied to S resulting in the two models S1 and
S2 respectively: ∆1 moves C to the position between A and B, resulting in process
variant S1, i.e., S[∆1〉S1 with ∆1 = move(S, C,A,B). ∆2, in turn, moves A to
the position between B and C, i.e., S[∆2〉S2 with ∆2 = move(S, A,B,C). Note
that Fig. 2 additionally depicts the change primitives representing the snapshot
differences between original model S and variants S1 and S2 respectively.

In comparison with low-level primitives, the use of high-level change oper-
ations offers the following advantages: First, high-level change operations with
formal pre- and post-conditions, as supported by ADEPT and other process
change frameworks, usually guarantee soundness (i.e., absence of deadlocks and
livelocks); i.e., their application to a sound process model S results in another
sound model S′ [3]. This also applies to our example from Fig. 2. By contrast,
when applying single primitives (e.g. deleting an edge), soundness cannot be
guaranteed in general. For example, if we delete any of the edges in S, the re-
sulting model will not be necessarily sound.

Second, high-level change operations enable more effective user support when
compared to low-level change primitives. Generally, a high-level change operation
is based on a set of primitives which collectively realize a particular change

delEdge(StartFlow,A); delEdge(A,B); delEdge(B,C); addEdge(B,A); addEdge(A,C); addEdge(StartFlow,B)
delEdge(A,B); delEdge(B,C); delEdge(B,D); delEdge(C, τ); delEdge(D,τ); delEdge(t,E); delEdge(τ, F}; delNode(τ); addEdge(A,C); addEdge(C,B); addEdge(B,D); addEdge(D,E); addEdge(D,F);  updateNodeType(D, XorSplit); updateNodeType(B, empty);GBA

C

D

E

F

DA C
E

F
B G

B
A C

D

E

F
G

Change Primitives 
Change Primitives 

∆1=Move (S, C, A, B) 

S1: model after change ∆1
∆2=Move (S, A, B, C) 

S[∆1>S1

S[∆2>S2
S: original process model S2: model after change ∆2AND-SplitAND-Join XOR-SplitXOR-Join

a) b)
Fig. 2. High-Level Change Operation vs. Change primitives



pattern. As example take ∆1 from Fig. 2. This operation is internally based
on 15 change primitives to delete and add edges, to delete the silent activity,
and to update node types. By defining changes with high-level operations, cost
of change can be significantly reduced. As another benefit, high-level operations
usually perform model optimizations when realizing a process change. Regarding
change ∆1 from Fig. 2, the movement of activity C is accompanied by the deletion
of silent activity τ , since the parallel branching is no longer needed.

Third, another important aspect concerns the number of change operations
needed to transform a process model S into an model S′. Regarding our previous
example, for instance, we only need one move operation to transform S to either
S1 or S2. When using change primitives instead, migrating S to S1 requires
15 primitives, while the second change ∆2 can be realized with 6 primitives.
This demonstrates that change primitives do not provide an adequate means to
express the difference between two process models; i.e., the number of primitives
needed for a process model transformation should not be used for expressing
change efforts. As a consequence, we base our approach for variant mining on
high-level change operations.

Finally when representing model changes by means of high-level operations,
we can always derive corresponding change primitives, but not the other way
around; i.e., with respect to model S it is sufficient to log the applied high-
level change operations in order to derive the corresponding primitives and the
resulting model variant S′. The change primitives can be derived by snapshot
analysis; i.e., when performing snapshots of S and S′, respective primitives can
be easily obtained by determining which nodes and edges have been deleted
or added [2]. By contrast, if we only store low-level primitives, computing the
corresponding high-level change operation will be difficult; e.g., how to determine
that the 15 primitives needed to transform S into S1 only represent one single
high-level change?

3.3 How Do High-level Changes Influence Process Behavior?

[5] provides an approach to measure the similarity between two process mod-
els based on their trace sets: More precisely, the behavioral distance between
process models S1 and S2 is calculated as the sum of the edit distances of all
possible pairs of traces (t1,t2) with t1 ∈ TS1 and t2 ∈ TS2 . Obviously, this
method evaluates to what degree the behaviors of the two process models differ
from each other rather than on what the effort for transforming one process
model into another is. On the one hand, application of one high-level change op-
eration might significantly modify execution behavior of the respective process
model. On the other hand, several high-level change operations might be re-
quired to realize a smooth change in execution behavior of a given model. When
considering the two process models from Fig. 1, for example, we obtain as be-
havioral distance one. However, when performing another change S′[∆2〉S′′ with
∆2 = move(S, pay, admitted, receivetreatment) behavioral distance between S
and the S′′ will be four. Particularly, when a change moves or adds activities to
parallel branches, the number of possible traces might grow exponentially. Based



on these considerations, we have decided to focus on the relationship between
behavior of process models and biases.

4 Mining Process Variants: Goals and Comparison with
Process Mining

This section discusses the major goal of mining process variants, namely to derive
a generic process model out of a given collection of process variants. This shall be
done in a way such that the different variants can be efficiently configured out of
the generic model. We measure efforts for respective process configurations by the
number of high-level change operations needed to transform the generic model
into the respective model variant. The challenge is to find a generic model such
that the average number of change operations needed (i.e., the average distance)
becomes minimal.

To make this more clear, we compare process variant mining with traditional
process mining. Obviously, input data for process and process variant mining
differ. While traditional process mining operates on execution logs, mining of
process variants is based on change logs (or the process variants we can obtain
from them). Of course, such high-level consideration is insufficient to prove that
existing mining techniques do not provide optimal results with respect to the
above goal. In principle, methods like alpha algorithm [8] or generic mining [11]
can be applied to our problem as well. For example, we could derive all traces
producible by a given collection of process variants [5] and then apply existing
mining algorithms to them. To make the difference between process and process
variant mining more evident, in the following, we consider behavioral similarity
between two process models as well as structural similarity based on their bias.

The behavior of a process model S can be represented by the set of traces TS

it can produce. Therefore, two process models can be compared based on the dif-
ference between their trace sets [5, 8]. By contrast, biases can be used to express
the (structural) distance between two process models, i.e., the minimal number
of high-level change operations needed to transform one model into the other
(cf. Def. 2). While the mining of process variants addresses structural similarity,
traditional process mining focuses on behavior. Obviously, this leads to different
choices in algorithm design and also suggest different mining results. Fig. 3 shows
two examples. Consider Example 1 which shows two process variants S1 and S2.
Assume that 55 process instances are running on S1 and 45 instances on S2. We
want to derive a generic process model such that the efforts for configuring the
100 process instances out of the generic model become minimal. If we focus on
behavior, like existing process mining algorithms do [8], the discovered process
model will be S; all traces producible on S1 and S2 respectively can be produced
on S as well, i.e. TS1 ⊆ TS and TS2 ⊆ TS . However, if we adopt S as reference
model and relink instances to it, all instances running on S1 or S2 will have a
non-empty bias. We would need to move B in S to either obtain S1 or S2; i.e.,
S[σ1〉S1 with σ1 = move(S, B,A,C) and S[σ2〉S2 with σ2 = move(S, B,C,D) (cf.
Def. 2). Using the number of instances as weight for each variant, the average



Example 1
Example 2

A B C D

A B C X D

C DA

X

B

Focus on behavior

Focus on biases

S1
S245 instances

55 instances

S

S’
Biases exist: 45

A B C D

A C B D

S1
S2

A B C D

Focus on behavior

Focus on biases

55 instances

45 instances

A D

B

C
S

S’

Biases exist: 100 Executions cover: 100%

Biases exist: 45 Executions cover: 55%

Biases exist: 100 Executions cover: 100%

Executions cover: 55%
A B C X D

Process variants Reference model

Fig. 3. Mining focusing either on Behavior or on Minimization of Biases

weighted distance between S and S1, S2 is one; i.e., for each process instance we
need on average one high-level change operation to configure S into S1 and S2.

By contrast, if we focus on bias, we should choose S′ as reference model.
While no adaptations become necessary for the 55 instances running on S1,
we need to move B for the 45 instances based on S2, i.e. S′[σ′〉S2 with σ′ =
move(S′, B,C,D). Therefore, average weighted distance between S′ and variants
Si(i = 1, 2) corresponds to 0.45. Though S′ cannot cover all traces variants S1

and S2 can produce (i.e., TS2 * TS′), adapting S′ rather than S as the new
generic model requires less efforts for process configuration, since the average
weighted distance between S′ and the instances running on both S1 and S2 is
55% lower than when using S.

Regarding Example 2 from same figure, activity X is only present in model S2,
but not in S1. When applying traditional process mining focusing on behavior,
we obtain model S (with X being contained in a conditional branch). If focus is
on minimizing average change distance, S′ will have to be chosen as reference
model. Note that in Fig. 3 we have considered rather simple process models to
illustrate basic ideas. Of course, our approach works for process models with
more complex structure as well (see [15] for details).

Our discussions on the difference between behavioral and structural similar-
ity also demonstrates that current process mining algorithms do not consider
structural similarity based on bias and change distance.

5 Example and Evaluation

Consider Fig. 4 and assume that process model S defines a standard business
process. Six different variants S1, S2, S3, S4, S5 and S6 have been configured out
of S. Furthermore, on each of these process variants several instances are running.
A simple statistics is given to show the respective ratio (e.g., 30 % of all instances
are running on S1 and 8 % on S5). We therefore compute the distance and biases
between the reference model and the six variants. For example, if we want to
configure the reference model S into S1, we need to perform one change operation
move(S, E, A, D), i.e., distance between S and S1 is one. The distance and bias
between S and the process variants are shown in Fig. 4.



S1: 30%
S2: 15%S3: 20%

S4: 20%
S5: 8%

B C

E
A D

DA C B E

A
D

E
B C

B EA
C

D

A B C D ES: Original process model
σ1 =< Move (S, E, A, D) > σ4 =< Move (S, C, B, E) > 

σ2 =< Move (S, D, B, C), Move (S, E, B, C) > σ3 =< Move (S, C, A, B), Move (S, E, B, D) > 

Process Variants

Process Adaptations

σ5 =< Move (S, D, E, End), Delete (S, C) > A B E DS6: 7% σ6 =<Delete (S, B), Move (S, E, C, D)> A C E D

A B C E DS’: Mined out process modelChange Mining
Schema Evol
ution

S[∆
>S

’ : 
∆=

Mo
ve

 (S
, D

, C
, E

) 

Average weighted distance: 1.5 changes / instance

Average weighted distance: 
1.15 change/ instance

S1: 30%S2: 15%S3: 20%S4: 20%S5: 8%S6: 7%
Biases after process evolutionσ'1 =< Move (S’, E, A, D) > σ'2 =< Move (S’, D, B, C),            Move (S’, E, B, C) > σ'3 =< Move (S’, C, A, B) > σ'4 =< Move (S’, C, B, E) > σ'5 =<Delete (S’, C) > σ'6 =<Delete (S’, B)> 

Propagate schema change
A Admitted  to hospital B Register
C Receive treatment D Give feedback E Leave

d(S,S1) = 1
d(S,S2) = 2d(S,S3) = 2

d(S,S4) = 1d(S,S5) = 2d(S,S6) = 2

Fig. 4. One example

Based on the relative frequency of each process variant (i.e., its weight), the
weighted average number of changes of the six variants is 1.5. This means we have
to perform on average 1.5 changes on the original model S in order to configure
these variants out of it. When mining the six process variants by our approach
(see [15]), we obtain process model S′ as result (cf. Fig. 4). The discovered model
S′ is better in the sense that it can reduce the average distance the variants have
with respect to a reference process model (if using S′ instead of S′ as reference
model). In our case, weighted average distance between the reference model and
the variants decreases from 1.5 to 1.15 (cf. Fig. 4 for the biases). It means we
can reduce the configuration effort by replacing S with S′.

Referring to the theoretical comparison between process mining and process
variant mining from Section 4, we now compare these two paradigms taking our
example from Fig. 4. For this purpose, for each candidate model Scan, we assume
that it is considered as new reference process model and therefore calculate av-
erage weighted distance between Scan and the six process variants. For example,
if we choose S1 as the reference model, (i.e., Scan = S1), the distances between
Scan and S1 − S6 will be 0, 2, 2, 2, 2 and 2. And based on the weight of each
variant, we obtain average weighted distance between Scan and variants S1−S6

is 1.4. We therefore compare the candidate process models by comparing their
average weighted distance to the six variants.

There are two groups of process models that serve as candidates for an op-
timized reference process model. The first group contains all process models we
already know, like original model S and the six variants Si, i = 1 . . . 6 (cf. Fig.



4). Comparing these models with the one we obtained through our approach for
process variant mining, shows that it is not sufficient to simply set the reference
model to the most frequently used process variant (S1 in our example). The sec-
ond group includes the process models we can discover through mining. Clearly,
model S′ from Fig. 4 belongs to this group. In addition, we consider process
models that can be discovered based on traditional process mining techniques
[8]. Since a process model can be represented by the set of traces it can produce,
we have calculated all traces producible by all process variants in Fig. 4 (see
Fig. 5), and then used them as input for different process mining techniques: Al-
pha algorithm [8], Alpha++ algorithm [9], Heuristics mining [10], and Genetic
mining [11]. (These are some of the most well-known algorithms for discovering
process models from execution logs). The discovered process models are shown
in Fig. 5. Both Alpha and Alpha++ algorithm result in model Salp, whereas
Heuristics mining provides model Shrs. We do no consider the model discovered
by genetic mining since it is too different; i.e., genetic mining resulted in a com-
plex structure model with six silent activities (and the distance to each process
variant is higher than three).

We compute the average weighted distances between the candidate models
and the six process variants. Fig. 6 shows the distance between each candi-
date model and process variant, e.g., if we consider variant S1 as candidate
reference model, we can see that the distance between this model and variants
S2, S3, S4, S5, and S6 equals 2, and the average weighted distance between this
candidate and the six variants is 1.4 (cf. column S1 in Fig. 6). Results from Fig.
6 show that S′ (see Fig. 4)), the process model resulting from the method we
suggest [15], has the shortest average weighted distance to the different variants,
i.e., setting S′ as new reference process model would require lowest efforts for
configuring the variants; i.e. we only need to perform on average 1.15 changes to
configure a process variant out of S′. Note that models Salp and Shrs, as discov-
ered by the process mining algorithms (based on traces), show larger distances
to the variants. This also complies to our analysis from Sec. 4.

Comparison results do not imply that process variant mining is better than
process mining. Each of them has different inputs and goals. Compared to process
mining, which tries to discover the underlying process model by learning from
the behavior of a system, process variant mining focus on discovering a generic
reference model which is easy configurable for process variants. If we use process
mining evaluation criteria to measure the result of process variant mining, the
discovered process model S′ (cf. Fig. 4) will be also not good in terms of behavior,
since behavior of S′ is limited. However, we do not consider it as a critical

Salp: Alpha, Alpha ++, algorithmA

E

C

B D A D

E

C

BShrs:Heuristics mining 
S1:30% : AEBCD, ABECD, ABCEDS2:15% : ABDEC, ABEDCS3:20% : ACBEDS4:20% : ABCDE, ABDCES5:8% : ABEDS6:7% : ACED Process MiningTrace sets

Fig. 5. Process Models Resulting from Process Mining



Fig. 6. The number of biases when adapting different models

limitation, since in most cases it is the process variant rather than the reference
model which will act as the process model for instance executions.

6 Related Work

A variety of techniques for process mining has been suggested in literature [10,
11, 8]. As illustrated in this paper, traditional process mining is different from
process variant mining due to its different goal and inputs. Some improvements
of process mining algorithms have been made to enhance their performance (
e.g., DWS Mining [17]), but they are still different from variant mining due
to their different goals and inputs. A few techniques have been proposed to
learn from process variants by mining change primitives. [12] measures process
model similarity based on change primitives and suggests mining techniques
using this measure. However, this approach does not consider important features
of our process meta model; e.g., it is unable to deal with silent activities or loop
backs, and does also not differentiate AND- and OR-splits. Similar techniques
for mining change primitives exist in the fields of rule mining [13] and maximal
sub-graph mining as known from graph theory [14]; here common edges between
different nodes are discovered to construct a common sub-graph from a set of
graphs. To mine high level change operations, [4] presents an approach based on
process mining techniques, i.e., the input consists of a change log, and process
mining algorithms are applied to discover execution sequences of the changes
(i.e., the change meta process). However, it simply considers each change as
individual operation so that the result is more like a visualization of changes.
None of the discussed approaches aims at creating a generic process model, which
allows for easy and optimized configuration of process variants.

7 Summary and Outlook

We have motivated the need for process variant mining, discussed its major goals
and issues, and elaborated its differences when compared to traditional process
mining. We believe that process variant mining will contribute to business in-
telligence and allow to learn from adapted processes respectively. Basically, as
input our approach takes a collection of process variants (i.e., process models),
and then produces a generic process model as output which covers these vari-
ants best; i.e., the generic model is chosen in a way such that the average bias



between generic model and process variant becomes minimal. Note that this will
reduce adaptation and configuration costs as well.

We have compared process variant mining with process mining by means of
an example. This comparison indicates that traditional mining does not satisfy
the need for deriving a process model which is easy configurable. This justifies
the efforts for designing specific algorithms for process variant mining, which
we present in other papers. Our results are promising, but there are still many
research questions left open; e.g., it seems even better to integrate process mining
with process variant mining such that we can consider both execution behavior
(i.e., execution logs) and past process changes (i.e., change logs) to learn from
process executions. In future work, we will also assign weight for different change
operations, i.e., we will be able to express that some changes are more important
or expensive to configure than others.

References

1. B. Weber, S. Rinderle, M. Reichert: Change Patterns and Change Support Features
in Process-Aware Information Systems. CAiSE’07, LNCS 4495, 2007, pp. 574-588

2. S. Rinderle, M. Jurisch, and M. Reichert: On Deriving Net Change Information
From Change Logs - The DELTALAYER-Algorithm. BTW’07, 2007 pp. 364-381.

3. M. Reichert and P. Dadam. ADEPTflex - Supporting Dynamic Changes of Work-
flows Without Losing Control. Journal of Intelligent Info. Sys., 10(2):93-129, 1998.

4. C.W. Günther, S. Rinderle, M. Reichert, W.M.P. van der Aalst. Change Mining in
Adaptive Process Management Systems.CoopIS’06, LNCS 4275, pp 309-326. 2006.

5. A.Wombacher, M.Rozie: Evaluation of Workflow Similarity Measures in Service
Discovery. Service Oriented Electronic Commerce 2006: 51-71

6. W.M.P. van der Aalst and T. Basten:Inheritance of Workflows: An Approach to
Tackling Problems Related to Change. Theoretical CS, 270(1-2):125-203, 2002

7. C. Li, M. Reichert, and A. Wombacher: On measuring process model similarity
based on high-level change operations. In ER 08, Barcelona, 2008.

8. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. TKDE, 16(9):1128-1142, 2004.

9. L. Wen, J. Wang, and J.G. Sun. Detecting Implicit Dependencies Between Tasks
from Event Logs. In APWeb 2006, LNCS 3841, pp 591-603, 2006.

10. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Int. CA. Eng., 10(2):151-162, 2003.

11. A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven University
of Technology, Eindhoven, 2006.

12. J.Bae, L. Liu, J. Caverlee, W. B. Rouse: Process Mining, Discovery, and Integration
using Distance Measures ICWS06, pp. 479-488, 2006

13. P. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining. Add-Wesley, 2006.
14. K.H.Rosen: Discrete Mathematics and Its Applications. McGraw-Hill, 2003.
15. C. Li, M. Reichert, and A. Wombacher: Discovering reference process models by

mining process variants. In ICWS’08, Beijing, 2008.
16. A. Hallerbach, and T. Bauer, and M. Reichert: Managing Process Variants in the

Process Lifecycle.ICEIS’08, pp 154-161, 2008.
17. A.K.A de Medeiros, A. Guzzo G. Greco W.M.P. van der Aalst, A.J.M. M. Weijters,

B.F. van Dongen, D. Saccà: Process Mining Based on Clustering: A Quest for
Precision. BPM’07 workshop. pp 17-29, 2008.


