
On Dealing With Semantically Conflicting

Business Process Changes∗

Stefanie Rinderle Manfred Reichert
Peter Dadam

University of Ulm, Faculty of Computer Science,
Dept. Databases and Information Systems

{rinderle, reichert, dadam}@informatik.uni-ulm.de

Abstract

Correct propagation of process type changes to long-running process instances and the
capability to perform ad-hoc-modifications of individual process instances are essential re-
quirements for any process management software. In particular, in many cases it becomes
necessary to propagate process type changes to individually modified process instances as
well. In doing so, one must not only enable state-related compliance checks, but is addition-
ally confronted with structural and semantical conflicts that may exist between process type
and process instance changes. For the first time, this paper identifies and classifies semantical
conflicts between process type and instance changes, and illustrates them by sophisticated
examples. In order to be able to adequately deal with semantical conflicts at change prop-
agation time we provide formal methods for conflict detection and discuss strategies to deal
with different kinds of semantically conflicting changes.

1 Introduction

The use of enterprise-wide standard software (e.g., ERP systems) often leads to a rigid imple-
mentation of the business processes. Respective software systems lack the necessary flexibility
since process adaptations are expensive, time-consuming and error-prone. However, the ability
to quickly react to business process changes and to adapt process-oriented application systems
accordingly is indispensable for any enterprise to stay competitive in its market [30, 9, 24]. Such
process changes range from ad-hoc modifications of single process instances to evolutionary
changes of the process schema itself [30]. Ad-hoc changes (e.g., performance of an unplanned
activity for a particular business case) become necessary, for instance, to deal with real-world
exceptions, and they lead to individually modified process instances [21]. A process type or –

∗This work was done within the research project ”Change management in adaptive workflow systems”, which
has been founded by the German Research Community (DFG).

1

more precisely – its related schema has to be modified when new laws come into effect, opti-
mized or restructured business processes are to be implemented, or rapid reactions to a changed
market are required. In this context, related process instances may have to be adapted as well
[30, 6].

The challenging question is how to efficiently and correctly propagate process schema changes
to a potentially large number of (long-)running process instances. To smoothly migrate process
instances to a changed schema is already a non-trivial problem if unbiased process instances, i.e.,
instances without individual modification, are concerned [30, 25, 1, 11, 23]. In this case, we are
”only” confronted with a multitude of concurrently running process instances being in different
execution states or in different loop iterations but all refering to the same process schema. The
”migration-problem” becomes more complicated by orders of magnitude if the concerned process
instances have been individually modified (previous to the process type change).

One problem arising in this context is that process schema changes may be in conflict with
the previous process instance changes. For existing approaches dealing with adaptive processes
this problem has not been addressed so far since an ad-hoc change of a single process instance
always leads to a new process schema version [19, 33]. Thus, once a process instance has been
individually modified, it may be no longer adaptable to future business process changes or – more
precisely – to future process schema changes at the type level. However, doing so is far away
from practical requirements, in particular when dealing with long-running process instances. As
an example take a medical treatment process in a hospital. Even if a process instance related
to a particular patient is individually modified (e.g., by performing an unplanned lab test) it
should also take benefit from future business process optimizations (i.e., changes at the process
type level). Otherwise, the process oriented information system will not be accepted by users.

1.1 Problem Description

Concerning the propagation of process schema changes to individually modified instances, in
general, we have to cope with state related, structural, and semantical conflicts [23, 22].
When propagating changes at the process type level to instances still running according to
their original process schema (unbiased instances) the most important thing we have to care
about is that the current instance state does not conflict with the respective change at the
schema level (e.g., an already completed activity must not be deleted at the instance level).
Change propagation therefore leads to two sets of instances – those which are compliant with
the changed schema and those which are not [23, 22]. When propagating schema changes
to individually modified instances, however, things become more complicated. First of all, the
treatment of structural conflicts between schema and instance changes has not been exhaustively
addressed in the workflow literature so far (however some work on related problems in the field
of cooperative information systems exists, e.g. [31]). Such conflicts may generate, for example,
a deadlock-causing cycle due to the uncontrolled insertion of edges or activities on both, the
schema and the instance level [23, 22].

2

Semantic issues have been analyzed, for example, in the area of secure workflows [2]. But
so far, there has been a total lack of approaches dealing with issues related to semantical
conflicts between process schema and instance changes. The adequate treatment of
such conflicts is a must for any adaptive process management system. In particular, undesired
system behavior or runtime errors caused by the introduction of semantically conflicting changes
have to be avoided in any case. A first challenging issue is to identify scenarios in which
semantical conflicts between concurrent changes occur. To give an idea we exemplarily describe
two of these scenarios in the following. Note that these scenarios are extreme examples ranging
from semantical conflicts between structurally overlapping changes (cf. Example 1) to changes
conflicting at a high semantical level (cf. Example 2).

Example 1: Very important and practically relevant are scenarios where instances (or more
precisely the actors working on them) partially or totally anticipate future process schema
changes. As an example take Fig. 1. Assume that again and again instances, exemplarily
instances I1 and I2 in Fig. 1, have diverged from their original process schema since the invoice
cannot be correctly generated before packing the goods. Therefore, I1 and I2 have been indi-
vidually modified by changing the order of activities make invoice and pack goods to ”pack
goods before make invoice”. After it has been recognized that these instance changes indicate
a ”weak point” in the related (original) process schema, e.g., by process mining techniques [14],
the schema itself is changed by re-ordering the respective activities to ”pack goods before make
invoice” (cf. Fig. 1). Though the schema resulting from the change at process schema level
and the current instance schemes are the same, the instances cannot be migrated to the new
schema version1. In more detail, the migration of the individually modified process instances
(e.g., I1 and I2 in Fig. 1) will fail. Reason is that edges which are to be deleted when adapting
the structure of running instances to the changed process schema are no longer present. As
an example take the edge ’getOrder → makeInvoice’ which is missing for instances I1 and I2.
Consequently, these instances are excluded from migrating to S’. But just this is a completely
undesired system behavior from a semantical point of view.

Another example for a semantical trap as a result of process schema and instance changes is
depicted in Fig. 4. Here, in contrast to the example given in Fig. 1, instances are not excluded
from migrating to the changed schema. However, migration results in an execution schema
where the same activities will be worked on twice although this is not required and also not
desired in the given context.

Example 2: A semantical conflict of the other extreme is caused by process schema and
instance changes which are semantically incompatible. As an example take Fig. 2. Due
to an anaphylactic shock of the respective patient instance I1 was individually modified by
inserting activity allergyDrugY between activities examination and operation. After the
introduction of a new drug newDrugX the underlying process schema S is changed by inserting
activity newDrugX between examination and operation. Assume that this activity is medically

1In this context, migration means to re-link the instances from their current to the new schema version. In

the given situation this could be achieved without propagating changes.

3

getOrder makeInvoice packGoods sendGoods

getOrder makeInvoice packGoods sendGoods

Process schema S:

Process Instance level:

I1:

Instance Change 'I1 = moveActivity(makeInvoice, packGoods, sendGoods) =
(deleteEdge(getOrder, makeInvoice), deleteEdge(makeInvoice, packGoods),
 deleteEdge(packGoods, sendGoods), insertEdge(getOrder, packGoods),
 insertEdge(packGoods, makeInvoice), insertEdge(makeInvoice, sendGoods))

biased instance I1 on S + biasI1(S) = S + 'I1

Process Optimization!!!

Process Schema Change 'S = 'I1 = 'I2 = moveActivity(…) =
(deleteEdge(getOrder, makeInvoice), …)

getOrder packGoods makeInvoice sendGoods

X X X

Process Schema Level:

getOrder makeInvoice packGoods sendGoods

I2:

Instance Change 'I2 = moveActivity(makeInvoice, packGoods, sendGoods) = …

getOrder packGoods makeInvoice sendGoods

X X X

S:

getOrder makeInvoice packGoods sendGoods

Process Schema Level:

getOrder packGoods makeInvoice sendGoods

Optimized Process Schema S’:

X X X

Semantical Conflict!!!

NodeState: EdgeState:

 COMPLETED TRUE_SIGNALED
 ACTIVATED

biased instance I2 on S + biasI2(S) = S + 'I2

Figure 1: Semantical Conflict: Instances Anticipating a Process Schema Optimization

not compatible with allergyDrugY due to an undesired drug interaction. Propagating this
process schema change to the already modified instance I1 would cause no problems regarding
structural and state related conflicts as it can be easily seen from Fig. 2. But from a semantical
point of view, both process schema and instance changes are non-compliant due to the mentioned
medical incompatibility between the two drugs. Obviously, to solve this important problem we
need a lot of semantical knowledge about the changes to be applied.

There are further interesting examples (cf. Section 3). However, the presented ones already
show that there is a high need for an intelligent treatment of semantically conflicting changes.

1.2 Contribution

In this paper, we make the following contributions.

1. For the first time, we present a comprehensive classification of semantical conflicts between
process schema and instance changes potentially leading to an unintended (semantical)
system behavior if the changes are supplied in an uncontrolled manner. To illustrate the

4

admittance examination operation aftercare

admittance examination operation aftercare

Process schema S:

Process Instance level:

I1:

Instance Change 'I1 = = insertActivity(allergyDrugY, examination, operation)

biased instance I1 on S + biasI1(S):

admittance examination allergyDrugY operation

Process Schema Level:

S:

Process Schema Level: Optimized Process Schema S’:

NodeState: EdgeState:

 COMPLETED TRUE_SIGNALED
 ACTIVATED

allergyDrugY

aftercare

admittance examination operation aftercare admittance examination newDrugX operation aftercare

newDrugX

Process Schema Change 'S = = insertActivity(newDrugX, examination, operation)

Propagation of 'S to Instance I1

biased instance I1 on S + biasI1(S’)
admittance examination allergyDrugY operation aftercare

newDrugX Semantical Conflict!!!

Process Instance Level:

(= 'I1)

(= 'I1)

Figure 2: Semantically Non-Compliant Schema and Instance Changes

different kinds of semantical conflicts we provide sophisticated examples of high practical
relevance and discuss specific problems emerging in this context.

2. We present (formal) methods for detecting semantical conflicts that arise when process
schema and instance changes partially or totally overlap. In this context, we present an
excursion to the field of process schema and instance isomorphisms.

3. We show how individually modified instances can be migrated to a changed schema version
if the corresponding modifications semantically overlap. This is crucial for the implemen-
tation of any adaptive process management system.

4. Starting from our classification, we discuss several suitable methods to deal with semanti-
cally conflicting process schema and instance changes.

The remainder of the paper is organized as follows: Section 2 discusses related work and
summarizes important background information which is helpful for the further understanding
of the paper. In Section 3 we present a classification of semantical conflicts and we illustrate
them by practical examples. In Section 4 formal methods for detecting semantical conflicts are
presented. Section 5 adds methods to concretely deal with these conflicting changes. We close
with a summary and an outlook on further issues in Section 6.

5

2 Related Work and Background Information

There is a multitude of approaches dealing with adaptive processes. The scope ranges from
ad-hoc changes of single process instances to evolutionary changes of the process schema [30].
The latter implies the question how to efficiently propagate the process schema changes to a
collection of running process instances but without causing inconsistencies or errors in the sequel
[30, 1, 6, 11, 19, 23, 25, 32]. Thus, the provision of suitable correctness criteria is indispensable
[23].

One of the first approaches providing a generic correctness criterion for process schema
change propagation (the so called compliance criterion) has been given in the WIDE project
[6]. This criterion is suitable for process models which log the previous execution of process
instances in execution histories. Then a process instance I (created from schema S) is compliant
with a changed process schema S’ if the execution history of I can be correctly replayed on S’.
This criterion works well as long as no cyclic process structures are taken into account [23].
In conjunction with loops, however, the compliance criterion is too restrictive since it may
needlessly exclude process instances from migrating to a changed process schema. Furthermore
efficiency issues with respect to compliance checking have not been addressed.

The compliance criterion is used by several other approaches as well: BREEZE [26, 27, 25]
provides nice strategies how to deal with process instances which are not compliant with the
changed process schema. Furthermore, BREEZE does not only focus on control flow changes,
but deals with a broad spectrum of process modifications when comparing it to other approaches
(incl. temporal aspects [25]). TRAMs [19] provides concepts for managing different versions of
a process schema and their running process instances. Furthermore, it cares about how to check
compliance of running instances with a changed process schema. For this purpose, each change
operation is equipped with a migration condition, which enables the runtime system to argue
about compliance of the respective process instances.

As opposed to these history-based approaches there are solutions where only the actual
”state tokens” of a process instance can be determined (e.g., Petri-Net based approaches). Con-
sequently, these approaches cannot directly use the compliance criterion as described above. In
[11, 10], consistency can be only ensured for special change operations. This implies the con-
struction of a ”hybrid” process schema which reflects parts of both, the old and the changed
process schema. The definition of the rules to map tokens from the old to the new net has
to be manually carried out by the user. Actual results from the Petri-Net community come
from [30, 29]. The authors propose branching bisimularity as a correctness criterion for process
schema evolution. Informally, a process instance I can migrate to a changed process schema S’ if
each action of I can be simulated on S’ as well. Unfortunately, branching bisimularity can only
be ensured for special change operations, e.g., the insertion or deletion of parallel or alternative
branches. Order-changing operations like swapping or parallelizing of activities are dropped out
by this criterion. Apart from this, Petri-Net based approaches [11, 30, 1] lack a clear discussion
of issues related to data flow adaptations, adaptations in connection with loops, and the concrete
realization of migration procedures (to avoid the so-called ”dynamic change bug”).

6

Process Type / Schema Level

Process Instance Level

 Unbiased Instances Biased Instances Compliant
Unbiased
Instances

Compliant
Biased
Instances

E
xe

cu
ti

o
n

 S
ch

em
a

(l
o

g
ic

al
 r

ep
re

se
n

ta
ti

o
n

!)

running on S running on S + BiasI(S)

running on S’

running on S’ + BiasI(S’)

State-related Compliance

MIGRATION / RE-LINKING

MIGRATION / RE-LINKING

State-related +
Structural +
Semantical Compliance +

us
er

-d
ef

in
ed

co

ns
tr

ai
nt

s

before migration:

S
insertActivity(…)

after migration:

Non-Compliant
Unbiased Instances

still running on S

old version S
'S = {insertActivity(…)}

new version S’

Non-Compliant
Biased Instances

X X X

still running on S + BiasI(S)

Figure 3: Migration Process

There are further approaches, e.g., rule-based [12], object-oriented [15, 32] and statechart-
based [13] models. ULTRAflow [12] focuses on modifying the implementation and the semantical
information (e.g., compatibility matrices) of workflows. However, ULTRAflow totally factors out
several change operations and data flow issues. WASA2 [32] offers a correctness criterion based
on the mapping of process instances against process schemes. MOKASSIN [15] realizes process
instance changes by encapsulating respective change primitives but does not consider correctness
issues at all.

At this point of the discussion we can draft a clear distinction line: All mentioned change
propagation approaches can be only used if the concerned process instances have not been
individually modified, i.e., if their execution is still based on the original schema from which
they were derived. As motivated, however, it is also very important to support the propagation
of process schema changes to previously modified process instances as well [18]. While the
mentioned correctness criteria only consider the state of process instances when propagating
schema changes to them we are now additionally confronted with the problem of dealing with
structural and semantical conflicts between process schema and instance changes (cf. Fig. 3).

Structural conflicts between two (concurrent) changes result when their combined application
leads to an undesired or incorrect execution behavior. If, for example, two (concurrent) changes
are applied in an uncontrolled manner this might lead to deadlock-causing cycles. Therefore we
need a criterion ensuring structural and state related correctness for the combined use of process
schema and instance changes. Furthermore, it is fundamental to provide methods for re-linking
individually modified (biased) instances to a changed process schema. Suitable methods are
based on the notion of commutativity of changes, i.e., independent from the application order of

7

changes the resulting instance schema is always the same. A more comprehensive treatment of
these questions can be found in [22]. What migration / re-linking concretely means is depicted
in Fig. 3: Instances previously assigned to process schema S are now running according to the
changed schema S’ on condition that they are compliant with S’. Note that – from a logical
point of view – each instance has an own execution schema as depicted in Fig. 3. This execution
schema results from the original schema S plus the individual bias of I (formally: biasI(S)).
Generally, biasI(S) results from the consecutive execution of all ad-hoc changes applied to I so
far (formally: biasI(S) := ∆I

1 ◦ . . . ◦ ∆I
k where ∆I

1, . . . ,∆
I
k denote individual changes on I). In

particular, biasI(S) is the ”difference” between S and the logical execution schema of I. How
this execution schema is internally represented and whether it is materialized or not is outside
the scope of this paper.

To our best knowledge so far there has been a complete lack of approaches dealing with
semantical conflicts between process schema and instance changes. This paper makes a first
important contribution to close this ”gap” and wants to encourage the research community to
spend more effort on semantic issues in the context of adaptive process management.

3 Classification Of Schema And Instance Changes

In the following we restrict our considerations to the propagation of schema changes to biased
instances (cf. Fig. 3). Therefore, let S be a process schema and let ∆S be a change which
transforms S into another process schema S’ at time tS . Let further I1, . . . , In be a collection of
biased process instances derived from S with biases biasI1(S), . . . , biasIn(S) at time tS . In order
to decide whether I1, . . . , In can migrate to S’ or not, we require several checks regarding state-
related, structural, and semantical conflicts. In this paper, we focus on the latter one. Table
1 presents a general classification for possible semantical conflicts between schema change ∆S

and instance changes biasI1(S), . . . , biasIn(S). At the presence of such conflicts the uncontrolled
propagation of ∆S to I1, . . . , In may lead to an undesired (semantical) system behavior or even
to runtime errors.

As exemplarily shown in Section 1 semantical conflicts between process schema and instance
changes may arise if the changes partially or totally overlap. For totally overlapping changes we
use the term equivalent changes which is defined in Section 4. For partially overlapping changes,
basically, we distinguish between two scenarios: Either the process schema change subsumes the
whole process instance change (or vice versa) – then we denote these changes as subsumption
equivalent – or their intersect is not empty (but both contain additional changes). We call
the latter partially equivalent changes. Finally, process schema and instance changes can be
semantically different. All possible kinds of relationships between process schema and instance
changes are summarized in Table 1.

In the following, we explain the classification given in Table 1 by providing practical examples
for each category. For the sake of comprehensibility we shrunk the collection of relevant instances

8

Table 1: Classification Of Semantically Conflicting Changes

Schema Change ∆S and Instance Bias biasIk
(S) (k ∈ {1, . . . , n}) may be

(1) equivalent (2) subsumption (3) partially (4) different

equivalent equivalent

∆S ≡ biasIk
(S) (2.1) ∆S Â biasIk

(S) ∆S ∩ biasIk
(S) 6= ∅ ∆S ∩ biasIk

(S) = ∅

(cf. Fig. 1, 4) (cf. Fig. 5) (cf. Fig. 7,8) (4.1) semantically compliant

(2.2) ∆S ≺ biasIk
(S) (4.2) semantically

(cf. Fig. 6) non-compliant (cf. Fig. 2)

I1, . . . , In (with biases biasI1(S), . . . , biasIn(S)) to an arbitrary instance Ik (k = 1, . . . , n). But
we always have to be aware that we are possibly confronted with a large number of biased
instances which may have to be migrated to a modified schema!

(1) ∆S and biasIk
(S) are equivalent: A first example of equivalent changes has been already

presented in Section 1 (cf. Fig. 1). Another example is depicted in Fig. 4. Process schema
S is modified by schema change ∆S (the insertion of an additional activity controlShipment)
after instance change ∆Ik

has indicated this process optimization at the instance level. Thus,
we have two equivalent changes ∆S and biasIk

(S) (= ∆Ik
). Propagating ∆S to instance Ik

would cause no problem with respect to state as well as structural properties. However, doing
so results in a totally unclear semantics: Does the modeler really wants the user to work on
activity controlShipment twice?

(2) ∆S and biasIk
(S) are subsumption equivalent: In addition to equivalent changes we

are confronted with subsumption equivalent process schema and instance changes. Here, we
have to distinguish two cases as depicted in Table 1:

In case (2.1) (cf. Table 1), ∆S subsumes biasIk
(S) but may include further changes (∆S Â

biasIk
(S)). An example is depicted in Fig. 5. Process schema S is modified by schema change

∆S which re-arranges activities B and C to the converse order ”B after C”. However, at the
instance level, ∆Ik

has already changed the activity order ”B after C” to ”B parallel executable
to C” for instance Ik (and therefore biasIk

(S) = ∆Ik
). Having a closer look at biasIk

(S) and ∆S ,
we can see that ∆S subsumes all basic change operations (i.e., all edge insertions / deletions) of
biasIk

(S) but is enlarged with additional modifications. Thus we get biasIk
(S) ≺ ∆S . As it can

be easily seen, propagating ∆S on Ik would not be possible at the moment (e.g., edge A → B is
no longer present for Ik), but may be necessarily desired.

9

getOrder packGoods sendGoods

getOrder packGoods sendGoods

Process schema S:

Process Instance level:

Ik:

Instance Change 'Ik = insertActivity(controlShipment, packGoods, sendGoods)

biased instance Ik on S + biasIk(S) = S + ∆Ik

getOrder packGoods controlShipment sendGoods

Process Schema Level:

S:

Process Schema Level: Optimized Process Schema S’:

NodeState: EdgeState:

 COMPLETED TRUE_SIGNALED
 ACTIVATED

controlShipment

getOrder packGoods sendGoods

controlShipment

Process Schema Change 'S = 'Ik = insertActivity(controlShipment, packGoods, sendGoods)

Propagation of 'S to Instance Ik

biased instance Ik on S’ + biasIk(S’) = S + ∆Ik
getOrder packGoods controlShipment sendGoods

controlShipment Semantical Conflict!!!

Process Instance Level:

Process Optimization!!!

getOrder packGoods controlShipment sendGoods

Figure 4: Semantical Conflict: Double Execution Of Activities

Case (2.2) in Table 1 occurs if biasIk
(S) has totally anticipated process schema change ∆S but

comprises additional changes (biasIk
(S) Â ∆S). This situation arises, for example, if previous

modifications at the instance level indicate a schema optimization ∆S . However, some of the
respective instances have been additionally adapted to special customer conditions or exceptional
situations as it is depicted in Fig. 6: Here, ∆Ik1

inserted an additional activity controlGoods
leading to a later process schema optimization ∆S which also inserts activity controlGoods.
However, instance Ik has been additionally adapted by change ∆Ik2

to the requirements of a
particular customer (therefore biasIk

(S) = ∆Ik1
◦∆Ik2

). Consequently, biasIk
includes ∆S but

is enlarged. Here, a propagation of ∆S on Ik is possible but would lead to an undesired double
execution of activity controlGoods.

(3) ∆S and biasIk
(S) are partially equivalent (∆S ∩ biasIk

(S) 6= ∅):
As an example take Fig. 7. Here, instance change ∆Ik

is carried out in an ”ad-hoc-manner”,
i.e., the newly inserted data element patWeight is written by the newly inserted parameter
provision service [21] (therefore biasIk

(S) = ∆Ik
). This service prompts the user for the missing

input data and is invoked when activity medication is started. Thus, the input parameters
of the inserted activities are correctly supplied at runtime. Assume that lifting ∆Ik

to the
process schema level, the process designer wants data element patWeight to be written by a new
activity getWeight such that the input parameters of activity medication are correctly supplied.

10

A C B D A B C D x x x

A B C D x A

C

B

D

Process Schema Level:

Process Schema Change ∆S =
(deleteEdge(A,B), deleteEdge(B,C), deleteEdge(C,D),
 insertEdge(A,C), insertEdge(C,B), insertEdge(B, D))

S: S’:

Process Instance Change ∆Ik = (deleteEdge(B,C), insertEdge(A,C), insertEdge(B, D))

Ik on S:
Ik on S + biasIk(S) = S + ∆Ik

NodeState:

 COMPLETED

ACTIVATED

EdgeState:

TRUE_SIGNALED

x deleteEdge

insertEdge

Figure 5: Process Schema Change Comprises And Enlargens Process Instance Change

Propagating ∆S to Ik would therefore result in writing the same data element patWeight twice.
Here, an interesting variant would be to undo the ”provisional” instance change ∆Ik

and to
replace it by process schema change ∆S .

Fig. 8 shows another example for partially equivalent changes at the schema and instance
level. Instance Ik has been already changed by inserting a new activity getWeight between
prepare and operation. Assume that at a later point in time activity getWeight is inserted at
the proces schema level but at another position in the process graph (namely the upper branch
of the parallel branching). Intuitively, propagating ∆S to Ik is not reasonable since activity
getWeight would then be executed twice in the sequel. Interestingly, propagating ∆S¬∆Ik

leads to a hybrid structure of the execution schema of I which reflects both, the process schema
change (”getWeight after prepare”) and the process instance change (”getWeight after
advise”).

(4) ∆S and biasIk
(S) are different (∆S ∩ biasIk

(S) = ∅):
Case (4.1) where schema change ∆S and instance bias biasIk

(S) are different and semantically
compliant would be the most common one. Here, the propagation of the ”whole” change ∆S is
desired if structural and state-related conflicts between ∆S and biasIk

(S) can be ruled out [22].

In Section 1, we have already presented an interesting example for Case (4.2) where schema
change ∆S and instance bias biasIk

(S) are different and semantically non-compliant. To be able
to detect such semantical incompatibilities between process schema and instance changes we
first have to formalize the semantics of the respective change. For a basic explanation of our
ideas in this context we refer to Section 5.

11

getOrder makeInvoice

packGoods

sendGoods sendInvoice getOrder makeInvoice

packGoods

sendGoods sendInvoice

controlGoods

Process Schema Level:
Process Schema S: Optimized Process Schema S’:

'S

'S = (insertActivity(controlGoods, packGoods, sendGoods)

getOrder makeInvoice

packGoods

sendGoods sendInvoice sendInvoice getOrder makeInvoice

packGoods

sendGoods

controlGoods

Process Instance Level:

Ik on S:

Ik on
S + biasIk(S) = S + ∆Ik1 ° ∆Ik2

'Ik1 = (insertActivity(controlGoods, packGoods, sendGoods))
'Ik2 = (deleteEdge(getOrder, makeInvoice), deleteEdge(makeInvoice, sendInvoice),

 insertEdge(getOrder, sendInvoice), insertEdge(sendGoods, makeInvoice))

controlGoods

controlGoods

X X

 NodeState: EdgeState:

 COMPLETED TRUE_SIGNALED
 ACTIVATED

Figure 6: Process Instance Change Enlargens Process Schema Change

4 Detecting Semantically Conflicting Change Relations

As described in Table 1 (cf. Section 3) there are different possible relations between process
schema and instance changes. Some of these relations may lead to semantically undesired
behavior as we have shown by means of examples. Therefore, we need formal criteria to be able
to decide whether a process schema change is semantically conflicting with a process instance
change or not. More precisely, we need formal criteria to detect the kind of relationship between
a process schema and a process instance change to be able to react in a suitable way.

Therefore let S be a process schema and let ∆1 and ∆2 be two changes on S: ∆1 transforms
S into schema S(1) and ∆2 transforms S into schema S(2). As mentioned above we want to decide
whether ∆1 and ∆2 are equivalent, subsumption equivalent, partially equivalent, or different (cf.
Table 1). In principle, there are two possibilities: One is to compare ∆1 and ∆2 directly. The
other possibility is to compare the resulting process schemes S(1) and S(2) whereas this variant
can only be used to detect whether changes are equivalent (cf. Table 1). Thus we start with the
direct comparison of the resulting schemes S(1) and S(2) in Section 4.1. Doing so yields to a clear
theoretical basis for further considerations. In Section 4.2 we provide the general method of
comparing changes ∆1 and ∆2 (applicable if ∆1 and ∆2 are equivalent, subsumption equivalent,
partially equivalent, or different).

12

admittance preparation medication aftercare admittance preparation medication aftercare

weighing

patWeight

Process Schema Level:

Proces Schema S: Optimized Process Schema S’:

'S = (insertActivity(weighing, admittance, medication), insertDataElement(patWeight),
insertDataEdge(weighing, patWeight, write),
insertDataEdge(medication, patWeight, read))

admittance preparation medication aftercare admittance preparation medication aftercare

patWeight
Process Instance Level:

Ik on S: Ik on S + biasIk(S) = S + ∆Ik

'Ik = (insertDataElement(patWeight), insertDataEdge(medication, patWeight, read),
insertParameterProvisionService(medication, patWeight))

data element write data edge

read data edge

parameter provision
service

 NodeState: EdgeState:

 COMPLETED TRUE_SIGNALED
 ACTIVATED

Figure 7: Partially Equivalent Changes: Insertion of Parameter Provision Services

4.1 Process Schema Equivalence And Isomorphism

In order to be able to compare two process schemes we first provide a definition for execution
equivalence. With this we mean that one schema can simulate every executional behavior of
the other schema and vice versa. This can be roughly compared to the notion of branching
bisimularity for Petri-Net-based approaches as described in [30]. In this context, we make use
of the execution history HS which is usually maintained for each process instance of schema S.
Similarily, in [2] a notion of semantic equivalence between two workflows is defined based on the
semantic projection of their execution histories. Generally, HS logs start and end events of each
process activity and the respective read and write accesses on process data elements.

Definition 1 (Execution Equivalence Of Process Schemes) Let S(1) and S(2) be two pro-

cess schemes. S(1) and S(2) are equivalent with respect to their execution (formally: S(1) ≡execution

S(2)) iff each producible execution history H
(1)
S on S(1) can be generated on S(2) as well and vice

versa.

Based on Def. 1 we now define the notion of equivalent changes:

Definition 2 (Equivalence Of Changes) Let S be a process schema and ∆1 and ∆2 be two

changes on S. ∆i transforms S into another process schema S(i) (i = 1, 2). Then ∆1 and ∆2

13

Process Schema Level:

Process Schema Change ∆S = (insertActivity(getWeight, prepare, operate) =
(addActivity(getWeight), deleteEdge(prepare, operate),
 insertEdge(prepare, getWeight), insertEdge(getWeight, operate))

Process Instance Level:

S: S’:

Ik on S: Ik on S + biasIk(S) = S + ∆Ik

admit

advise

prepare

operate

getWeight

admit

advise

prepare

operate

getWeight

admit

advise

prepare

operate operate

advise

prepare

getWeight

Process Instance Change ∆Ik = (insertActivity(getWeight, advise, operate) =
(addActivity(getWeight), deleteEdge(advise, operate),
 insertEdge(advise, getWeight), insertEdge(getWeight, operate))

admit

advise

prepare

operategetWeight

Ik on S’ + biasIk(S’)

 NodeState: EdgeState:

 COMPLETED TRUE_SIGNALED
 ACTIVATED

getWeight

Figure 8: Partially Equivalent Changes: Inserting An Activity In A Different Context

are equivalent if S(1) and S(2) are equivalent with respect to their execution as specified in Def.

1. Formally:

∆1 ≡ ∆2 ⇐⇒ S(1) ≡execution S(2)

The important question is how to ensure execution equivalence of two process schemes S(1)

and S(2). Obviously, trying to replay all possible execution histories of process schema S(1)

on process schema S(2) and vice versa is far too expensive. Note that the determination of
all possible execution histories of a process schema would result in exponential complexity.
When surveying this question it caught our eyes that – in general – the property of execution
equivalence can be transferred to the problem of graph isomorphism (GI) [17] between two
process schema graphs S(1) and S(2), i.e., finding a bijective mapping between the nodes and
edges of two graphs. A formal definition of this property is provided in Definition 3. Note
that this definition is especially tailored for process schema graphs, i.e., the bijective mapping
between the two process schema graphs is already fixed by the labelings of the respective schema
nodes and edges.

Definition 3 (Graph Isomorphism) Let S(i) = (N (i), E(i), D(i), DataE(i)) (i = 1, 2) be two

process schema graphs with node set N (i), control edge set E(i), data element set D(i) and data

14

edge set DataE(i) ⊆ N (i)×D(i)× {read access, write access}2. Then S(1) and S(2) are isomorphic

(formally: S(1) ' S(2)) if condition (♣) holds with

(♣):

[[∃ bijective mapping f: N(1) 7→ N(2) with

(label(n) = label(f(n)) ∀ n ∈ N(1)) ∧
(∀ e= (u, v) ∈ E(1): ∃ e* = (f(u), f(v)) ∈ E(2) with label(e)= label(e*)

∧ ∀ e* = (u*, v*) ∈ E(2) ∃ e = (f−1(u*), f−1(v*))

with label(e*) = label(e))] ∧
[∃ bijective mapping g: D(1) 7→ D(2) with

(label(d) = label(g(d)) ∀ d ∈ D(1)) ∧
(∀ dE = (d, n, mode) ∈ DataE(1), n ∈ N(1):

∃ dE(2) = (g(d), g(n), mode)) ∈ DataE(2): label(dE) = label(dE*)

∧ ∀ dE* = (d*, n*, mode) ∈ DataE(2)

∃ dE = (g−1(d*), g−1(n*),mode): label(dE*) = label(dE)]]

The following theorem formally states that isomorphism between process schema graphs
implies their execution equivalence. From this, together with Def. 2, we can derive an important
perception about the relation between equivalence of changes and isomorphism of the underlying
process schema graphs.

Theorem 1 (Equivalence Of Changes And Schema Graph Isomorphism) Let S be a pro-

cess schema and ∆1 and ∆2 two change operations. ∆i transforms S into S(i) (i = 1, 2). Then

S(1) and S(2) are execution equivalent if S(1) and S(2) are isomorphic according to Def. 3 (S(1)

' S(2)). Furthermore, when applying Def. 2 we get that ∆1 and ∆2 are equivalent if S(1) and

S(2) are isomorphic. Formally:

S(1) ' S(2) =⇒ S(1) ≡execution S(2) ⇐⇒ ∆1 ≡ ∆2

2This set-based definition of process schema graphs is common. At this point, we abstract from unnecessary

details in order to not overwhelm the reader.

15

A formal proof can be found in the appendix. As an example for Theorem 1 take Fig. 1. Here
the optimized process schema S’ (schema level) and the biased execution schema S + biasI1(S)
(instance level) are isomorphic. One can claim is that, in general, there is no efficient algorithm
for detecting graph isomorphism (GI). In particular, no efficient algorithm has been found for GI
(GI lies in class NP) [17]. But there are some special graph classes for which efficient isomorphism
algorithms exist, e.g., planar graphs or graphs with bounded valence [4, 20]. As pointed out
in [17], however, for two graphs with unique vertex labeling it is trivial to find an isomorphim
between them. As it can be seen from Def. 3 this is the case for two process schema graphs since
there is always a unique labeling which is preserved during the isomorphism mapping. One way
would be to compare the adjacency matrices of both process schemes. Generally, this can be
done with complexity O(n2) if n is the number of nodes. Note that for arbitrary graphs one has
to analyze all n! permutations of the adjacency matrix. Regarding process schemes the number
of rows in the adjacency matrices depends on the number of activity nodes and the number of
data elements, i.e., |N |+ |D|. Therefore the complexity of this method results in O((|N |+ |D|)2)

In order to to avoid accidents when comparing two process schema graphs we have to code
the adjacency matrix entries with the respective edge labeling, e.g., ”c” for control egdes, ”tci”
for an edge with transition condition tci, etc. Otherwise, such an edge attribute could be changed
and anyway, the process schema graphs would be determined as isomorphic.

To our best knowledge there is no approach with lower complexity than O(|M |2) (with
M = max(|N |, |D|)) for this special problem. This could cause a performance problem if we
have to check process graph isomorphism for complex process schemes and for a large number
of process instances at runtime. Nevertheless, analyzing graph isomorphism in conjunction with
equivalent changes has yielded a formal foundation for the following considerations made for
equivalent, subsumption equivalent, partially equivalent, and different changes (cf. Table 1).

4.2 Comparing Changes

Let S be a process schema and ∆1 and ∆2 be two changes on S. ∆i transforms S into S(i) (i = 1, 2).
Intuitively, comparing S(1) and S(2) is only suitable if ∆1 and ∆2 are equivalent. As opposed
to this, directly comparing ∆i (i = 1, 2) can be applied if the respective changes are equivalent,
subsumption equivalent, partially equivalent, or different (cf. Table 1). Thereby, we assume that
∆1 and ∆2 can be mapped onto well-defined sets of change primitives ∆i = {p(∆i)

1 , . . . , p
(∆i)
n }.

Examples for such primitives include deleteEdge, insertEdge, and changeEdgeLabel3. The-
orem 2 summarizes the conditions for detecting the different kinds of change relationships (cf.
Table 1). They are based on the comparison of the change primitive sets related to ∆i (i = 1, 2).
Thereby not only the type of two change primitives has to match but also their parametrization.

3For example, in ADEPT [21] change operations are defined by sets of change primitives whereby the semantics

of the respective change operation is clearly determined.

16

Theorem 2 (Checking Change Equivalence Using Change Primitives) Let S be a pro-

cess schema and ∆1 = {p(∆1)
1 , . . . , p

(∆1)
n)} and

∆2 = {p(∆2)
1 , . . . , p

(∆2)
m)} be two changes on S. ∆i transforms S into S(i). Then:

(1) ∆1 ≡ ∆2 ⇐⇒ {p(∆1)
1 , . . . , p

(∆1)
n)} = {p(∆2)

1 , . . . , p
(∆2)
m)}

(2) ∆1 ≺ ∆2 ⇐⇒ {p(∆1)
1 , . . . , p

(∆1)
n)} ⊂ {p(∆2)

1 , . . . , p
(∆2)
m)}

(3) ∆1 ∩∆2 6= ∅ ⇐⇒ {p(∆1)
1 , . . . , p

(∆1)
n)} ∩ {p(∆2)

1 , . . . , p
(∆2)
m)} 6= ∅

(4) ∆1 and ∆2 different ⇐⇒ {p(∆1)
1 , . . . , p

(∆1)
n)} ∩ {p(∆2)

1 , . . . , p
(∆2)
m)} = ∅

The classification given in Theorem 2 exactly aligns with the classification provided in Ta-
ble 1. We omit a formal proof and present an example instead. Exemplarily for equivalent
changes (∆1 ≡ ∆2) take Fig. 1. Here the set of change primitives of schema change ∆S =
{deleteEdge(getOrder, makeInvoice), ...} exactly aligns with the set of change primitives
of instance change ∆I = {deleteEdge(getOrder, makeInvoice), ...}. Applying Theorem
2 we can conclude that ∆S and ∆I are equivalent. Fig. 8 shows an example for partially
equivalent changes (∆1 ∩∆2 6= ∅). The intersect of the change primitive sets of ∆S and ∆I re-
sults in set {addActivity(getWeight), insertEdge(getWeight, operate)}. Therefore ∆S

and ∆I are partially equivalent, but they are not subsumption equivalent since ∆S as well
as ∆I contain further change primitives (e.g., insertEdge(prepare, getWeight) for ∆S and
insertEgde(advise, getWeight) for ∆I).

5 Treatment of Semantically Conflicting Changes

In Section 4 we have described formal methods for detecting particular relations between process
schema and instance changes according to Table 1. In doing so we are able to detect possible
semantical conflicts between process schema and instance changes before they cause trouble.
The only thing still missing now is to provide strategies for the adequate treatment of conflict-
ing process schema and instance changes based on their particular relation. In Section 5.1, we
start with equivalent and subsumption equivalent changes since they enable semi-automatic or
automatic support of the modeler / designer when propagating schema changes to the instance
level. In Section 5.2, we provide a more general discussion of strategies for equivalent, subsump-
tion equivalent, partially equivalent, and different changes whereas for partially equivalent and
different changes user interaction may be required.

Let S be a process schema and let ∆S = {p(∆S)
1 , . . . , p

(∆S)
m } be a change which transforms

S into another schema S’ at time tS . Let further I1, . . . , In be a collection of biased pro-

17

cess instances derived from S with respective biases biasI1 , . . . , biasIn at time tS . To simplify
matters, we only consider one arbitrary biased instance Ik ∈ {I1, . . . , In} with bias biasIk

=

{p(biasIk
(S))

1 , . . . , p
(biasIk

(S))

l } in the following.

5.1 Realization Strategies For (Subsumption) Equivalent Changes

If ∆S and biasIk
(S) are (subsumption) equivalent, an undesired system behavior may arise from

the repeated propagation of ∆S to Ik. Note that Ik has already anticipated this change or at
least parts of it. Potential problems range from excluding Ik from migrating to S up to multiple
insertion of the same activity (see Fig. 1 and Fig. 4 for examples). Therefore, the propagation of

those parts of ∆S which lie in the intersect of {p(∆S)
1 , . . . , p

(∆S)
m } and {p(biasIk

(S))

1 , . . . , p
(biasIk

(S))

l }
may have to be avoided. In most cases only those parts of ∆S shall be propagated to Ik (and
therefore have to undergo corresponding compliance checks) which have not yet been included
in biasIk

(S). Therefore we determine that subset of ∆S = {p(∆S)
1 , . . . , p

(∆S)
m } for which the

presence of structural and state-related conflicts has to be checked when propagating ∆S to Ik,
formally:

toCheckIk
(∆S) = {p(∆S)

1 , . . . , p
(∆S)
m } ¬ {p(biasIk

(S))

1 , . . . , p
(biasIk

(S))

l }.
Trivially, this set is empty in case of equivalent changes.

The other important question refers to the bias resulting after re-linking Ik to S’, i.e.,
biasIk

(S′) ⊆ {p(biasIk
(S))

1 , . . . , p
(biasIk

(S))

l }. As mentioned in [22], it is necessary to re-link Ik

to S’; otherwise subsequent changes of S’ would have no influence on Ik any longer. Theorem 3
makes a central contribution for the treatment of (subsumption) equivalent changes and their
semantic conflicts: For (subsumption) equivalent changes it provides the set of change operations
for which structural and state compliance checks are necessary (toCheckIk

(∆S)). Additionally,
it determines the resulting bias of Ik on S’ (biasIk

(S′)).

Theorem 3 (Realization of (Partially) Equivalent Changes) Let S be a process schema

and let ∆S = {p(∆S)
1 , . . . , p

(∆S)
m } be a change which transforms S into another process schema

S’ at time tS. Let further I be a biased process instance derived from S with biasIk
(S) =

{p(biasIk
(S))

1 , . . . , p
(biasIk

(S))

l } at time tS. Then I can correctly migrate to S’ if structural and

state-related conflicts can be counted out for toCheckI(∆S). The bias resulting when re-linking

I to S’ is biasI(S′). Thereby toCheckI(∆S) and biasI(S′) can be determined as follows:

18

Case (1): ∆S ≡ biasI(S) S -∆S ≡ biasI(S) S’

I (on S + biasI(S)) I (on S’)
=⇒ toCheckI(∆S) = ∅ ∧ biasI(S′) = ∅

Case (2.1): ∆S Â biasI(S) S -∆S Â biasI(S) S’

I (on S + biasI(S)) I (on S’)
=⇒ toCheckI(∆S) = ∆S ¬ ∆I ∧ biasI(S′) = ∅

Case (2.2): ∆S ≺ biasI(S) S -∆S ≺ biasI(S) S’

I (on S + biasI(S)) I (on S’ + (biasI(S) ¬ ∆S))
=⇒ toCheckI(∆S) = ∅ ∧ biasI(S′) = biasI(S) ¬ ∆S

We omit a formal proof an present examples instead. Of particular interest are those cases
for which we obtain biasI(S′) = ∅, i.e., Case (1) with ∆S ≡ biasI(S) and Case (2.2) with
∆S ≺ biasI . Note that for these change classes an immediate re-linking to the new version can
be carried out without requiring further compliance checks. One example is depicted in Fig. 1
where ∆S , biasI1(S), and biasI2(S) are equivalent. Thus, I1 and I2 can be immediately re-linked
to S’ without any need for additional compliance checks. Another example is depicted in Fig.
6 where ∆S ≺ biasIk

applies. Here, Ik can be re-linked to S’ as well without further compliance
checks. The resulting bias of Ik on S’ is biasIk

(S′) = biasI(S) ¬ ∆S = {deleteEdge(getOrder,
makeInvoice), deleteEdge(makeInvoice, sendInvoice), ...}.

5.2 General Realization Strategies

Unfortunately, partially equivalent changes (cf. Table 1) cannot always be treated in the same
way as (subsumption) equivalent changes (see Theorem 3). Propagating only ∆S ¬ biasI(S)
(taking the necessary compliance checks into account) does not always lead to the desired result
(cf. Fig. 7).

Additionally, to detect semantical incompatibilities for different process schema and instance
changes (cf. Table 1) we have to climb a semantical higher level. Firstly, we have to formalize
the semantics of changes. Secondly, we have to state a criterion to decide whether two changes
are compliant or not regarding their semantics. Here, approaches from the area of inter-workflow
dependencies and semantical interoperability between workflows could be very interesting [5].
The same applies to planning techniques from the field of artificial intelligence [16]. Finally, for
the formalization of the semantics of changes, ontologies [28] could be very useful. Due to lack
of space we obstain from futher details here.

19

Table 2: Semantically Conflicting Changes And Conflict Resolution Strategies

∆S , biasI(S) are (1) equivalent (2) partially (3) similar (4) different
equivalent

Strategy ∆S ≡ biasI(S) (2.1) biasI(S) ≺ ∆S ∆S ∩ biasI(S) 6= ∅ ∆S ∩ biasI(S) = ∅
(2.2) biasI(S) Â ∆S

(A) try to migrate • unnecessary exclusion of biased instances from migating semantically
without checking to changed schema undesired
equivalence • multiple execution of tasks
(B) migration automatic • optimized special cases: not possible
under optimized re-linking compliance checks • multiple working
equivalence of biased • automatic of tasks (Fig. 7)
checking instances determination of • special structure
(Theo. 3) biasI(S′) after migration of S’ + biasI(S′)
(C) rolling back depends on (2.1) same as partial or complete possible but
biasI(S) instance state for ∆S ≡ biasI(S) roll-back of biasI(S) loss of

but implicitly (2.2) only correct could be desired information
contained in if I is partially if optimized
optimized rolled back s. t. method (Theo. 3)
method biasI(S)¬∆S is leads to multiple
(cf. Theo. 3) maintained task execution (Fig. 7)

(D) user defined action may be conceivable as well (e.g., Fig. 8)

Consequently, for partially equivalent as well as for different (but semantically non-compliant)
changes we have to search for other strategies than those described in Theorem 3. Of course,
also for (subsumption) equivalent process schema and instance changes alternative realization
methods are conceivable. Possible strategies are summarized in Table 2.

6 Summary and Outlook

In this paper, we have elaborated fundamental issues related to semantically conflicting process
schema and process instance changes. For the first time, we have classified semantical conflicts
by distinguishing between equivalent, subsumption equivalent, partially equivalent, and differ-
ent changes leading to these conflicts. We believe that the adequate treatment of semantically
conflicting changes is crucial for the intelligent support of process adaptations in advanced ap-
plication environments (with many users and hundreds up to thousands of long-running process
process instances). In order to enable the process management system to detect semantically
conflicting changes we have provided two different formal methods – one based on execution
equivalence of the respective process schemes, the other based on a direct comparison of the ap-
plied changes. Additionally, we have introduced sophisticated strategies to adequately deal with
semantical conflicts. Altogether, the presented concepts constitute a good basis for the adequate
treatment of semantically conflicting changes and will form a key part of process flexibility in
future adaptive process management software. Finally, we have implemented a powerful proof-

20

of-concept prototype for dynamic process changes which is presently on its way to incorporate
semantical issues as well.

The considerations made in this paper additionally show that one cannot treat the different
kinds of dynamic process changes occuring in practice in an isolated fashion only. That means
adaptive process technolgy must enable both, ad-hoc changes of individual process instances
as well as process schema changes, and it must provide a common framework for this. Unfor-
tunately, in most suggestions made in the workflow literature so far, once a process instance
has been individually modified it may no longer take part at future migrations to new process
schema versions. However, this restriction totally conflicts with the needs of real-world pro-
cesses. In order to adequately consider such requirement, from the very beginning, our work has
been accompanied by projects dealing with real-world processes (particularly from the clinical
and the engineering domain) [8, 7, 3].

Concerning adaptive process technology, we strongly believe that semantic issues constitute a
field that would benefit by a more intense study of the research community. Generally, by incor-
porating more semantics into the design, implementation, and modification of process-oriented
applications, it will become possible to support process changes at a higher semantic level and
in a more comprehensible and user-friendly way as in current adaptive process management
software. In future, we will extend our work on semantical aspects. Among other things we will
address semantic issues related to the process-oriented composition of application services (e.g.,
web services) in a plug-and-play style. In this context, the use of domain-specific ontologies
seems to be very promising. The incorporation of ontologies may also facilitate the definition of
ad-hoc changes by end users, for example concerning the dynamic plug-in (insertion) of appli-
cation components and the interconnection of their input/output parameters with process data
elements. Finally, we believe that adaptive process technologies would also benefit from the
incorporation of planning techniques from the field of artifical intelligence.

References

[1] A. Agostini and G. De Michelis. Improving flexibility of workflow management systems. In
Proc. Int’l Conf. BPM’00, LNCS 1806, pages 218–234, 2000.

[2] V. Atluri, W. Huang, and E. Bertino. A semantic based execution model for multilevel
secure workflows. Int’l Journal of Computer Security, 8(1):3–41, 2000.

[3] T. Beuter, P. Dadam, and P. Schneider. The WEP model: Adequate workflow-management
for engineering processes. In Proc. Europ. Conf. on Concurrent Engineering, Erlangen,
April 1998.

[4] H. Bunke and X. Jiang. Graph matching and similarity. In H. N. Teodorescu, D. Mlynek,
A. Kandel, and H. J. Zimmermann, editors, Proc. Intelligent Systems and Interfaces. Kluwer
Academic Publishers, 2000.

21

[5] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Semantic workflow interoperability. In Proc.
Int’l Conf. EDBT ’96, LNCS 1057, pages 443–462, Avignon, March 1996. Springer.

[6] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data and Knowledge
Engineering, 24(3):211–238, 1998.

[7] P. Dadam and M. Reichert. Towards a new dimension in clinical information processing.
In Proc. MIE2000/GMDS 2000, pages 295–301, Hannover, Sept. 2000.

[8] P. Dadam, M. Reichert, and K. Kuhn. Clinical workflows – the killer application for process-
oriented information systems? In Proc. 4th Int’l Conf. on Business Information Systems
(BIS ’00), pages 36–59, Poznan, Poland, 2000.

[9] D. Edmond and A.H.M. ter Hofstede. A reflective infrastructure for workflow adaptability.
Data and Knowledge Engineering, 34(3):271–304, 2000.

[10] C. Ellis and K. Keddara. A workflow change is a workflow. In Proc. Int’l Conf. BPM’00,
volume 1806 of LNCS, pages 516–534. Springer, 2000.

[11] C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems. In
Proc. Int’l Conf. on Org. Comp. Sys., pages 10–21, Milpitas, August 1995.

[12] A. Fent, H. Reiter, and B. Freitag. Design for change: Evolving workflow specifications in
ULTRAflow. In Proc. Int’l Conf. CAISE’02, pages 516–534, Toronto, May 2002.

[13] H. Frank and J. Eder. Equivalence transformations on statecharts. In Proc. Int’l Conf. on
Softw. Engineering. and Knowledge Engineering., pages 150–158, Chicago, July 2000.

[14] J. Herbst and D. Karagiannis. Intergrating machine learning and workflow management to
support acquisition and adaption of workflow models. In Proc. 9th Int’l DEXA’98 Work-
shop, pages 745–752, Vienna, August 1998.

[15] G. Joeris and O. Herzog. Managing evolving workflow specifications. In Proc. Int’l Conf.
CoopIS’98, pages 310–321, New York City, August 1998.

[16] M. Klein, C. Dellaroca, and A. Bernstein. Towards adaptive workflow systems. In Int’l
CSCW-98 Workshop, Seattle, Nov. 1998.

[17] J. Köbler, U. Schöning, and J. Toran. The Graph Isomorphism Problem: Its Structural
Complexity. Birkhäuser Verlag, Boston, 1993.

[18] K. Kochut, J. Arnold, A. Sheth, J. Miller, E. Kraemer, B. Arpinar, and J. Cardoso. In-
telliGEN: A distributed workflow system for discovering protein-protein interactions. Dis-
tributed and Parallel Databases, 13:43–72, 2003.

[19] M. Kradolfer and A. Geppert. Dynamic workflow schema evolution based on workflow
type versioning and workflow migration. In Proc. CoopIS ’99, pages 104–114, Edinburgh,
September 1999.

22

[20] E. Luks. Isomorphism of graphs of bounded valance can be tested in polynomial time.
Journal of Computer und System Science, 25(1):42–65, 1982.

[21] M. Reichert and P. Dadam. ADEPTflex - supporting dynamic changes of workflows without
losing control. Journal of Intelligent Inf. Syst., 10(2):93–129, 1998.

[22] M. Reichert, S. Rinderle, and P. Dadam. A formal framework for workflow type and instance
changes under correctness constraints. Technical Report UIB-2003-01, University of Ulm,
Computer Science Faculty, April 2003.

[23] S. Rinderle, M. Reichert, and P. Dadam. Evaluation of correctness criteria for dynamic
workflow changes. In Proc. Int’l Conf. on Business Process Management (BPM ’03), LNCS
2678, pages 41–57, Eindhoven, June 2003.

[24] C. Rolland. A comprehensive view of process engineering. In Proc. Int’l Conf. CAiSE ’98,
LNCS 1413, pages 1–24, Pisa, June 1998. Springer.

[25] S. Sadiq, O. Marjanovic, and M. Orlowska. Managing change and time in dynamic workflow
processes. Int’l Journal of Coop. Inf. Syst., 9(1&2):93–116, 2000.

[26] S. Sadiq and M. Orlowska. Dynamic modification of workflows. Technical Report 442,
Department of Computer Science and Electrical Engineering, University of Queensland,
Brisbane, Australia, October 1998.

[27] S. Sadiq and M. Orlowska. Architectural considerations in systems supporting dynamic
workflow modification. In Proc. Workshop Software Architectures for Business Process
Management, Heidelberg, June 1999.

[28] R. Studer, V.R. Benjamins, and D. Fensel. Knowledge engineering: Principles and methods.
Int’l Journal of Data and Knowledge Engineering, 25(1-2):161–197, 1998.

[29] W.M.P. van der Aalst. Exterminating the dynamic change bug: A concrete approach to
support worfklow change. Information Systems Frontiers, 3(3):297–317, 2001.

[30] W.M.P van der Aalst and T. Basten. Inheritance of workflows: An approach to tackling
problems related to change. Theoretical Computer Science, 270(1-2):125–203, 2002.

[31] J. Wäsch and W. Klas. History merging as a mechanism for concurrency control in co-
operative environments. In Proc. RIDE’96 Workshop, pages 76–85, New Orleans, Feb.
1996.

[32] M. Weske. Flexible modeling and execution of workflow activities. In Proc. 31st Int’l Conf.
on System Sciences, pages 713–722, Hawaii, 1998.

[33] M. Weske. Formal foundation and conceptual design of dynamic adaptations in a workflow
management system. In Proc. 34th Hawaii Int’l Conf. on System Sciences (HICSS-34), Los
Alamitos, 2001.

23

Proof: Theorem 1:

In the following, for process schema S let ΩS comprise all producable execution histories on S.

Proposition: S(1) ' S(2) =⇒ S(1) ≡execution S(2)

We show this by induction over the length k of an arbitrary execution history HS(i) =<
e1, . . . , ek > ∈ ΩS(i) (i = 1, 2) with ej ∈ {START(label(a)), END(label(a))}; j = 1, . . . , k; a ∈
N (i).

Inductive Assumption (IA):
S(1) ' S(2) =⇒ ∀ HS(1) = < e1, ...ek > ∈ ΩS(1) : HS(1) ∈ ΩS(2) ,
i.e., HS(1) can be produced on S(2) as well.

Note that we restrict our considerations to the direction from S(1) to S(2). Trivially, the reverse
direction – ∀ HS(2) = < e1, e2, ...ek > ∈ ΩS(2) : HS(2) ∈ ΩS(1) – can be proven analogously.

Inductive Beginning (IB):
HS(1) = < e1 > ∈ ΩS(1) with e1 = START(label(a))

With condition (♣) from Def. 3 it follows that there is an image activity f(a) ∈ N (2) (N (2)

denotes the node set of S(2)) with label(f(a)) = label(a). Since activity ”a” has written the first
entry into HS(1) it must be a start activity of S(1), i.e., a node without incoming control edges.
With (♣) from Def. 3 it directly follows that the image f(a) ∈ N (2) in S(2) has no incoming
control edges as well (edge order preserving property). Consequently, activity execution order
given by HS(1) can be produced on S(2) as well.

However, we still have to care about the possible read accesses produced by activity ”a”. Due
to e1 = START(label(a)) activity ”a” was already started, i.e., it has already read the set of process
data elements D

(1)
a ⊆ D(1) to which it is linked via a set of read data edges DataE

(1)
a ⊆ DataE(1).

With (♣) from Def. 3 it follows: ∀dj ∈ D
(1)
a : ∃ g(dj) ∈ D

(2)
a with label(dj) = label(g(dj)) ∧

∀dEi ∈ DataE
(1)
a : ∃ g(dEi) ∈ DataE

(2)
a with label(dEi) = label(g(dEi)). Consequently, all

entries produced by read data accesses of a in HS(1) can be produced on S(2) as well.

Inductive Step (IS): HS(1) = < e1, e2, ..., ek, ek+1 > ∈ ΩS(1)

Let a ∈ N (1) be the activity which has written entry ek into HS(1) and let ã ∈ N (1) be the
activity which has written ek+1 into HS(1) .

Due to (IA) it follows that H ′
S(1) < e1, e2, ..., ek > ∈ ΩS(2) . Now we analyze the order relation

beween activities a and ã regarding S(1).

Case 1: a = ã =⇒ ek = START(a) ∧ ek+1 = END(a) (*)

Taking (IA) and (*), trivially, HS(1) ∈ ΩS(2) holds.

Case 2: a 6= ã

24

For this case, activity a is either a direct predecessor of ã or a and ã are ordered in parallel
regarding schema S(1).

Case 2.1: a is a direct predecessor of ã

With (♣) from Def. 3 it follows:
∃ f(a), f(ã) in N (2) with: f(a) is a direct predecessor of f(ã) . For this case, it directly follows
that HS(1) ∈ ΩS(2) holds.

Case 2.2: a and ã are ordered in parallel

With (♣) from Def. 3 it follows:
∃ f(a), f(ã) in N (2) with: f(a) and f(ã) are ordered in parallel . For this case, trivially, HS(1)

∈ ΩS(2) holds.

However, we still have to care about the possible read and write data accesses produced by
activity ã. In doing so, we distinguish between the following cases:

Case 1: ek+1 = START(label(ã))

Activity ã has read the set of process data elements D
(1)
ã ⊆ D(1) to which it is linked via a set

of read data edges DataE
(1)
ã ⊆ DataE(1). With (♣) from Def. 3 it follows:

∀dj ∈ D
(1)
ã : ∃ g(dj) ∈ D

(2)
ã with label(g(dj)) = label(dj)

∧ ∀dEi ∈ DataE
(1)
ã : ∃ g(dEi) ∈ DataE

(2)
ã with label(g(dEi)) = label(dEi)

Case 2: ek+1 = END(label(ã))

Since ã has been already completed, there were write data accesses of ã on a set of data elements
D

(1)
ã ⊆ D(1). For them we can argue analogously to read data accesses in Case 1.

25

