

 ADEPTflex –

 Supporting Dynamic Changes of Workflows

 Without Loosing Control

 Manfred Reichert

 Peter Dadam

 University of Ulm

 Technical Report No. 97-07

 Ulmer Informatik-Berichte

 April 1997

 ADEPTflex –

 Supporting Dynamic Changes of Workflows

 Without Loosing Control

 Manfred Reichert, Peter Dadam

 University of Ulm

 Abteilung Datenbanken und Informationssysteme

 D-89069 Ulm, Germany

 e-mail: {reichert,dadam}@informatik.uni-ulm.de

 Abstract

 Current process-oriented workflow technology is only applicable in a secure and reliable

manner if the business process (BP) to be supported is well-structured and there is no need

for dynamic extensions or ad hoc deviations at runtime. As only few BPs are statically in this

sense, this limits the applicability of today's workflow management systems (WFMSs)

significantly. On the other hand, to support deviations from the premodelled task sequences

at runtime should not mean that the responsibility for the avoidance of consistency

problems (e.g., unintended lost updates) or even runtime errors (e.g., program crashes due

to the invocation of task modules with invalid or missing parameters) is now completely

shifted to the (naive) end user. Instead, a formal foundation must be established that allows

the runtime system to decide whether an intended deviation can be handled in a proper and

secure manner.

 In this paper we present a conceptual and operational framework for the support of dynamic

structural changes of workflows (WFs) in WFMSs. Based upon a simple WF model

(ADEPT) we define a complete and minimal set of change operations (ADEPTflex) that

support users in modifying the structure of WFs at runtime, while maintaining their

correctness and consistency. Correctness properties defined by the ADEPT model are used

to determine whether a specific change can be applied to a given WF or not. If these

properties are violated the change is either rejected or the correctness must be restored by

handling the exceptions resulting from the change. Further, we discuss basic issues with

respect to the management of changes and the undoing of temporary changes when

backward operations are applied. The change facilities presented in this paper will form a

key part of process flexibility in future WFMSs.

 Keywords: Flexible WFMSs, Dynamic Change, Adaptive Workflows, Ad hoc Workflows,

Exception Handling

 1

1 Introduction

 Process-oriented workflow management systems (WFMSs) [GHS95, Hsu95, LeAl94] offer a

promising approach for the development of business applications which directly follow the

execution logic of the underlying business process (BP). The separation of the application’s

control structures from the implementation of its task programs contributes to simplify and to

fasten application development and enables the runtime system to assist users in

coordinating and scheduling the tasks of a BP.

 Current process-oriented WFMSs, however, are only applicable in a reliable and secure

manner if the BP to be supported is well-structured and there is no need for ad hoc

deviations or dynamic extensions at runtime [BaWa95, BlNu95, EKR95, ElNu93, Sie96]. As

only few BPs are statically in this sense, this limits the benefit and the applicability of

workflow (WF) technology significantly. As an example, consider BPs from the clinical

domain [e.g., Mey96], where it is often not convenient and cost effective to capture all

possible task sequences in advance. There are several reasons for this: firstly, there are

many WFs whose planning and execution overlap (dynamically evolving WF) or which are

completely specified at runtime (ad hoc WF). Secondly, unplanned events and exceptions

frequently occur leading to ad hoc deviations from the preplanned WFs. Exceptions cover

cases such as requests to deviate from standard processes due to an external event

(e.g., in case of an acute emergency), failed tasks (e.g., when prerequisites for a medical

intervention are violated), incomplete or erroneous information in task inputs and outputs

(e.g., incomplete medical orders), or situations that arise from mismatches between the real

processes within the organization and their computerized counterparts (e.g., due to in-

complete or faulty WF specifications or due to organizational changes) [StMi95, Mey96].

Since WF designers are generally not capable to predict all possible exceptions and events

beforehand and to capture them in the design of a WF [StMi95], the runtime system does

not always have sufficient knowledge to handle these situations alone. Instead human

involvement with the runtime system becomes necessary to resolve exceptions resp. to deal

with unplanned events. Hence the resulting requirements are far more challenging than

those faced by standard transaction technology and current advanced transaction models

[WoSh97, Elm92].

 A basic step towards more flexibility is the effective and efficient support of ad hoc

modifications and well-aimed extensions of processes during their execution. So a WFMS

must provide functions for adding or deleting tasks resp. task blocks and for changing pre-

defined task sequences, e.g., by allowing users to skip tasks with or without finishing them

later, to work on tasks although the conditions for their execution are not yet completely

satisfied, or to serialize two tasks that were previously allowed to run in parallel. Ad hoc

changes may also concern single attributes of a WF object (e.g., a task). Examples are the

reassignement of a task or the modification of a task’s deadline. As these changes are less

critical to handle than structural changes, we do not consider them further in this paper.

 2

1.1 Problem Description

 To allow users to deviate from premodelled task sequences of a WF at runtime is a two-

edge sword. On the one hand, it captures the natural freedom of humans to work on a

process and to deal with exceptional situations and unplanned events. On the other hand,

unrestricted changes to the structure of a long-running program – possibly in the midst of its

execution – makes it difficult to have the system behave in a predictable and reliable

manner. For this reason, supporting dynamic structural changes should not mean that the

responsibility for the avoidance of consistency problems or even runtime errors is now

completely shifted to the (naive) end user or to the application programmer. Instead, a clear

theoretical basis and correctness criteria must be established which enable the runtime

system to reason about the correctness of a requested change and to assist users in

managing it in a proper and secure manner.

 First of all, this requires that all types of structural dependencies between tasks

(e.g., control, data and temporal dependencies) are taken into consideration when the WF

is restructured. Otherwise, changes such as the deletion or the addition of a task, for

example, may cause severe inconsistencies (e.g., unintended lost updates) or even

program crashes (e.g., invocation of task modules with invalid or missing parameters).

Changes must consider the state of the WF resp. its tasks, too. For example, users should

not be allowed to delete a task or to change its attributes, if it has already been completed.

Convenient rules which should not appear as too restrictive to users must be defined in

order to avoid an improper and uncontrolled use of change operations. Finally, for security

reasons it must be possible to restrict the use of change operations to selected users (resp.

roles), to specific process types resp. regions of a process graph (e.g., a single task), to

certain states of a process, or to any combination of them.

 Normally, several instances of a specific process type are active at the same time. As

changes of different kinds may be applied to the individual processes during their

execution, several issues must be addressed. First of all, process instances of the same

type (i.e., the same starting schema) may have to be represented by different execution

graphs. Secondly the runtime system must manage changes of different nature concerning

their durability. This is especially important for long-running processes where applied

changes may be permanent or temporary. Permanent changes must be preserved until

completion of the process. By contrast, temporary changes may have to be undone if the

control of the process is passed back to a previous point of control (e.g., when a loop enters

a new iteration). Consequently a technical challenge is how to represent these different type

of changes at the system level and how to undo temporary changes in a proper and secure

manner. This requires sophisticated mechanisms for change management and a close inte-

gration of change operations with other core services of the WFMS. Finally, requested

changes should be made "on the fly" without loss of runtime performance and without

disturbing process participants not actively involved in the change.

 In summary, dynamic structural changes represent serious interventions into the control of a

process which cannot be handled without extensive system support. In providing

operational support for dynamic changes, whether used by the WF administrator or, in

 3

some form, the process participants, it is crucial that these facilities will be manageable and

usable in a proper and secure manner.

1.2 Contribution of this Paper

 In this paper we present a conceptual and operational framework for the support of dynamic

structural changes of WFs in WFMSs. Basic to our approach is a conceptual, graph-based

WF model (ADEPT1) which has a formal foundation in its syntax and (operational)

semantics. Based upon this model we develop a complete and minimal set of change

operations which support users in modifying the structure of WFs at runtime, while

preserving their correctness and consistency (ADEPTflex). If a change leads to the violation

of correctness properties, it is either rejected or the correctness of the process graph

(e.g., concerning the flow of data) must be restored by handling the exceptions resulting

from the change (possibly leading to concomitant changes). We further show how

temporary and permanent changes are managed at the system level and which precautions

must be made in order to enable the runtime system to undo temporary changes in case of

backward operations.

 The contribution of this paper is demonstrating the principle feasability of our approach and

to give some insights into fundamental research issues related to the dynamic change

problem. This includes the following three results:

• we demonstrate the suitability of our WF model for WF specification and for the efficient

support of dynamic structural changes

• we show how even complex, dynamic structural changes can be applied to a WF during

its execution and which precautions must be made to do this in a secure and reliable

manner

• we discuss technical challenges and possible solutions concerning the management of

temporary as well as permanent changes

 At this point we have a prototype running that supports the basic concepts and the change

operations presented in the following. For the rest of the paper we concentrate on ad hoc

changes and dynamic extensions applied to individual WF instances at runtime. We do not

explicitly consider changes at the schema level and their propagation to processes whose

execution started with the old schema [cmp. CCP96, EKR95]. However, many of the

presented concepts can be applied to this type of change, too.

 Section 2 gives an overview of the ADEPT WF model. In section 3 we present a complete

and minimal set of change operations which can be used to modify the structure of a WF

during its execution. Section 4 addresses issues concerning the management of changes

and their undoing in case of backward operations. Section 5 discusses related work. We

conclude with a summary, an overview of related issues not addressed within this paper

and an outlook on future work in section 6.

 1 ADEPT stands for Application Development Based on Encapsulated Premodeled Process Templates

 4

2 Fundamentals of the ADEPT Workflow Model

 A variety of WF models and WF description languages have been discussed in the

literature [CKO92]. Some of them are based on formal models such as high level petri nets

[DGS94, ElNu93, EKR95, KHK91, LeAl94], state- and activitycharts [WoWe97], temporal

logics [MaPn92, Att93], or process algebras [Henn89], for example. One strength of these

approaches lies in the offered formalisms for specifying, analysing and verifying the

properties of static process structures, e.g., regarding state transitions, deadlocks, reach-

ability of tasks resp. states, and so on. Mechanisms for modifying these structures at

runtime, however, are missing for the most part [EKR95].

 To support dynamic structural changes we plead for the use of a formal model, too. For

several reasons, we do not believe that the general-purpose models mentioned above do

build the right basis for this. Firstly, their generality makes debugging and testing of large,

complex processes extremely costly [HOR96, HsKl96, SGJ96], which may cause a signifi-

cant overhead when complex structural changes become necessary during runtime.

Secondly, to effectively support users – possibly non-computer experts – in performing

structural changes at runtime, a WF model must allow an intuitive and structured

representation of a BP, which is hardly to achieve with these models.

 The ADEPT workflow model presented in this section follows a more structured approach.

Essential for the specification and the execution of WFs is the concept of symmetrical

control structures, which is well-known from structured programming languages [cmp.

Rein93]: task sequences, branchings (with different execution semantics) and loop backs

are specified as "symmetrical blocks" with well-defined start and end nodes. These blocks

may be arbitrarily nested, but are not allowed to overlap (i.e., the nesting must be regular).

In addition, ADEPT provides support for the synchronization of tasks from parallel branches.

The use of symmetrical control structures provides the basis for the syntax-driven design of

a BP [Kir96] and for the efficient analysis of its flow of control and data [Hen97]. The latter

aspect is crucial for the support of complex ad hoc changes during runtime. So ADEPT

offers a good compromise for the trade-off between the expressive power of a WF model

and the complexity of model checking. A detailed description of the ADEPT model is

beyond the scope of this paper. Due to lack of space we restrict our considerations to the

concepts and correctness properties provided for the specification of the control and data

flow of a process. Other important aspects, e.g., the modeling of temporal and

organizational aspects and their interplay with dynamic changes are described in

[Gri97, Hen97, Kir96, Mey96, Rei97].

2.1 Workflow Modeling

 In this section we (informally) introduce the basic concepts offered by ADEPT for the

modeling of a WF schema. Such a schema comprises a set of tasks and control resp. data

dependencies between them. We restrict our considerations to simple tasks, i.e., activities

which cannot be further divided and whose execution is requested by external (not

necessarily human) agents.

 5

 Flow of Control

 First of all, we represent a WF schema as as a directed, structured graph (N, E), where

tasks are abstracted as a set of nodes N (of different types NT) and control dependencies

between them as a set of directed edges E (of different types ET). The use of nodes and

edges has to meet the restrictions defined by the control structures presented in the

following.

 Each WF schema has a unique start node (NT = STARTFLOW) and a unique end node

(NT = ENDFLOW). The start node has no predecessor and the end node no successor. All

other nodes from N must be preceded and succeded by at least one node in the graph.

 The sequential execution of two tasks is modelled by connecting them with a control edge

(ET = CONTROL_E). The modeling of branches is depicted in figure 1. Branches start with

a split node and are synchronized symmetrically at a unique join node. ADEPT supports

three types of branching: parallel processing (n-of-n split / n-of-n join), conditional routing

(1-of-n split / 1-of-n-join) and parallel branching with final selection (n-of-n-split / 1-of-n-

join)2. The routing decision of a conditional branching may either be value-based3 or is

made by users. In the latter case all successors of the split node are triggered when it fires.

As soon as one of them is selected for execution, however, the work items of the others are

removed from the corresponding worklists. This allows us to model situations, where

multiple tasks are activiated, but only one of them may be executed. Parallel branchings

with final selection have the following execution semantics: when the split node fires, all

successor branches are triggered and can be worked on concurrently. In contrast to parallel

processings, the flow may proceed at the join node as soon as one of its predecessors

terminates. Depending on their current state the tasks of the other branches are then

removed from the corresponding worklists, aborted or undone. Undoing a branch does not

necessarily lead to the execution of compensation tasks [cmp. Kir96]. In any case, the

corresponding tasks are reset in their state (cmp. section 2.2) and their effects on data

 2 In this paper we omit m-of-n-splits found in many WF models. The necessary extensions are described in
[Rei97].

 3 The branch to be selected is determined by the value of a data element (decision parameter DP) which must
be written by a preceding task. The outgoing edges of the split node S are associated with different selection
codes (SC). When S fires, the edge whose SC corresponds to the value of DP is signaled as TRUE, while the
other edges are signaled as FALSE. In order to guarantee the progress of the flow, a default edge must be
specified which is signaled if none of the specified SCs corresponds to DP.

n-of-n-
split

1-of-n-
join

1-of-n-
split

n-of-n-
join

A

B1

B3

C A

B1

B3

C

a) b)

A

B1

B2

B3

C

c)

B2 B2

 Figure 1: Branchings in ADEPT: the execution semantics of the branching shown in c) is as follows: after the
completion of A its outgoing edges are signaled. This, in turn, triggers the execution of B1, B2 and B3. As soon
as one of these tasks completes, the others are removed from the corresponding worklists, aborted or undone
and C is triggered.

 6

elements (e.g., write operations) of the WF are undone. By the use of this type of

branching, for instance, the WF designer is able to premodel "shortcuts" in the flow of

control. When a user follows such a shortcut during runtime, the system deals with skipped

steps. As an important extension we also allow that first of all more than one branch may

complete. In this case the "winner" branch must be selected by an authorized user before

the flow can proceed.

 Up to now we have only considered acyclic process graphs. The repetitive execution of a

set of tasks can be modelled by the use of loops. Like branchings a loop corresponds to a

symmetrical block with a unique start node (NT = STARTLOOP) and a unique end node

(NT = ENDLOOP), which are connected by a loop edge (ET = LOOP_E). In addition, the

end node is associated with a loop condition, which is evaluated each time the end node is

triggered. As we will see in section 4, the use of loops raises some challenging issues with

respect to exception handling and dynamic structural changes. For example, when a task is

inserted into the body of a loop, it must be clear whether this insertion is only valid for the

current iteration (temporary change) or for following iterations, too.

 To handle task failures at the modeling level, ADEPT provides a second type of backward

edge (ET = FAILURE_E): a failure edge f links a task nfailure with a preceding node nrestart. If

the execution of the task nfailure fails, the edge f is signaled. As a consequence, all nodes

succeeding nrestart (incl. nrestart) and preceding nfailure (incl. nfailure) in the flow of control are

reset to their initial state. In contrast to loop edges, the effects of the corresponding tasks

on data elements of the WF (see below) are undone. Afterwards the flow proceeds with the

execution of nrestart. The symmetrical structuring and the regular nesting of control structures

do not apply to failure edges as a task may have multiple outgoing failure edges, possibly

linking it with nodes from different branches of a parallel branching. To achieve a well-

defined semantics for the use of failure edges, we further require that if nrestart is contained

within the body of a loop (resp. within a branch of a branching with 1-of-n join) the node

nfailure must be contained within the same loop body (resp. branch). As the use of failure

edges is therefore not always possible in conjunction with these control structures, we

support the dynamic rollback of a WF, too. Generally, a process resp. a process region may

be reset to the state it had before a certain task entered its i.th iteration [cmp. Hen97].

 The expressive power of the control structures presented so far is not sufficient for the

modeling of WFs with long-running, concurrent executions. To be able to synchronize tasks

from different branches of a parallel processing two types of synchronization edges (sync

edges) are supported:

• A "soft" synchronization n1 →SOFT n2 (ET = SOFT_SYNC_E) can be used to specifiy a

delay dependency between the two tasks n1 and n2: n2 may only be executed if n1 is

either completed or if it cannot be triggered anymore. This type of synchronization does

therefore not necessarily require the successful completion of n1. An example is given in

figure 2, where H is triggered when G is completed and E is either completed or skipped

(i.e., the corresponding branch is not selected for execution).

 7

• On the other hand, a "strict" synchronization n1 →STRICT n2 (ET = STRICT_SYNC_E)

between n1 and n2 requires that n1 must be successfully completed before n2 is allowed

to start. A strict synchronization may be used to synchronize tasks from branches of a

parallel branching with final selection with tasks from branches of a conditional routing.4

 The use of sync edges has to meet certain constraints in order to avoid redundant control

dependencies between tasks, cycles, or even termination problems of the WF. In any case,

only nodes from different branches of a parallel processing (with n-of-n join) may be

synchronized by the use of sync edges. Furthermore, a sync edge may not connect a node

from inside a loop body B with a node not contained within B. A detailed presentation of

these constraints and algorithms for their validation can be found in [Rei97].

 Flow of Data

 The input and output data of a WF schema resp. its tasks and the flow of data between

tasks are an important functional view of the system. Nevertheless, the modeling of the data

flow and the exchange of data between the tasks of a WF are often poorly supported in

WFMSs [SGJ96]. This does not only leave significant complexity to application developers,

but it also makes it impossible to provide system support for verifying the correctness of the

data flow resp. for adjusting it when dynamic structural changes are applied to a WF. In

ADEPT the exchange of data between tasks is based on global WF variables. A WF

schema P is associated with a set of data elements D, where each element d ∈ D has a

unique identifier idd and a domain domd. The data flow between tasks is defined by

connecting their input resp. output parameters with elements from D. For simplification, the

input (resp. output) data of P are logically treated as the output (resp. input) data of its start

(resp. end) node.

 In practice, there are often great differences in the format and in the representation of data

which is the output of one task and the input to another. To relieve task programmers from

performing the necessary adjustments within task implementations, each task n ∈ N can be

associated with a set of auxiliary services Sn. The execution of these services is closely

 4 As an example assume that n1 belongs to a branch B of a conditional routing and n2 to a branch of a parallel
branching with final selection. Then n2 won't be triggered, if B is not selected for execution.

NT = STARTFLOW NT = ENDFLOW

NT: node type

ET: edge type

Loop Condition C*
ET = SOFT_SYNC_E

B

C

G

E

H

F

I

D

A

NT = STARTLOOP NT = ENDLOOP

ET = LOOP_E

J

 Figure 2: Workflows are modelled by the use of symmetrical control structures. In addition, the
execution of tasks from different branches can be synchronized by the use of sync edges.

 8

connected to the execution of the task. An auxiliary service s ∈ Sn:= Sn
prec ∪ Sn

succ is either

triggered when n is started (s ∈ Sn
prec) or when it is terminated (s ∈ Sn

succ) and does there-

fore not appear as a separate work item in any worklist. Services from the set Sn
prec may

also be used to request input data for a task from the user initiating it, which has turned out

to be quite important in our context (see section 3). Furthermore, a task n (resp. the

program associated with it) is only allowed to be executed after all services from Sn
prec have

been successfully completed. On the other hand, if a task fails resp. is undone the effects

of its associated services on data elements are undone, too. Formally:

Definition 1 (Data Flow Schema): Let (N,E) be the control flow graph of a WF schema P and let

D denote the finite set of data elements associated with P. Let further

Pars(X): = InPars(X) ∪ OutPars(X) denote the set of input and output parameters associated with

the task resp. the service X.

A data link df between a parameter pardf and a data element ddf is described by the 4-tuple:

df = (ddf, ndf, pardf, access_modedf) with

ddf ∈∈ D, ndf ∈∈ N ∪∪ S (S:= Sn

n N∈
U), pardf ∈∈ Pars(ndf), access_modedf ∈∈ {read, write}

The set of all data links DF, connecting task resp. service parameters with global data elements,

is called the data flow schema of P.

 Note that the read resp. write access of services from S form a part of the data flow schema

of P. The intuitive meaning of a data link (d, n, p, read) ∈ DF is that the value of the input

parameter p ∈ InPars(n) is read from the data element d when n is started. In contrast, the

link (d, n, p, write) indicates that the value of the output parameter p ∈ OutPars(n) is written

into d after the (successful) completion of n. An example for a simple data flow schema is

depicted in figure 3. In section 2.3 we indroduce a set of properties defining a valid data

flow schema DF. These properties constitute the basis for detecting possible exceptions re-

sulting from a change and for adjusting the data flow schema when the WF is restructured.

 With respect to the management of data elements we follow an approach similar to that

presented in [ReSc95]. When a task (resp. an associated service) updates a data element

d its current value is not overwritten. Instead a new version is generated which may be

accessed by succeeding tasks resp. services. This does not only allow us to restore

par5

d data element

data-link

ET = SOFT_SYNC_E

B

F

D

G

E

H

C

NT = STARTFLOW NT = ENDFLOW

d1 d2 d3

NT: node type

ET: edge type

input?

DF = {
(d1, STARTFLOW, par1, write),
(d1, B, par2, read), (d1, C, par3, write),
(d2, B, par4, write), (d3, C, par5, write),
(d3, D, par6, write), (d3, H, par7, read),
(d3, ENDFLOW, par8, read)
}

par2

par3
par7

par1

par4

par6

par8

 Figure 3: Example of a simple data flow schema DF. Note, that the output parameter (input parameter) of the
start node (end node) corresponds to the input parameter (output parameter) of the WF.

 9

previous values of data elements in the case of a partial rollback with forward recovery, but

it also makes it possible for tasks from different branches of a parallel processing (with

1-of-n resp. n-of-n synchronizations) to work on different copies of the same data element

d. As an example, assume that in figure 3 the task G has read access to the data element

d1. Although task C may write d1 before G is started, this value would not be visible to G. G

may only access the value of d1 written by the start node of the flow. Generally, a task may

only read those values of a data element which have been written by a task resp. service

preceding it in the flow of control [cmp. Bla96, Hen97].

 In summary, a WF schema P is described by a 5-tuple (N, E, S, D, DF), with finite and non

empty sets N of tasks and E of directed edges between them. S denotes the set of services

preceding resp. succeeding the execution of tasks. Furthermore D denotes the set of data

elements and DF defines the set of data links, connecting task resp. service parameters

with elements from D.

2.2 Workflow Execution

The state of a WF instance (i.e., the enactment of a WF schema) is one of the major criteria

for deciding whether a specific structural change may be applied to it or not. As an example

consider the deletion of a task which should not be allowed if the task has aready been

completed. Furthermore after a structural change has been performed on a process graph,

concomitant changes to the states of its nodes resp. edges may become necessary to

proceed with the flow of control. The state of a newly inserted task, for instance, may have

to be changed depending on the states of its predecessors (cmp. section 3).

 The ADEPT WF model is based on a well-defined operational semantics to support this.

The state of a WF instance pi is defined by the current state of the nodes and edges of its

execution graph, the values stored for its data elements (possibly in different versions) and

relevant information regarding its execution history. The state of a single task n is described

by the current state NSn of its node (NSn ∈ {NOT_ACTIVATED, ACTIVATED, RUNNING,

COMPLETED, FAILED, SKIPPED}), the total number Itn of its previous executions and

relevant information on these executions. Finally, each edge e of the execution graph is in

one of the states ESe ∈ {NOT_SIGNALED, FALSE_SIGNALED, TRUE_SIGNALED}.

When a WF instance pi is created, first of all, the graph of its starting schema

(N, E, S, D, DF) is initialized. The state of all nodes is set to NOT_ACTIVATED and the

state of edges to NOT_SIGNALED. Furthermore the input data of pi are stored in the

corresponding data elements, i.e., elements from the set

{d ∈ D | ∃ df ∈ DF: ndf = STARTFLOW ∧ access_modedf = write} ⊆ D.

When pi is started, the start node of the graph is marked as COMPLETED and its outgoing

control edge is set to the state TRUE_SIGNALED.

 10

Each time an edge n1 → n2 (of arbitrary type) is signaled the state of its destination node n2

is reevaluated according to the execution rules defined by the ADEPT model. Executions

rules define the conditions under which a node may be activated (i.e., routed to the corres-

ponding worklists). If the destination node n2 has the input firing behavior Vin(n2) = n-of-n, for

instance, it is set to the state ACTIVATED in case it meets the following conditions: n2 is in

the state NOT_ACTIVATED and all ingoing control edges (ET = CONTROL_E) are in the

state TRUE_SIGNALED. Furthermore all sync edges n →STRICT n2, n ∈ N with

ET = STRICT_SYNC_E must be signaled as TRUE and all sync edges n →SOFT n2, n ∈ N

with ET = SOFT_SYNC_E must be signaled as either TRUE or FALSE. On the other hand,

n2 is skipped if at least one of its ingoing control edges is signaled as FALSE.

Corresponding execution rules exist for all node types (e.g., start resp. end nodes of loops).

On the other hand, the completion resp. skipping of a node leads to the signaling of its out-

going edges. Upon the successful completion of a task n with output firing behavior

Vout(n) = n-of-n, for instance, its outgoing control and sync edges are signaled as TRUE.

This in turn, may trigger the execution of other tasks, and so on. On the other hand, if a task

is skipped its outgoing edges are signaled as FALSE. The marking of edges follows well-

defined signaling rules, which are based on the operational semantics defined for the

different control structures of the ADEPT model.

We omit a detailed presentation of these rules and present two examples instead. Figure 4

shows the application of execution and signaling rules in conjunction with loops.

As a second example consider figure 5. Assume that upon receiving a node termination

event from B its outgoing control edge B → C is signaled as TRUE and the edge B → D as

FALSE. This, in turn, leads to the revaluation of the nodes C and D which are activated

resp. skipped. After D is skipped its outgoing control and sync edges are signaled as

FALSE. Consequently the state of G is reevaluated and set to ACTIVATED (fig. 5b).

ü

NS = ACTIVATED

ES = TRUE_SIGNALED

NS = COMPLETED

ES = FALSE_SIGNALED

DC E

FA

Loop Condition C*

NT = STARTLOOP NT = ENDLOOP

ET = LOOP_E

B
ü ü

ü ü ü

a)

ü ü

DC E

FA

Loop Condition C*

B
ü ü

ü

b) NT : node type

ET : node type

 Figure 4: Execution semantics of a loop. After E was completed and the loop condition C* was evaluated to
TRUE the loop edge is signaled (fig. a). This, in turn, triggers the execution of the start node of the loop,
whereupon the state of all nodes and edges of the loop body (incl. the loop's end node and the loop edge) are
reset and C is triggered (fig. b).

 11

Finally, a WF instance terminates when the ingoing control edge of its end node is signaled.

As we will show in section 3, the presented execution and signaling rules are fundamental

for the reevaluation of the state of a process graph after structural changes have been

applied to it.

2.3 Correctness and Consistency Properties

 As motivated in section 1, formal criteria are needed to enable the runtime system to decide

whether a structural change can be applied to a WF resp. to identify the exceptions

resulting from the change. In this section we give an overview of some of the correctness

criteria defined by ADEPT. We focus on the flow of data. Properties regarding the

correctness of the control flow are sketched at the end of this section.

 Flow of Data

 In the following we assume that for the correct execution of an action A (i.e., a task resp. an

auxiliary service associated with the execution of a task) all input parameters must be

supplied and that after its successful completion all output parameters are written. ADEPT

imposes a set of restrictions which govern the nature of a correct data flow schema DF. For

each data link df (cmp. definition 1) the domains of ddf and pardf must be type compatible. In

addition, each input resp. output parameter of an action must appear in exactly one data

link df ∈ DF with access_modedf = read resp. write. In order to avoid the invocation of

actions with missing input data the following restriction has to be added:

Rule DF-1: Let (N, E, S, D, DF) be the schema of a workflow P. For n ∈ N ∪ S let Vn

denote the set of all valid action sets (incl. elements from N as well as from S) whose

elements precede n in the flow of control and are completed before n is started. For n ∈ N

∪ S, d ∈ D we then require:

Reads(n, d) ⇒ (∀ V ∈ Vn: ∃ n* ∈ V: Writes(n*, d))

The predicates used for the definition of this rule are defined as follows:

Writes (n,d):⇔ ∃ df Î DF with ndf = n, ddf = d, access_modedf = write

Reads (n,d):⇔ ∃ df Î DF with ndf = n, ddf = d, access_modedf = read

ES = TRUE_SIGNALED

 ES = FALSE_SIGNALED
ü NS = COMPLETED

✖ NS = SKIPPED

NS = ACTIVATED

A

B

F

D

G

E

H

C

ü

ü

a)
ET: edge type

A

B

F

D

G

E

H

C

ü

ü

ü

✖

b)

ET = SOFT_SYNC_E

NS = RUNNING

 Figure 5: Example of a "soft" synchronization between two nodes from different branchings of a parallel
processing. G is triggered after its ingoing control edge F ® G was signaled as TRUE and the sync edge
D ®SOFT G was signaled as FALSE.

 12

 This rule ensures that all input parameters of a task resp. an auxiliary service are supplied

before it may be executed. Trivially, for a given task n ∈ N, NTn ≠ STARTFLOW which has

read access to a data element d, rule DF-1 is satisfied when d is written by the start node

of the process P or when it is written by a preceding auxiliary service s ∈ Sn
prec. Further-

more, this rule guarantees that the output parameters of P (i.e., the input parameters of the

end node) are supplied. In [Hen97] we present a direct and efficient algorithm for checking

the completeness of a data flow schema DF with respect to rule DF-1. The algorithm makes

use of the symmetrical structuring of process graphs, but considers synchronizations

between tasks from parallel branches (i.e., sync edges), too.

 For a basic understanding, however, an example is more suitable. In the process graph

depicted in figure 3 the task G may read the data elements d1 and d2, but is not allowed to

access d3 as this data element is not written within all task sets of

VG = { {STARTFLOW, A, B, D, F}, {STARTFLOW, A, B, F} }. The task H, however, may

read the data elements d1, d2 and d3 as each of them is written within all task sets from

VH = {{STARTFLOW, A, F, G, B, C, E}, {STARTFLOW, A, F, G, B, D, E} }.

 In order to avoid unintended lost updates of data elements we do not allow tasks from

different branches of a parallel processing (with n-of-n join) to have write access to the

same data element, unless they are synchronized by a sync edge. In the example from

figure 3, G is not allowed to write d3 as this data element may be written by the concurrent

task C. Write-after-write conflicts may also occur if two succeeding tasks have write access

to the same data element and no read access occurs between them. The following two

constraints aim at avoiding these cases:

Rule DF-2: Let P = (N, E, S, D, DF) be the schema of a workflow.

For n1, n2 ∈ N with Writes(n1,d) ∧ Writes(n2,d) we require

(1) ()n succ(n) n succ(n) 1 2 2 1∈ ∨ ∈ or

(())∃ ∈ ∧ ∈ ∩ ∧ ∀ ∈ ≠ ∈ n N: V (n) = 1- of - n n M:= succ (n) succ (n) n M, n n : n succ (n)s in s s c 1 c 2 s c s

5

(2) n succ(n) 2 1∈ ⇒ ()∃ ∈ ∩ ∪ n succ(n) pred(n) {n } 3 1 2 2 with Reads(n3,d)

We define

{ }{ }
succ: N P(N) with

succ(n) n' N | e E: e = n n' ETe CONTROL_E, SOFT_SYNC_E, STRICT_SYNC_E

→

= ∈ ∃ ∈ → ∧ ∈

{ }
succ: N P(N) with

succ(n) n' N | n' succ(n) (n' ' succ(n):n' succ(n' '))

→

= ∈ ∈ ∨ ∃ ∈ ∈

 5 If n1 and n2 do not succeed each other in the control flow, we require that they must be contained within
different branches of a branching with a 1-of-n join. ns denotes the corresponding join node with the input firing
behavior Vin(ns)=1-of-n.

 13

succ(n) defines the set of direct successors of the node n ∈ N, i.e., the set of nodes which

are the destination of a control resp. sync edge with source n. succ denotes the transitive

closure of this function. succ(n) comprises those tasks of the process graph that are

reachable from n by following control as well as sync edges. On the other hand the set

succ (n) succ (n)c ⊆ comprises only those nodes from N which are reachable from n by

following control edges. In the process graph shown in fig. 3 we have

succ(B) = {C, D, E, G, H, ENDFLOW}, succ (B)c = {C, D, E, H, ENDFLOW}.

As the meaning of the corresponding predecessor functions and their transitive closures is

intuitive we omit their definition here.

 Simplistically, we have omitted write operations of elements from S in the presentation of

this rule.

 Of course, the constraints resp. assumptions made for the definitions of rule DF-1 resp. rule

DF-2 may be relaxed in several respects. In [Hen97], for example, we describe a more

flexible approach which distinguishes between optional and mandatory input resp. output

parameters of tasks and WFs. This has turned out to be quite important in our experience,

since not always all input parameters must be supplied for the correct processing of a task

program. Furthermore, concurrent write operations to the same data element must be

allowed under certain conditions and referenced data must be handled [cmp. Rei97].

 Note, that structural changes of a WF may violate the presented rules if no further

precautions are made. The deletion of a task, for instance, is accompanied by the deletion

of the data links connecting its output parameters with elements from D. This, in turn, may

lead to missing parameter data for succeeding steps and therefore to a violation of rule

DF-1. On the other hand, the dynamic insertion of a task and the addition of data links

connecting its output parameters with elements from D may lead to lost updates and

therefore to the violation of rule DF-2. We will come back to this in section 3.

 Flow Of Control

 In addition to the properties defining a valid data flow schema DF, the process graph

P = (N, E, S, D, DF) must meet further constraints in order to ensure the correct and

consistent execution of a WF at runtime. First of all, we require that P is safe [cmp. HOR96].

This means that from every reachable state of the WF a terminal state can be reached, i.e.,

there is a valid sequence of signaling events leading from the current state to the execution

of the end node of P. Secondly, each node n ∈ N must be reachable from the start node of

P. For acyclic graphs which are based on sequential executions and symmetrical

branchings these properties are satisfied by construction. This does not apply to a control

flow graph (N, E) whose control structures contain backward resp. sync edges. For

example, the use of sync edges must not lead to cycles resp. termination problems of the

WF. Conditions under which a graph (N, E) satisfies these properties and algorithms for

their analysis are outside the scope of this paper and are presented in [Rei97].

 14

3 ADEPTflex – Supporting Dynamic Structural Changes Of Workflows

 Based upon the ADEPT model we have developed a set of operations (ADEPTflex) which

serve as the framework for dynamic structural changes of WFs during their execution. The

main emphasis in designing these operations was put on

• correctness / consistency: the application of a change operation to a specific WF

instance should result in a WF with a syntactically correct schema and with a "legal"

state, i.e., the change should not cause inconsistencies and runtime errors.

• adequacy / completeness: each operation should be applicable to any WF instance with

arbitrarily structured schemas; the set of operations should be complete in the sense of

being able to realize each possible form of (correct and consistent) restructuring of a

process graph

• minimality: the operations needed to achieve completeness should form a minimal set

 Other design goals, which we do not discuss in detail in this paper, concern efficiency and

security issues as well as ease of use. With efficiency we mean that it must be possible to

make changes "on the fly" without disturbing other process participants in their work.

Security issues deal with the restriction of change operations to selected users (resp. roles),

to specific process types, to specific regions of a process graph (e.g., a single task), to

certain states of a process or to any combination of them. Finally, adding only functionality

to current WF technology, without understanding how the user will be able to utilise it, will

certainly not be very helpful. Change operations, whether used by programmers or, in some

form, by end users must be usable and manageable in a secure and proper manner.

 In summary, ADEPTflex comprises operations for inserting and deleting tasks (resp. task

blocks) into resp. from a process graph, for fast forwarding the progress of a process by

skipping tasks, for jumping to currently inactive parts of a process graph, for serializing

tasks that were previously allowed to run in parallel (and vice versa) and for the dynamic

iteration resp. rollback of a process resp. process region (incl. the undoing of temporary

changes). These operations, in turn, provide the basis for implementing higher-level

operations such as the replacement of a certain process region by a new one.

 The insert operation shall serve as an illustrative example and will be discussed in more

detail. The other operations are sketched at the end of this section.

3.1 Dynamic Insertion Of Tasks

 The addition of a new task to a WF at runtime becomes necessary due to several reasons.

The support of ad hoc as well as dynamically evolving WFs, unplanned events and missing

or incomplete data name a few examples. The dynamic addition of a task to a WF is some-

what comparable to the addition of a new procedure to a program in the midst of its

execution. When a task is inserted into a process graph, new nodes and edges (including

data links) must be added, while maintaining the correctness and consistency of the

process. Current state-of-the-art systems do not provide a sufficient level of flexibility and

consistency with respect to this operation. Typically they only allow the addition of an

activity upon completion of a task and before the activation of its successors

 15

[e.g., HsKl96, CCP96, VoEr92]. Important aspects, e.g., concerning data integrity, are most-

ly ignored, leading to the problems mentioned in the introduction section. For the flexible

support of processes a more generic approach is required. Generally, it must be possible

• to add new tasks or even premodelled task blocks to a WF at any point of time during its

execution

• to work on an inserted task concurrently to other tasks of the WF; for example, the

insertion of a new activity as a successor of a task n should not necessarily delay the

execution of the other successors of n

• to synchronize the execution of an inserted task with the execution of other tasks from

the process graph

• to insert tasks into process regions which have not yet been activiated (e.g., in the case

of dynamically evolving WFs)

• to dynamically map the parameters of the inserted task to existing or to newly generated

data elements

• to allow authorized (not necessarily human) agents to add a new task to a WF which

then has to be worked on by other agents

 There is no problem to provide an operation for inserting a new task as a direct predecessor

resp. successor of a given node, for adding a task as a new branch between a split node

and its corresponding join node, and so on. However, this approach would not yield to a

satisfactory solution, as it does not reconcile with our design goals minimality and ease of

use. Supporting the addition of tasks to a process graph raises the challenge to find a

single, generic operation that is complete in the sense of being able to realize each possible

form of insertion. It is obvious that the addition of a task as a direct successor of another

task is too weak to meet the presented requirements.

 We therefore follow a more generic approach: a new task X (together with associated

auxiliary services SX, data elements DX and data links DFX) may be inserted into the graph

of a process instance by synchronizing its execution with two node sets Mbefore and Mafter.

The execution semantics of the added task should be as follows: X is triggered as soon as

all tasks from the set Mbefore are either completed or cannot be triggered anymore (i.e., the

tasks defined by Mbefore delay the execution of X). This allows us to synchronize X with (pre-

ceding) tasks from different execution branches of the process. On the other hand, tasks

from Mafter may only be activated after X has been completed. Note, that the addition of a

new task transforms the schema (N, E, S, D, DF) as well as the state (NS, ES) of the WF to

a new schema (N', E', S', D', DF') resp. state (NS', ES') (cmp. figure 6). It has to be ensured

that such transformations are leading to a WF with a syntactically correct schema (incl. the

flow of data) and with a legal state. In order to achieve this, several constraints regarding

the definition of the sets Mbefore, Mafter, DX, SX and DFX as well as the structure and the state

of the WF must be made. Before we discuss them in detail, we sketch the algorithm of the

insert operation. First of all, we concentrate on the restructuring of the flow of control. After-

wards we discuss relevant aspects regarding the correctness of the flow of data when a

new task is inserted.

 16

 Algorithm

 In the following, let (N,E) be the syntactical correct control flow graph of a WF instance pi.

The following algorithm can be used to insert a new task X between the two node sets

Mbefore and Mafter:

1. Find the minimal block B ⊆ (N,E) that contains all nodes from Mbefore ∪ Mafter (excluding the start

node and the end node of (N, E))6. Let nbegin denote the start node and let nend
 denote the end

node of B.

2. Insert an empty n-of-n split node n1 that represents a null task7 as the predecessor of the node

nbegin. The node n1 takes over the input firing behavior and the ingoing control edges of nbegin

3. Insert an empty n-of-n join node n2 representing a null task as the successor of the node nend. The

node n2 takes over the output firing behavior and the outgoing control edges of nend

4. Insert a node, representing X, as a new branch between the nodes n1 and n2

5. Synchronize X with the tasks from Mbefore and Mafter, i.e., for each B ∈ Mbefore (excl. the start node

of (N, E)) add a sync edge B ®SOFT X with ET = SOFT_SYNC_E and for each A ∈ Mafter (excl. the

end node of (N, E)) add a sync edge X ®SOFT A with ET = SOFT_SYNC_E8

6. Apply reduction rules and reevaluate the state of nodes and edges (see below)

 6 B is defined as the minimal subgraph of (N,E) that satisfies the following conditions: B has a unique start and
a unique end node. If any node (except the end node) of B corresponds to a split node resp. to the start node of
a loop, the correponding join node resp. end node of the loop must be contained within B, too. Finally, if any
node (except the start node) of B corresponds to a join node resp. to the end node of a loop, the correponding
split node resp. start node of the loop must also be contained within B.

 7 We have adopted this notion from [CCP96]. A null task does not correspond to any action in the real world. Its
execution semantics is as follows: after the node of a null task is triggered, its outgoing edges are signaled
immediately.

 8 If X is inserted between the start node and the end node of the process graph (N, E), no additional
synchronizations are required.

P =(N, E, S, D, DF)

 insert(pi, X, Mbefore, Mafter, SX, DX, DFX)

NS = RUNNING

A B C

d

A

X

B

C

d

process instance pi

before X is inserted
process instance pi

after X was inserted

P' =(N', E', S', D', DF')

 NS: N → NodeState
 ES: E → EdgeState

 NS': N' → NodeState
 ES': E' → EdgeState

Example:

insert a new task X
between Mbefore and Mafter

 insert(pi, X, {A}, {C}, φ, φ, {(d,X,par,read)})

 (Mbefore, Mafter ⊂ N)

pi pi'

 Figure 6: Dynamic insertion of a new task X (together with associated auxiliary services SX, data
elements DX and data links DFX) between two task sets Mbefore and Mafter

 17

 This algorithm has to be extended if a user wants to insert a new task between the start

resp. end node of a loop and an arbitrary node contained within the body of this loop. Two

special cases, the dynamic addition of new branches to branchings with 1-of-n join, are also

not covered by the presented algorithm. The necessary extensions are described in

[Hen97].

We omit further details of this algorithm and present two examples instead. The first one is

depicted in figure 7 and shows how a task X is inserted between two sets of nodes. One

can easily see that the symmetrical structuring of the process graph is preserved and that

the insertion of the sync edges does not violate the safeness (cmp. section 2.3) of the WF.

The example further shows that empty nodes and sync edges might be added to the

process graph, which are not necessarily required to achieve the desired execution

semantics. These nodes resp. edges may be removed from the resulting graph by applying

a set of well-defined reduction rules. Examples for such rules are depicted in figure 8. The

effect of their application to the graph from figure 7c) is shown in figure 7d). A second

example is given in figure 9 where a new task is inserted between a n-of-n split node and its

corresponding join node. Using the presented insert algorithm and applying reduction rules

the expected result is obtained (cmp. figure 9c).

State Constraints

Up to now we have not considered the state of the WF. To avoid the insertion of a new task

as a predecessor of an already running or even terminated task, we require that all

elements from the set Mafter must be in one of the states NOT_ACTIVATED or ACTIVATED.

The nodes from Mbefore, however, may be in an arbitrary state. When a task is inserted as a

1. Find the minimal block, containing
the nodes C, D and F

A

X

B

C

D

FE G

Insert task X
between {C, D} and {F}

Mbefore = {C, D}, Mafter = {F}

3. Apply reduction rules 2 and 3

2. Insert empty nodes n1 and n2 before
resp. after the block. Insert node X
between n1 and n2 and synchronize it
with the nodes C, D and F.

a)

b)
A B

C

D

FE G

nbegin nend

c)

X

A B

C

D

FE G

n1 n2nbegin nend

d)

X

B

C

D

FE GA

ET=SOFT_SYNC_E

NT= EMPTY

 Figure 7: Insertion of a new task between two sets of nodes: first of all, the minimal block that contains all
nodes from the set {C,D,F} is determined (fig. b). In the next step, an empty split node n1 is inserted between
the predecessor A and the start node B of the block. In the same way a corresponding join node n2 is added.
Finally, X is inserted as a new branch between n1 and n2 and synchronized with the nodes C, D and F by
adding the sync edges C ®SOFT X, D ®SOFT X and X ®SOFT F (fig. c). The application of reduction rules to the
graph from fig. c) leads to the graph depicted in fig. d).

 18

predecessor of an already activated task, it is checked whether this task was already routed

to any worklist. If this is the case the corresponding work items are removed from the

worklists before the insertion can take place. As an example, taking the graph depicted in

figure 9a) a new task X may not be inserted between the nodes D and E. To insert a new

task between D and F, first of all, the execution of F would have to be aborted by the user.

After a task X was added to the process graph, the state of its nodes and edges (incl. the

newly inserted ones) is reevaluated This reevaluation is based on the execution and

signaling rules presented in section 2.2. Whether X is triggered immediately or later

depends on the current state of the graph. The former is the case, if at insertion time all

nodes from Mbefore are in one of the states COMPLETED or SKIPPED. It is obvious that for

this case the node nbegin must be in one of these states, too, so that the added split node n1

is marked as COMPLETED and its outgoing control edges (with destinations X resp. nbegin)

are set to the state TRUE_SIGNALED. As all elements from Mbefore are in a final state, the

inserted sync edges connecting these nodes with X are signaled, too. So the rules for the

execution of X are satisfied and X is triggered. As a simple example consider the graph

shown in figure 9b) whose reevaluation yields the result depicted in figure 9c). Note, that

the insertion of a new task does not mean that it will be activated at all. If the task is

inserted into a process region which is currently not active, the execution of the task may

depend on future routing decisions.

NT = EMPTY

B B

Reduction Rule 1:

Combine the empty, parallel split node and
its successor A (Vout

A =1-of-1) in one node.

Reduction Rule 2:

Combine the empty, parallel join node and its
predecessor B (Vin

B = 1-of-1) in one node.

Reduction Rule 3:

Combine node A (Vout
A =1-of-1) and its empty

successor node in one node, taking over the
output firing behavior of the empty node.

Reduction Rule 4:

Combine the empty node and its successor
B (Vin

B = 1-of-1) in one node, taking over the
input firing behavior of the empty node.

B

X

B

X

NT = EMPTY

X

AA

X

NT = EMPTY

ET = SOFT_SYNC_E

Reduction Rule 5:

Remove "unnecessary" control edges bet-
ween a n-of-n split node A and its correspond-
ing join node B. If the number of remaining
branches is 1, set the output resp. the input
firing behavior of A resp.B to 1-of-1.

A

NT = EMPTY

A

Reduction Rule 6:

Combine the empty nodes with
their successor A (Vout

A =n-of-n)
resp. predecessor B (Vin

B = n-of-n)

A X B

X

BA

A

X

NT = EMPTY

B

NT = EMPTY

B1

B2

A

X

BB1

B2

 Figure 8: Reduction rules (RR). RR may be applied to the empty nodes (i.e., the null tasks) originating from the
insertion of a node and to their direct successors resp. predecessors. Their application preserves the execution
behavior of the process graph, i.e., the set of valid task sequences remains unchanged.

 19

Structural Constraints – Flow of Control

The presented examples demonstrate that the application of the insert operation does not

violate the syntactical correctness of the graph (N,E) and does not lead to termination

problems. The following theorem defines the conditions for this:

Theorem 1 (Syntactical Correctness and Safeness of the Resulting Control Flow Graph):

Let (N, E) be the syntactically correct control flow graph of a WF schema P which is (1) safe and

for which (2) every node n ∈ N is reachable from the start node of P (cmp. section 2.3).

Furthermore let Mbefore, Mafter ⊂ N be two disjoint sets with

(I1) ∀ ∈ ∀ ∈ ∈n M , n M :n succ(n)b after a before b a i.e., for all na ∈ Mbefore , nb ∈ Mafter we require that

 na precedes nb in the flow of control

(I2) The region covered by the nodes from the set M M succ(M) pred(M)before after before after
∪ ∪ ∩

may only contain complete loop control structures

Then, the application of the insert operation to add a new task X between the sets Mbefore and Mafter

results in a syntactically correct control flow graph (N', E') again, satisfying the properties (1) and

(2), too.

 We only sketch the idea for the proof of this theorem (for details see [Rei97]) without

considering reduction rules. On the whole, the insert operation substitutes a (logical) block

B of the graph (N,E) by a symmetrical block, namely a parallel branching with the inserted

task X and B as its branches. The symmetrical structuring of the graph is therefore

preserved and the insertion of the empty nodes resp. null tasks does not influence the

execution resp. termination behavior of the WF. The restrictions for the use of sync edges

(cmp. section 2.1) are further satisfied as the added edges do only synchronize tasks from

different branches of a parallel branching (namely the task X with tasks from B), do not link

a node contained within a loop body with the inserted task X (cmp. condition I2) and do not

1. Find the minimal block containing
D and G

2. Insert empty nodes n1 and n2 be-
fore rsp. after the block. Insert X
as a new branch between n1 and
n2 and synchronize it with the
nodes D and G.

3. Apply reduction rule 6 and reevaluate the
state of the nodes and edges

ES = TRUE_SIGNALED
ES = FALSE_SIGNALED

Insert task X between D and G:
Mbefore = {D}, Mafter = {G}

ü

ü

C

B
A

ü

D
F

E

G

ü

✖ H

a)

F

E
üü

D G H

X

D

c)

b)
ü

D
F

E

G

ü

H

X

n1 n2nbegin nend

X

NS = ACTIVATED

NS = COMPLETEDü

NS = SKIPPED✖

NS = RUNNING

 Figure 9: Example for adding a new task X between a n-of-n split node D and its corresponding join
node G. Note, that X is added as a new branch between D and G, although the successors of D, the
nodes E and F, have already been completed resp. started.

 20

lead to cycles resp. termination problems. The latter is guaranteed by the ordering of tasks

from the sets Mbefore and Mafter (cmp. condition I1). Based on this and on the properties (1)

and (2), which are valid for the starting graph (N, E), one can easily show that (N', E')

satisfies these properties, too. Note that only sync edges of the type ET = SOFT_SYNC_E

are used. o

 Finally, to avoid unnecessary synchronizations between the inserted task and nodes from

Mbefore resp. Mafter the following minimization rules may be applied to these sets before the

insertion is performed:

• delete all elements na ∈ Mbefore with ∃ na* ∈ Mbefore: na* ≠ na and na* ∈ succ (na)

• delete all elements nb ∈ Mafter with ∃ nb* ∈ Mafter: nb* ≠ nb and nb* ∈ pred (nb)

These rules guarantee that two nodes from Mbefore (resp. Mafter) do not succeed each other in

the flow of control (i.e., they are contained within different execution branches of the

process graph and are not reachable from each other). When X is inserted into a sequence

of tasks, for instance, Mbefore as well as Mafter contain exactly one node after the application

of these minimization rules.

 The restrictions presented so far are checked before the insertion of the corresponding task

takes place. Note, that the presented constraints do not yet concern the flow of data.

Structural Constraints – Flow of Data

As already mentioned, a new task X may be "plugged" into the graph, together with

associated auxiliary services SX, data elements DX, and data links DFX. So when a task is

added to the WF schema (N, E, S, D, DF) this does not only lead to the modification of the

control flow graph (N, E) and its state, but generally requires extensions of the sets S, D

and DF, too. Regarding the flow of data, the resulting WF schema (N', E', S', D', DF') has to

meet the correctness properties defined in section 2.3. First of all, according to rule DF-1, it

must be ensured that all input parameters of X are supplied before X may be executed. A

simple approach to achieve this would be to request the input data from the user initiating

X. For this, X has to be connected with a preceding provider service s (cmp. section 2.3),

whose output parameters correspond to the input parameters of X. In our current prototype

implementation such a service is supported by the dynamic generation and processing of

an electronic form which makes use of the interface description of X. The following

procedure shows how the sets SX, DX and DFX must be defined in order to obtain a

syntactically correct data flow schema that satisfies rule DF-1.

DX:= ∅; DFX:= ∅;

create a provider service s with OutPars(s) := ∅;

for all par ∈ InPars(X) do

create a data element dp with (Iddp ≠ Idd ∀ d ∈ D ∪ DX) ∧ (domdp = dompar) and insert it into DX:
DX:= DX ∪ {dp}

create a parameter p with (Idp = Idpar ∧ domp = dompar ∧ dirp = "OUT") and add it to OutPars(s)
OutPars(s):= OutPars(s) ∪ {p}

insert corresponding data links into DFX

DFX:= DFX ∪ {(dp, s, p, write), (dp, X, par, read)}
end
SX = SX

prec := {s} (i.e., s will be triggered when X is initiated, cmp. section 2.1)

 21

 If the original WF schema (N, E, S, D, DF) satisfies rule DF-1 this also applies to the

schema (N', E', S', D', DF') with S':= S ∪ SX, D':= D ∪ DX and DF':= DF ∪ DFX. In practice,

however, this simple approach would not always yield to a satisfactory solution, since

unnecessary and redundant data entries may result in the course of a WF execution, po-

tentially leading to data inconsistencies. Especially for the support of ad hoc and dynami-

cally evolving WFs a more generic approach is required, allowing the "intelligent" mapping

of input resp. output parameters of the inserted task to already existing data elements from

D, too. This, however, raises a variety of challenging issues with respect to dynamic

parameter mapping as well as the management of data elements, which can only be

sketched here. First of all, the set of possible data elements CX to which input parameters

from X may be mapped must be identified. According to rule DF-1, we obtain

 CX = {d ∈ D | ∀ V ∈ VX: ∃ n* ∈ V: Writes(n*, d)}.

 An algorithm for the determination of the set CX is presented in [Hen97]. As an example

consider the process graph depicted in figure 3 and assume that a task X should be

inserted between the nodes B and C. Then we obtain CX = {d1, d2 }. Note, that this approach

does not consider the state of the WF. It is therefore ensured that all data elements from CX

are supplied when X is activated, independently from any routing decision or backward

operation made in the course of execution. On the other hand, there are scenarios in which

it would be quite useful to relax this assumption and to consider the state of the WF (incl.

the state of its data elements), too. In this case, the set of data elements to which input

parameters from X may be linked is extended to

 CX
* = CX ∪ {d ∈ D | ∃ n* ∈ pred (X): NSn* = COMPLETED ∧ Writes(n*, d)}9,10

 As an example, take the insertion shown in figure 9 and assume that B is the only task that

writes a specific data element d1 ∈ D. Since B is completed at the time X is added, we have

d1 ∈ CX
*. Input parameters from X may therefore be mapped to d1, although this data

element is not contained in the set CX (cmp. figure 10). Following this approach, however, it

might become necessary to undo the insertion of X in case of a backward operation (cmp.

section 4). As we will see in section 4, in this context, it makes a big difference whether the

insertion of X is of temporary nature, i.e., X should be executed at most once (temporary

insertion), or should be valid until completion of the WF (permanent insertion).

Up to now we have only dealt with the question which data elements may be considered

when input parameters of X shall be mapped to elements from D. A specific input

parameter p ∈ InPars(X) may be linked to a data element d ∈ CX (resp. CX
*) if their domains

correspond to each other. Of course, this purely syntactical approach would be insufficient

in practice and would leave significant complexity to the user. A more sophisticated

approach, which aims at the semi-automatic mapping of parameters to data elements, is

 9 As a restriction, this set may not contain data elements written within branches of a parallel branching with a
1-of-n join node s, if s has not yet been triggered and X succeeds s in the flow of control (cmp. section 2.1).
Furthermore, the runtime system checks whether the corresponding data elements have been really written by
the corresponding tasks.

 10 For simplification we have omitted write operations from elements of S in the definition of this set.

 22

presented in [Bla96]. Basic to this approach is a controlled vocabulary which is used for the

naming of data elements and parameters as well as the data structures they are built upon.

The vocabulary is organized as a semantic network and does therefore also consider

semantic relationships between the underlying concepts of data elements resp. parameters.

A presentation of this semantic mapping approach, however, is outside the scope of this

paper. In [Bla96] we also deal with the problem of heterogeneous structures and formats of

parameter data from different tasks.

Similar reflections must be made regarding linkages of the output parameters of an inserted

task to existing resp. newly inserted data elements. In order to avoid unintended lost

updates, an output parameter of an inserted task can only be linked to a data element if rule

DF-2 is further satisfied. In the process graph shown in figure 10, for instance, the output

parameters of the newly inserted task X may not be mapped to the data element d2.

 Further Issues

 In this section we have concentrated on correctness and consistency issues regarding the

dynamic addition of a task to a WF schema resp. to its flow of control and data. For the

sake of completeness, some important aspects, which are not further addressed in this

paper, have to be mentioned.

 First of all, in our experience it has turned out to be quite important to allow process

participants to fix a date or a deadline for the inserted task. The necessary extensions for

this are described in [Gri97].

 Secondly, for security reasons, ADEPTflex allows WF designers (as well selected process

participants) to restrict the use of the insert operation to specific process types resp.

categories, to selected users resp. roles, to specific regions of a process graph, to selected

states of a process, to specific activity types resp. categories, or to any combination of

them. Generally, we do also not require that the user who adds a task to a WF must then

work on it. This provides additional flexibility to process participants, as they are allowed to

add tasks to a WF, whose execution is then explicitly or implicitly delegated to other process

participants. Basic to this is a powerful meta model for capturing organizational entities and

relationships between them. The interested reader is refered to [KoRe96].

 Finally, for the implementation of flexible client applications and worklist handlers a

corresponding set of (generic) API calls is offered to application programmers [Hen97]. The

provided functions can also be used to query information about the context in which the

insertion should be applied.

ES = TRUE_SIGNALED
ES = FALSE_SIGNALED

NS = ACTIVATED

NS = COMPLETEDü

NS = SKIPPED✖

ü

ü

C

B

A
✖

F

E

üü

D G H

X

D

d1

d data element

data-link

d2

write

read NS = RUNNING

 Figure 10: Linking an inserted task to existing data elements.

 23

 Now we have got an operation that satisfies our main design goals with respect to

correctness, consistency, and minimality. Using the insert operation, it is easy to cover a

broad spectrum of applications and to implement a variety of user-friendly operations. Some

of them are summarized in table 1.

 insertion of choice

an intermediate step between a node A and its
successors (A may be a split node of arbitrary type)

 Mbefore = {A} and Mafter = succ(A)

an intermediate step preceding the execution of a task B;
B may have already been routed to worklists, but may
not yet be worked on by a user

 Mbefore = pred(B), Mafter = {B}

a new branch to a parallel branching with split node S
and join node J

 Mbefore = {S}, Mafter = {J}

a new task without synchronizing it with other tasks of
the WF

 Mbefore = {STARTFLOW}, Mafter = {ENDFLOW}

Table 1: Examples for the use of the insert operation.

 The insert operation may also serve as the basis for composing higher-level operations. For

example, multiple concurrent instantiations of the same task type (dynamic task) can be

realized by the repetitive use of this operation within one change transaction. The generality

of the insert operation also provides the basis for the ad hoc definition of WFs: a WF starts

with a single (stop) node between the start and the end node of the process graph and may

be dynamically extended by the (possibly concurrent) application of the insert operation.

The WF does not terminate until an authorized user initiates the stop node. A similar

application is the support of dynamically evolving WFs, where the planning and the

execution of individual WF instances interleave. As a last interesting aspect, we use the

insert operation for internal exception handling, too. For example, if the deletion of a task X

leads to incomplete or missing parameter data of succeeding, data-dependent tasks, a

corresponding provider task, taking over the data links from X, may be plugged into the

graph and be synchronized with these tasks (cmp. section 3.2)

These examples demonstrate that our approach is adequate for supporting a variety of

insertion scenarios with the same generic operation. In the next section we sketch other

change operations and some interesting aspects in conjunction with them.

3.2 Overview of other change operations

 As said before, ADEPTflex comprises a set of basic change operations which allow

authorized users to add tasks to a WF, to delete tasks from a WF, to skip the execution of

tasks (with or without finishing them later), to jump forward to process regions which have

not yet been activated, to serialize tasks that were previously allowed to run in parallel, and

to perform backward operations on a process graph (incl. the undoing of temporary

changes). Due to space limitations we omit a presentation of the whole set of operations

here and refer to [Rei97, Hen97] for their definition, constraints for their use and

implementation issues. In the following, we summarize some interesting aspects concerning

the deletion of tasks and the dynamic modification of premodelled task sequences.

 24

Dynamic Deletion of Tasks

A task may have to be removed when the conditions for its execution become unnecessary.

Of course, not all tasks may be deleted from a process graph. Firstly, nodes which are an

integral part of the WF structure (e.g., the start and the end node of the WF schema)

cannot be deleted at all. Secondly, WF designers may customize a WF schema with

respect to the applicability of this operation to individual tasks resp. process regions.

The deletion of a task X is only allowed, if it is either in the state ACTIVATED or

NOT_ACTIVATED. In the former case, the work items associated with the task are removed

from the corresponding worklists. Tasks in the state RUNNING, COMPLETED, FAILED, or

SKIPPED may not be deleted.

Regarding the adjustment of the control flow graph, the delete operation is realized by

transforming the corresponding node into an "empty" node resp. a null task (cmp. section

3.1). This approach can be handled in a simple and effective manner, as the node itself as

well as its ingoing and outgoing control resp. sync edges are still part of the WF structure.

As we will see in section 4, this also facilitates the undoing of task deletions.

When a task X is deleted, however, its associated auxiliary services and data links must be

removed from the sets S resp. DF. This, in turn, may lead to missing or incomplete input

data of succeeding, data-dependent steps and therefore to a violation of the correctness

properties defined in section 2.3.

 Let N¬ ⊂ succ (X) denote the set of tasks, whose input parameters are not completely

supplied due to the deletion of X. The following exception handling policies are offered by

ADEPTflex to deal with the missing data:

• concomitant deletion of tasks from the set N¬, which in turn may require the deletion of

other tasks from N (cascading delete).

• dynamic insertion of a provider task Xprox into the flow of control (with Mafter = N¬). Xprox

takes over the data links of the deleted task and must be completed before any task of

the set N¬ may be triggered.

• dynamic addition of corresponding provider services (i.e., dynamically generated forms)

to the sets Sn
prec, n ∈ N¬ (cmp. section 3.1) – this, however, must not lead to the violation

of rule DF-2!

• abortion of the delete operation

Of course, these policies may be used in combination with each other, too. To relieve users

from performing the necessary adjustments of the data flow schema themselves, ADEPT

supports the specification of success dependencies between (succeeding) tasks. If a task X

is deleted from the process graph at runtime, all suceeding tasks which are success-

dependent on X are deleted, too, and so on (cascading delete). Concerning the flow of

data, this approach does not require any additional exception handling, if for each task the

set of its success-dependent steps corresponds to that of its data-dependent steps. Note,

that this approach is similar to the concept of spheres of control proposed in [Dav78, Ley95],

but is applied to the structure of the WF.

 25

Changing Task Sequences At Runtime

As mentioned in the introduction section, changes to premodelled task sequences

frequently become necessary in exceptional situations. Since WF designers are generally

not capable to predict all possible deviations in advance, operations are required that allow

users to dynamically skip the execution of tasks (with or without finishing them later) or to

work on tasks of which the execution conditions are not yet satisfied. As an example, take

the process graph depicted in figure 11a) and assume that an authorized user wants to

jump forward to task G and to proceed with the flow of control at this node, although the

ingoing edges of this task have not yet been signaled. Assume further, that the skipped

steps D, E and F have to be finished resp. worked on concurrently, but must be completed

before task J may be triggered. To achieve this, the process graph must be restructured as

shown in figure 11b). Note, that this restructuring leads to the parallelization of tasks that

were previously constrained to be executed serially. Generally, it should be possible to pass

the control resp. to jump forward to a node ntarget, which may not yet have been activated

(NS = NOT_ACTIVATED). ADEPTflex supports different policies for dealing with

uncompleted tasks, preceding the node ntarget in the flow of control, when such a jump

operation is performed:

M = {n | n ∈pred (ntarget) ∧ NSn ∈ {NOT_ACTIVATED, ACTIVATED, RUNNING} }

Tasks from this set may be aborted, omitted, or as in our example be further worked on. For

the latter case, their execution may be synchronized with successors of ntarget. In our

example, all tasks from M = {D, E, F} must be completed before the node nd = J may be

triggered. An algorithm for this as well as syntactical constraints concerning the choice of

the nodes ntarget and nd are presented in [Hen97].

Finally, changes to premodelled task sequences may lead to an invalid data flow schema, if

no further precautions are made. The rules presented in section 2.3 contribute to identify

such critical cases and to provide corresponding exception handlers. Due to lack of space

this aspect cannot be discussed here.

 We conclude that more user-friendly operations providing elegant and efficient operational

support for dynamic structural changes can be based upon the presented operations.

NS = RUNNING

ES = SIGNALED

NS = COMPLETEDü

A

B

C

D

F

E

G

H

I

J K

ntarget nd

ü

ü

ü

a)

b)

A

B

C

D

F

E

G

H

I

J K
ü ü

ü

ü

NS = ACTIVATED

ET = SOFT_SYNC_E

NT = EMPTY

Figure 11: Parallelization of tasks that were previously constrained to be executed serially due to a jump
forward operation.

 26

4 Management of Dynamic Structural Changes

 Many instances of a specific process type may be active at the same time. As multiple

changes of different kinds may be applied to the individual WFs during their execution,

several aspects must be considered:

• WF instances of the same type (i.e., the same starting schema) may have to be repre-

sented by different process graphs

• changes applied to an individual WF may depend on previously made changes

• intended changes of a WF may require concomitant changes in order to preserve the

correctness and the consistency of the process graph (cmp. section 3); the necessary

modifications of the graph must be carried out within the same change transaction in

order to allow forward recovery in the case of failures

• changes on a process graph have to be undone under certain conditions

With respect to the management of dynamic structural changes it makes a big difference

whether a performed modification must be preserved until the completion of a WF

(permanent change) or is only of temporary nature (temporary change). This division is

particularly important for the management of long-running processes, where changes may

affect regions which may be entered multiple times, e.g., due to loop iterations or the partial

rollback of a WF. When a task is inserted into the body of a loop, for instance, it must be

specified whether this insertion is only valid for the current iteration of the loop or for

following iterations, too. In the first case, the inserted task is executed at most once. The

change must be undone (i.e., the inserted task must be removed together with its

associated data links and services) before the loop can enter its next iteration. For the rest

of this section, we simplistically assume that the durability of a change – temporary or

permanent – is specified at the time it is applied to the WF11.

 Management of Changes

 Ideally, the undoing of temporary changes and the necessary adjustments of the process

graph should be completely handled at the system level without costly user interactions. To

achieve this, the runtime system must have precise information about previously made

changes. In our approach, we maintain the following information for each WF instance pi.

• • a process graph Pall reflecting the current structure (i.e., the schema) and the current

state of pi. Pall considers all changes applied to the WF – temporary as well as

permanent ones.

• • a process graph Pperm which has resulted from the application of permanent changes to

the starting schema of pi. Temporary changes and the state of pi are not considered by

this graph.

 11 For clinical processes [cmp. Mey96], for example, there are situations in which a change may have to be
preserved until a user explicitly decides to undo it. Such cases can be simply realized by some extensions to the
approach presented in the following and are therefore not further considered in this paper.

 27

• a change history C which is used analogously to the WF history. It records data on the

changes applied to pi in a chronologically ordered list. These data may later be used to

undo changes. Each list entry contains the following information: (1) the type of the

change operation (including its call parameters), e.g., insertion of a task; (2) the durability

of the change (temporary vs. permanent); (3) the initiator of the change; (4) the start

region of the change, i.e., a set of nodes that may be used by the runtime system to

decide whether the (temporary) change must be undone or not when a backward

operation is applied (see below); (5) the list of concomitant modifications, e.g., addition of

auxiliary services or cascading deletion of data-dependent tasks (cmp. section 3); (6) the

list of change primitives (and their input parameters) which were applied to perform the

change – each change operation is mapped to a set of graph modifications primitives

such as the addition or deletion of individual nodes, edges, data elements and data

links12.

The execution of a WF is based upon the graph Pall. Note, that this process graph must be

kept for each individual WF as its original schema may have been instantiated several times

and different kinds of changes may have been performed on the WF instances. We require

the additional graph Pperm to verify whether an intended permanent change can be handled

in a proper and secure manner. If this verification was solely based on the graph Pall,

dependencies on temporary changes as well as on the current state of pi would be

inevitable, which in turn would complicate the correct undoing of temporary changes without

affecting permanent ones.

Applying Temporary and Permanent Changes

The introduction of temporary and permanent changes to a WF instance pi requires

different procedures. To perform a temporary change ct we must check whether it can be

applied to the process graph Pall while maintaining its correctness and consistency (cmp.

section 3). If unresolvable exceptions occur the change operation is aborted. Otherwise ct is

performed on Pall and a corresponding entry is added to the change history C. Note, that a

temporary change may be based upon previously made temporary as well as permanent

changes. In addition, it may consider the state of the WF (cmp. section 3.1).

The introduction of a permanent change cp requires additional checks. First of all, we must

verify that the application of cp to the process graph Pperm does not violate the correctness of

this graph. Note that in contrast to temporary changes, this verification is performed inde-

pendently from the state of pi as well as from temporarily applied changes. Otherwise cp

may be based on wrong assumptions, which may cause severe problems when the state of

pi is reset or a temporary change is undone. For example, the insertion of the task X shown

in figure 10 makes use of a previously made routing decision and can therefore be only

introduced as a temporary change. If cp can be applied to Pperm we must check its

applicability to the graph Pall, too. If both checks are successful, cp is applied to Pall as well

as to Pperm and a corresponding entry is added to C.

 12 Note that these primitives modify the sets N, E, S, D and DF. Generally, the application of an individual graph
modification primitive does not preserve the syntactical correctness and the consistency of the process graph.

 28

Undoing Temporary Changes

Up to now we have only described how changes are managed and how they are put into

effect. In the following we sketch the basic steps which become necessary for undoing tem-

porary changes (i.e., to remove them from the process graph Pall) when the control of the

WF is passed back to a previous task nrestart. Due to lack of space we will restrict our

considerations to the dynamic insertion and deletion of tasks (cmp. section 3) and to their

undoing.

Basic to the decision which changes must be undone or not are the start regions which are

kept with each entry of the change history C. The start region of an insert operation is

defined by the set Mbefore (cmp. section 3.1), whereas the start region of a delete operation

consists of the empty node replacing the removed task (cmp. section 3.2). For

simplification, we require that a temporary change must be undone if each node of its start

region is in a finite state (NS ∈ {COMPLETED, SKIPPED, FAILED}) and is contained within

the backward region. The backward region comprises those nodes from the graph Pall

whose state must be reset due to the backward operation. In case of a loop iteration it

corresponds to the nodes of the loop body (cmp. section 2.2) whereas the backward region

of a rollback operation comprises those successors of nrestart which are in a state different

from NOT_ACTIVATED (cmp. section 2.1).

There is no problem to find the corresponding entries in the change history C and to undo

the modifications associated with them. However, this simple approach would not yield to a

satisfactory solution as other temporary changes may exist, which have been based upon

these modifications and are therefore dependent on them, but whose start region is not

covered by the backward region. These dependent changes must be undone, too, in order

to preserve the correctness of Pall. Note, that dependencies between temporary changes

are rather normal and may be explicitly desired by users. They therefore must be

considered when temporary changes are undone. With this in mind and based on the

assumptions made, the following steps must be performed when a backward operation is

applied:

1. Find the first (i.e., the oldest) entry c1 in C that must be undone due to the backward

operation (i.e., whose start region is covered by the backward region). If no such entry

appears in C then omit the following two steps.

2. Traverse C in inverse order (i.e., beginning with the latest change) until c1 is reached. For

each visited entry remove the corresponding change (temporary as well as permanent)

from the process graph Pall – a change is removed by undoing the previously applied

modification primitives in reversed order.

3. Now traverse C in forward direction (beginning with c1). If a visited entry e corresponds to

a permanent change, we reapply it to Pall
13. In case of a temporary change, first of all, we

check whether its start region is covered by the backward region. If this is the case, the

 13 There are rare cases in which it is not possible to redo a permanent change. Due to lack of space we do not
discuss this aspect here.

 29

change is not redone and e is removed from C14. Otherwise we try to redo the change on

Pall by making use of the information stored with the corresponding change entry (incl.

information on concomitant changes). If the correctness and the consistency of Pall

cannot be preserved (e.g., due to dependencies on other removed changes), however,

the redo will not be performed and the initiator of the change will be informed.

The example depicted in figure 12 illustrates the principle feasability of our approach. We

omit implementation issues and possible optimizations of the presented algorithm here.

The assumptions made in this section may be relaxed. For example, in some cases it may

be desirable to preserve a temporary change when a rollback operation is applied, but to

undo it if a loop encounters a new iteration. Different policies for handling such cases and

 14 The initiator of a temporary change will be informed when the change is undone due to the partial rollback of
the process.

2. The same process graph after the
flow has proceeded and two tempo-
rary changes (ct

(1): insertion of N*,
ct

(2): insertion of N**) and one per-
manent change (cp

(3): deletion of F)
were applied to it.

C = (ct

(1), ct
(2), cp

(3) ↓↓)

3. Reset the process state (nrestart = B)
and determine the first entry c1 in C
whose start region is covered by the
backward region {B,C,D,E,Fnull,G, N*}
Þ c1 = ct

(1)

Undo all changes succeeding
c1 (incl. c1)

C = (↓↓ ct
(1), ct

(2), cp
(3))

ES = TRUE_SIGNALED

NS = RUNNING

NS = COMPLETEDü

A B

D

F

HG I

C

E

ü

A B G

E

H

N**

d

ü ü

ct
(1)

ct
(2)

cp
(3)

ü ü

DC

N*
ü

ü

ü

1. process instance

change history: C = (↓↓)

4. Remove ct
(1) from C since its start region

{C} is covered by the backward region.

Remove ct
(2) from C since it is (data-)

dependent on ct
(1).

Redo cp
(3) (permanent change)

C = (cp
(3) ↓↓)

A B

D

F

HG I

C

E

ü ü

ET = FAILURE_E

I

NS = ACTIVATED

A B

D

HG

C

E

ü

cp
(3)

I

process graph Pall

G fails and its outgoing
failure edge is signaled!

NS = FAILEDý

ý

 Figure 12: Undoing temporary changes after a failure edge has been signaled [cmp. Hen97]: in step 2 the
nodes N* and N** (together with the data element d and corresponding data links) were temporarily inserted.
Afterwards the reduction rules presented in section 3 were applied. In addition, node F was permanently
removed from the graph. Step 4 shows the resulting graph after the undoing of changes. Although its start
region {H} is not covered by the backward region, the change ct

(2) is undone, too, since it is dependent on
ct

(1).The entries of the change history C preceding the arc ↓ correspond to the changes currently applied to the
graph Pall.

 30

their implemenation are described in [Rei97]. As a last interesting aspect, the availability of

a change history contributes to increase the user friendliness of the system, since changes

– temporary as well as permanent – can be simply undone (UNDO of structural changes) by

the user (e.g., the initiator of the change). This should only be possible, however, if the

change has not yet influenced the execution of the WF and no further changes have been

based upon it.

 The issues addressed in this section indicate that dynamic structural changes make great

demands on the runtime system and on the management of performed changes. There are

a variety of other important issues not addressed by this paper. In a multi-user environment,

for example, simultaneous changes on processes must be supported in an efficient and

reliable manner, too. Process participants not actively involved in a change operation

should not be disturbed in their work. Errors or exceptions arising from change operations

must be avoided resp. locally handled. Finally, dynamic changes must be performed at the

minimum cost to application designers and programmers.

 31

5 Related Work

 It is widely recognized that state-of-the-art WF technology does not provide a sufficient level

of flexibility and reliability to their users regarding exception handling and dynamic structural

changes of WFs [BaWa95, BlNu95, ElNu93, EKR95, Mey96, SGJ96, Sie96]. Both, in

research and in commercial WFMSs, several directions can be made out which try to

overcome these limitations. These approaches focus on

• extensions of WF technology with services for exception handling, for dynamic structural

changes and for the support of ad hoc resp. dynamically evolving WFs

• the integration of WFMSs with groupware technology to combine formal and well-

structured processes with informal group processes

• WF schema evolution, i.e., the support of WF designers in modifying the schema of a

WF and in propagating the applied changes to WFs that started with the old schema

 Exception Handling and Dynamic Structural Changes in WFMSs

 We are mainly interested in process-oriented WFMSs (as opposed to e.g., Lotus Notes or

Groupflow [NaOt96]) as we believe that the functionality offered by these systems is

needed for the development and the operational support of complex, long-running business

applications. Many systems from this category (e.g., FlowMark [LeAl94], DOMINO [KHK91]),

however, do only address a small part of the issues discussed in this paper. Although most

of them allow online modification of task and staff definitions or the exchange of program

modules during WF execution, they are rather weak with respect to exception handling and

dynamic structural changes.

 Several approaches exist which provide support to users regarding these issues. The

proposals made by ProMInanD [VoEr92], ObjectFlow [HsKl96], WIDE [CGP97], MOBILE

[Hei96], and maybe others are worth mentioning. ProMInanD is a representative of WFMSs

based on the object migration model [e.g., KRW90]. A process together with its execution

graph is regarded as an object ("electronic circulation folders") which is sent from user to

user according to the modelled flow of control. Only the user who is currently in charge of

the folder may deviate from the course of execution, e.g., by adding intermediate tasks, by

skipping a task or by sending the "folder" back to a previously involved user. This restriction

already limits the applicability of this model, as (authorized) users, which are not currently

involved in the processing of a task, cannot intervene in the control of the WF. Another

potential disadvantage of systems from this category is the simplicity of the used WF model

(e.g., parallel and iterative executions are not explicitly supported by the model) and the

lack of a clear theoretical basis. Furthermore, the restructuring of processes only considers

the flow of control, but ignores other important aspects of a WF. The flow of data is limited

to the exchange of files between tasks, so that the runtime system has minimal control over

it. This, in turn, leaves significant complexity to the application programmer who himself has

to adjust the flow of data when the WF is restructured.

 A comparable functionality is offered by ObjectFlow [HsKl96]. Users may temporarily

change the course of execution (e.g., fast forward the progress of the flow) or dynamically

 32

add intermediate tasks to a WF. In addition, ObjectFlow supports dynamic tasks, i.e., the

multiple concurrent instantiations of the same task types at specific points of a predefined

WF. A limited mechanism for exception handling is offered: the actions which are necessary

to handle abnormal events have to be modelled as additional paths in the process graph.

When a user detects an exception he must abort active tasks and modify the flow structure

to transfer the control to the exception handling path. The premodeling of exceptional

actions within the same model, however, might lead to an exponential explosion of the WF

specification as the offered language constructs are not high-level [cmp. ElNu93]. Both

approaches, ProMInanD and ObjectFlow, share the problem that the semantics of the

offered change facilities is by far not sufficient when compared to our approach. A new

task, for example, can only be added upon completion of a process step and by the user

who has worked on this step. The inserted task must terminate before the normal flow is

allowed to proceed. While this semantics might be sufficient for office environments, it is not

adequate regarding the support of ad hoc resp. dynamically evolving WFs [cmp. section 3].

 The WIDE WF model offers a trigger-based approach for the handling of exceptions. With

each individual task as well as with the WF itself a set of exception handlers can be

associated [CGP97]. An exception handler is triggered by the system at the occurence of a

specific event such as the cancellation resp. rejection of a task or the break of the normal

flow when a user jumps forward / backward in the process graph. In contrast to ObjectFlow

and ProMInanD, the WF may proceed while the exception is handled. For each type of

exception WIDE provides a simple default handler (e.g., to notify users or to cancel tasks

resp. the WF) which may be overwritten by the WF programmer. However, no strategy is

offered to programmers with respect to the implementation of such handlers and the main-

tenance of the consistency and correctness of the WF. So the responsibility for the

avoidance of consistency problems and errors is shifted to application programmers which,

in turn, complicates application development and may introduce new errors and exceptions

into the model. Furthermore, WIDE does not allow end users to add (resp. delete) tasks to

(from) a WF during its execution, which limits the applicability of this model significantly.

Like ObjectFlow, WIDE supports dynamic tasks [CCP95].

 A more competitive approach is offered by the MOBILE workflow model [Hei96], where the

designer of a prescriptive WF may include templates for ad hoc WFs at predefined points

(i.e., nodes) of the flow. Such a template resp. ad hoc WF is described in terms of goals as

well as partially defined process patterns, which may be refined during runtime. Dynamic

changes to the schema of a WF are restricted to the process regions representing ad hoc

WFs. The authors, however, give no idea in which way users are supported in specifiying

resp. refining ad hoc WFs and which operations are available.

 In summary, none of these proposals is complete with respect to the approach presented in

this paper. In almost all these systems the internal WF specification is based on an "ad hoc

model" which lacks a clear theoretical basis. This makes it impossible to formally reason

about the correctness of WF specifications and about dynamic structural changes applied

to them. A notable exception is the WF model used by ObjectFlow. This system is based on

a constrained petri net model, which is comparable to the ADEPT model. But like the other

 33

proposals, ObjectFlow does not provide the required level of flexibility to users.

Furthermore, none of the presented approaches deals with issues regarding the undoing of

changes or the support for different types of changes with respect to their durability.

 The same holds for transactional WFs whose emphasis and strength lie in different areas

such as reliability or (forward) recovery of individual processes in the presence of failures

[AAE96, Att93, DHL90, Hsu93, Hsu95, WoSh97]. Transactional WFs apply some concepts

of advanced transaction models (ATM) [Elm92] and are therefore pretty good in handling

task failures or abnormally terminated WFs [e.g., EdLi95]. Extensions of these models like

"spheres of compensation" [Ley95, Dav78] will further contribute to simplify and to fasten

application development and to make the resulting applications more reliable. However,

transactional WFs do only meet a small part of the flexibility issues addressed in this paper

[AAE96, KaRa95, WoSh97], especially regarding dynamic structural changes. To support

sophisticated exception handling policies and ad hoc modifications requires the involvement

of humans with the runtime system, as the WF engine will generally not have the

knowledge to detect and to handle all possible failures and exceptions alone

[AAE96, StMi95, Mey96]. Besides this, advanced transactions models must be closely

integrated with facilities needed for the management and the undoing of changes.

 Integration of WF Technology with Groupware Approaches

 Several proposals have been made to combine formal and well-structured processes with

informal group processes. Communication-oriented models are based on a speech act

conversation model [WiFl86], which reduces organizational processes to networks of

commitment loops between process participants. Other approaches follow goal-based

models [BlNu95] and use circulation folders [KRW90]. All these approaches share the dis-

advantage that the achieved flexibility is paid by a harder formalization of even simple,

repetitive processes.

 Other research groups try to combine the advantages offered by WF technology with those

of groupware systems by supporting unstructured work at specific points of a WF

[e.g., AGS95, BlNu95, WPS97]. The conditions under which an unstructured (group) task is

executed may therefore be tightly specified. Details of the work to be done, however, are

only described in terms of goals or guidelines. This approach can be used in combination

with our model. Addressed research issues include the integration of WFMSs with

groupware technology, the formal specification of unstructured activities and the

management of the contextual information associated with them [BlNu95, WPS97].

Although these proposals offer an important contribution towards more flexible systems,

they only address a small part of the flexibility requirements discussed in this paper. To be

broadly applicable, process-centered WFMSs cannot afford to restrict their support to well-

structured processes, including some unstructured tasks [SGJ96]. Several authors doubt

the suitability of this integration approach at all [Hei96, Sie96]. As a potential disadvantage

they consider the "break" between structured and unstructured parts of work, which results

from the combined use of workflow with groupware technology. Important features such as

auditing, rollback, security or consistency may be lost when (unstructured group) tasks are

not controlled by the WFMS.

 34

 WF Schema Evolution

 There are only few approaches which address correctness issues regarding dynamic

structural changes. Notable exceptions come from Ellis et al. [EKR95], Casati et al. [CCP95,

CCP96], and maybe others. In contrast to our proposal which concentrates on ad hoc

changes applied to specific WF instances, these approaches deal with changes at the

schema level and their propagation to WFs whose execution started with the old schema

[CCP96, EKR95]. Although the operational support for both types of changes is a complex

and yet unsolved problem and many related issues can be identified, in some respects ad

hoc modifications are much more intricate and problematic, as they may have to be

performed by non-computer experts.

 As ADEPTflex, both approaches are based on a conceptual WF model. However they restrict

their considerations to dynamic changes of the control flow while other relevant aspects are

left aside. Ellis et al. propose a mathematical model for the formal reasoning about certain

classes of dynamic changes [EKR95]. This model is based on constrained petri nets.

Simplistically a change corresponds to the replacement of a subnet ("old change region") of

the process graph by a new subnet ("new change region"), and is said to be correct if after

its application corresponding WF instances can either be executed according to the old

schema or to the new one. The emphasis and strength of this approach lies in its formal

foundation. Implementation issues and issues related to the operational support for dynamic

changes are not addressed. Furthermore no statement is made about changes that cannot

meet the defined correcntess criteria. Casati et al. address the problem of schema evolution

from a static as well as a dynamic point of view [CCP96]. In contrast to Ellis et al. they go in

line with our approach. Dynamic structural changes are based on a set of modification

primitives, whose application does not violate the given correctness criteria. The proposed

change primitives, however, offer only a limited semantics when compared to our approach.

The strength rather lies in the variety of policies offered for managing the evolution of

running WF instances (including support for version management). Formal criteria are

introduced in order to determine which processes can be transparently migrated to the new

version.

 How to integrate dynamic structural changes at the schema level with changes at the

instance level is an outstanding research issue. When looking at the proposals made by

Ellis et al., for example, it is implicitly assumed that the execution of all instances of a

specific process type is based on the same net. This assumption, however, cannot be

maintained when ad hoc changes to individual processes must be considered, too. The

proposals made in section 4 are a first step towards a solution of this problem.

 In summary, today's WFMSs offer a promising perspective, but are not yet able to fully

support the flexibility requirements of their users. The role of application developers as well

as of end users in handling exceptions and changing the structure of processes during

runtime is not well-understood and therefore poorly integrated with today's WFMSs.

 35

6 Summary and Outlook

 In this paper we have concentrated on issues regarding dynamic structural changes of WFs

during their execution. We have argued that such changes are rather the norm in

computerized processes and that their operational support will form a key part of process

flexibility in future WFMSs. We have shown that the dynamic change problem has many

facets and is therefore a worthwhile area of study.

 We have introduced the basic concepts of the ADEPT workflow model and demonstrated

its suitability for the (precise) specification of WFs, the verification and testing of the

correctness of WF specifications, and the enactment of WFs. We have argued that the

ADEPT model offers a good compromise for the trade-off between the expressive power of

a WF model and the complexity of the needed algorithms for model checking, especially

when contrasting it with general-purpose models such as petri nets. We believe that this is

crucial for the efficient support of complex dynamic structural changes.

 The ADEPTflex model which is based upon ADEPT has been presented and its adequacy

with respect to dynamic structural changes has been demonstrated. ADEPTflex comprises a

complete and minimal set of change operations, which ensure the correctness and

consistency of the resulting process graph by construction. Taking the dynamic addition of

tasks as an example, we have demonstrated that the underlying correctness properties of

the ADEPT model and the set of preconditions defined for each type of change operation

constitute a good basis for this. We discussed how to deal with changes that cannot meet

the correctness criteria. We believe that neither hard-wired mechanisms nor hand-made

solutions would be satisfactory in practice. Instead we have proposed a more flexible

approach, offering several policies for dealing with the exceptions resulting from a change

(e.g., missing or incomplete input data of tasks). We compared our model with other WF

models and we did show that the semantics offered by the change facilities of ADEPTflex

captures those of other models by far. Finally, we addressed issues regarding the

management of temporary and permanent changes and the undoing of temporary changes

when a backward operation is applied. This has turned out to be quite important in our

experience. Several prototypical implementations have been built to demonstrate the

feasability of our approach [Bla96, Gri97, Hen97, Kir96].

 The work presented in this paper has been well-motivated by a variety of organizational

studies and analyses of processes from the clinical domain [Mey96, RSD97, KRN94] where

ad hoc changes as well as dynamically evolving WFs are rather the norm and exceptions

do frequently occur. We also implemented complex processes from the university's

women's hospital by applying current WF technology [RSD97]. As a result, today's WFMSs

offer perspectives, but are far away from providing the flexibility needed by clinical users.

 For the future, however, we believe that WF technology has the potential to lead to a

completely different kind of application programming. The development of even complex

distributed application systems may reduce to the reuse of premodelled process templates

from a template repository, the customization of these templates and the insertion of the

application components in the style of plug-and-play. To be broadly applicable, however,

 36

future WF technology must provide a high flexibility in user assistance and more human-

centric approaches that include an integral support for exception handling and dynamic

structural changes.

 Although some progress has been achieved, a lot has to be done. Besides the topics

addressed in this paper, some specific areas that warrant further attention are

• the support of simultaneous changes on individual processes

• the application of dynamic changes to WFs whose schema is decomposed into several

parts that may be kept resp. controlled by different WF servers [e.g., BaDa97, WoWe97]

• the "intelligent" support of WF ensembles, i.e., dynamically evolving collections of more

or less loosely coupled WFs. The requirements which can be identified here are far more

challenging than those faced by concurrency control in standard database technology

[HeDa97].

• the development of general concepts for the integration of dynamic structural changes at

the schema level [e.g., CCP96, EKR96] with changes at the instance level (as proposed

in this paper)

• • the provision of "intelligent" interfaces for application programmers as well as end users;

adding only functionality to current models and systems without understanding how the

programmer resp. the end user will be able to utilise it will certainly not be very helpful!

 We believe that dynamic WFs are a field that would benefit by more intense study by the

research community.

 37

 References

[AAE96] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Günthör, C. Mohan. Advanced
Transaction Models in Workflow Contexts. Proc. 12th Int'l Conf on Data Engineering,
New Orleans, February 1996.

[AGS95] P. Antunes, N. Guimaraes, J. Segovia, J. Cardenosa: Beyond Formal Processes:
Augmenting Workflow with Group Interaction Techniques. Proc. Conf. on Organizational
Comp Sys, (COOCS'95), 1995.

[Att93] P. C. Attie, M. P. Singh, A. Sheth, M. Rusinkiewicz: Specifying and Enforcing Intertask
Dependencies. Proc. 19th Int'l Conf on Very Large Databases (VLDB'93), Dublin, August
1993, pp. 134-145.

[BaWa95] P. Barthelmess, J. Wainer: Workflow Systems: a few Definitions and a few Suggestions.
Proc. Conf on Organizational Computing Systems, (COOCS'95), 1995, pp. 138 - 147.

[BaDa97] T. Bauer, P. Dadam: A Distributed Execution Environment for Large-Scale Workflow
Management Systems with Subnets and Server Migration. Technical Report No. 97–03,
Department for Computer Science, University of Ulm, Germany, 1997.

[Bla96] R. Blaser: Composing Processes by the Reuse of Application Components. (in German).
Master’s thesis, University of Ulm, Germany, October 1996.

[BlNu95] R. Blumenthal, G. J. Nutt: Supporting Unstructured Workflow Activities in the Bramble
ICN System. Proc. Conf on Organizational Computing Systems (COOCS'95), 1995, pp.
130 - 137

[CCP95] F.Casati, S. Ceri, B. Pernici, G. Pozzi: Conceptual Modeling of WorkFlows. Proc. 14th
Int'l Conf Object-Oriented and Entity-Relationship Approach, GoldCoast, Australia, 1995,
pp. 341 - 354.

[CCP96] F. Casati, S. Ceri, B. Pernici, G. Pozzi: Workflow Evolution. Proc. 15th Int'l Conf. on
Conceptual Modeling (ER '96), Cottbus, Germany, 1996, pp. 438-455

[CGP97] G. Casati, P. Grefen, B. Pernici, G. Pozzi, G. Sánchez: WIDE Workflow Model and
Architecture. Technical Report, University of Milano, Italy, 1997.

[CKO92] B. Curtis, M. Kellner, J. Over: Process Management. Comm. of the ACM, Vol. 35, No. 9,
1992.

[DHL90] U. Dayal, M. Hsu, R. Ladin: Organizing Long-Running Activities With Triggers and
Transactions, Proc ACM SIGMOD Int'l Conf. on Management of Data, Atlantic City, NJ,
1990, pp. 204-214.

[Dav78] C. T. Davis Jr.: Data Processing Spheres of Control. IBM Sys Journal, Vol. 17, No. 2,
1978, pp. 179-198.

[DGS94] G. Dinkhoff, V. Gruhn, A. Saalmann, M. Zielanko: Business Process Modelling in the
Workflow Management Environment LEU. Proc. 13th Int'l Conf. on the Entity-
Relationship Approach, Manchester, 1994 (LNCS 881, Springer), pp. 46-63

[EdLi95] J. Eder, W. Liebhart: The Workflow Activity Model WAMO. Proc. 3rd Int'l Conference on
Cooperative Information Systems, Vienna, Austria, 1995, pp. 87 - 98

[ElNu93] C. A. Ellis, G. J. Nutt: Modeling and Enactment of Workflow Systems, Proc. 14th Int'l
Conf. on Application and Theory of Petri Nets, Chicago, 1993, (LNCS 691, Springer), pp.
1-16

[EKR95] C. A. Ellis, K. Keddara, G. Rozenberg: Dynamic Change Within Workflow Systems. Proc.
Conf. on Organizational Computing Systems (COOCS'95), 1995, pp. 10 - 21

[Elm92] A. K. Elmargarmid (ed.): Database Transaction Models for Advanced Applications.
Morgan Kaufmann Publishers, 1992

[GHS95] D. Georgakopoulos, M. Hornick, A. Sheth: An Overview of Workflow Management.
Distributed and Parallel Databases, Vol. 3, 1995, pp. 119-153

[Gri97] M. Grimm: ADEPTtime – Dealing With Temporal Dependencies in Flexible WFMSs (in
German). Master’s thesis, University of Ulm, Germany, To appear in 1997.

 38

[Hei96] P. Heinl, H. Schuster, K. Stein: Behandlung von Ad-hoc-Workflows im MOBILE
Workflow-Modell. In: Proc. Softwaretechnik in Automation und Kommunikation -
Rechnergestützte Teamarbeit (STAK'96), Munich, March 1996, pp. 229 - 242.

[HeDa97] C. Heinlein, P. Dadam: Interaction Expressions – A Powerful Formalism for Describing
Inter-Workflow Dependencies. Technical Report No. 97–04, Department for Computer
Science, University of Ulm, Germany, 1997.

[Henn89] M. Hennessy: Algebraic Theory of Processes. The MIT Press, Cambridge, MA, 1989.

[Hen97] C. Hensinger: ADEPTflex – Dynamic Modification of Workflows and Exception Handling in
WFMSs (in German). Master’s thesis, University of Ulm, Germany, January 1997.

[HOR96] A. Hofstede, M. Orlowska, J. Rajapaks: Verification Problems in Conceptual Workflow
Specifications. Proc. 15th Int'l Conf. on Conceptual Modeling, Cottbus, Germany, 1996,
pp. 73-88.

[HsKl96] M. Hsu, C. Kleissner: ObjectFlow: Towards a Process Management Infrastructure.
Distributed and Parallel Databases, Vol. 4, 1996, Kluwer Academic Publishers, pp. 169-
194

[Hsu93] M. Hsu (ed.): Special Issue on Workflow and Extended Transaction Systems. IEEE
Bulletin of the Technical Commitee on Data Engineering, Vol. 16, No. 2, 1993

[Hsu95] M. Hsu (ed.): Special Issue on Workflow Systems. IEEE Bulletin of the Technical
Commitee on Data Engineering, Vol. 18, No. 1, 1995

[KaRa95] M. Kamath, K. Ramamritham: Bridging the Gap Between Transaction Management and
Workflow Management. Technical Report, University of Massachusetts, 1995

[KRW90] B. Karbe, N. Ramsperger, P. Weiss: Support of Cooperative Work by Electronic
Circulation Folders, Conf. on Office Information Systems, Cambridge, Mass., 1990,
SIGOIS Bulletin, Vol. 11, No. 2,3, pp. 109-117

[Kir96] M. Kirsch: Design and Implementation of a Graphical Tool for the Modeling and Animation
of Flexible Workflows (in German). Master’s thesis, University of Ulm, Germany, 1996.

[KoRe96] I. Konyen, M. Reichert: Organizational Aspects of Computerized Clinical Processes -
Required Concepts, Integrity Rules and Transformation in WFMSs (in German),
Technical Report, Department of Databases and Information Systems, University of Ulm,
Germany, 1996.

[KHK91] T. Kreifelts, E. Hinrichs, K.-H. Klein, P. Seuffert, G. Woetzel: Experiences with the
DOMINO Office Procedure System. Proc. 2nd European Conf on CSCW (ECSCW'91),
Amsterdam, The Netherlands, September 1991, pp. 117 - 130.

[KRN94] K. Kuhn, M. Reichert, M. Nathe, T. Beuter, P. Dadam: An Infrastructure for Cooperation
and Communication in an Advanced Clinical Information System. Proc. 18th Symp on
Comp in Med Care, Washington, 1994, 519 - 523.

[LeAl94] F. Leymann, W. Altenhuber: Managing Business Processes as an Information Resource.
IBM Systems Journal, Vol. 33, No. 2, 1994, pp. 326-348

[Ley95] F. Leymann: Supporting Business Transactions via Partial Recovery in Workflow
Management Systems, Proc. Datenbanksysteme in Büro, Technik und Wissenschaft ,
Dresden, Germany, 1995, pp. 51-70

[MaPn92] Z. Manna; A. Pnueli: The Temporal Logic of Reactive and Concurrent Systems-
Specification. Springer, 1992.

[Mey96] J. Meyer: Requirements for Future WFMSs: Flexibility, Exception Handling and Dynamic
Changes in Clinical Processes. Master’s thesis, University of Ulm, Germany, January
1996.

[NaOt96] L. Nastansky, M. Ott : Teambasiertes Workflowmanagement und Analyse
prozeßorientierter Teamarbeit im Bereich zwischen kooperativer und strukturierter
Vorgangsbearbeitung.Technical Report, Workgroup Computing Competence Center
Paderborn, University of Paderborn, Germany, 1996

[Rein93] B. Reinwald: Workflow-Management in Verteilten Systemen. Teubner, 1993.

 39

[Rei97] M. Reichert: A Conceptual and Operational Framework for Supporting Dynamic Structural
Changes of Workflows in WFMSs (in German). Phd thesis in preparation, University of
Ulm, Germany, 1997.

[RSD97] M. Reichert, B. Schultheiß, P. Dadam: Experiences with the Development of Process-
centered, Clinical Application Systems Using Process-oriented Workflow Technology (in
German), submitted for publication, 1997.

[ReSc95] A. Reuter, F. Schwenkreis: ConTracts - A Low-Level Mechanism for Building General-
Purpose Workflow Management Systems. In: [Hsu95], 1995, pp. 4-10.

[SGJ96] A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden, A.
Wolf: Report from the NSF Workshop on Workflow and Process Automation in
Information Systems, Technical Report UGA-CS-TR-96-003, University of Georgia,
October 1996.

[Sie96] R. Siebert: Adaptive Workflow for the German Public Administration. Proc. 1st Int'l Conf
on Practical Aspects of Knowledge Management (PAKM'96) – Workshop on Adaptive
Workflow, Basel, Switzerland, 1996.

[StMi95] D. M. Strong, S. M. Miller: Exceptions and Exception Handling in Computerized
Information Processes. In: ACM Transactions on Information Systems, Vol. 13, No. 2,
April 1995, ACM Press, 1995, pp. 206 - 233.

[VoEr92] P. Vogel, R. Erfle: Backtracking Office Procedures. Proc. 15th Int'l Conf. on Database
and Expert Systems (DEXA '92), Valencia, Spain, 1992, pp. 506-511

[WPS97] M. Weber, G. Partsch, A. Scheller-Huoy, J. Schweitzer, G. Schneider: Flexible Real-time
Meeting Support for Workflow Management Systems, Proc. 30th Hawaii Int'l Conf. on
System Sciences HICSS, Maui, Hawaii, 1997

[WiFl86] T. Winograd, F. Flores: Understanding Computers and Cognition: A New Foundation For
Design, Ablex Publishing Corporation, Norwood, NJ, 1986

[WoWe97] D. Wodtke, G. Weikum: A Formal Foundation for Distributed Workflow Execution Based
on State Charts. Proc. Int'l Conf. on Database Theory, Delphi, Greece, January 1997

[WoSh97] D. Worah, A. Sheth: Transactions in Transactional Workflows. In: S. Jajodia, L.
Kerschberg (eds.): Advanced Transaction Models and Architecturres, Kluwer Publ, to
appear in 1997

