
Int. J. Business Process Integration and Management, 2009

Activity Patterns in Process-aware
Information Systems: Basic Concepts
and Empirical Evidence
Lucinéia Heloisa Thom*, Manfred Reichert
Institute of Databases and Information Systems,
Ulm University, James-Frank-Ring, 89069 Ulm, Germany
E-mail: {lucineia.thom, manfred.reichert@uni-ulm.de}
*Corresponding author

Cirano Iochpe
Institute of Informatics,
Federal University of Rio Grande do Sul, Porto Alegre, Brazil
E-mail: ciochpe@inf.ufrgs.br

Abstract: Recently, a variety of workflow patterns was suggested for capturing different
aspects in process-aware information systems (PAISs) including control and data flow,
resources, process change, and exception handling. All these patterns are highly relevant for
implementing PAISs and for designing process modeling languages. However, current
patterns provide only a partial answer to the question which business functions a designer
might want to reuse when modeling processes. This paper presents a revised version of a
collection of activity patterns to deal with this challenge. Each of them is related to a
recurrent business function as it can be frequently found in process models (e.g., task
execution request, notification, approval). We describe the identified activity patterns and
their variants in detail. The main purpose of our paper is to discuss results from empirical
studies, in which we analyzed more than 200 process models in order to evidence the
practical relevance of the patterns. This includes a detailed analysis of the context in which
activity patterns occur as well the frequency of this occurrence. These empirical findings
can be used for the design of more intelligent, pattern-based process modeling tools.

Keywords: workflow activity patterns; business functions; business process management;
business process modeling.

Reference to this paper should be made as follows: Thom, L.H., Reichert, M., Iochpe, C.
(2009) ‘Activity Patterns in Process-aware Information Systems: Basic Concepts and
Empirical Evidence’, Int. J. Business Process Integration and Management.

Biographical notes:

Lucinéia Heloisa Thom is a visiting scientist at the University of Ulm in the group of
Manfred Reichert. She received a Bachelor degree in Computer Science from the
University of Santa Cruz do Sul, Brazil and a Master degree in Computer Science from the
Federal University of Rio Grande do Sul (UFRGS), Brazil, in 1999 and 2002, respectively.
In 2006 she received her PhD in Computer Science from UFRGS. From 2004 to 2005 she
developed part of her thesis research abroad at the Institute for Parallel and Distributed
Systems of University of Stuttgart. Her research interests are in the area of workflow
systems with a special focus on meta models, business process modeling and workflow
patterns. She has published many articles in these fields.

Manfred Reichert received a PhD in Computer Science and a Diploma in Mathematics.
Since January 2008 he has been Full Professor at the University of Ulm. From 2005 to 2007
he worked as Associate Professor at the University of Twente (UT). At UT, he was also
Leader of the strategic research initiatives on E-health (2005 - 2007) and on Service-
oriented Computing (2007), as well as member of the Management Board of the Centre for
Telematics and Information Technology, which is the largest ICT research institute in the
Netherlands. He has worked on advanced issues related to process management technology,
service-oriented computing, and databases and information systems. Together with Peter
Dadam, he pioneered the work on the ADEPT process management system, which

 L.H. THOM AND M. REICHERT AND C. IOCHPE

currently provides the most advanced technology for realising flexible process-aware
information systems. Manfred was PC Co-chair of the BPM’08 conferene in Milan, Italy
and will be General Co-chair of the BPM’09 conference in Ulm, Germany.

Cirano Iochpe received a PhD in Computer Science from the University of Karlsruhe,
Germany in 1989 and a M.Sc. in Computer Science from the Federal University of Rio
Grande do Sul (UFRGS), Brazil in 1984. In 1990 he started working as Associate Professor
at the Informatics Institute of UFRGS. Since 2005 he has led the projects sector of PRO-
CEMPA, the ITC Public Company of the city of Porto Alegre. Cirano has coordinated
several research projects in the area of information systems, especially in the context of
business process management and geographical information systems. Related to these areas
he published several papers. In 2008 he received the UTC APEX AWARD from UTC and
Motorola as recognition of his efforts in social as well as digital inclusion oriented projects,
particularly in the areas of telehealth systems and applications.

1 INTRODUCTION

For several reasons companies are developing a growing
interest in improving the efficiency and quality of their
internal business processes and in optimizing their inter-
actions with customers and business partners (Mutschler,
2008a), (Dadam, 2000), (Lenz, 2007), (Müller, 2006).
During the last years we have seen an increasing adoption of
business process management (BPM) tools by enterprises as
well as emerging standards for business process
specification and execution (e.g., BPMN, BPEL) in order to
meet these goals (Weske, 2007). Respective technologies
(e.g., workflow management systems, case handling tools)
enable the definition, execution, and monitoring of the
operational processes of an enterprise (Mutschler, 2008b).
In connection with Web service technology, in addition, the
benefits of business process management from within a
single enterprise can be transferred to cross-organizational
business processes as well (Reichert, 1999), (Khalaf, 2006).

1.1 Problem Statement

For (computerized) business processes there exists a variety
of business functions and process fragments, respectively,
which can be understood as self-contained activity blocks
with a specific and well defined semantics (Thom, 2006),
(Thom, 2007b). In particular, a certain process fragment
(e.g., enabling document approval) may occur several times
within one or different process models; i.e., multiple logical
copies of the same process fragment may be used with same
or different parameterization (e.g. approval by a single actor
vs. approval by multiple actors). As example consider
Figure 1. The depicted travel booking process includes the
following partially ordered activities: (a) receiving a flight
booking request; (b) a secretary verifies whether there is an
available flight for the requested period; (c) if there is no
available flight the booking requestor will be notified
accordingly; (d) otherwise, a financial manager will
authorize the purchase of the tickets; (e) if no approval is
given, the secretary and the requestor will be notified that
ticket purchase has not been authorized; (f) after approval
the secretary must proceed with buying the electronic ticket
which is then sent to the requestor. Altogether, the structure
of this business process comprises a set of fragments related
to the following activity patterns: Request for Activity Exe-

cution (activity a), Decision Making (activity b), Notifica-
tion (activities c or e), and Approval (activity d). We explain
the semantics of these and other activity patterns later.

a] Receive of flight
book request

b] Verifies
available flight

for the requested
period

No

c] Notify book
requestor that

there is no available
flight

System Secretary

System

d] Authorize
purchase of the

ticket

Financial
Department

yesYes

Authorized

Not authorized

e] Notify secretary and
book requestor

that ticket purchase
has not been authorized

System

f] Buy the electronic
ticket

Secretary

a] Receive of flight
book request

b] Verifies
available flight

for the requested
period

No

c] Notify book
requestor that

there is no available
flight

System Secretary

System

d] Authorize
purchase of the

ticket

Financial
Department

yesyesYes

Authorized

Not authorized

e] Notify secretary and
book requestor

that ticket purchase
has not been authorized

System

f] Buy the electronic
ticket

Secretary

Figure 1 Travel booking process

Usually, such process fragments (Medina-Mora, 1992),

(Flores, 1998), (zur Muehlen, 2002), (Malone, 2004) are re-
implemented in almost every process-oriented application.
Although they can be precisely characterized in their seman-
tics, there is only little research relating this kind of process
building blocks to patterns. Furthermore, contemporary
process modeling tools do neither acknowledge these frag-
ments as patterns nor provide any support for users to de-
fine, query, or even reuse activity patterns in a proper way.

While numerous workflow patterns have been introduced
related to control flow (Russell, 2006a), data flow (Russell,
2005), resources (Russell, 2004), exception handling
(Russell, 2006b), service interaction (Barros, 2005), process
change (Weber, 2008a), (Rinderle-Ma, 2008), and applic-
ation–oriented aspects (Bancroft, 1998), there has been no
mapping of activity patterns onto process (meta) models yet
and no process modeling tool implements them properly.
Furthermore, little or no effort has been devoted on research
showing how frequently these patterns are used in practice
when designing processes.

1.2 Approach and Contributions

We present results obtained in our ProWAP project. We
first introduce a revised version of the seven workflow
activity patterns (WAP) we had introduced in earlier work
(Thom, 2006). Each of them represents a usual business

Activity Patterns in Process-aware Information Systems: Basic Concepts and Empirical Evidence

function as it can be frequently found within business
processes and as discussed in literature as well (Flores,
1998), (Medina-Mora, 1992), (Bancroft, 1998), (zur
Muehlen, 2002), (Andrews, 2003), (Malone, 2004).
Examples of such activity patterns include Notification,
Approval, Question-answer, Decision, Information Request,
and Request for Activity Execution with / without answer
(which we denote as Uni-/Bi-directional Performative,
respectively). We consider the block activity concept
(WfMC, 2005) as being suitable for representing activity
patterns as SESE fragments (Borbrik, 2007); i.e., process
fragments with single entry and single exit points. This al-
lows us to encapsulate the well-defined semantics of the
patterns and to represent their atomic characteristics; i.e., all
steps defined inside a block activity must be completed be-
fore the super-ordinated process may continue its execution.
By defining activity patterns as SESE fragments we also
provide the basis for pattern implementation, pattern reuse
within process modeling tools, and pattern composition.

The major contributions of our ProWAP approach as
described in this paper can be summarized as follows:
• We present a revised version of seven activity patterns

for business process modeling. This pattern set is closer
to the vocabulary and abstraction level at which busi-
ness processes are usually described by domain experts.
Generally, multiple activity patterns can be composed
in a process model using workflow patterns (e.g., Se-
quence, AND-Split, AND-Join, XOR-Split). We be-
lieve that activity pattern reuse and composition can
reduce efforts for process design and modeling.

• Through an empirical study, in which we analyzed 214
real-world process models, the existence of the seven
activity patterns has been confirmed. In this context, a
process model constitutes a computerized (i.e. formal)
representation of either a working procedure or busi-
ness process that controls the order in which a set of
tasks has to be performed (Bardram, 1997). We further
observed that in most cases the analyzed process
models can be designed based on investigated patterns;
i.e., the set of identified activity patterns is necessary as
well as sufficient to design the 214 process models, at
least at a certain level of granularity. Thereby, a
particular activity pattern may occur multiple times
within a particular process model as well. Our empirical
research is fundamental to evidence the relevance of
activity patterns for process modeling and the user
assistance they can add to existing BPM tools.

• For selected process categories (e.g., processes with
human interventions vs. fully automated processes) we
investigate the frequency of co-occurring activity
patterns. Our intention is to use the results of this
second analysis for developing a BPM tool, which
fosters the modeling of business processes based on the
reuse of activity patterns. Given some additional
information about the kind of process to be designed,
for instance, the results of our analysis can be further
used by this tool to suggest a ranking of the activity
patterns best suited to succeed the last applied pattern.

The identified activity patterns are independent of a
concrete process modeling language; i.e., they can be inte-
grated into any process modeling tool. To achieve a precise
semantics we have formalized activity patterns using π-
calculus. A process model specified in π-calculus can ex-
press the dynamic behavior of the process, thus making it
possible to verify formal properties of the model like sound-
ness (e.g., absence of deadlocks and livelocks) and model
equivalence (Li, 2008a). A formalization of the activity
patterns, however, is outside the scope of this article (for
details we refer to (Nascimento, 2007)).

Section 2 describes characteristic properties of the seven
activity patterns identified and discusses pattern variants in
this context. In Section 3 we present the results of an
empirical study that we performed in order to investigate the
existence of activity patterns in real-world process models.
Section 4 discusses related work and Section 5 concludes
with a summary and an outlook on future research.

2 ACTIVITY PATTERNS: CHARACTERISTICS AND
VARIANTS

We use the term workflow activity pattern (WAP) – activity
pattern for short – to refer to the description of a recurrent
business function as it can be frequently found in business
processes. Typical examples include task execution requests
(similar to the speech-act-theory proposed by (Flores, 1988)
and (Medina-Mora, 1992)), notifications, and approvals.

Altogether we have derived a set of seven activity patterns
based on an extensive literature study about business
process types. These seven activity patterns are as follows:
Approval, Question-answer, Uni- / Bi-directional Performa-
tive, Information Request, Notification, and Decision
Making. For each pattern we provide a name, a description,
an illustrative example, a description of the problem it
addresses, specific issues, a couple of design choices
(determining different pattern variants), a reference to
related patterns, and remarks regarding pattern
implementation. Design Choices allow for the
parameterization of patterns keeping the number of distinct
patterns manageable. They comprise different options
applicable in a particular context. For example, in the
context of the approval pattern, a particular object (e.g., a
business document) has to be approved by one or more
organizational roles; this is required before proceeding with
the flow of control. We define three variants of the approval
pattern, namely single approval (i.e., approval is required
from exactly one organizational role), iterative approval
(i.e., sequential approval is required from a list of reviewers)
and concurrent approval (i.e., approval is required from a
list of reviewers simultaneously). Note that these variants
were identified based on our observation considering the
process models we analysed.

In the following, we informally summarize pattern
semantics based on UML activity diagrams (cf. Fig. 2).

 L.H. THOM AND M. REICHERT AND C. IOCHPE

Multi-instance

List

A

List

Name

Send Receive

[a > 0] [a < 0]

A1 A2

a]

b] c]

d]

e]

h]

i]

f]

Legend
a] Elementary activity
b] Send signal
c] Receive signal
d] Dataflow
e] Start node
f] End node
g] Comment
h] XOR-Split
i] Multi-instance activity
j] Interruptible activity region

A B C D

X

j]

g]

Multi-instance

List

A

List

NameName

SendSend Receive

[a > 0] [a < 0][a > 0] [a < 0]

A1 A2

a]

b] c]

d]

e]

h]

i]

f]

Legend
a] Elementary activity
b] Send signal
c] Receive signal
d] Dataflow
e] Start node
f] End node
g] Comment
h] XOR-Split
i] Multi-instance activity
j] Interruptible activity region

A B C D

X

j]

g]

Figure 2 UML notation (Activity Diagrams) used to informally summarize the activity pattern semantics

2.1 Pattern Description

In the following we describe the seven activity patterns in a
systematic and detailed way. We first consider the
APPROVAL pattern, which can be used to express different
kinds of approvals in the context of a business process.

Pattern WAP1: APPROVAL

Description: An object (e.g. a document) has to be
approved by one or more organizational roles. Depending
on the respective context, the evaluation is executed only
one time (single approval) or multiple times. In the latter
variant, it can be either accomplished in sequence
(iterative approval) or in parallel (concurrent approval).

Example: In a change management process, for example,
a particular change request may have to be concurrently
approved by all organizational roles concerned by the
change. If one of these roles rejects the change request, it
will be not approved.

Problem: During the execution of a business process,
object approval by one or multiple organizational roles is
required before proceeding with the flow of control.

Issues:
a. The number of organizational roles, who must give

their approval, may vary depending on the level of
centralization of theauthority present in the respective
organization.

b. The approval activity may be performed multiple
times in parallel (concurrent approval) or in sequence
(iterative approval) according to the number of
organizational roles being involved. Concurrent
approval is characteristic for flat organizations,
whereas iterative approval can be often found in
vertical organizations. In the latter case, the approval
activity can be aborted as soon as one role decides for

rejection.

c. Final decision can be made manually (i.e., by a user)
or automatically according to some rules.

A. Design Choices: Single Approval, Iterative Approval
or Multiple Approval:

 Major design choice is whether approval shall be done
by a single role or by multiple roles either concurrently or
iteratively. This, in turn, results in three pattern variants
with the following informal semantics:

1. Single Approval (cf. Fig. 3): A requestor sends an
approval request to exactly one reviewer. This
reviewer then performs the revision either resulting in
approval or rejection.

2. Iterative Approval (cf. Fig. 4): Based on a list of
reviewers a requestor sends an approval request for
the first reviewer from the list. This reviewer then
performs the approval resulting either in approval or
rejection. If approved the next reviewer from the list
will receive a request for approval, and so on; if one
reviewer rejects, all previous approvals (in case they
exist) will be cancelled and the overall approval
procedure will be aborted. At the end, a final decision
– approval or rejection – is made concerning the
object under revision.

3. Concurrent Approval (cf. Fig. 5): Given a list of
reviewers a requestor sends an approval request to all
reviewers simultaneously. After all reviewers have
performed their approvals the final decision is made.

Related Patterns: Bi-directional Performative (WAP 4)
and Decision (WAP 7). Send/Receive and One-to-many
Send/Receive (Barros, 2005), Multi-Instance with a a-
priori Runtime Knowledge (Russell, 2006a).

Implementation: The approval pattern can be implemen-
ted based on the Send/Receive pattern (Design choice
A(1)) as introduced by (Barros, 2005). Regarding concur-

Activity Patterns in Process-aware Information Systems: Basic Concepts and Empirical Evidence

rent approval (Design Choice A(3)) implementation can
be based either on the Multi-Instance with a priori Run-
time Knowledge pattern or the One-to-Many Send/Receive
pattern being connected to an XOR-Split (Russell, 2006a).
In the latter case, several instances of a task are created
and executed in parallel with synchronization being done
when all tasks instances are completed.

Send approval
request

Receive approval
request

Approval request

Perform
approval

Send approval
result

Approval request

Receive approval
result

<<single>>

Approval result
∈ {approval,
rejection}

D
ec

is
io

n
∈

{a
p
p
r
o
v
e
d

, r
e
j
e
c
t
e
d

}

Approval
result

Reviewer requestor (human or automated) Reviewer (human or automated)

Send approval
request

Receive approval
request

Approval request

Perform
approval

Send approval
result

Approval request

Receive approval
result

<<single>>

Approval result
∈ {approval,
rejection}

Approval result
∈ {approval,
rejection}

D
ec

is
io

n
∈

{a
p
p
r
o
v
e
d

, r
e
j
e
c
t
e
d

}

Approval
result

Reviewer requestor (human or automated) Reviewer (human or automated)

Figure 3 Single Approval

Reviewer requestor (human or automated

Send approval
request

Receive approval
request

Perform
approval

Send approval
result

Receive approval
result

<<iterative>>

List of reviewers

[rejected] [approved]

Record
approval

Cancel pre-
vious approval

<concurrent>

List of previous approvals ⊆
List of reviewers

Approval result

<<decision
Input>> Review
result

Reviewer (human or automated)

If „Approval result = approved ∀
Reviewers“ then

Decision:= approved
else

Decision:= rejected

Decision ∈ {approved, rejected}

Make final
decision

Review
result ∈
{approval,
rejection} Approval result

Approval request

Reviewer requestor (human or automated

Send approval
request

Receive approval
request

Perform
approval

Send approval
result

Receive approval
result

<<iterative>>

List of reviewers

[rejected] [approved]

Record
approval

Cancel pre-
vious approval

<concurrent>

List of previous approvals ⊆
List of reviewers

Approval result

<<decision
Input>> Review
result

Reviewer (human or automated)

If „Approval result = approved ∀
Reviewers“ then

Decision:= approved
else

Decision:= rejected

Decision ∈ {approved, rejected}

Make final
decision

Review
result ∈
{approval,
rejection}

Review
result ∈
{approval,
rejection} Approval result

Approval request

Figure 4 Iterative Approval

Send approval
request

Receive approval
request

Approval request

Perform
approval

Send approval
result

Approval request

Receive approval
result

<<concurrent>>

List of reviewers

List of results

Make final
decision

Approval result
∈ {approval,
rejection}

D
ec

is
io

n
∈

{a
p
pr
o
ve
d,

 r
e
je
c
te
d}

Approval result

If total number of approvals ≥ MinApprovals
Decision:= approved

else
Decision:= rejected

Reviewer requestor (human or automated) Reviewer (human or automated)

Send approval
request

Receive approval
request

Approval request

Perform
approval

Send approval
result

Approval request

Receive approval
result

<<concurrent>>

List of reviewers

List of results

Make final
decision

Approval result
∈ {approval,
rejection}

Approval result
∈ {approval,
rejection}

D
ec

is
io

n
∈

{a
p
pr
o
ve
d,

 r
e
je
c
te
d}

Approval result

If total number of approvals ≥ MinApprovals
Decision:= approved

else
Decision:= rejected

Reviewer requestor (human or automated) Reviewer (human or automated)

Figure 5 Concurrent Approval

The second pattern we discuss is the QUESTION-ANSWER
pattern. It can be used to design a question-answer-based

interaction where one or more specific participants of the
process are chosen to reply to the question.

Pattern WAP2: QUESTION-ANSWER

Description: When performing a process, an actor might
have a question before working on the process or on a
particular activity. The QUESTION-ANSWER pattern allows
to formulate such question, to identify an organizational
role who is able to answer it, to send the question to the
respective actor filling this role, and to wait for response
(single question-answer). As generalization, the question
can be sent to multiple roles or actors resulting in multiple
answers (multi-question-answer).

Example: A process for authorizing the construction of a
large shopping center close to a protected area requires a
license from the government. The process includes several
activities such as the creation of the licensing document.
In particular, the author of the document may have
specific questions concerning governmental rules. Such
questions are then forwarded and answered by an
organizational role with respective expertise (e.g., a
technician from the Licensing division).

Problem: During process execution an actor might have a
question regarding the performance of process activities.
This requires system support for forwarding questions and
answers as well as experts with appropriate abilities or
knowledge to answer the questions.

Issues:
a. Based on its description, the question is assigned and

forwarded to the role with best expertise in the
respective domain (e.g., an actor with specific
knowledge about the Java language).

b. The sender of the question waits until the
corresponding reply (i.e., the answer to the question)
arrives and then continues with process execution.

c. Usually, the question is answered by humans.

B. Design Choices: Single-Question-answer vs. Multi-
question-answer

Major design choice is whether the question will be send
to one or multiple roles and actors, respectively. This, in
turn, results in two pattern variants with the following
informal semantics:

1. Single-Question-Answer (cf. Fig. 6): Based on a ques-
tion description an organizational role (i.e., specialist)
with expertise in the respective domain is chosen to
answer the question. The sender waits until the res-
ponse arrives and then continues process execution.

2. Multi-Question-Answer (cf. Fig. 7): Based on a ques-
tion description multiple organizational roles (special-
ists) with expertise in the respective domain are cho-
sen to answer the question. The sender waits until all
responses arrive and then continues process
execution.

 L.H. THOM AND M. REICHERT AND C. IOCHPE

Sender Receiver (specialist)

Send
question

Receive question

Question

The sender will block
waiting for a reply to
continue execution

Execute
activity

Execution
result

Receive
answer

Answer

Send
answer

Describe
question question

Identify role
habilities question

role

The flow just continues
execution when the
sender of the question
receives the reply

Sender Receiver (specialist)

Send
question

Receive question

Question

The sender will block
waiting for a reply to
continue execution

Execute
activity

Execution
result

Receive
answer

Answer

Send
answer

Describe
question question

Identify role
habilities question

role

The flow just continues
execution when the
sender of the question
receives the reply

The flow just continues
execution when the
sender of the question
receives the reply

Figure 6 Single-Question-Answer

Sender Receiver (specialist)

Describe
question

Question

Identify role
habilities

Role

Question Send
question

Receive question

Question

Execute
activity

Answer

Send
answer

The sender will block
waiting for a reply to
continue execution

Answer

Question

Receive
answer

The flow just continues
execution when the
sender of the question
receives the reply

List of roles

Sender Receiver (specialist)

Describe
question

Question

Identify role
habilities

Role

Question Send
question

Receive question

Question

Execute
activity

Answer

Send
answer

The sender will block
waiting for a reply to
continue execution

Answer

Question

Receive
answer

The flow just continues
execution when the
sender of the question
receives the reply

The flow just continues
execution when the
sender of the question
receives the reply

List of roles

Figure 7 Multi-Question-Answer

Related Patterns: Bi-directional Performative (WAP 4),
Send/Receive and One-to-many (Barros, 2005), Multi-
Instance with a priori Runtime Knowledge (Russell,
2006a).

Implementation: The Single-Question-Answer pattern
variant (Design Choice B(1)) can be implemented based
on the Send/Receive pattern. Furthermore, the Multi-
Question-Answer pattern variant (Design Choice B(2))
can be realized either by using the Multi-Instance with a
priori Runtime Knowledge pattern or the One-to-Many
Send/Receive pattern.

We now discuss the UNIDIRECTIONAL PERFORMATIVE

PATTERN. This pattern represents an unidirectional
performative message, i.e., it is used by a sender to request
the execution of an activity from a receiver. The sender
continues execution immediately after having sent the
request (Flores, 1998), (zur Muehlen, 2002).

Pattern WAP3: UNIDIRECTIONAL PERFORMATIVE

Description: A sender requests the execution of a
particular activity from a receiver (e.g., a human or a
software agent) involved in the process. The sender
continues execution of his part of the process immediately
after having sent the request.

Example: In a procurement process, the execution of an
activity to partially cancel an order can be requested from

a manager if some irregularities occur. The flow continues
immediately after the cancel activity is requested.

Problem: In the course of a process an activity execution
request must be included as process step; the sender of the
request must continue execution without waiting for a
response.

Issues:
a. A response by the receiver is not required.

b. The process of the sender continues its execution
without waiting for the completion of the requested
activity.

c. The requested activity either is accomplished by a
human or by a software agent.

C. Design Choices: Single-Request vs. Multi-Request

Major design choice is whether the activity execution
request shall be sent to one or multiple actors. This results
in two pattern variants with following informal semantics:

1. Single-Request (cf. Fig. 8): A requestor sends an
activity execution request to a receiver and continues
process execution without waiting for response.

2. Multi-Request (cf. Fig.9): A requestor sends an
activity execution request to multiple receivers
simultaneously and continues process execution
afterwards, i.e., without waiting for any response.

Sender (activity requestor) Receiver (activity performer)

Send activity
execution request

Receive activity
execution request

Activity request

The sender will continue
execution immediatey after
sending the request

Execute
activity

Execution
result

Sender (activity requestor) Receiver (activity performer)

Send activity
execution request

Receive activity
execution request

Activity request

The sender will continue
execution immediatey after
sending the request

Execute
activity

Execution
result

Figure 8 Single-Request

Sender (activity requestor) Receiver (activity performer)

Send activity
execution request

Activity request

<<concurrent>>

List of receivers

Receive activity
execution request

Execute
activity

Execution
result

The sender will continue
execution immediatey after
sending the requests

Sender (activity requestor) Receiver (activity performer)

Send activity
execution request

Activity request

<<concurrent>>

List of receivers

Receive activity
execution request

Execute
activity

Execution
result

The sender will continue
execution immediatey after
sending the requests

Figure 9 Multi-Request

Related Patterns: Bi-directional Performative (WAP 4),
Send and One-to-Many Send (Barros, 2005).

Implementation: This pattern can be implemented based
on the Send pattern (Design Choice C(1)) or based on the
One-to-Many pattern (Design Choice C(2)) (Barros,
2005).

Activity Patterns in Process-aware Information Systems: Basic Concepts and Empirical Evidence

Next we describe the BI-DIRECTIONAL PERFORMATIVE
PATTERN. It represents a bi-directional performative mes-
sage, i.e., a sender requests the execution of an activity from
a particular organizational role. The sender continues execu-
tion after this role has notified him about completion of the
requested activity (Flores, 1998), (zur Muehlen, 2002).

Pattern WAP4: BI-DIRECTIONAL PERFORMATIVE

Description: A sender requests the execution of a
particular activity from another role (e.g., a human or a
software agent) involved in the process. The sender waits
until the receiver notifies him that the requested activity
has been performed.

Example: A customer requests changes concerning the
design of a particular product. This triggers a process at
the manufacturer site where – first of all – a designer is
requested to adapt the product design according to the
specifications made by the customer. The manufacturer
process then has to wait until the designer finishes this
task. Afterwards the process continues with a review of
the new product design by another actor.

Problem: Within a particular process an activity
execution request has to be included as process step (i.e.,
activity); the sender of this request shall wait with the
continuation of his process until the receiver notifies him
about completion of the requested activity.

Issues:
a. A response by the receiver (i.e., a notification about

performance of the requested activity) is mandatory.

b. The sender process is blocked after sending out the
activity execution request. It continues after being
notified by the activity performer about the
completion of the respective activity.

c. The requested activity can be performed either by a
human or by a software agent.

D. Design Choices: Single-Request-Response vs. Multi-
Request-Response

Major design choice is whether the activity execution
request is sent to one or multiple actors. This results in
two pattern variants with the following informal
semantics:

1. Single-Request-Response (cf. Fig. 10): A requestor
sends an activity execution request to one receiver.
He waits with continuation of his part of the process
until the receiver notifies him about the performance
of the requested activity.

2. Multi-Request-Response (cf. Fig. 11): A sender
sends an activity execution request to multiple
receivers simultaneously and continues execution
only after having received respective notifications
from all performers.

Sender (activity requestor) Receiver (activity performer)

Send activity
execution request

Receive activity
execution request

Activity request

The sender will block waiting
for a reply to continue
execution

Execute
activity

Execution
result

Receive notification of
activity execution
complete

Activity result

Send notification of
activity execution
complete

The sender continues
execution when the receiver
completes execution

Sender (activity requestor) Receiver (activity performer)

Send activity
execution request

Receive activity
execution request

Activity request

The sender will block waiting
for a reply to continue
execution

Execute
activity

Execution
result

Receive notification of
activity execution
complete

Activity result

Send notification of
activity execution
complete

The sender continues
execution when the receiver
completes execution

Figure 10 Single-Request-Response

Sender (activity requestor) Receiver (activity performer)

Receive activity
execution request

Activity request

Execute
activity

Execution
result

Receive notification of
activity execution
complete Activity result

Send notification of
activity execution
complete

Send activity
execution request

<<concurrent>>

List of receivers

The sender will block waiting
for the reply of all receivers to
continue execution

Sender (activity requestor) Receiver (activity performer)

Receive activity
execution request

Activity request

Execute
activity

Execution
result

Receive notification of
activity execution
complete Activity result

Send notification of
activity execution
complete

Send activity
execution request

<<concurrent>>

List of receivers

The sender will block waiting
for the reply of all receivers to
continue execution

Figure 11 Multi-Request-Response

Related Patterns: Unidirectional Performative (WAP
3), Send-Receive (Barros, 2005), Multi–Instance with a
priori Runtime Knowledge (Russell, 2006a), Scatter-
gather (Hohpe, 2004).

Implementation: The Single-Request-Response pattern
variant (Design Choice D(1)) can be implemented based
on the Send-Receive pattern. For implementing the Multi-
Request-Response pattern variant ((Design Choice D(1))
we can use the One-to-Many Send/Receive pattern or the
Multi-Instance with a priori Runtime Knowledge pattern.

The next pattern we present is the NOTIFICATION

PATTERN. It comprises a notification activity that either in-
forms actors about the completion of an activity execution
or posts news relevant in the context of the modeled process
(zur Muehlen, 2002). Regarding the former case, the sender
sends a notification informing actors about the result of an
executed activity. In our present approach the notification
activity is being treated as a self-contained activity.

The description of the NOTIFICATION PATTERN is followed
by the one of the INFORMATION REQUEST PATTERN. This
pattern is based on an information request message, i.e., an
actor requests particular information from a process
participant. Since a response from the receiver is mandatory,
this pattern can be considered as a specialization of the BI-
DIRECTIONAL PERFORMATIVE PATTERN (WAP4).

 L.H. THOM AND M. REICHERT AND C. IOCHPE

Pattern WAP5: NOTIFICATION

Description: The status or result of an activity execution
is communicated to one or more process participants.

Example: When planning a meeting in the context of an
engineering process a notification has to be sent to the
engineers informing them about meeting details (e.g.,
location, date, meeting hours, subject).

Problem: During process execution participants have to
be informed about the status (e.g., completed, running,
waiting) or result (e.g., document approved, rejected) of
an activity execution.

Issues:
a. The notification must be sent electronically to one or

more process participants.

b. The process does not have to wait for any response of
the actors receiving the notification.

c. The notification informs about the status or results of
a process activity to be monitored.

E. Design Choices: Single-Notification vs. Multi-
Notification:

Major design choice is whether the notification is to be
sent to one or multiple actors. This results in two pattern
variants with following informal semantics:

1. Single-Notification (cf. Fig. 12): A sender sends a
notification to a single receiver.

2. Multi-Notification (cf. Fig. 13): A sender sends a
notification to multiple receivers simultaneously.

Sender Receiver

Start

Send
Notify

Receive
Notify

Notify

Sender Receiver

Start

Send
Notify

Receive
Notify

Receive
Notify

Notify

Figure 12 Single-Notification

Sender Receiver

Start

Send
Notify

Receive
Notify

<<concurrent>>

Notify

Notification List

Sender Receiver

Start

Send
Notify

Receive
Notify

Receive
Notify

<<concurrent>>

Notify

Notification List

Figure 13 Multi-Notification

Related Patterns: One-Way Send and One-to-Many Send
(Barros, 2005).

Implementation: This pattern is supported by several
workflow management systems. It can be implemented
based on pattern One-Way-Send (Design Choice E(1)) or
One-to-Many Send (Design Choice E(2)).

Pattern WAP6: INFORMATION REQUEST

Description: An actor requests certain information from a
process participant. He continues process execution after
having received the desired information.

Example: While ordering an airline ticket the customer has
to provide personal data (e.g., complete name, address, and
credit card number) via a Web browser interface. The
process continues afterwards.

Problem: In a process an information requesting activity
(e.g., implemented as a form to be filled out) has to be
included as explicit process step.

Issues:
a. A response by the receiver is mandatory.

b. The sender continues process execution only after
having received the requested information.

c. The requested information is provided by a human or
software agent.

F. Design Choices: Single-Information Request vs. Multi-
Information Request

 Major design choice is whether the information request is
sent to one or multiple actors. This results in two pattern
variants with following informal semantics:

1. Single-Information Request (cf. Fig. 14): A sender
sends an information request to a receiver and does not
continue process execution before having received the
requested information.

2. Multi-Information Request (cf. Fig. 15): A sender
sends an information request to multiple receivers si-
multaneously and does not continue process execution
before having received responses from all receivers.

Related Patterns: Send/Receive (Barros, 2005), One-to-
Many Send/Receive (Barros, 2005), Synchronous Transfer
(Mulyar, 2005).

Implementation: This pattern can be implemented based
on the One-Way Send pattern (Design Choice F(1)) or the
One-to-Many Send/Receive pattern (Design Choice F(2)).

Sender Receiver

Send information
request

Receive information
request

Information request

The sender of the
request will block
waiting for a reply to
continue execution

Process
information

information

Receive
information

Information

Send
information

The sender will continue
execution when the
information arrives

Sender Receiver

Send information
request

Receive information
request

Information request

The sender of the
request will block
waiting for a reply to
continue execution

Process
information

information

Receive
information

Information

Send
information

The sender will continue
execution when the
information arrives

Figure 14 Single-Information-Request

Activity Patterns in Process-aware Information Systems: Basic Concepts and Empirical Evidence

Sender Receiver

Send information
request

Receive information
request

Information request

Process
information

information

Receive
information

Information

Send
information

List of receivers

Sender Receiver

Send information
request

Receive information
request

Information request

Process
information

information

Receive
information

Information

Send
information

List of receivers

Figure 15 Multi-Information-Request

Last but not least, we describe the DECISION PATTERN. It

allows to include a decision activity in the flow with
connectors to different subsequent execution branches.
Exactly those branches are selected for execution whose
transition conditions evaluate to true during runtime.

Pattern WAP7: DECISION

Description: During process enactment, the performance
of one or multiple activities is requested. Depending on the
results of the requested activity executions the process
continues execution with one or several branches. More
precisely, pattern WAP7 allows to include a decision
activity with connectors to different subsequent execution
branches (each of them associated with a specific transition
condition). Exactly those branches are selected for
execution whose transition condition evaluates to true.

Example: To get feedback from a user concerning a
particular service the user shall indicate his or her
satisfaction degree by giving grades from 0 to 10.
Depending on the specified grade the process takes one or
several branches based on the conditions (e.g., grade
between 0 and 4) associated with them.

Problem: In a process an explicit decision step has to be
included. The final decision is made based on the execution
result(s) of requested activities.

Issues:
a. A response by the receiver with the result of the

activity is required.

b. Based on the response one or several subsequent
branches are selected for execution.

c. The final decision is usually made automatically based
on the execution result(s) of previous activities.

G. Design Choices: Single-Decision vs. Multi-Decision

 Major design choice is whether the final decision is based
on the results of one single activity or a set of activities.
This leads to two pattern variants with the following
informal semantics:

1. Single-Decision (cf. Fig. 16): Based on the execution

result of an activity one or several succeeding branches
are executed.

2. Multi-Decision (cf. Fig. 17): An activity execution
request is sent to multiple performers. Based on the
results of the activities one or several succeeding
branches are executed.

Sender Receiver

Send activity
execution request

Receive activity
execution request

Activity request

The sender will block
waiting for a reply to
continue execution

Execute
activity

Execution
result

Receive notification of
activity execution
complete

Activity result

Send notification of
activity execution
complete

Based on the activity result executed
by the receiver one or more of several
branches will be able to execute.

D
ec

is
io

n
∈

{c
o
n
d
i
t
i
o
n
1

, c
o
n
d
i
t
i
o
n

„
n
“

}

Make final
decision

Sender Receiver

Send activity
execution request

Receive activity
execution request

Activity request

The sender will block
waiting for a reply to
continue execution

Execute
activity

Execution
result

Receive notification of
activity execution
complete

Activity result

Send notification of
activity execution
complete

Based on the activity result executed
by the receiver one or more of several
branches will be able to execute.

D
ec

is
io

n
∈

{c
o
n
d
i
t
i
o
n
1

, c
o
n
d
i
t
i
o
n

„
n
“

}

Make final
decision

Figure 16 Single-Decision

Sender Receiver

Send activity
execution request

Receive activity
execution request

Activity request

Execute
activity

Execution
result

Receive notification of
activity execution
complete

Activity result

Send notification of
activity execution
complete

List of performers

Make final
decision

D
ec

is
io

n
∈

{c
o
n
d
i
t
i
o
n
1

, c
o
n
d
i
t
i
o
n

„
n
“

}

Based on the activity results one or
more of several branches will be
able to execute.

Sender Receiver

Send activity
execution request

Receive activity
execution request

Activity request

Execute
activity

Execution
result

Receive notification of
activity execution
complete

Activity result

Send notification of
activity execution
complete

List of performers

Make final
decision

D
ec

is
io

n
∈

{c
o
n
d
i
t
i
o
n
1

, c
o
n
d
i
t
i
o
n

„
n
“

}

Based on the activity results one or
more of several branches will be
able to execute.

Figure 17 Multi-Decision

Related Patterns: OR-Split (WfMC, 1999), OR-Split and
Deferred choice (Russell, 2006a).

Implementation: WAP7 can be implemented as
composition of pattern WAP4 and an OR-Split. Another
implementation option is provided by the Deferred Choice
pattern.

2.2 Activity Pattern Categorization

Considering the specific characteristics of the patterns we
classify them into two categories (cf. Fig. 18):

• Activity patterns based on organizational structural
aspects. By tuning or adjusting some structural aspects
to the desired performance, the organization gets its
final structure (Davis, 1996). Among the most
important aspects to be dealt with in the design of an
organizational structure, literature emphasizes the
degree of centralization on decision-making, the types

 L.H. THOM AND M. REICHERT AND C. IOCHPE

of co-ordination mechanisms used (e.g., standardization
of abilities to task execution), and the degree of
dependencies between activities (Mintzberg, 1995),
(Crowston, 1994). This first pattern category therefore
comprises exactly those two activity patterns that are
related to one or more organizational structural aspects:
Approval and Question-answer.

• Activity patterns based on recurrent functions. This
category comprises patterns related to general recurrent
business functions, i.e., any kind of process model
might contain patterns from this category independent
of the application domain (e.g., healthcare, automotive
engineering) or the kind of organization (e.g., process-
oriented, functional, matrix, etc). This category
comprises the following five patterns: Uni- and Bi-
directional Performative Pattern, Information Request
Pattern, Notification Pattern, and Decision Pattern.

Activity patterns based on

organizational structural aspects
Activity patterns based on

recurrent functions

WAP1: Approval

WAP2: Question-answer

WAP3: Unidirectional Performative

WAP4:Bi-directional Performative

WAP5:Notification

WAP6:Information Request

WAP7:Decision

Activity patterns based on
organizational structural aspects

Activity patterns based on
recurrent functions

WAP1: Approval

WAP2: Question-answer

WAP3: Unidirectional Performative

WAP4:Bi-directional Performative

WAP5:Notification

WAP6:Information Request

WAP7:Decision

Figure 18 Classification of activity patterns

3 EVIDENCING THE EXISTENCE OF ACTIVITY
PATTERNS IN REAL-WORLD PROCESS MODELS

We investigate the occurrence of the described activity
patterns in real-world applications by presenting results
from an empirical study. We analyzed 214 process models
and workflow models respectively. Most analyzed models
have been created with the Oracle Builder tool or an UML-
based process modeling tool. Altogether the considered
process models stem from 13 different organizations and are
related to different application domains (cf. Table 1).

 Two major results can be obtained from our empirical
study:

• evidence with high probability that the described acti-
vity patterns exist in real-world workflow applications
and process-aware information systems respectively;

• evidence that the set of patterns is necessary and
sufficient to model all 214 process models analyzed,
at least at a certain level of granularity.

3.1 Applied Method

To our best knowledge there exist no mining techniques to
extract activity patterns from real-world process models;
i.e., contemporary process mining tools like ProM (van der
Aalst, 2007) analyze event logs (e.g., execution or change

logs) related to process executions and do not extract
information related to the semantics and the (internal) logic
of process activities (van der Aalst, 2005), (Günther, 2006),
(Günther, 2008). Therefore, we perform a manual analysis
in order to identify relevant activity patterns as well as their
co-occurrences within the 214 process models.

Table 1 Core characteristics of the process models analyzed in

our empirical study

24Electronic Change
ManagementCentralized1 large

29
Help Desk, User
feedback; document
approval

We had no access to
information about
these companies

4 large

133

TQM; control of
software access;
document
management

Centralized6 large

11
TQM and
management of
activities

Decentralized1 large

17Management of
internal activitiesDecentralized1 small

Number analyzed
process modelsApplication domainKind of decision-

making
Size of the
company

24Electronic Change
ManagementCentralized1 large

29
Help Desk, User
feedback; document
approval

We had no access to
information about
these companies

4 large

133

TQM; control of
software access;
document
management

Centralized6 large

11
TQM and
management of
activities

Decentralized1 large

17Management of
internal activitiesDecentralized1 small

Number analyzed
process modelsApplication domainKind of decision-

making
Size of the
company

For each activity pattern WAP* we calculate its support

value SWAP*, which represents the relative frequency of the
respective pattern within the set of analyzed process models;
i.e., SWAP*:= Freq(WAP*)/214 where Freq(WAP*) denotes
the absolute frequency of WAP* within the collection of the
analyzed 214 models; for each process model we count at
most one occurrence of a particular pattern.

Initially, we manually identify and annotate activity pat-
terns in all analyzed process models. Following this, we de-
termine the absolute frequency of each pattern as described.
Obtained results are then divided by the total number of
analyzed process models (i.e., 214 models in our case).

3.2 Analyzing Results of our Empirical Study

We present detailed results of our empirical study in which
we investigate the frequency with which each activity
pattern occurs within the set of 214 process models. This
study has been performed in order to verify whether the
considered business functions (task execution request,
approval, decision, etc.) can be really considered as patterns,
and to check whether there is potential for reusing them in
the context of process modeling. Figure 19 shows the
frequency with which the activity patterns from the two
categories introduced above occur. We discuss these results
in the following sections.

57%

100%

0%
20%

40%
60%

80%
100%

Activity patterns based on
organizational structural aspects

Activity patterns based on
recurrent functions

123
21457%

100%

0%
20%

40%
60%

80%
100%

Activity patterns based on
organizational structural aspects

Activity patterns based on
recurrent functions

123
214

Figure 19 Results by categories of workflow activity patterns

Activity Patterns in Process-aware Information Systems: Basic Concepts and Empirical Evidence

3.2.1 Frequency of Organization–based Activity Patterns
in real Process Models

This category comprises patterns related to specific
organizational structure aspects (i.e., Approval pattern
(WAP1) and Question-answer pattern (WAP2)). In
particular, Approval can be identified with high frequency
within the analyzed set of process models (cf. Fig. 20). First,
this can be explained with the high centralization on
decision-making we can find in the organizations whose
process models we analyze. Usually, such a high degree of
centralization implies the use of approval activities. Second,
some of the analyzed process models are related to
applications explicitly dealing with approvals. The low
frequency of the question-answer pattern can be partially
explained with the fact that most of the analyzed activities
are executed by actors with enough knowledge to perform
the activity and because the question-answer activities are
mainly done informally and not as part of a specified model.

WAP1: Approval WAP2: Question-answer

57%

2%
0%

20%

40%

60%

WAP1 WAP2

123

4

WAP1: Approval WAP2: Question-answer

57%

2%
0%

20%

40%

60%

WAP1 WAP2

123

4

Figure 20 Frequency of organization-based activity patterns
in real process models

Figure 21 graphically illustrates the frequency of

organization–based activity patterns within a set of 63
process models from a highly centralized telecommuni-
cation company (see the gray coloured bars in the depicted
diagram). It shows that 63% of the process models contain
at least one occurrence of the Approval pattern. This
observation can be explained by the fact that the roles
associated with the activities are not high up in the
organizational hierarchy, which increases the need for
approval. The Question-answer pattern, in turn, cannot be
identified in this collection of process models. This can be
explained by the fact that question-answer activities are
mainly done informally and are not explicitly included
within process models.

63%

0%

67%
62%

67%

8%

71%

0%

20%

40%

60%

80%

WAP1 WAP2 WAP3 WAP4 WAP5 WAP6 WAP7

40 42 39 42

5

45

63%

0%

67%
62%

67%

8%

71%

0%

20%

40%

60%

80%

WAP1 WAP2 WAP3 WAP4 WAP5 WAP6 WAP7

40 42 39 42

5

45

Figure 21 Frequency of organization-based activity patterns
within 63 models from a telecommunication service company

3.2.2 Frequency of Activity Patterns based on Recurrent
Business Functions in Real Process Models

This category contains patterns related to the description or
modeling of arbitrary process models: Uni- / Bi-directional
Performative (WAP3 and WAP4), Notification (WAP5),
Information Request (WAP6), and Decision (WAP7).
Respective patterns are not dependent on a specific
application domain or organizational structure aspect. This
explains why we can identify them with high probability in
practically all analyzed process models (cf. Fig. 22).

WAP3: Unidirectional Performative, WAP4: Bi-directional Performative
WAP5: Notification, WAP6: Information Request, WAP7: Decision

74%
64%

53%

14%

60%

0%

20%

40%

60%

80%

WAP3 WAP4 WAP5 WAP6 WAP7

159 138 114

31

128

WAP3: Unidirectional Performative, WAP4: Bi-directional Performative
WAP5: Notification, WAP6: Information Request, WAP7: Decision

74%
64%

53%

14%

60%

0%

20%

40%

60%

80%

WAP3 WAP4 WAP5 WAP6 WAP7

159 138 114

31

128

Figure 22 Frequency of activity patterns based on recurrent
business functions in real process models

Figure 23 illustrates the frequency of activity patterns
based on recurrent business functions within a set of 32
workflow models as being executed in a Financial Market
Company (gray bars). The diagram shows that most models
include at least some of the patterns from this category.
Moreover, as the respective organization is highly
centralized, the Approval pattern can be identified with high
probability as well.

47%

0%

97%

75%
66%

78%

13%

0%

20%

40%

60%

80%

100%

WAP1 WAP2 WAP3 WAP4 WAP5 WAP6 WAP7

15

31 24 21 25

4

47%

0%

97%

75%
66%

78%

13%

0%

20%

40%

60%

80%

100%

WAP1 WAP2 WAP3 WAP4 WAP5 WAP6 WAP7

15

31 24 21 25

4

Figure 23 Frequency of workflow activity patterns in 32 process
models of a Financial Market Company

Results from another interesting case study, which we

conducted in the automotive domain, are depicted in Figure
24. In total, we analyzed 24 process models from the field
of electronic change management. Due to the very detailed
models, in this case study it has become possible to analyze
the frequency of each pattern variant (i.e., design choice) as
introduced in Section 2.2. For example, Figure 24 shows
that Design Choice A(1) of the Approval Pattern has higher
frequency than the two pattern variants based on design
choices A(2) and A(3), respectively. One explanation for
this is that the roles associated with the activities are high up
in the hierarchy, which reduces the need for iterative

 L.H. THOM AND M. REICHERT AND C. IOCHPE

approvals, for example. By contrast, both the Question-
Answer and the Information Request pattern could not be
identified. Generally, question-answer activities and
information request activities do not frequently occur and –
if needed – they are handled informally without being
represented in the process model.

25%

0%

12%

0% 0%

42%42%

54%

25%

17%

33%

0% 0%

25%

8%

0%

20%

40%

60%

DC1 DC2 DC3 DC1 DC2 DC1 DC2 DC1 DC2 DC1 DC2 DC1 DC2 DC1 DC2

WAP1 WAP2 WAP3 WAP4 WAP5 WAP6 WAP7

6
3

10

10 13
6

4 8 6
2

25%

0%

12%

0% 0%

42%42%

54%

25%

17%

33%

0% 0%

25%

8%

0%

20%

40%

60%

DC1 DC2 DC3 DC1 DC2 DC1 DC2 DC1 DC2 DC1 DC2 DC1 DC2 DC1 DC2

WAP1 WAP2 WAP3 WAP4 WAP5 WAP6 WAP7

6
3

10

10 13
6

4 8 6
2

6
3

10

10 13
6

4 8 6
2

Figure 24 Frequency of activity patterns in 24 process models
from a automotive industry

3.3 Identifying Co-occurrences of Activity Patterns

For selected process categories, we discuss results of an
additional analysis, in which we investigate the frequency of
co-occurring activity patterns (Chiao, 2008). To obtain the
frequencies for pattern co-occurrences, we analyze the
sequences of activity patterns in 1541 of the 214 studied
process models. These results are used in our BPM tool in
order to be able to recommend the most suited activity
pattern to be used in conjunction with the one applied
before. In addition, this tool informs users about the
frequency with which pattern pairs were used in the past.

Before performing this analysis we classified the business
process models into human–oriented processes (i.e.,
processes with human interventions during their execution)
and fully automated ones (i.e., processes without any human
intervention). We verified that certain activity patterns can
be found more often in one of the two categories. This
analysis has been inspired by a classification provided by Le
Clair who distinguishes between system- and human-
intensive business processes (Le Clair, 2007).

When classifying a subset of 154 process models, for
which respective information is available, into these two
categories, we obtain 123 human-intensive and 31 system-
intensive process models. In a next step we evidenced the
occurrence of the seven activity patterns with respect to the
two categories of process models. Figure 25 shows the
support value (i.e., the relative frequency) of the activity
patterns in both the system- and the human-intensive process
models. As can be seen, some of the patterns (i.e., Approval,
Information Request and Question-answer) do not appear in
system-intensive process models at all. Obviously, these
patterns are usually related to human activities; i.e., they are
executed by an organizational role.

1 When performing this analysis we had access to only 154 out of the

214 studied process models.

73%

27%

71%
63%

73%75%

87%

65%68%68%

10%

30%

50%

70%

90%

WAP1 WAP2 WAP3 WAP4 WAP5 WAP6 WAP7

Human-Intensive System-Intensive

Figure 25 Frequency of activity patterns in human- and
system-intensive process models (Chiao, 2008)

In another analysis we have searched for frequent and

recurrent co-occurrences of activity patterns within process
models. Relying on the results of this analysis, we have
implemented a process modeling tool, which, among other
things, displays to the process designer a ranking of the
activity patterns which most frequently follow the pattern
the user has applied before during process design. For
example, our analysis has shown that patter pair DECISION

 NOTIFICATION occurs more often in system- than in
human-intensive processes. Opposed to this, the pattern pair
DECISION APPROVAL occurs more frequently in human-
intensive process models (see Fig. 26).

31%

0%

16%
12%

21%

5%

15%

0%
5%

50%

30%

0%0%

15%

0%

20%

40%

60%

WAP1 WAP2 WAP3 WAP4 WAP5 WAP6 WAP7

Human-Intensive System-Intensive

Figure 26 How often does an activity pattern directly follow
the DECISION pattern? (Chiao, 2008)

3.4 How Representative are Activity Patterns with
Respect to Process Modeling?

While some patterns can be identified with the process
models solely based on the analysis of the activity
descriptions (e.g., Decision, Approval and Notification),
other patterns require a more detailed analysis. For instance,
activity pattern Information Request (WAP6) can be
identified in connection with activities for which the user
enters information to the system during activity execution
(e.g., by filling in data fields in an electronic form).
Regarding the patterns Bi-directional performative (WAP 4)
and Notification (WAP 5), both the activity description and
its execution result (i.e., mandatory or not to trigger the next
activity in the process) have been important for our analysis.

What surprises is the fact that the analyzed process models
can be composed out of the considered patterns in
combination with specific control flow patterns; i.e., these
activity patterns are necessary and allow to design the 214

Activity Patterns in Process-aware Information Systems: Basic Concepts and Empirical Evidence

process models that are subject of our study. Of course,
from these empirical findings we must not conclude that the
identified set of patterns and pattern variants is sufficient for
modeling all business processes we can find in practice. At
least, however, we are able to prove that the seven activity
patterns occur frequently in different domains and allow to
model a variety of business processes. Note that the latter
presumes the support of different variants for each pattern
as described in Section 2.

It is important to mention that the pattern variants we
identified for the different process collections from the
considered domains partially depend on the underlying
modeling notation. For example, for the analyzed change
management process, corresponding models are expressed
in terms of UML activity diagrams. Here, we are able to
identify all described variants of the Approval pattern, i.e.,
single, iterative and concurrent approval (cf. Section 2.1).
The latter two variants, however, necessitate the support of
the multi-instance workflow pattern, which is the case for
the UML notation. We also analyzed processes described
with a notation less expressive than UML and not
supporting multi-instance activities. Consequently, only
single approvals or approvals with an a-priori fixed number
of reviewers (modeled as AND-split with a static number of
branches) can be identified.

Generally, lack of expressiveness of the given modeling
notation might cause a “bias” regarding the results of
pattern analysis. When considering workflow patterns, for
example, control structures like discriminator or n-out-of-m
have been not supported by any of the process modeling
notations based on which our 214 process models are
described. Obviously, these workflow patterns can be rele-
vant for expressing more specific approval scenarios; e.g.,
when an approval request is sent to a set of roles and the
first role to respond (or a predetermined number of
responses) will immediately trigger the continuation of the
process without synchronization. Since these advanced
workflow patterns are not supported by the notations of the
analyzed process models, we are also not able to observe
respective variants of the approval pattern; consequently we
do not include them in the suggested set of patterns and
pattern variants respectively. Exactly for this reason, we
have started several case studies to analyze not yet
documented business processes from different domains and
projects in order to avoid notation dependencies.

Also note that in this paper we have used UML activity
diagrams ourselves in order to illustrate the different
variants of the patterns identified so far. To avoid
dependencies on a particular notation, however, we provide
a formalization of our patterns based on π-calculus. Its
presentation is outside the scope of this paper.

In summary, at a certain level of abstraction we can show
that the business functions behind the seven patterns (e.g.,
approval, decision, notification) are sufficient to model the
214 process models we analyzed. In future, we will consider
the results of the aforementioned case studies as well as the
analyses of other process models (e.g. from the MIT process
handbook) in order to derive new pattern variants and
patterns, respectively.

We can further observe that in each of the analyzed
process models, a particular activity pattern may occur zero
or multiple times in combination with other patterns. Note
that such correlations are quite interesting and also raise
new questions to be investigated as part of a future work.
One challenging question, for example, is how helpful the
identified set of patterns is when being integrated into a
process modeling tool. One could think of a BPM tool
which relies on a repository comprising such high-level
activity patterns. In particular, this would help designers to
complete their process model design and to improve model
quality. We have presented a first initiative towards this
direction in (Thom, 2007a). Figure 27 shows the travel
booking process, we presented in Section 1, built up
exclusively by combining activity patterns.

Altogether, we consider the contribution of this paper as
an important step towards more empirical research in the
context of pattern identification and pattern use.

4 RELATED WORK

Patterns were first used by C. Alexander (Alexander, 1977)
to describe solutions to recurring problems and best
practices in architectural design. Patterns also have a long
tradition in computer science. For example, (Gamma, 1995)
applied the same concepts to software engineering and
described 23 design patterns. Patterns for workflow
modeling are still subject of discussion and research
(Barros, 2005). One of the first contributions in this respect
was a set of process patterns to be used in connection with
the software processes of an organization (Ambler, 1998).

(Russell, 2006a) proposes 43 workflow patterns for
describing process behavior (i.e., control flow). Each pattern
represents a routing element (e.g., sequential, parallel and
conditional routing) which can be used in process modeling.
These workflow patterns have been also used for evaluating
workflow languages and workflow modeling tools (Wohed,
2006). (Rinderle, 2006) shows, how selected control flow
patterns contribute to automatically cope with certain
exceptions in process-aware information systems.

A set of data patterns is proposed by (Russell, 2005).
These data patterns are based on collections of charac-
teristics that occur repeatedly in different workflow
modeling paradigms. In another work, (Russell, 2004)
presents resource patterns. Each resource pattern describes a
way through which resources can be represented and
utilized within processes. A resource is an entity that is
capable of doing work (e.g., human, machine).

Recently, (Russell, 2006b) has presented a pattern-based
classification framework for characterizing exception
handling in workflow management systems. This frame-
work has been used to examine the capabilities of workflow
management and BPM systems, and to evaluate process
specification as well as process execution languages. As a
result, the author emphasizes the limited exception handling
support in existing workflow management systems.

Mulyar proposes 34 implementation patterns to be used in
the design of process models with Colored Petri Nets tools

 L.H. THOM AND M. REICHERT AND C. IOCHPE

(Mulyar, 2005). An example is the Synchronous Transfer
pattern which allows transportation of data from one loca-
tion to another, ensuring that actors who post a request are
blocked until they receive the requested information.

(Barros, 2005) proposes service interaction patterns
which allow for web services interactions, pertaining to
choreography and orchestration, to be benchmarked against
abstracted forms of representative scenarios. As example
consider the Send and the Send/Receive patterns.

Altogether the workflow patterns provided by Russell and
Barros provide a thorough examination of the various
perspectives that need to be supported by a process
specification language and process modeling tool, respec-
tively. However, none of these approaches investigate
which are the most frequent patterns recurrently used during
process modeling and in which way the introduction of such
activity patterns eases process modeling. Furthermore,
recent work has shown that consideration of the strong
linkage existing between data and process allows for
sophisticated IT support in all phases of the process
lifecycle: e.g., COREPRO (Müller, 2007), (Müller, 2008)
and ProCycle (Weber, 2009). This observation has not yet
been fully covered in research on workflow patterns.

Obviously, broad support for workflow patterns allows for
building flexible process-aware information systems. How-
ever, an evaluation of a PAIS regarding its ability to deal
with process flexibility and change needs a broader view
(Weber, 2007). In addition to build-time flexibility (i.e., the
ability to model flexible execution behavior based on
advanced workflow patterns), run-time flexibility has to be
considered as well (Reichert, 1997) (Rinderle, 2004). The
latter is to some degree addressed by the aforementioned
exception handling patterns (Russell, 2006b), which
describe different ways for coping with the exceptions
occurring during process execution. To also cope with
process adaptation, in addition, process change patterns
have been introduced by (Weber, 2007) (Weber, 2009). A
formalization of these change patterns is given in (Rinderle-
Ma, 2008). (Weber, 2008b) further show how change
patterns have to be applied to foster the refactoring of large
business process models.

PICTURE proposes a set of 37 domain specific process
building blocks (Becker, 2007). More precisely, these
building blocks are used by end users in Public Admini-
strations to capture the process landscape. The building
blocks are currently being evaluated in the area of Public
Administrations (and are also specific to this domain).

(Mutschler, 2007) presents value-based evaluation
patterns for modeling and analyzing cost as well as impact
factors in process-aware information systems.

All these approaches have significantly contributed to the
improvement of process design, exception handling, and
process change. However, a set of activity patterns re-
presenting recurrent business functions in workflow models
is still missing. In addition, most of the aforementioned
approaches discuss the implementation of patterns in
existing process modeling tools. They do not focus on how
often these patterns are used for process modeling.

5 SUMMARY AND OUTLOOK

This paper has reported on activity patterns for designing
process models. Each of these patterns is based on a
recurrent business function and process fragment,
respectively (e.g., task execution request, notification
activity, approval) as they can be frequently found in
business processes.

To measure the frequency with which each activity pattern
occurs in real process models we performed an empirical
study. In this study we analyzed 214 process models from
different application domains. This analysis was accom-
plished in order to verify whether candidate process frag-
ments may be considered as patterns with high probability
for reuse. Our empirical study has shown that the detected
patterns are well suited for defining both business processes
and workflows from a variety of application domains. In
future we want to empirically validate whether the activity
patterns contribute to reduce real efforts for designing
process models: (i.e., to increase productivity during process
design time (Thom, 2007a).

Main advantages of our work can be summarized as fol-
lows: (a) sufficiency and necessity of the activity patterns
for process design has been evidenced at least with respect
to process models similar to the ones we analyzed; (b)
activity patterns are tool-independent which makes it easy to
adopt them to any BPM suite; and (c) activity patterns can
be also useful to deal with other fundamental tasks in
process management; e.g., to accomplish dynamic process
changes (Reichert, 1997), (Reichert, 1998) (Reichert, 2003)
at a higher level of abstraction when compared to
contemporary approaches (Rinderle, 2004), (Müller, 2008).

As future work we intent to perform further analyzes
considering process models from additional application
domains (e.g., healthcare). The intention behind these
additional analyses is to increase the support value of each
pattern as well as to identify frequent sequences of related
or combined patterns. We also intend to identify variants of
each pattern concerning specific application domains. For
example, we want to figure out what kind of approvals
occurs most frequently in the healthcare and the automotive
domain (Lenz, 2007), (Müller, 2006).

We also want to continue with the development of a BPM
tool which we have prototypically implemented in the
ProWAP project (Thom, 2008a). This tool fosters the
modeling of business processes based on the reuse of
activity patterns. In principle, the basic concepts behind this
tool can be added as extensions to existing BPM tools as
well; e.g., Intalio (Intalio, 2006), Aris Toolset (2007), and
ADEPT2 Process Composer (Reichert, 2005). Furthermore,
configuration and visualization support for business process
models (Bobrik, 2006) (Bobrik, 2007) (Hallerbach, 2008)
can be improved utilizing the semantics of the used activity
patterns. Finally, we plan to use our tool for conducting a
series of experiments in which we compare process
modeling with and without activity pattern support.

Activity Patterns in Process-aware Information Systems: Basic Concepts and Empirical Evidence

Secretary

Send request for booking
Receive request for

booking

Request for booking

Result

Receive notification

Activity result: ∈ { trip
information, no available
Flights}

Booking Requestor

No available Flights
Booking

information

Send notification that there
are no available flights

Request for booking

Financial Department

Booking approval request

Receive request to book
approval

Receive result of approval

Approval result

Send notification with
approval result

Rejected

Send notification that the trip
was not authorized

Authorize Trip

Result

Send request to buy the
tickets

Receive request to buy
the tickets

Request for buying
Request for
buying

Buy the tickets

Electronic ticket

Send electronic ticket to the
requestor

Electronic ticket

Receive electronic ticket
Send notification of activity
completed

Electronic ticket

Notification

Receive notification that
there are no available flights

Receive electronic ticket

Electronic ticket

Notification

WAP4WAP4

WAP7WAP7

WAP5WAP5

WAP1WAP1

WAP5WAP5

WAP4WAP4

WAP3WAP3

Send notification of no
available flight or flight booked

Send notification that the trip
was not authorized Receive notification

Notification

WAP5WAP5

Approval result ∈
{approval,
rejection}

Verify if there are available
flights and book the trip

Send approval request

Receive
notification

System

Activity patterns used to design the
travel booking process

WAP1: Approval
WAP3: Unidirectional Performative
WAP4: Bi-directional Performative
WAP5 : Informative
WAP7: Decision

Secretary

Send request for booking
Receive request for

booking

Request for booking

Result

Receive notification

Activity result: ∈ { trip
information, no available
Flights}

Booking Requestor

No available Flights
Booking

information

Send notification that there
are no available flights

Request for booking

Financial Department

Booking approval request

Receive request to book
approval

Receive result of approval

Approval result

Send notification with
approval result

Rejected

Send notification that the trip
was not authorized

Authorize Trip

Result

Send request to buy the
tickets

Receive request to buy
the tickets

Request for buying
Request for
buying

Buy the tickets

Electronic ticket

Send electronic ticket to the
requestor

Electronic ticket

Receive electronic ticket
Send notification of activity
completed

Electronic ticket

Notification

Receive notification that
there are no available flights

Receive electronic ticket

Electronic ticket

Notification

WAP4WAP4

WAP7WAP7

WAP5WAP5

WAP1WAP1

WAP5WAP5

WAP4WAP4

WAP3WAP3

Send notification of no
available flight or flight booked

Send notification that the trip
was not authorized Receive notification

Notification

WAP5WAP5

Approval result ∈
{approval,
rejection}

Verify if there are available
flights and book the trip

Send approval request

Receive
notification

System Secretary

Send request for booking
Receive request for

booking

Request for booking

Result

Receive notification

Activity result: ∈ { trip
information, no available
Flights}

Booking Requestor

No available Flights
Booking

information

Send notification that there
are no available flights

Request for booking

Financial Department

Booking approval request

Receive request to book
approval

Receive result of approval

Approval result

Send notification with
approval result

Rejected

Send notification that the trip
was not authorized

Authorize Trip

Result

Send request to buy the
tickets

Receive request to buy
the tickets

Request for buying
Request for
buying

Buy the tickets

Electronic ticket

Send electronic ticket to the
requestor

Electronic ticket

Receive electronic ticket
Send notification of activity
completed

Electronic ticket

Notification

Receive notification that
there are no available flights

Receive electronic ticket

Electronic ticket

Notification

WAP4WAP4

WAP7WAP7

WAP5WAP5

WAP1WAP1

WAP5WAP5

WAP4WAP4

WAP3WAP3

Send notification of no
available flight or flight booked

Send notification that the trip
was not authorized Receive notification

Notification

WAP5WAP5

Approval result ∈
{approval,
rejection}

Verify if there are available
flights and book the trip

Send approval request

Receive
notification

System

Activity patterns used to design the
travel booking process

WAP1: Approval
WAP3: Unidirectional Performative
WAP4: Bi-directional Performative
WAP5 : Informative
WAP7: Decision

Figure 27 A real travel booking process built up exclusively from the combination of workflow activity patterns

 L.H. THOM AND M. REICHERT AND C. IOCHPE

REFERENCES

Alexander, C., Ishikawa, S. and Silverstein, M. (1977) A Pattern
Language, Oxford University Press, New York.

Ambler, S. W. (1998) An Introduction to Process Patterns.
http://www.ambysoft.com/processPatterns.pdf.

Andrews, T. et al. (2003) Business Execution Language for Web
Services, V. 1.1.

Bancroft, N., Henning, S. and Sprengel, A. (1998) Implementing
SAP R/3. 2nd ed. Greenwich, Conn.: Manning, XXIV, 310 p.

Bardram, J. E. (1997) Plans as Situated Actions: An Activity Theory
Approach to Workflow Systems. In: Proc. ECSCW’97
Conference, Lancaster, UK.

Barros, A., Dumas, M. and ter Hofstede A. (2005) Service
Interaction Patterns. In: Proc. 3rd Int’l Conf. on Business
Process Management (BPM’05), LNCS 3649, pp. 302-318. .

Becker, J., Lis, L., Pfeiffer, D. and Räckers, M. (2007) A Process
Modeling Language for the Public Sector - the PICTURE
Approach. In: Wybrane Problemy Elektronicznej Gospodarki,
pp. 271-281.

Bobrik, R., Bauer, T. and Reichert, M. (2006) Proviado –
personalized and configurable visualizations of business
processes. In: Proc. 7th Int'l Conf. on Electronic Commerce
and Web Technologies (EC-WEB'06), Krakow, Poland, LNCS
4082, pp. 61-71.

Bobrik, R., Reichert, M and Bauer, T. (2007). View-based process
visualization. In: Proc. of the 5th Int'l Conf. on Business
Process Management (BPM'07), Brisbane, Austalia, LNCS
4714, pp. 88-95.

Chiao, C., Thom, L. H., Iochpe, C. and Reichert, M. (2008)
Verifying Existence, Completeness and Sequences of Workflow
Activity Patterns in Real Process Models. In: IV Brazilian Symp.
of Information Systems (SBSI), Rio de Janeiro, Brazil.

Crowston. K. (1994) A Taxonomy of Coordination Dependencies
and Coordination Mechanisms. Cambridge, MA: MIT Centre for
Coordination Science.

Dadam, P., Reichert, M. and Kuhn, K. (2000) Clinical Workflows
- The Killer Application for Process-oriented Information
Systems? In: Proc. 4th Int'l Conf. on Business Information
Systems (BIS'00), Poznan, Poland. Springer, pp. 36-59.

Davis, M.R. and Weckler, D.A. (1996). A Practical Guide to
Organization Design. Boston: Crisp Publications.

Flores, F. (1988) Computer Systems and the Design of Organi-
zational Interaction. In: ACM Transactions on Office
Information Systems, 6(2):153–172.

Gamma, E. (1995) Design Patterns. Addison-Wesley.
Günther, C.W., Rinderle, S., Reichert, M. and van der Aalst,

W.M.P. (2006) Change Mining in Adaptive Process
Management Systems. In: Proc. of the 14th Int'l Conf. on
Cooperative Information Systems (CoopIS'06), Montpellier,
France, LNCS 4275, pp. 309-326.

Günther, C.W., Rinderle, S., Reichert, M. and van der Aalst, W.M.P.
van der, Recker, J. (2008) Using Process Mining to Learn from
Process Changes in Evolutionary Systems. In: Int'l Journal of
Business Process Integration and Management, 3(1):61-78.

Hallerbach, A., Bauer, T. and Reichert, M. (2008). Managing
Process Variants in the Process Lifecycle. In: Proc. of the 10th
Int'l Conf. on Enterprise Information Systems (ICEIS'08),
Barcelona, Spain, pp. 154-161.

Hohpe, G. and Woolf, B. (2004) Enterprise integration patterns:
Designing, building, and deploying messaging solutions.
Addison-Wesley.

IDS Scheer. (2007) Aris Plataform: Product Brochure,
http://www.ids-scheer.com/set/82/PR_09-07_en.pdf.

Intalio. (2006) Creating Process Flows, http://bpms.intalio.com.
Khalaf, R., Keller, A. and Leymann, F. (2006): Business processes

for Web Services: Principles and applications. IBM Systems
Journal, 45(2):425-446

Le Clair, C. and Teubner, C. (2007) The Forrester Wave: Business
Process Management for Document Processes, Q3.

Lenz, R. and Reichert, M. (2007) IT Support for Healthcare
Processes - Premises, Challenges, Perspectives. Data and
Knowledge Engineering , 61(1): 39-58.

Li, C., Reichert, M. and Wombacher, A. (2008a) On Measuring
Process Model Similarity based on High-level Change Oper-
ations. In: Proc. 27th Int’l Conference on Conceptual Modeling
(ER'08), October 2008, Barcelona, LNCS 5231, pp. 248-264.

Li, C., Reichert, M. and Wombacher, A. (2008b) Discovering
Reference Process Models by Mining Process Variants. In:
Proc. 6th Int'l Conference on Web Services (ICWS'08),
September 2008, Beijing, China. IEEE Computer Society Press

Malone, T.W., Crownston, K. and Herman, G.A. (2004) Organizing
Business Knowledge: The MIT Process Handbook.

Medina-Mora, R. (1992) The action workflow approach to workflow
management technology. In: Proc. CSCW’92. pp. 281-288.

Mintzberg, H. (1995) Structure in Fives: Designing Effective
Organizations. São Paulo: Atlas.

Müller, D., Herbst, J., Hammori, M. and Reichert, M. (2006) IT
Support for Release Management Processes in the Automotive
Industry. In: 4th Int'l Conf. on Business Process Management
(BPM'06), Vienna, Austria, LNCS 4102, pp. 368-377.

Müller, D., Reichert, M. and Herbst, J. (2007) Data-driven
Modeling and Coordination of Large Process Structures. In:
15th Int'l Conf. on Cooperative Information Systems
(CoopIS'07), Vilamoura, Portugal, LNCS 4803, pp. 131-149.

Müller, D., Reichert, M. and Herbst, J. (2008) A New Paradigm for
the Enactment and Dynamic Adaptation of Data-driven
Process Structures. In: 20th Int'l Conf. on Advanced
Information Systems Engineering (CAiSE'08), Montpellier,
France, LNCS 5074, pp. 48-63.

Mulyar, A. and van der Aalst, W.M.P.(2005) Patterns in Colored
Petri Nets. WP 139, Eindhoven University of Technology, The
Netherlands.

Mutschler, B., Reichert, M., and Rinderle, S. (2007). Analyzing
the Dynamic Cost Factors of Process-aware Information
Systems: A Model-based Approach. In Proceedings of the 19th
Int'l Conf. on Advanced Information Systems Engineering
(CAiSE'07), Trondheim, Norway, LNCS 4495, pp. 589-603.

Mutschler, B., Reichert, M. and Bumiller, J. (2008a) Unleashing
the Effectiveness of Process-oriented Information Systems:
Problem Analysis, Critical Success Factors and Implications.
IEEE Transactions on Systems, Man, and Cybernetics (Part C)
38(3):280-291.

Mutschler, B., Weber, B. and Reichert, M. (2008b) Workflow
Management versus Case Handling: Results from a Controlled
Software Experiment. In: 23rd Annual ACM Symposium on
Applied Computing (SAC'08), Fortaleza, Ceará, Brazil. ACM
Press, pp. 82-89.

Nascimento, Gleison Samuel do. (2007) Notação formal para
representação de processos de negócio (Formal Notation of
business process definition). Technical report, 2007, UFRGS,
Porto Alegre, Brazil.

Reichert, M. and Dadam, P. (1997) A Framework for Dynamic
Changes in Workflow Management Systems. In: Proc. 8th Int'l
Workshop on Database and Expert Systems Applications,
September 1997, Toulouse, France, pp. 42-48

Reichert, M. and Dadam, P. (1998) ADEPTflex - Supporting
Dynamic Changes of Workflows Without Losing Control.
Journal of Intelligent Information Systems, 10(2):93-129.

Reichert, M., Bauer, T. and Dadam, P. (1999): Enterprise-wide and
Cross-enterprise Workflow-Management: Challenges and
Research Issues for Adaptive Workflows. In: Proc. Workshop
on Enterprise-wide and Cross-enterprise Workflow Manage-
ment, CEUR Workshop Proceedings, Vol. 24, pp. 56-64.

Reichert, M., Dadam, P., and Bauer, T. (2003). Dealing with
Forward and Backward Jumps in Workflow Management
Systems. Int'l Journal Software and Systems Modeling
(SoSyM), 2(1):37-58.

Reichert, M., Rinderle, S., Kreher, U. and Dadam, P. (2005)
Adaptive Process Management with ADEPT2. In: Proc. Int'l

Activity Patterns in Process-aware Information Systems: Basic Concepts and Empirical Evidence

Conf. on Data Engineering (ICDE'05), Tokyo, Japan. IEEE
Computer Society Press, pp. 1113-1114.

Rinderle, S., Reichert, M. and Dadam, P. (2004) Correctness criteria
for dynamic changes in workflow systems - a survey. In: Data
and Knowledge Engineering, 50(1):9-34.

Rinderle, S. and Reichert, M. (2006) Data-Driven Process Control
and Exception Handling in Process Management Systems.
Proc. 18th Int'l Conf. on Advanced Information Systems Engi-
neering (CAiSE'06), Luxembourg, LNCS 4001, pp. 273-287.

Rinderle-Ma, S., Reichert, M. and Weber, B. (2008) On the Formal
Semantics of Change Patterns in Process-aware Information
Systems. In: Proc. 27th Int'l Conf. on Conceptual Modeling
(ER'08), October 2008, Barcelona, LNCS 5231, pp. 279-293.

Russell, N. (2004) Workflow Resource Patterns. FIT-TR-2004-01,
Queensland University of Technology, Brisbane.

Russel, N., Hofstede, A. and Edmond, D. (2005) Workflow Data
Patterns: Identification, Representation and Tool Support. In:
Proc. 24th Int’l Conf. on Conceptual Modeling (ER’05), LNCS
3716, pp. 353 -368 .

Russell, N., ter Hofstede, A., van der Aalst, W.M.P. and Mulyar, N.
(2006a) Workflow Control-Flow Patterns: A Revised View.
BPM Center Report BPM-06-22, BPMcenter.org.

Russell, N., van der Aalst, W.M.P. and ter Hofstede, A. (2006b)
Workflow Exception Patterns. In: Proc. CAiSE’06, pp. 288-302.

Thom, L.H., Iochpe, C., Amaral, V. and Viero, D. (2006) Towards
Workflow Block Activity Patterns for Reuse in Workflow
Design. In: WfMC Workflow Handbook 2006. pp. 249-260.

Thom, L.H., Lau, J. M., Iochpe, C. and Mendling, J. (2007a)
Extending Business Process Modeling Tools With workflow
pattern Reuse. In: 9th Int’l Conf. on Enterprise Information
Systems (ICEIS’07), Funchal, Portugal, pp. 447-452

Thom, L.H., Iochpe, C. and Reichert, M. (2007b) Workflow Patterns
for Business Process Modeling. In: 8th Int’lWorkshop on
Business Process Modeling, Development, and Support
(BPMDS'07), CAiSE’07 workshop, Trondheim, Norway.

Thom, L.H., Reichert, M., Chiao, C. and Iochpe, C. (2008) Applying
Activity Patterns for Developing an Intelligent Process Modeling
Tool. In: 10th Int’l Conf. on Enterprise Information Systems
(ICEIS’08), Barcelona, Spain, pp. 112-119.

Thom, L.H., Reichert, M., Chiao, C., Iochpe, C. and Hess, G.
(2008a). Inventing Less, Reusing More and Adding
Intelligence to Business Process Modeling. In: Proc. of the
19th Int’l Conference on Database and Expert Systems
Applications (DEXA '08), Turin, LNCS 5181, pp. 837-850.

van der Aalst, W.M.P. (2005) YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245-275.

van der Aalst, W.M.P., van Dongen, B., Günther, C.W., Mans, R.,
Alves de Medeiros, A., Rozinat, A., Rubin, V., Song, M.,
Verbeek, H. and Weijters A. (2007) ProM 4.0: Comprehensive
Support for Real Process Analysis. In: Proc. 28th Int’l Conf. on
Applications and Theory of Petri Nets and Other Models of
Concurrency, Siedcle, Poland, LNCS 4546, pp. 484-494

Weber, B., Reichert, M., Rinderle, S. and Wild, W. (2006)
Towards a Framework for the Agile Mining of Business
Processes. In: BPM'05 Workshop Proceedings, LNCS 3812,
pp. 191-202.

Weber, B., Rinderle, S. and Reichert, M. (2007) Change Patterns
and Change Support Features in Process-Aware Information
Systems. In: Proc. 11th Int'l Conf. on Advanced Information
Systems Engineering (CAiSE'07), Trondheim, Norway, LNCS
4495, pp. 574-588.

Weber, B., Reichert, M. and Rinderle-Ma, S. (2008a). Change
Patterns and Change Support Features - Enhancing Flexibility
in Process-Aware Information Systems. Data and Knowledge
Engineering , 66(3):438-466.

Weber, B. and Reichert, M. (2008b). Refactoring Process Models
in Large Process Repositories. In: Proc. of the 20th Int'l Conf.
on Advanced Information Systems Engineering (CAiSE'08),
Montpellier, France, LNCS 5074, pp. 124-139.

Weber, Barbara and Reichert, Manfred and Wild, Werner and
Rinderle-Ma, Stefanie (2009) Providing Integrated Life Cycle
Support in Process-Aware Information Systems. Int'l Journal of
Cooperative Information Systems (IJCIS), 18 (1) (to appear).

Weske, M. (2007) Business Process Management: Concepts,
Languages, Architectures. Berlin:Springer.

Wohed, P., van der Aalst. W.M.P., Dumas, M., ter Hofstede, A. and
Russell, N. (2006) On the Suitability of BPMN for Business
Process Modeling. In: Proc. BPM’06, Vienna, pp. 161-176.

Workflow Management Coalition (2005). Process Definition
Interface: XML Process Definition Language. Doc. Number:
WFMC-TC-1025.

Workflow Management Coalition. (1999) Terminology & Glossary.
Bruxelas, 65p.

zur Muehlen, M. (2002) Workflow-based process controlling:
foundations, design, and application of workflow-driven process
information systems. Logos Verlang Berlin: Berlin. 299 p.

ACKNOWLEDGEMENT

We are grateful for the Coordination for the Improvement of Graduated
students (CAPES), the Institute of Databases and Information Systems of the
University of Ulm (Germany) and the Informatics Institute of Federal
University of Rio Grande do Sul (Brazil).

