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Abstract. Recently, research on workflow activity patterns emerged in order to 
increase the reuse of recurring business functions (e.g., request for task 
execution, notification, approval and decision). While workflow patterns have 
been defined for several aspects related to process execution, recurrent 
business functions have been only partially addressed by existing work. 
Related to this challenge we proposed a set of seven workflow activity patterns 
in previous work. In this paper we report on the results of several case studies 
we performed in Brazilian and European companies in order to investigate 
how frequently the activity patterns occur in real-world process models. We 
further formalize the identified activity patterns using π−calculus. This 
formalization as well as our analysis results are applied in the development of 
a BPM tool fostering the reuse of business functions specifications.  

  

1. Introduction 
In order to fulfill their business goals, companies have adopted several technologies 
related to the improvement of their business processes; e.g., workflow management 
systems and Business Process Management (BPM) tools [Dadam 2000] [Mutschler 
2008]. In particular, such technologies enable the definition, execution and monitoring 
of the operational processes of an enterprise [Lenz, 2007], [Müller 2006], [Weske 
2007], whereby different process variants may have to be managed along the process 
lifecycle [Hallerbach 2008]. 

A business process is a set of (structured) activities which jointly realize a particular 
business goal [Weske 2007]. Such activities are related to specific business functions or 
process fragments (e.g., notification, information request, approval) having a well 
defined semantics [Thom 2008]. In particular, a certain process fragment or business 
function (e.g., enabling document approval) can occur several times within one or 
different process models. That means multiple logical copies of the same process 



 

 

 

fragment may be used with same or different parameterization (e.g. approval by a single 
actor or by multiple actors). As example consider Figure 1, which shows the procedure 
for carrying out a medical examination. This process includes the following activities 
(in the given order): a) First an order entry is created with a request for the medical 
examination; b) then an appointment with the radiologist is made; c) next, an 
authorization from the patient for beginning his or her treatment is needed; if the patient 
does not agree with the treatment all appointments with the radiologist will be 
cancelled; d) otherwise, the patient is prepared for the examination; e) at the day of the 
examination the patient is transported to the radiology unit; f) the physician performs 
the examination; g) based on the results of the examination the physician writes a 
report; h) as last step, the physician who requested the examination validates the report.  
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Figure 1. Process for accomplishing a medical examination of a patient  

Interestingly, this simple process model comprises (atomic) fragments related to 
activity patterns like Request for Activity Execution without Answer (Activities a, b 
and h), Request for Activity Execution with Answer (Activities d, e, f and g), and 
Approval (Activity c). In this paper we use the term Workflow Activity Pattern (WAP or 
activity pattern for short) to refer to the description of such business functions as they 
frequently re-occur in business process models. 

1.1. Problem Statement 
Usually, the above mentioned process fragments are re-designed for each workflow 
application [Flores 1998], [Medina-Mora 1992], [Malone 2004], [zur Muehlen 2002]. 
This lack of reusing model fragments and process knowledge, in turn, has resulted in 
high costs and error rates regarding the modeling and maintenance of process-oriented 
applications. 

While some research has been reported on how metadata can be organized to manage 
large-scale modeling projects [Thomas and Scheer 2006], there is not much work 
providing evidence for the existence of activity patterns that can be used to define 
recurrent business functions for real-world process models. Furthermore, there is a lack 
of investigations proofing the necessity and completeness of respective activity patterns 
with respect to process modeling. Finally, contemporary BPM tools like Intalio, ARIS 



 

 

 

Toolset and WBI Modeler do not support process designers in defining, querying and 
reusing activity patterns as building blocks for business process modeling.  

1.2. Background and Contributions  
In this paper we report on the results from ProWAP1 project, which addresses the 
aforementioned challenges. We first present  an empirical study in which we analyze the 
relative frequency of the activity patterns presented in [Thom 2006b] in a collection of 
239 real-world process models from application domains like quality management, 
software access control, textile manufacturing, and electronic change management. For 
selected process categories, we further discuss results of an additional analysis in which 
we investigate the frequency of co-occurring activity patterns.  

The results of this second analysis are additionally utilized for developing a BPM tool, 
which shall foster the modeling of business processes based on the reuse of activity 
patterns [Thom 2008]. Given some additional information about the kind of process to 
be designed, the results of our analysis can be further used by this BPM tool to suggest 
a ranking of the activity patterns suited best to succeed the last pattern applied during 
process modeling.  

Our BPM tool also provides support for analyzing and verifying model properties of 
composed processes like syntactical correctness or absence of deadlocks. Basic to this is 
a formalization of the activity patterns, which further contributes to reduce ambiguities. 
Different formalisms have been suggested for defining the formal semantics of process 
modeling languages, including Petri Nets [van der Aalst 2003a], Temporal Logic 
[Eshuis 2002], and π-calculus [Puhlmann 2005]. In this paper we are using π-calculus to 
define formal semantics of our activity patterns. This formalism has been successfully 
applied before in the context of software process formalization [Szturc 1999] as well as 
for formalizing workflow patterns [Puhlmann 2005] and block-structured process 
modeling languages (e.g., XLang [Thatte 2001]). 

The remainder of this paper is organized as follows: Section 2 discusses related work. 
Section 3 gives background information on the workflow activity patterns we identified 
in previous work. Section 4 evaluates the existence and completeness of these activity 
patterns with respect to real-world process models. In Section 5 we provide a 
formalization of the patterns using π-calculus. Section 6 introduces our BPM tool which 
offers activity patterns to the process designer. Section 7 concludes with a summary and 
outlook.   

2. Survey on Workflow Patterns 
A pattern is the abstraction from a concrete form which keeps recurring in specific non-
arbitrary contexts [Gamma 2005]. Patterns capture existing, well-proven experience in 
software development and help to promote good design practices [Buschmann 1996], 
[Eriksson 2001]. They have been used for many different domains. However, patterns 
for business process and workflow modeling are still subject of discussion and research. 
One of the first contributions in this respect was a set of process patterns to be used in 
connection with the software processes of an organization [Ambler 1998]. 

                                                 
1 http://www.uni-ulm.de/in/iui-dbis/forschung/projekte/prowap.html 



 

 

 

Russell (2006a) proposes 43 workflow patterns for describing process. Each pattern 
represents a routing element (e.g., sequential, parallel and conditional routing) which 
can be used to process modeling. In the meantime these workflow patterns have been 
additionally used for evaluating process specification languages and process modeling 
tools [van der Aalst 2003b], [Wohed 2006]. Rinderle (2006) shows how selected control 
flow patterns contribute to automatically cope with certain exceptions in process-aware 
information systems. 

A set of data patterns is proposed by [Russell 2005]. These patterns are based on data 
characteristics that occur repeatedly in different workflow modeling paradigms. 
Examples are data visibility and data interaction. In related work, Russell presents a set 
of resource patterns each of them describing a way through which resources can be 
represented and utilized in process models [Russell 2004]. A resource is considered as 
an entity being capable of doing work. It can be either human (e.g., a worker) or non-
human (e.g., equipment). Examples of resource patterns include Direct Allocation and 
Role-Based Allocation. 

Recently, Russell presented a pattern-based classification framework for characterizing 
exception handling in workflow systems [Russell 2006b]. This framework has been 
used to examine the exception handling capabilities of workflow and BPM tools and to 
evaluate process specification as well as process execution languages accordlying. As a 
result, limited support for exception handling in existing workflow management 
systems could be observed. 

Mulyar (2005) proposes 34 implementation patterns to be used in the design of process 
models with Colored Petri Nets tools [Mulyar 2005]. An example is the synchronous 
transfer pattern which allows transportation of data from one location to another, 
ensuring that actors who post a request are blocked until they receive the requested 
information. 

Barros (2005) proposes a set of service interaction patterns, which allow for service 
interactions, pertaining to choreography and orchestration, to be benchmarked against 
abstracted forms of representative scenarios. As example consider the Send and the 
Send/Receive patterns.  

Altogether Russell and Barros provide a thorough examination of the various 
perspectives that need to be supported by a workflow language and tool respectively. 
However, none of these approaches investigate which are the most frequent patterns 
recurrently used during process modeling and in which way the introduction of such 
activity patterns eases process modeling. Furthermore, recent work has shown that 
consideration of the strong linkage existing between data and process allows for 
sophisticated IT support in all phases of the process lifecycle. For example consider the 
work done in COREPRO [Müller 2007], [Müller 2008] and ProCycle [Weber 2009]. 
This observation has not yet been fully covered in research on workflow patterns. 

Obviously, broad support for workflow patterns allows for building flexible process-
aware information systems. However, an evaluation of a PAIS regarding its ability to 
deal with process flexibility and change needs a broader view [Weber 2007], [Weber 
2008a]. In addition to build-time flexibility (i.e., the ability to model flexible execution 
behavior based on advanced workflow patterns), run-time flexibility has to be 
considered as well [Reichert 1997], [Rinderle 2004]. The latter is to some degree 
addressed by the aforementioned exception handling patterns [Russell 2006b], which 



 

 

 

describe different ways for coping with the exceptions occurring during process 
execution. To also cope with process adaptation, in addition, the aforementioned 
process change patterns have been introduced by [Weber 2008a], [Weber 2007]. A 
formalization of these change patterns is given in [Rinderle-Ma 2008]. Weber (2008b), 
in turn, shows how these change patterns can be used for refactoring process models in 
order to increase their quality. 

PICTURE proposes a set of 37 domain-specific process building blocks. More 
precisely, these building blocks are used by end users in public administrations to 
capture and model the process landscape. The building blocks have been evaluated in 
practice [Becker 2007]. 

Concerning the formal representation of workflow patterns one of the first approaches 
used Petri Nets to formalize control flow patterns [van der Aalst 2003a]. Following this, 
with YAWL [van der Aalst 2005] presented a Petri-net based workflow specification 
language covering all control flow patterns on Petri nets.  

In the context of process algebra, [Brogi 2004] used CCS (Calculus of Communicating 
Systems) to formalize web service flows. In another approach, CCS was used for 
defining a workflow modeling language called SMAWL (Small Workflow Language) 
[Stefansen 2005]. 

The π-calculus, in turn, was first used by Yang Dong and Zhang Shen-Sheng to 
formalize basic control flows and to define workflow activities [Dang 2003]. Based on 
the latter work, [Puhlmann 2005] formalize the control flow patterns described in [van 
der Aalst 2003a] based on π-calculus. 

3.  Workflow Activity Patterns  
Starting with an extensive literature study (e.g., [Flores 1998], [Medina-Mora 2002], 
[zur Muehlen 2002]) we derived seven activity patterns. Each of them represents a fre-
quently recurring business function as it can be found in real-world processes. The 
identified activity patterns are based on message exchanges where the sender and 
receiver of a particular message may belong to the same organization or to different 
ones the latter applies when dealing with inter-organizational processes [Dadam 2000].  

Table 1 gives an overview of the seven activity patterns we identified. Generally, these 
patterns are close to the abstraction level or vocabulary used within an organization. 
This, in turn, fosters their reuse when modeling business processes, and therefore 
contributes to more standardized and better comparable business process models. 

We have characterized each activity pattern by giving a description, an example 
illustrating the context in which the pattern can be applied, a problem motivating its use 
specific issues arising in this context, design choices (patterns variants) which allow for 
pattern parameterization keeping the number of distinct patterns manageable, related 
patterns, and implementation details in particular. The design choices were defined 
based on the process models we analyzed. For example, we define three variants of the 
approval pattern, namely single approval (i.e., approval is required from exactly one 
organizational role), iterative approval (i.e., sequential approval is required from a list of 
reviewers) and concurrent approval (i.e., approval is required from a list of reviewers 
simultaneously). Information about the variants we defined for the other six patterns can 
be found in [Thom 2009]. Note that Table 1 only shows selected pattern variants, but 



 

 

 

does not contain all possible parameterizations. Reason is that most of these properties 
are out of the scope of this paper.  

Table 1.   Selected variants of activity patterns representing business functions 

 WAP - Name Description 
WAP 1:  
Approval 

An object (e.g., a business document) has to be approved by one or more 
organizational roles. 

WAP 2:  
Question-Response 

A question which emerges during process enactment has to be answered. This 
pattern allows to formulate the question, to identify the organizational role(s) 
who shall answer it, to send the question to the respective role(s), and to wait 
for the response(s) (single-question-response). 

WAP 3:  
Unidirectional 
Performative 

A sender requests the execution of a particular task from another process 
participant. The sender continues process execution immediately after having 
sent the request for performing the activity. 

WAP 4: 
Bi-directional 
Performative 

A sender requests the execution of a particular task from another process 
actor. The sender waits until this actor notifies him that the requested task has 
been performed. 

WAP 5: 
Notification 

The status or result of an activity execution is communicated to one or more 
process participants. 

WAP 6: 
Information Request 

An actor requests certain information from a process participant. He continues 
process execution after having received the requested information. 

WAP 7: 
Decision 

This pattern can be used to represent a decision activity in the flow with 
different connectors to subsequent execution branches. Exactly those branches 
will be selected for execution whose transition conditions evaluate to true. 

In the following sections we informally summarize pattern semantics using UML 
activity diagrams (cf. Fig. 2). As examples we discuss the Uni- and Bi-directional 
Performative Pattern and the Approval Pattern. The complete set of activity patterns is 
described in [Thom 2006a and Thom 2006b]. It is important to observe that the send 
and receive signals (cf. Fig. 2) do not configure process activities from the application 
domain perspective. They are used to implement the logic of the pattern.  
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Figure 2. UML Notation used to informally summarize the activity patterns semantics 

 

Approval Pattern (WAP 1) 
An object (e.g. a document) has to be approved by one or more organizational roles. 
Depending on the respective context, the evaluation is executed only once (single 
approval) or multiple times. In the latter variant, approval either can be accomplished in 
sequence (iterative approval) or in parallel (concurrent approval).  
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Figure 3. Approval pattern 

Fig. 3 illustrates a single approval where an organizational role “reviewer” performs a 
document review either resulting in approval or disapproval. Generally, the Approval 
Pattern is related to the structural aspect “centralization on decision making”; i.e., the 
authority to make decisions in organizations can be more or less allocated to the highest 
positions within an organization (e.g., head of department, manager, director). The more 
centralized this authority is, the higher will be the number of organizational roles being 
involved in approval following the organizational scalar chain [Chiavenato, 2000].  

Unidirectional Performative Pattern (WAP 3) 
The unidirectional performative pattern represents a unidirectional message as described 
in [zur Muehlen 2002]. A sender uses unidirectional performative messages to request 
the execution of a particular activity from a receiver (e.g., human or software agent) 
involved in the process (cf. Fig. 4). The sender continues execution of his part of the 
process immediately after having sent the request. For example, in a procurement 
process, the execution of an activity to partially cancel an order can be requested from a 
manager if some irregularities occur. The flow continues execution after the cancel 
activity is requested. 
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Figure 4. Unidirectional performative pattern 

Bi-directional Performative Pattern (WAP 4) 
A sender requests the execution of a particular activity from another role (e.g., a human 
or a software agent) involved in the process. The sender waits until the receiver notifies 
him that the requested activity has been performed (cf. Fig. 5). As example consider a 
customer requesting changes concerning the design of a particular product. This triggers 
a process at the manufacturer site where – first of all – a designer is requested to adapt 
the product design according to the specifications made by the customer. The 



 

 

 

manufacturer process then has to wait until the designer finishes this task. Afterwards 
the process continues with a review of the new product design by another actor. 
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Figure 5. Bi-directional performative pattern 

4. Evaluating the Existence and Completeness of Activity Patterns  
To identify activity patterns in real-world processes we analyzed 239 process models. 
These process models have been modeled either with the Oracle Builder tool or an 
UML modeler. Our analysis has been based on process models instead of event logs, 
since we consider the semantics and the context of process activities as being 
fundamental for identifying activity patterns. Altogether, the analyzed process models 
stem from 14 different organizations – private as well as governmental ones – and are 
related to different applications like Total Quality Management (TQM), software access 
control, document management, help desk services, user feedback, document approval, 
textile manufacturing, and electronic change management. In most of organizations the 
respective process models are computerized, i.e. they are supported by a process-aware 
information system.  Table 2 summarizes information about involved organizations and 
analyzed process models.  

Table 2.   Characteristics of the analyzed process models  

Size and 
Number of 
Companies 

Type of Decision-
making 

Examples of Analyzed 
Process Models 

Number of 
Analyzed 
Models 

Computerized 

1 x  small Decentralized Mgmt. of Internal Activities 17 yes 

1 x  large Decentralized TQM; Mgmt. of Activities 11 yes 

6 x  large Centralized TQM; Control of Software 
Access; Document Mgmt. 

133 yes 

4 x  large No information 
available 

Help Desk Services, User 
Feedback; Document 
Approval  

29 yes 

1 x  large Rather Centralized Electronic Change 
Management  

24 yes 

1 x medium Rather Centralized Facility Management 25 no 



 

 

 

4.1. Applied Method 
To our knowledge there exist no mining techniques for extracting activity patterns from 
real-world process models; i.e., contemporary process mining tools like ProM or 
MinAdept analyze the event logs (e.g., execution or change logs) related to process 
execution and do not extract information related to the semantics and the (internal) logic 
of process activities [van der Aalst 2003a], [Ellis 2006], [Günther 2008], [Li 2008a]. 
Therefore, we perform a manual analysis in order to identify relevant activity patterns as 
well as their co-occurrences within the 239 process models.  

 For each workflow activity pattern WAP* we calculate its support value SWAP*, 
which represents the relative frequency of the respective activity pattern within the set 
of analyzed process models; i.e., SWAP*:= Freq(WAP*)/239 where Freq(WAP*) denotes 
the absolute frequency of WAP* within the collection of the analyzed 239 models; for 
each process model we count at most one occurrence of a particular pattern. Reason is 
that in some process models, the activity patterns were identified not only in atomic 
activities but also in pairs (sequences) of activities. 

4.2. Frequency of Activity Patterns in Real Process Models 
Our analysis has shown that five out of the seven activity patterns (cf. Table 1) are not 
dependent on a specific application domain or a particular organizational structure (e.g., 
the degree of centralization in decision making or the standardization of work abilities). 
Any kind of process model might contain these patterns independent of the application 
domain (e.g., healthcare, automotive engineering) or the kind of organization (e.g., 
process oriented, functional and matrix). More precisely, this applies to the following 
five patterns: UNIDIRECTIONAL and BI-DIRECTIONAL PERFORMATIVE (WAP 3+4), 
NOTIFICATION (WAP 5), INFORMATIVE (WAP 6) and DECISION MAKING (WAP 7). We 
can identify these five patterns with high frequency in almost all process models we 
analyzed. The APPROVAL pattern, in particular, can also be identified with high 
frequency because of the high degree of centralization regarding decision-making 
within the considered organizations. This high centralization implies the use of approval 
activities [Davis 1996]. By contrast, most of the analyzed process models do not contain 
QUESTION-ANSWER activities. Figure 7 graphically illustrates the relative frequency of 
each activity pattern with respect to the set of analyzed process models.  
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Figure 7. Frequency of activity patterns within real process models 



 

 

 

4.2.1. Analyzing Process Models from an Austrian Textile Manufacturer 
As data source we consider process models in the context of facility management. The 
models have been collected at a medium-sized enterprise operating in the Austrian 
textile industry. The decision-making within the company can be described as rather 
centralized. In total we analyzed 25 processes which comprise several hierarchy levels 
and which contain between 2 and 21 activities (for an overview see Fig. 8). 
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Figure 8. Analyzed process models 
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Figure 9. Frequency of activity patterns within Facility Management 

Fig. 9 graphically illustrates the frequency of our activity patterns within the set of 25 
process models from facility management. The diagram shows that the activity patterns 
based on organizational structural aspects (WAP 1 and WAP 2) only occur in 12% of 
the analyzed process models. Interestingly, WAP 1 (Approval) occurs relatively rarely 
for a company with centralized decision-making. This observation can be explained by 
the fact that the roles associated with the activities are relatively high up in the 
hierarchy, which reduces the need for approvals. In contrast, the activity patterns based 
on recurrent functions (WAP 3 – WAP 6) occur much more frequently. In 88% of all 
process models at least one of these patterns can be identified. WAP 4, for example, 
occurs much more frequently than all the other activity patterns (in average 4 times per 
process model). This high frequency of WAP 4 is mainly due to the nature of the 
analyzed process models, which primarily deal with the distribution of work.  

4.2.2. Analyzing Process Models from an Automotive Company 

For this analysis we consider process models in the context of Electronic Change 
Management. The models have been collected at a large enterprise working in the 
automotive industry. Decision-making within the company can be described as rather 
centralized. In total we analyze 24 processes which have several hierarchy levels and 
comprise between 2 and 8 activities. 

In this study for each activity pattern we determine its absolute frequency as well as its 
support value, which represents the relative frequency of the respective patterns within 
the 24 analyzed process models. We also calculate the support value by design choice 



 

 

 

(e.g., single, iterative, concurrent approval). Fig. 10 graphically illustrates the frequency 
of each activity pattern within the set of 24 process models. The diagram shows that 
WAP1 – i.e., single approval was identified in 24% of the process models and 
concurrent approval in 12%. Interestingly, WAP 1 (Approval) occurs relatively rarely 
for a company with centralized decision-making. Like in the facility management 
processes (cf. Section 4.2.1), the roles associated with the activities are relatively high 
in the hierarchy, which reduces the need for approvals. By contrast, the activity patterns 
based on recurrent functions (WAP 3, WAP 5 and WAP7) occur much more frequently. 
In 54% of all process models at least one of these patterns can be identified. 
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Figure 10. Frequency of activity patterns within Electronic Change Management 

4.3. Identifying Co-occurrences of Activity Patterns in Real Process Models 
One of the use cases for the knowledge base of our BPM tool (cf. Section 6) is based on 
a mechanism that gives design time recommendations with respect to the most suited 
activity patterns to be combined with an already used pattern. This mechanism utilizes 
empirical data we gathered during our case studies, which we also summarize in this 
section. To obtain the frequencies for pattern co-occurrences, we analyze the sequences 
of the co-occurring activity patterns in 154 of the 239 process models studied. When 
this analysis was performed only 154 of the 239 process models were available. In the 
future we intend to analyze the complete set of processes models, i.e., the 239 as well as 
further processes we might have access.   

In earlier work, we have shown that when classifying the process models into human–
oriented (i.e., with human intervention during execution) and fully automated (i.e., with 
no human intervention during execution) we can identify certain activity patterns more 
often in one of the two categories [Chiao 2008]. We tried to classify the processes based 
on common characteristics (e.g., application domain), also considering classifications 
from the literature in this context. However, most of the studied classifications are based 
on specific application domains of the related process models [Dowson 1987], 
[Harrington 1991] and [Weske 2007]. Accordingly, those approaches are not applicable 
to our analysis because the set of the process models we have been investigating does 
not cover all the categories addressed by these approaches. 

We therefore decided to apply Le Clair (2007) approach which classifies business 
processes into system- and human-intensive. System-intensive processes are character-
ized by being handled on straight-through basis, i.e., there is minimal or no human 
intervention and few exceptions occur. Human-intensive processes, in turn, require 



 

 

 

people to get work done by relying on business applications, databases, documents, and 
other actors interacting with them. This type of process requires human intuition or 
judgment for decision-making during individual process activities. 

By classifying our set of process models in those two categories, we obtain 123 human-
intensive and 31 system-intensive process models respectively. Remember that in this 
analysis we consider 154 of the 239 process models. The next step is to evidence the 
occurrence of the activity patterns in the two categories of process models. Figure 11 
shows the frequency of the activity patterns with respect to system-intensive and human-
intensive processes. Note that some patterns (i.e. approval, informative, question-
answer) do not appear in the system-intensive process models at all. These patterns are 
usually related to human activities, i.e., they are executed by an organizational role.  
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Figure 11. Frequency of co-occurrences of activity patterns 

In another analysis we search for frequent co-occurrences of activity patterns within the 
process models. Relying on these common occurrences the knowledge base should 
present to process designers a ranking of the most frequent activity patterns which 
normally follow the activity pattern the user has applied before for process modeling.  

For example, Figure 12 shows how often the PERFORMATIVE UNIDIRECTIONAL PATTERN 
is applied immediately after one of the other activity patterns when regarding the set of 
process models we analyzed. Note that for the two kinds of processes (i.e. human vs. 
system intensive processes), a specific pair of patterns may occur with different 
frequency. For example, the pattern pair PERFORMATIVE UNIDIRECTIONAL  
PERFORMATIVE UNIDIRECTIONAL (WAP 3) occurs more often in system-intensive than in 
human-intensive processes (60 % vs. 25 %). By contrast, the pair PERFORMATIVE 
UNIDIRECTIONAL  APPROVAL occurs more frequently in human-intensive processes.  
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Figure 12. Frequency of co-occurrences of the decision pattern within other pattern 



 

 

 

4.4. On the Completeness of Activity Patterns for Process Modeling 
When analyzing the process models our main goal was to measure the frequency with 
which each of the activity patterns occurs within the set of considered process models. 
We did this in order to verify whether certain process fragments (e.g., task execution 
request, approval, notification) can be considered as patterns with high probability for 
reuse in the context of process modeling. 

While some patterns can be identified by simply analyzing activity descriptions (e.g., in 
connection with decisions, approvals and notifications patterns), others require a more 
detailed analysis. For instance, the information request pattern (cf. Table 1) can be 
identified in the context of activities for which the user has to provide information to the 
system (e.g., by entering data via an electronic form). In case of the uni- and bi-
directional performative patterns, in turn, both activity descriptions and activity results 
(e.g., whether results are mandatory or not to trigger the subsequent activity in the 
process) are important to measure how often patterns occur.  

What surprises is the fact that all analyzed process models can be defined as a 
composition of the investigated patterns; i.e., the described set of activity patterns is 
necessary and sufficient to design all 239 process models that have been subject of our 
analysis. (Remember that Table 1 only shows selected pattern variants and does not 
cover all process fragments that can be configured). Furthermore, in each process, a 
specific activity pattern may appear multiple times in combination with other patterns. 

The latter observation can be considered as very important one, which raises additional 
research issues. One challenging question, for example, is to what degree the identified 
patterns will be helpful when integrating them into a workflow modeling tool. In 
Section 6 we describe such a tool we are currently developing. In particular, it should 
foster reuse of activity patterns (cf. Section 6). Fig. 13 shows an example of a process 
model which has been composed solely based on the described activity patterns. 

5. Formalizing Activity Patterns with π-Calculus  
Basically, the activity patterns are independent of a concrete process modeling 
language; i.e., they can be adapted to any BPM tool if desired. In order to enable this, a 
precise formal semantics of the described patterns is needed. Such formal semantics is 
also fundamental for the correct modeling of business processes and thus for 
implementing robust process-aware information systems [Reichert 1998]. Thus, when 
composing process models out of activity patterns it is extremely important to verify 
their correctness. 

Commercial BPM tools (e.g., Oracle BPEL Engine, Intalio), however, do not rely on a 
formal semantics in order to verify process model correctness. Due to this drawback, 
research on formal verification of process models (e.g., soundness) has received 
considerable attention in the research community for more than a decade. As examples 
of used formalisms consider Petri Nets [van der Aalst 2003a], CCS [Stefansen 2005], 
π−calculus [Dong 2003], [Puhlmann 2005], and trace notions (e.g., trace equivalence) 
[Rinderle-Ma 2008]. Respective formalisms apply mathematical methods and allow for 
formally specifying process models as well as related model properties or model 
transformations.  
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Figure 13. Real medical examination process build up exclusively from the combination of workflow activity patterns 



 

 

 

Recently, a couple of approaches has emerged which allow to map business process 
models (e.g., specified with BPMN or UML) to formal process specifications (e.g., 
using Petri Nets or π-calculus) [Brogi 2004], [Puhlmann 2005]. Based on such 
formalizations, for example, it becomes possible to ensure formal process model 
properties (e.g., soundness [Dehnert 2005], to decide whether two process models are 
equivalent [Li 2008b], or to optimize and refactor process models [Weber 2008b].  

In the following we propose a formalization of the activity patterns using π-calculus. 
The π-calculus formalism constitutes an extension of CCS [Szturc 1999]. In particular, 
it allows representing the behavior of concurrent and dynamic processes. In recent work 
π-calculus was used to formalize business process models and workflow patterns [Smith 
2003], [Puhlmann 2005]. As mentioned, there exist other methods (e.g., Petri Nets) 
which can be used to formalize workflow patterns [van der Aalst 2003a]. Due to their 
dynamic properties, however, the formalization of specific workflow patterns (e.g., 
advanced synchronization patterns, multi-choice patterns and cancel patterns) is not 
trivial when using Petri Nets. In addition, as π-calculus is based on message exchanges, 
it provides an efficient formalism to represent cross-organizational processes. 

Our BPM tool uses the formalization of the activity patterns to create the formal 
representation of the process models composed out of the different patterns. Thus the 
composed process model can be simulated and validated already at design time in order 
to exclude errors. In the following we show how the activity patterns can be formally 
represented based on the π-calculus formalism. We first introduce the π-calculus 
formalism, explain how it is used to formalize the activity patterns, and finally present 
the formal representation of a process modelled solely based on the activity patterns.  

5.1. An Introduction to π-Calculus 

The π-calculus formalism was introduced by [Milner 1992]. Its underlying theory 
captures core characteristics of concurrent systems such as mobility and dynamics. 
Basically the π-calculus consists of processes and names, whereas the names define 
links between the processes. For the present work we use the monadic version of the π-
calculus in accordance with the following grammar (see [Milner 1992]): 

P, Q ::= 0 | α.P | (ν a)P | P+Q | P|Q | !P 

α ::= τ | a(b) |  ab | [a = b]α 

Here a and b are meta-variables over elements of a countable and infinite set of names 
(N). Processes can be the stop process 0, prefixed process α.P, restricted process (ν a)P, 
sum of processes P+Q, parallel composition P|Q, and replication !P. A prefix α can be: 

• a silent prefix τ.P representing an internal action of the process; 

• an input prefix a(b).P , which receives a new name through a, whereupon the 
process P continues with all the occurrences of b substituted by the new name; 

• an output prefix ab.P where the name b is sent to another process through a; 

• a match prefix [a = b]α.P; i.e., if a equals b, the process will continue as α.P. 



 

 

 

In this work we are considering the semantics as presented in [Milner 1992]; we use a 
graphical notation to visualize the processes. Figure 14 shows the graphical 
representation for the following simple process: A|B with A = a(b).0 and B = ab.0. 

 

Figure 14. Example of Graphical Representation 

In the used graphical notation, a process is represented by a circle with its name inside 
the circle (in the following denoted as π-process). Furthermore, the processes are 
connected by a line representing a communication channel between them. The end of 
the line, which connects the processes, represents the input prefix. It is marked with a 
point followed by the communication channel name. 

5.2. Mapping Workflow Activities to π-Processes 
Our formalization is based on the following idea: all activities contained in a process 
model are mapped to corresponding π-processes, whereas each π-process has its pre- 
and post-conditions. In principle, this corresponds to Event-Condition-Action (ECA) 
rules [Puhlmann 2005].  An ECA rule has three components: an Event, a 
Condition, and an Action. The Event component specifies when a rule must be 
evaluated. If an event occurs, the Condition component will have to be verified. If the 
condition evaluates to “true”, the Action component will have to be executed. For 
process models we must additionally consider other kinds of rules including Event-
Condition-Action-Action (ECAA) and Event-Action (EA). It is beyond the scope of this 
paper to describe ECA rules in details. Further information can be found in [Puhlmann 
2005]. 

Regarding a π-process events are modeled as input prefix. Following such an input 
prefix one can include an optional condition to be evaluated. This condition is modeled 
as a match operator (e.g., [a = b]) of the π-calculus. Furthermore, actions are divided in 
two parts. In the first part the execution of the activity is represented by a silent action 
of the π-calculus (τ). The second part corresponds to an output prefix that enables 
synchronization with a subsequent π-process. Thus, a π-process that represents a 
workflow activity is defined as follows: 

x . [a = b] . τ . y . 0 

A π-process begins with a trigger of its input prefix x which corresponds to the event of 
an ECA rule. Afterwards, matching operator [a = b] is evaluated and mapped to a 
condition of the ECA rule. The component (τ . y) corresponds to the action of an ECA 
rule; the π-process executes internal action τ and synchronizes with a subsequent π-
process through output prefix y.  

5.3. Basic Control Flow 
Recently, the semantics of the control flow patterns [van der Aalst 2003a] was specified 
using π-calculus [Puhlmann 2005]. Control flow patterns are particularly useful for 
defining workflow behavior. In the following we exemplarily consider the control flow 
patterns Sequence, AND-Split, and AND-Join in order to better understand how process 



 

 

 

behavior can be formalized using π-calculus. In addition, the respective control flow 
patterns will be later used in the formalization of our activity patterns.  

Sequence: Using this control flow pattern, an activity is enabled after completion of its 
preceding activity (within same process model). As aforementioned, activities can be 
represented as π-processes. Thus, a sequence between two π-processes A and B can be 
realized by sending a synchronization message from A to B as shown in Figure 15. 

 

Figure 15. Sequence Pattern 

Note that representation of τA. b‹x› . 0 | b(y) .τΒ . B’ is reduced to τA. b . 0 | b .τΒ . B’; 
i.e., the names exchanged between the π-processes are not relevant with respect to the 
control flow between the two activities. Accordingly, in this paper the label of the 
message to be transmitted has no influence regarding the execution of the patterns.  

AND-Split: A single thread of control splits into multiple threads of control that can be 
executed in parallel, thus allowing activities to be executed simultaneously or in any 
order. Accordingly, a π-process A needs to synchronize with the other two π-processes 
B and C in parallel, i.e. after executing A, activities B and C are executed in parallel. 
This representation is depicted in Figure 16. 

 
Figure 16. AND-Split Pattern 

AND-Join: After the execution of two parallel processes it becomes necessary to 
synchronize them. For example, synchronization of two π-processes B and C with a 
subsequent π-process D is illustrated by Figure 17. 

 
Figure 17. AND-Join Pattern 

5.4. Formalizing Workflow Activity Patterns with π-Calculus 

π-calculus has proven to be an adequate formalism for enabling the verification of 
correctness properties of a process [Yang 2003], [Puhlmann 2005], [Szturc 1999]. In the 
following we sketch how some of the described activity patterns can be formalized 
based on π-calculus. For a complete formalization we refer to [Nascimento 2007].  



 

 

 

Approval Pattern: Fig. 18 shows the formal definition of the single approval pattern, 
using π-calculus. Note that we represent the approval cycle for exactly one 
organizational role as bidirectional pattern. The sender is represented by 
WORKFLOW_APP and the receiver by REVIEWER. The pattern synchronizes with an 
approval (represented through the π-process NA’) or with a disapproval (represented 
through the π-process NR’).  

Figure 18. Formal Definition of the Single Approval Pattern. 

Unidirectional Performative Pattern: In order to formalize the unidirectional 
performative pattern in π-calculus we translate the roles Sender and Receiver into two 
concurrent π-processes SENDER and RECEIVER respectively. Furthermore, as for 
other patterns there must be a concurrent π-process (here denoted as START) to enable 
interaction with others activities of the workflow. The processing of the pattern begins 
with the π-process START. This π-process synchronizes with the π-process SENDER 
through a message labeled a. In the sequel π-process SENDER, synchronizes with the 
π-process RECEIVER through a message labeled b. After triggering this π-process, it 
can execute the respective task (here denoted as τz). Note that after synchronizes with 
RECEIVER the π-process SENDER itself continues as NS’ without waiting for a 
response from the π-process SENDER. Here, NS’ means that the pattern can synchronize 
with a subsequent activity through a message with label c (substituting NS’ for c.0) or 
terminates the process with 0 (substituting NS’ for 0). This mapping is presented in 
Figure 19. 

 
Figure 19. Formal Definition of the Unidirectional Performative Pattern 

In Figure 19 the unidirectional performative pattern is instantiated passing inf as 
parameter. This label represents the information request which is transmitted to the 
receiver through the exchange of messages between the π-processes. Note that inf is 
transmitted as message to SENDER using label a in START. The label inf then 
substitutes parameter x transmitted to SENDER. The same applies to SENDER which 
forwards the message received in y through label b to RECEIVER. Thus RECEIVER 
receives the message for z; the notation τz  represents the internal processing of the 



 

 

 

message by RECEIVER. Finally, another important aspect depicted in Figure 19 con-
cerns the scope of the labels between activities. Labels a and b are used to enable com-
munication between the π-processes START (SENDER) and SENDER (RECEIVER). 
These labels are restricted to the scope of the pattern. If NS’ represents the 
synchronization of the pattern with the following workflow activity, NS’ will have a 
label not restricted to the pattern to enable this communication (e.g., c.0).   

Bi-directional Performative Pattern: To formalize the bidirectional performative 
pattern we synchronize the π-processes SENDER and RECEIVER immediately after 
RECEIVER has processed its message (τz). This synchronization is represented using 
label c. The SENDER continues execution with NS’ similar to the unidirectional 
performative pattern. Figure 20 shows the π-calculus representation of this pattern. 

 

 
Figure 20. Formal Definition of the Bidirectional Pattern. 

5.5. Example of a Process Model Formalized with π-Calculus 

To illustrate the use of π-calculus we formalize the healthcare process from Fig. 13. Fig. 
21 shows the resulting representation in π-calculus. We use names an, bn and cn (where 
n is a number) as internal names of each activity. The names sn (where n is a number) 
represent names to synchronize the activities. 

The first activity OE (Order Entry) begins with τ and the subsequent activities 
synchronize with the previous ones. For example, MAR (Make Appointment with 
Radiologist) synchronizes with OE through s1. Observe that VMR (Validate Medical 
Report) has no name for synchronization (sn) since this activity terminates the process. 

Another important aspect is the activities MAR (Make Appointment with Radiologist) 
and GAP (Get Authorization from the Patient) which represent a loop in the process. 
When a disagreement occurs the two activities may be repeated. This particular 
situation is represented through the replication command of π-calculus (!). The two 
activities are replicated after their execution. 

 



 

 

 

 
Legend: OE (Order Entry), MAR (Make Appointment with Radiologist), GAP (Get Authorization from 
the Patient, PP (Prepare Patient), TP (Transport Patient), PE (Perform Examination), WMR (Write 
Medical Report), VMR (Validate Medical Report) 

Figure 21. Formal Definition of the Medical Examination Process (cf. Fig. 13) 

6. Towards a BPM tool based on Activity Patterns  
This section presents basic components of a BPM tool, which allows for the design of 
process models based on activity patterns and their reuse. The patterns are described by 
means of an ontology, which has been described in details in [Thom 2008]. This 
ontology must be used for implementing the recommendation mechanism of our BPM 
Tool. Altogether, the main goal of this ontology is to better structure the activity 
patterns, their attributes, and their relationships. In addition, the ontology maintains the 
use statistics of each activity pattern (in the context of process modeling) as well as the 
co-occurrences of patterns pairs (cf. Section 4.3).   

In principle, basic concepts behind this BPM tool can be added as extension to existing 
BPM tools as well (e.g., Intalio [Intalio 2006], Aris Toolset [Scheer 2007], or ADEPT2 
Process Composer [Reichert 2005]).  

Core functionalities of our BPM tool are as follows:  

Assisting users in designing proper process models: First, the process designer 
selects the kind of business process (e.g., human intensive) to be modeled, which is then 
matched to a set of business functions as maintained in the ontology; i.e., the BPM tool 
adopts a set of business functions to be used for process modeling in the given context. 
Following this, the process designer chooses a business function and provides 
contextual data (e.g., about the organization). This information is then matched to an 



 

 

 

activity pattern as maintained in the aforementioned ontology. Furthermore, the BPM 
tool recommends the use of the respective activity pattern and helps to apply 
corresponding design choices; i.e., to configure a concrete pattern variant. Afterwards, 
the tool recommends the most suitable activity patterns to be used together with the 
activity pattern applied before. In addition, it informs the user about how frequently 
each pair of activity pattern (i.e., the previously applied activity pattern plus the 
recommended activity pattern) was used in earlier modeling. This module is developed 
based on the analysis results presented in Section 4.3.  

Ontology construction for activity patterns: Our ontology for activity patterns does 
not only maintain the patterns themselves, but also the frequency with which each 
pattern has co-occurred with a previously used one. Through analyses of additional 
process models (e.g., from the automotive as well as the healthcare domain) we aim at 
increasing the support value of such pairs of activity patterns (cf. Section 4.3). Thus, at 
design time the pattern pairs being recommended help to design a process model which 
is closer to the business process as we can find it in the organization.  

Core components of our BPM Tool are as follows (cf. Fig. 22): 

• Query Component: It provides a query mechanism for matching the activity 
patterns maintained by the ontology with the given kind of business process (e.g., 
human intensive), business function (e.g., approval), organizational context (e.g., 
level of centralization in decision-making), and corresponding design choice as 
selected by the user (if not set automatically).  

• Ontology Manager: It comprises ontology and query mechanism (enabling 
queries for business functions and activity patterns respectively). The ontology 
describes the activity patterns (cf. Fig. 6) and their properties (e.g., attributes and 
relationships with other patterns). The provided query and update mechanisms 
give design time recommendations with respect to the most suited activity 
patterns to be combined with a previously used one. An example of a query would 
be the selection of the business functions which occur more frequently in system-
intensive process models.  In addition, our update mechanism has to be used to 
adapt the relative frequency of each pattern pair (e.g., based on the analysis of 
new process models) as identified in our process model analysis.  

• Scheme Translation: This component is responsible for translating a process 
model (based on translation algorithms) which uses activity patterns as building 
blocks (stored in XML code) to either a conventional notation (e.g., BPMN) or an 
existing process execution language (e.g., WS-BPEL). The use of this translation 
component is optional, i.e., it will be only applicable if the user wants the 
respective process model being translated to another notation and process 
execution language respectively. 

• Business Process Model Checker (BPMC): The objective of this module is to 
verify the correctness of the process models as composed out of the activity 
patterns. The verification is done through simulation and verification of the 
properties of the composed process models. This module consists of two parts:  

- Translation of process model into a π-calculus representation: consists of 
algorithms to translate a composed process model into a π-calculus 



 

 

 

representation. This translation is done based on the formalization of the 
activity patterns as sketched in Section 4.3. 

- Model Checking Algorithms: the obtained π-process is simulated through 
model checking algorithms as known from π-calculus theory. The 
simulation must prove the correctness properties of the modeled process. 
Related to that we are considering the use of existing tools for model 
checking in π-calculus (e.g., [Björn 1994]). Thus the BPMC module will 
only interact with the model checking tool, without considering the 
complexity of the algorithms used to simulate a π-process execution. 
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Figure 22. Architecture of the Process Modeling Tool 

Altogether our BPM tool fosters the modeling of business processes based on the reuse 
of activity patterns. In particular, the recommendation mechanism supported by this tool 
can be considered as a very important functionality which shall optimize the process 
design and increase its correctness.  Finally, we plan to use our tool for conducting a 
series of experiments in which we compare process modeling with and without activity 
pattern support. 

7. Summary and Outlook 
This paper has deal with workflow activity patterns, each of them based on a frequent 
process fragment (e.g., a task execution request, notification activity, approval). The 
patterns are tool-independent, which make them easier to be adapted for any business 
process modeling (BPM) tool. Moreover, based on a relatively small set of patterns a 
multitude of processes can be modeled. This, in turn, contributes to reduce complexity 
with user learning. The analysis of 239 processes models, stemmed from different 
organizations and application domains, has evidenced that the patterns appear to be 
necessary and enough to design at least the process models we have analyzed. We have 
also investigated how often specific co-occurrences of activity patterns appear in a 



 

 

 

selected set of the studied process models. These analyses must be used in the 
development of a recommendation BPM tool.  

By formally representing the patterns using π-calculus we expect to reduce their 
ambiguity. Moreover, a workflow model written in π-calculus can express the dynamic 
behavior of the business process, thus making it possible to verify formal properties of 
the model, such as soundness, deadlocks, livelocks and equivalence. 

The specification of processes in π-calculus can also improve workflow optimization. A 
business process written in π-calculus can be optimized through the identification of 
active names. Nascimento (2006) shows algorithms to optimize π-processes through 
active names collection. Thus, we could map business processes to π-calculus and use 
algorithms to reduce the size of the business process.  

The π-calculus is a textual notation (action based) and it has no intuitive graphical 
notation. To minimize this problem, we intend to map some conceptual language such 
as BPMN to the π-calculus. This would allow us to use the π-calculus as an internal 
representation of a framework for workflow modeling. By doing that we expect to 
enable the specification based on a business process in high-level notation, but without 
losing the possibility of formal verification. 

As future work we will consider the results of the aforementioned case studies as well 
as the analyses of other process models in order to derive new pattern variants and 
patterns, respectively. We also intend to make an experiment for comparing process 
modeling with and without workflow activity patterns support. Last but not least, we 
intend to investigate how to transform process models defined with our tool (and being 
based on the activity patterns) into conventional notations and languages respectively. 
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