
-

Enabling Adaptive Process-aware
Information Systems with ADEPT2

Manfred Reichert and Peter Dadam

Institute of Databases and Information Systems, University of Ulm, Germany

Web: www.uni-ulm.de/in/iui-dbis/
E-Mail: {manfred.reichert, peter.dadam}@uni-ulm.de

ABSTRACT

In dynamic environments it must be possible to quickly implement new business processes, to enable ad-
hoc deviations from the defined business processes on-demand (e.g., by dynamically adding, deleting or
moving process activities), and to support dynamic process evolution (i.e., to propagate process schema
changes to already running process instances). These fundamental requirements must be met without
affecting process consistency and robustness of the process-aware information system. In this chapter we
describe how these challenges have been addressed in the ADEPT2 process management system. Our
overall vision is to provide a next generation technology for the support of dynamic processes, which
enables full process lifecycle management and which can be applied to a variety of application domains.

INTRODUCTION

In today's dynamic business world the economic success of an enterprise increasingly depends on its
ability to quickly and flexibly react to changes in its environment. Generally, the reasons for such changes
can be manifold. As examples consider the introduction of new regulations, the availability of new medi-
cal tests, or changes in customers' attitudes. Companies and organizations therefore have recognized
business agility as prerequisite for being able to cope with changes and to deal with emerging trends like
business-on-demand, high product and service variability, and faster time-to-market (Weber, Rinderle, &
Reichert, 2007).

Process-aware information systems (PAISs) offer promising perspectives in this respect, and a
growing interest in aligning information systems in a process-oriented way can be observed (Weske,
2007). As opposed to data- or function-centered information systems, PAISs separate process logic and
application code. Most PAISs describe process logic explicitly in terms of a process template providing
the schema for handling respective business cases. Usually, the core of the process layer is built by a
process management system which provides generic functions for modeling, configuring, executing, and
monitoring business processes. This separation of concerns increases maintainability and reduces cost of
change (Mutschler, Weber, & Reichert, 2008a). Changes to one layer often can be performed without
affecting other layers; e.g., changing the execution order of process activities or adding new activities to a

-

process template can, to a large degree, be accomplished without touching the application services linked
to the different process activities (Dadam, Reichert, & Kuhn, 2000). Usually, the process logic is
expressed in terms of executable process models, which can be checked for the absence of errors already
at buildtime (e.g., to exclude deadlocks or incomplete data flow specifications). Examples for PAIS-
enabling technologies include workflow management systems (van der Aalst & van Hee, 2002) and case
handling tools (van der Aalst, Weske, & Grünbauer, 2005; Weske, 2007).

The ability to effectively deal with process change has been identified as one of the most fundamental
success factors for PAISs (Reichert & Dadam, 1997; Müller, Greiner, & Rahm, 2004; Pesic, Schonen-
berg, Sidorova, & van der Aalst, 2007). In domains like healthcare (Lenz & Reichert, 2007; Dadam et al.,
2000) or automotive engineering (Mutschler, Bumiller, & Reichert, 2006; Müller, Herbst, Hammori, &
Reichert, 2006), for example, any PAIS would not be accepted by users if rigidity came with it. Through
the described separation of concerns PAISs facilitate changes. However, enterprises running PAISs are
still reluctant to adapt process implementations once they are running properly (Reijers & van der Aalst,
2005; Mutschler, Reichert, & Bumiller, 2008b). High complexity and high cost of change are mentioned
as major reasons for not fully leveraging the potential of PAISs. To overcome this unsatisfactory situation
more flexible PAISs are needed enabling companies to capture real-world processes adequately without
leading to mismatches between computerized business processes and those running in reality (Lenz &
Reichert, 2007; Reichert, Hensinger, & Dadam, 1998b). Instead, users must be able to deviate from the
predefined processes if required and to evolve PAIS implementations over time. Such changes must be
possible at a high level of abstraction and without affecting consistency and robustness of the PAIS.

Changes can take place at both the process type and the process instance level. Changes of single
process instances, for example, become necessary to deal with exceptional situations (Reichert & Dadam,
1998a; Minor, Schmalen, Koldehoff, & Bergmann, 2007). Thus they often have to be accomplished in an
ad-hoc manner. Such ad-hoc changes must not affect PAIS robustness or lead to errors; i.e., none of the
execution guarantees ensured by formal checks at buildtime must be violated due to dynamic process
changes. Process type changes, in turn, are continuously applied to adapt the PAIS to evolving business
processes (Casati, Ceri, Pernici, & Pozzi, 1998; Rinderle, Reichert, & Dadam, 2004b; Pesic et al., 2007).
Regarding long-running processes, evolving process schemes also require the migration of already
running process instances to the new schema version. Important challenges emerging in this context are to
perform instance migrations on-the-fly, to guarantee compliance of migrated instances with the new
schema version, and to avoid performance penalties (Rinderle, Reichert, & Dadam, 2004a).

Off-the-shelf process management systems like Staffware, WebSphere Process Server and FLOWer do
not support dynamic structural process changes or offer restricted change features only (Weber et al.,
2007). Several vendors promise flexible process support, but are unable to cope with fundamental issues
related to process change (e.g., correctness). Most systems completely lack support for ad-hoc changes or
for migrating process instances to a changed process schema. Thus, application developers are forced to
realize workarounds and to extend applications with respective process support functions to cope with
these limitations. This, in turn, aggravates PAIS development and PAIS maintenance significantly.

In the ADEPT2 project we have designed and implemented a process management system which
allows for both kinds of structural changes in a flexible and reliable manner (Reichert, Rinderle, Kreher,
& Dadam, 2005). The design of such a process management technology constitutes a big challenge. First,
many trade-offs exist which have to be dealt with. For example, complexity of dynamic process changes
increases, the higher expressiveness of the used process modeling formalism becomes. Second, complex
interdependencies between the different features of such a technology exist that must be carefully
understood in order to avoid implementation gaps. Process schema evolution, for example, requires high-
level change operations, schema versioning support, change logging, on-the-fly migration of running

-

process instances, and dynamic worklist adaptations (Weber et al., 2007). Thus the integrated treatment of
these different system features becomes crucial. Third, even if the conceptual pillars of adaptive process
management technology are well understood, it still will be a quantum leap to implement respective
features in an efficient, robust and integrated manner.

This chapter gives insights into the ADEPT2 process management system, which is one of the few
systems that provide integrated support for dynamic structural process changes at different levels. Using
this next generation process management technology, new processes can be composed in a plug & play
like fashion and be flexibly executed during run-time. ADEPT2 enables support for a broad spectrum of
processes ranging from simple document-centred processes (Karbe & Ramsperger, 1991) to complex
processes that integrate distributed application services (Khalaf, Keller, & Leymann, 2006). We illustrate
how ad-hoc changes of single process instances as well as process schema changes with (optional) propa-
gation of the changes to running process instances can be supported in an integrated and easy-to-use way.

The remainder of this chapter is structured as follows: We first give background information needed
for the understanding of the chapter. Then we show how business processes can be modeled and enacted
in ADEPT2. Based on this we introduce the ADEPT2 process change framework and its components.
Following these conceptual considerations we sketch the architecture of the ADEPT2 system and give
insights into its design principles. We conclude with a summary and outlook on future work.

BACKGROUNDS AND BASIC NOTIONS

When implementing a new process in a PAIS its logic has to be explicitly defined based on the modeling
constructs provided by a process meta model. More precisely, for each business process to be supported, a
process type represented by a process schema is defined. For one particular process type several process
schemes may exist representing the different versions and the evolution of this type over time.

Figure 1 shows a simple example of a process schema (in ADEPT2 notation). It comprises seven
activities which are connected through control edges. Generally, control edges specify precedence
relations between activities. For example, activity order medical examination is followed by activity make
appointment, whereas activities prepare patient and inform patient can be executed in parallel.
Furthermore, the process schema contains a loop structure, which allows for the repetitive execution of
the depicted process fragment. Finally, data flow is modeled by linking activities with data elements.
Respective data links either represent a read or a write access of an activity to a data element. In our
example, for instance, activity perform examination reads data element patientId, which is written by
activity order medical examination before.

Based on a process schema new process instances can be created and executed. Each of these process
instances logically corresponds to a different business case. The PAIS orchestrates the process instances
according to the logic defined by their process schema. Generally, a large number of process instances,
being in different states, may run on a particular process schema.

To deal with evolving processes, exceptions and uncertainty, PAISs must be flexible. This can be
achieved either through structural process changes (Reichert & Dadam 1998a; Rinderle et al., 2004a) or
by allowing for loosely specified process models (Sadiq, Sadiq, & Orlowska, 2001; Adams, ter Hofstede,
Edmond, & van der Aalst, 2006). In the following we focus on structural schema adaptations and show
how they can be accomplished in a PAIS during runtime. Loosely specified process models, in turn,
enable flexibility by leaving parts of the process model unspecified at build-time and by allowing end
users to add the missing information during run-time. This approach is especially useful in case of

-

uncertainty as it allows for deferring decisions from build- to run-time, when more information becomes
available. For example, when treating a cruciate rupture for a patient we might not know in advance
which treatment will be exactly performed in which execution order. Therefore, this part of the process
remains unspecified during build-time and the physician decides on the exact treatment at run-time. For
additional information we refer to the approaches followed by Pockets of Flexibility (Sadiq et al., 2001)
and Worklets (Adams et al., 2006).

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientId

report

data element

AND join

data flow control flow

yes

no

role = doctor

role = radiologist

Actor =
Actor("peform examination")

STARTLOOP

AND split

ENDLOOP

write data edge

read data edge

loop backward edge
(ET =LOOP_E)

normal control edge
(ET =CONTROL_E)

Figure 1 Example of a process schema (in ADEPT2 notation)

In general, structural adaptations of a process schema can be triggered and performed at two levels, the

process type and the process instance level.
Process schema changes at the type level (in the following denoted as process schema evolution)

become necessary to deal with the evolving nature of real-world processes (Rinderle et al., 2004b); e.g.,
to adapt the process schema to legal changes or to a redesigned business process. In PAISs process
schema evolution often requires the dynamic propagation of the corresponding changes to related process
instances, particularly if these instances are long-running. For example, assume that in a patient treatment
process, due to a new legal requirement, patients have to be educated about potential risks of a surgery
before this intervention takes place. Let us further assume that this change is also relevant for patients for
which the treatment has already been started. In such a scenario, stopping all ongoing treatments, aborting
them and re-starting the treatments is not a viable option. As a large number of treatment processes might
be running at the same time, applying this change manually to all ongoing treatment processes is also not
a feasible option. Instead system support is required to add this additional activity to all patient treatments
for which this is still feasible; i.e., for which the surgery has not yet started.

Ad-hoc changes of single process instances, in turn, are usually required to deal with exceptions or
unanticipated situations, resulting in an instance-specific process schema afterwards (Reichert & Dadam,
1997). In particular, such ad-hoc changes must not affect other process instances. In a medical treatment
process, for example, the current medication of a particular patient might have to be discontinued due to
an allergic reaction of this patient.

-

PROCESS MODELING AND ENACTMENT IN ADEPT2

When designing an adaptive process management system several trade-offs exist which have to be
carefully considered. On the one hand, as known from discussions about workflow patterns (van der
Aalst, ter Hofstede, Kiepuszewski, & Barros, 2003), high expressiveness of the used process meta model
allows to cover a broad spectrum of processes. On the other hand, with increasing expressiveness of the
used process meta model, dynamic process changes become more difficult to handle for users (Reichert,
2000). When designing ADEPT2 we kept this trade-off in mind and we found an adequate balance
between expressiveness and runtime flexibility. Though ADEPT2 uses a block-structured modeling
approach, it enables a sufficient degree of expressiveness due to several modeling extensions and relax-
ations; for a detailed discussion we refer to (Reichert, 2000) and (Reichert, Dadam, & Bauer, 2003a).

Process Modeling in ADEPT2

The ADEPT2 process meta model allows for the integrated modeling of different process aspects
including process activities, control and data flow, actor assignments, organizational, semantical, and
temporal constraints, and resources. Here we focus on the basic concepts available for modeling control
and data flow, and we sketch how new processes can be composed in a plug & play like fashion. We refer
to reading material covering other aspects at the end of this section.

Basic concepts for control flow modeling

In ADEPT2 the control flow of a process schema is represented as attributed graph with distinguishable
node and edge types (Reichert et al., 2003a). This allows for efficient correctness checks and eases the
handling of loop backs. Formally, a control flow schema corresponds to a tuple (N,E, ...) with node set N
and edge set E. Each control edge e ∈ E has one of the edge types CONTROL_E, SYNC_E, or LOOP_E:
CONTROL_E expresses a normal precedence relation, whereas SYNC_E allows to express a wait-for
relation between activities of parallel branches. The latter concept is similar to links as used in WS-BPEL.
Regarding Figure 2, for example, a necessary pre-condition for enabling activity H is that activity E either
is completed or skipped before (see below). Finally, LOOP_E represents a loop backward edge.

Similarly, each node n ∈ N has one of the node types STARTFLOW, ENDFLOW, ACTIVITY,
STARTLOOP, ENDLOOP, AND-/XOR-Split, and AND-/XOR-Join. Based on these elements, we can
model sequences, parallel branchings, conditional branchings, and loop backs. ADEPT2 adopts concepts
from block-structured process description languages, but enriches them by additional control structures in
order to increase expressiveness. More precisely, branchings as well as loops have exactly one entry and
one exit node. Furthermore, control blocks may be nested, but are not allowed to overlap (cf. Figure 2).
As this limits expressive power, in addition, the aforementioned synchronization edges can be used for
process modeling (see Reichert & Dadam, 1998a; Reichert, 2000).

We have selected this relaxed block structure because it is quickly understood by users, allows to
provide user-friendly, syntax-driven process modeling tools (see below), enables the realization of high-
level change patterns guaranteeing soundness, and makes it possible to implement efficient algorithms for
process analysis. Note that we provide relaxations (e.g., synchronization edges and backward failure
edges) and extensions (e.g., temporal constraints, actor assignments), respectively, which allow for
sufficient expressiveness to cover a broad spectrum of processes from different domains. We already
applied the ADEPT1 technology in domains like healthcare, logistics, and e-commerce, and the feedback

-

we received was very positive (Müller et al., 2004; Bassil, Keller, & Kropf, 2004; Bassil, Benyoucef,
Keller, R., & Kropf, 2002; Golani & Gal, 2006). In particular, the expressiveness of our meta model was
considered as being sufficient in most cases. We are currently applying ADEPT2 in other domains like
construction engineering and disaster management, and we can make similar observations here.

Basic concepts for data flow modeling

Data exchange between activities is realized through writing and reading (global) process variables
(denoted as data elements in the following). In this context, ADEPT2 considers both basic and complex
data types. In addition, user-defined types are supported. Data elements are connected with input and
output parameters of process activities. Each input parameter of a particular activity is mapped to exactly
one data element by a read data edge and each activity output parameter is connected to a data element
by a write data edge. An example is depicted in Figure 1. Activity order medical examination writes data
element patientID which is then read by the subsequent activity perform examination.

The total collection of data elements and data edges constitutes the data flow schema. For its
modeling, a number of constraints must be met. The most important one ensures that all data elements
mandatorily read by an activity X must have been written before X becomes enabled; in particular, this has
to be ensured independently from the execution path leading to activation of X (Reichert, 2000). Note that
this property is crucial for the proper invocation of activity programs without missing input data.

Process composition by plug & play of application components

Based on the described modeling concepts a new process can be realized by creating a process template
(i.e., process schema). Among other things such a template describes the control flow for the process
activities as well as the data flow between them. It either has to be defined from scratch or an existing
template is chosen from the process template repository and adapted as needed ("process cloning").

Afterwards application components (e.g., web services or Java components) have to be assigned to the
process activities. Using the ADEPT2 process editor these components can be selected from the

Loop

A B

C

D

F
E

G H

I J

Sequence

Parallel Branching

Conditional branching

Sequence

Synchronization

STARTFLOW

ENDFLOW

PROCESS

XOR-
split

XOR-
join

AND-
join

AND-
split

Figure 2: Block-structuring of ADEPT2 process models

-

component repository and be inserted into the process template by drag & drop. Following this, ADEPT2
analyzes whether the application functions can be connected in the desired order; e.g., we check whether
the input parameters of application functions can be correctly supplied for all possible execution paths
imposed by the process schema. Only those process templates passing all correctness checks may be
released and transferred to the runtime system. We denote this feature as correctness by construction.

When dragging application components from the repository and assigning them to particular activities
in the process template, the process designer does not need to have detailed knowledge about the imple-
mentation of these components. Instead the component repository provides an integrated, homogeneous
view as well as access to the different components. Internally, this is based on a set of wrappers provided
for the different types of application components. Our chosen architecture allows to add new wrappers if
new component types have to be supported. Currently, ADEPT2 allows to integrate different kinds of
application components like electronic forms, stand-alone executables, web services, Java library
functions, and function calls to legacy systems.

Process Enactment in ADEPT2

Based on a given process schema new process instances can be created and started. State transitions of a
single activity instance are depicted in Figure 3. Initially, activity status is set to NOT_ACTIVATED. It
changes to ACTIVATED when all preconditions for executing this activity are met. In this case
corresponding work items are inserted into the worklists of authorized users. If one of them selects the
respective item from his worklist, activity status changes to RUNNING and respective work items are re-
moved from the worklists of other users. Furthermore, the application component associated with the
activity is started. At successful termination, activity status changes to COMPLETED.

f inish

start

start

select

disable

deselect

NOT_ACTIVATED ACTIVATED

WAITI NG

SUSPENDED STARTED

RUNNING

suspend

FAILED COMPLETEDSKIPPED

SELECTED

TERMINATED

enable

resume

abort

skip

disable

skip

skip

super state

(sub-) state

action leading to
state transition

Figure 3: Internal state transitions of a process activity

To determine which activities are to be executed next, process enactment in ADEPT2 is based on a

well-defined operational semantics (Reichert & Dadam, 1998a; Reichert, 2000). For each process
instance we further maintain information about its current state by assigning markings to its activities and
control edges respectively. Figure 4 depicts an example showing two process instances in different states.

Similar to Petri Nets, markings are determined by well defined marking and enactment rules. In
particular, ADEPT2 maintains markings of already passed regions (except loop backs). Furthermore,
activities belonging to non-selected paths of a conditional branching are marked as SKIPPED. Note that

-

this allows to easily check whether certain changes may be applied in the current status of a process
instance or not (see later). As aforementioned, ADEPT2 ensures dynamic properties like the absence of
deadlocks, proper process termination, and reachability of markings which enable the activation of
particular activity. The described block structuring as well as the used node and edge types help us to
accomplish this in an efficient manner. Deadlocks, for example, can be excluded if the process schema
(excluding loop backs) does not contain cycles (Reichert & Dadam, 1998a).

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientID

report

LOOP_Etrue

false

user = "Dr. Quincy"

role = radiologist

Process instance I1

patientId = "Smith"

t

current value: "Smith"

NS=NodeState,
 NS = ACTIVATED

 NS = RUNNING

 NS = COMPLETED

ES = EdgeState
 ES = TRUE_SIGNALED

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientID

report

LOOP_E true

false

Actor = "Dr. Bond"

Actor = "Dr. Kitchen"

Process instance I2

patientID = "Major"

t

current value: "Major"

Actor = "Dr. Kitchen"

report = Id4763

t

patientID = "Major"

t

report = Id4763

t

Figure 4: Examples of two process instances running on the process schema from Figure 1

For each data element ADEPT2 stores different versions of a data object during runtime if available.

In more detail, for each write access to a data element, always a new version of the respective data object
is created and stored in the runtime database; i.e., data objects are not physically overwritten. This allows
us to use different versions of a data element within different branches of a branching with AND-Split
and XOR-Join. As shown in (Reichert et al., 2003a) maintaining data object versions is also important to
enable correct rollback of process instances at the occurrence of semantical errors (e.g., activity failures).

Other Process aspects covered in ADEPT2

Activities and their control as well as data flow are not the only viewpoints supported in our approach.

ADEPT2 also considers organizational models (Rinderle & Reichert, 2007a), actor and resource
assignments (Rinderle & Reichert, 2005b; Rinderle-Ma & Reichert, 2008c), and application components.
In related projects, we have further looked at temporal constraints (Dadam, Reichert, & Kuhn, 2000),
partitioned process schemes with distributed enactment (Reichert, Bauer, & Dadam, 1999; Bauer,
Reichert, & Dadam, 2003), and configurable process visualizations (Bobrik, Bauer, & Reichert; 2006;
Bobrik, Reichert, & Bauer, 2007). All these viewpoints are not only relevant for process modeling, but
have to be considered in the context of (dynamic) process changes as well (Reichert & Bauer, 2007;
Rinderle & Reichert, 2005b, 2007a; Dadam et al., 2000). On the one hand, each of the aspects can be
primary subject to (dynamic) change. On the other hand, the different aspects might have to be adjusted
due to the change of another aspect (e.g., adaptation of temporal constraints when changing the control

-

flow structure). To set a focus, however, in this chapter we restrict ourselves to control and data flow
changes. The above given references provide further information on the other aspects.

Note that we consider process correctness only at the syntactical level in this chapter (e.g., absence of
deadlock-causing cycles and correctness of data flow). Respective checks are fundamental for both
process modeling and process change. However, errors may be still caused at the semantical level (e.g.,
due to the violation of business rules) though not affecting the robustness of the PAIS. Therefore, the
integration and verification of domain knowledge flags a milestone in the development of adaptive
process management technology. In the SeaFlows project, we are currently developing a framework for
defining semantic constraints over processes in such a way that they can express real-world domain
knowledge on the one hand and are still manageable concerning the effort for maintenance and semantic
process verification on the other hand (Ly, Göser, Rinderle-Ma, & Dadam, 2008). This viewpoint can be
used to detect semantic conflicts (e.g., drug incompatibilities) when modeling process schemes, applying
ad-hoc changes at process instance level, or propagating process schema changes to already running
process instances, even if they have been already individually modified themselves; i.e., SeaFlows
provides techniques to ensure semantic correctness for single and concurrent changes which are, in
addition, minimal regarding the set of semantic constraints to be checked. Together with further
optimizations of the semantic checks based on certain process meta model properties this allows for
efficiently verifying processes. Altogether, the SeaFlows framework provides the basis for process
management systems which are adaptive and semantic-aware at the same time; note that this is a
fundamental issue when thinking of business process compliance. For further details we refer to (Ly et al.,
2008; Ly, Rinderle, & Dadam, 2008).

ADEPT2 PROCESS CHANGE FRAMEWORK

This section deals with fundamental aspects of dynamic process changes as supported by ADEPT2.
Though we illustrate relevant issues along the ADEPT2 process meta model, it is worth mentioning that
most of the described concepts can be applied in connection with other process modeling formalisms as
well; see (Reichert, Rinderle, & Dadam, 2003b) and (Reichert & Rinderle, 2006) for examples.

Requirements

In order to adequately deal with process changes during runtime users need to be able to define them at a
high level of abstraction. Several fundamental requirements, which will be discussed in the following,
exist in this context:

1. Support of structural adaptations at different levels. Any framework enabling dynamic process
changes should allow for structural schema adaptations at both the process type and the process
instance level. In principle, the same set of change patterns should be applicable at both levels.

2. Enabling a high level of abstraction when defining process changes. It must be possible to define
structural process adaptations at a high level of abstraction. In particular, all complexity associated
with the adjustment of data flows or the adaptation of instance states should be hidden from users.

3. Completeness of change operations. To be able to define arbitrary structural schema adaptations a
complete set of change operations is required; i.e., given two correct schemes it must be always
possible to transform one schema into the other based on the given set of change operations.

-

4. Correctness of changes. The ultimate ambition of any change framework must be to ensure
correctness of dynamic changes (Rinderle, Reichert, & Dadam, 2003). First, structural and behavioral
soundness of the modified process schema should be guaranteed independent from whether the
change is applied at instance level or not. Second, when performing structural schema changes at
instance level, this must not lead to inconsistent process states or errors. Therefore, an adequate
correctness criterion is needed to decide whether a given process instance is compliant with a
modified process schema. This criterion must not be too restrictive, i.e., no process instance should
not be needlessly excluded from being migrated to the new schema version.

5. Change efficiency. We must be able to efficiently decide whether a process instance is compliant with
a modified schema or not. Furthermore, when migrating compliant instances to the modified schema,
state adaptations need to be accomplished automatically and in an efficient way.

We show how ADEPT2 deals with these fundamental requirements. There exist additional challenges

not treated here, but which have been considered in the design of the ADEPT2 framework as well: change
authorization (Weber, Reichert, Wild, & Rinderle, 2005a), change traceability (Rinderle, Reichert,
Jurisch, & Kreher, 2006b; Rinderle, Jurisch, & Reichert, 2007b), change annotation and reuse (Weber,
Wild, & Breu, 2004; Rinderle, Weber, Reichert, & Wild, 2005a; Weber, Rinderle, Wild, & Reichert,
2005c; Weber, Reichert, & Wild, 2006), and change mining (Günther, Rinderle, Reichert, & van der
Aalst, 2006; Günther, Rinderle-Ma, Reichert, van der Aalst, & Recker, 2008; Li, Reichert, &
Wombacher, 2008b). The given references provide additional reading material on these advanced aspects.

Support of Change Patterns in ADEPT2

Two alternatives exist for realizing structural adaptations of a process schema (Weber et al., 2007). A first
option is to realize the schema adaptations based on a set of change primitives like add node, remove
node, add edge, and remove edge (Minor et al., 2007). Following such a low-level approach, the reali-
zation of a particular change (e.g., to move an activity to a new position) requires the combined appli-
cation of multiple change primitives. To specify structural adaptations at this low level of abstraction is a
complex and error-prone task. Furthermore, when applying a single change primitive, soundness of the
resulting process schema cannot be guaranteed by construction; i.e., it is not possible to associate formal
pre-/post-conditions with the application of single change primitives. Instead, correctness of a process
schema has to be explicitly checked after applying the respective set of primitives.

Another, more favorable option is to base structural adaptations on high-level change operations
(Weber et al., 2007), which abstract from the concrete schema transformations to be conducted; e.g., to
insert a process fragment between two sets of nodes or to move process fragments from their current
position to a new one (Reichert & Dadam, 1998a). Instead of specifying a set of change primitives the
user applies one or few high-level change patterns to define a schema adaptation. Following this
approach, it becomes possible to associate pre-/post-conditions with the respective change operations.
This, in turn, allows the PAIS to guarantee soundness when applying the patterns (Reichert, 2000). Note
that soundness will crucial if changes have to be defined by end users or – even more challenging – by
intelligent software agents (Müller et al., 2004; Golani & Gal, 2006; Bassil et al., 2004). In order to meet
this fundamental goal ADEPT2 only considers high-level change patterns. Of course, the same patterns
can be used for process modeling as well enabling the already mentioned “correctness by construction”. A
similar approach is provided in (Gschwind, Koehler, & Wong, 2008).

ADEPT2 provides a complete set of change patterns and change operations respectively based on
which structural adaptations at the process type as well as the process instance level can be expressed. In

-

particular, this can be accomplished at a high level of abstraction. Furthermore, the change patterns are
applicable to the whole process schema; i.e., the region to which the respective change operation is
applied can be chosen dynamically (as opposed to late modeling of loosely specified process models
where changes are usually restricted to a predefined region). This allows to flexibly deal with exceptions
and to cope with the evolving nature of business processes. Furthermore, the application of a change
pattern to a sound process schema results in a sound schema again, i.e., structural and behavioral
soundness of the schema are preserved.

We do not present the complete set of change patterns supported by ADEPT2 (Weber et al., 2007;
Weber, Reichert, & Rinderle, 2008b), but only give selected examples in the following:

• Insert Process Fragment: This change operation can be used to add process fragments to a given
process schema. One parameter of this operation describes the position at which the new
fragment is embedded in the schema; e.g., ADEPT2 allows to serially insert a fragment between
two succeeding activities or to insert new fragments between two sets of activities (Reichert,
2000). Special cases of the latter variant include the insertion of a process fragment in parallel to
another one (parallel insert) or the association of the newly added fragment with an execution
condition (conditional insert). Figure 5a depicts an example of a parallel insertion.

• Delete Process Fragment. This change operation can be used to remove a process fragment.
Figure 5b depicts two simple examples.

• Move Process Fragment. This change operation allows users to shift a process fragment from its
current position in the process schema to a new one. One parameter of this operation specifies the
way the fragment is re-embedded in the process schema afterwards. Though the move operation
could be realized by the combined use of the insert and delete operation, ADEPT2 introduces it as
separate operation since it provides a higher level of abstraction to users.

Other examples of ADEPT2 change operations include the embedding of a process fragment in a
conditional branch or loop construct, and the addition or deletion of synchronizations between parallel

a)

b)

Add Activity X parallel to Block (B,

B
D

E
C

F
H

I
G

X

A

A B
D

E
C

F
H

I
G

X

silent
activity

c)

A CB
Delete Activity B

A C A CB

A

C

D

B

A D B
Delete Activity C empty branch

A

C

D

B

Figure 5. Insertion and deletion of process activities in ADEPT2

-

activities. When applying such high-level changes, ADEPT2 automatically reduces complexity through
simple schema refactoring (Reichert & Dadam, 1998a); e.g., empty branches or unnecessary nodes are
removed after change application (cf. Figure 5). Generally, the change patterns offered by ADEPT2 can
be used for a large variety of behavior preserving process refactorings (Weber & Reichert, 2008a).

Generally, structural adaptations of a control flow schema have to be combined with adjustments of
the data flow schema in order to preserve soundness. As simple example consider Figure 6 where activity
B shall be deleted from the depicted process schema. To preserve schema correctness we must deal with
the data dependencies activities D and E have on activity B. Figure 6 shows four basic options supported
by ADEPT2 in this context: (a) cascading deletion of data-dependent activities; (b) insertion of an alter-
nate activity which writes the respective data element; (c) insertion of an auxiliary service (e.g., an elec-
tronic form) which is invoked when deleting B, or insertion of an auxiliary service which is invoked when
starting the first data-dependent activity (D in our example). Which of these four options is most favo-
rable in a given context depends on the semantics of the activity to be primarily deleted. It therefore has to
be chosen by the process designer at buildtime or by the user requesting the deletion at runtime. Regard-
ing the example from Figure 1, for instance, deletion of activity generate report should be always accom-
panied by deletion of activity validate report since the second activity strongly depends on the first one;
i.e., option (a) has to be applied. ADEPT2 allows to explicitly specify such strong dependencies at build-
time, which enables the runtime system to automatically apply option (a) if required. By contrast, option
(c) might be favorable when deleting automated activity make appointment in Figure 1; e.g., in case the
appointment is exceptionally made by phone and therefore can be manually entered into the system.

a)

B C D E

 d

A

C D E

 d

A

C D E

 d

A D E

 d

CA

c)

d)

A DC E

d

V

b)

Delete Activity B
… and possible adjustments of data flow

Figure 6: Adjusting data flow in the context of an activity deletion

In summary, ADEPT2 provides a complete set of high-level change operations which can be used for

specifying structural adaptations as well as for accomplishing structural comparisons of process schemes
(Li, Reichert, & Wombacher, 2008a). In particular, these high-level operations cover most of the change
patterns described in (Weber et al. 2007; Weber et al., 2008b). Finally, the application of ADEPT2
operations to a correct process schema results in a correct schema again. Basic to the latter is the formal
semantics defined for the supported change patterns (Rinderle-Ma, Reichert, & Weber, B.; 2008b).

-

Ensuring Correctness of Dynamic Changes

So far, we have only looked at structural schema adaptations without considering the state of the process
instances running on the respective schema. In this subsection we discuss under which conditions a
structural schema change can be applied at the process instance level as well. Obviously, structural
adaptations have to be restricted with respect to the current state of an instance. As example consider
Figure 7a. Activity X is serially added between activities A and B resulting in a correct process schema
afterwards. Consider now process instance I from Figure 7b. When applying the schema change to this
instance, an inconsistent state would result; i.e., activity B would have state COMPLETED though its
preceding activity X would still be in state ACTIVATED.

 Serial Insertion of X between A and B

C A B A X C B

C A B
 4

A X C B
4 5

Instance l with history H: start(A), end(A), start(B), end(B), start(C)

?

a)

b)

Figure 7. Schema change and inconsistency due to uncontrolled change propagation at instance level

To avoid such inconsistencies we need a formal foundation for dynamic changes. In the following, let
I be an instance running on process schema S and having marking MS. Assume further that S is trans-
formed into another correct process schema S’ by applying change Δ. Then the following two issues arise:

1. Can Δ be correctly propagated to process instance I, i.e., can Δ be applied to I without causing
inconsistencies? For this case, I is denoted as being compliant with the modified schema S’.

2. How can we migrate a compliant instance I to S’ such that further execution of I can be based on
S’? Which state adaptations become necessary and how can they be automatically accomplished?

Both issues are fundamental for any adaptive process management system. While the first one

concerns pre-conditions on the state of the respective instance, the second one is related to post-
conditions to be satisfied after the dynamic change. We need an efficient method allowing for automated
compliance checks and instance migrations. Intuitively, instance I would be compliant with the modified
schema S’ if it could have been executed according to S’ as well and had produced the same effects on
data elements (Rinderle et al., 2004b; Casati et al., 1998). Trivially, this will be always the case if instance
I has not yet entered the region affected by the change. Generally, we need information about the previous
execution of instance I to decide on this and to determine a correct follow-up marking when structurally
adapting it. At the logical level we make use of the execution history (i.e., trace) kept for each process
instance. We assume that this execution history logs events related to the start and completion of activity
executions. Obviously, an instance I with history H will be compliant with modified schema S’ and
therefore can migrate to S’ if H can be produced on S’ as well. We then obtain a correct new state (i.e.,
marking) for instance I by “replaying” all events from H on S’ in the order they occurred.

Taking our example from Figure 7b this property does not hold for instance I. Therefore the depicted
schema change must not be applied to this instance. As another example consider the process instance
from Figure 8a and assume that activity C shall be moved to the position between activities A and B

-

resulting in schema S’. Since the execution history of I can be produced on S’ as well the instance change
will be allowed (cf. Figure 8b). Note that we have to deactivate activity B and activate activity C in this
context before proceeding with the flow of control. Similar considerations hold for the instance from
Figure 8a when moving activity C to a position parallel to activity B resulting in process schema S’’.
Again this change is valid since the execution history of I can be produced on S’’ as well (cf. Figure 8c).

A B C D
 C

D A B
 A C B D

a) b) c)d d d

I on S (with history [start (A), end(A)]) I on S’

I on S’’

AND-Split AN D-Join
Figure 8: Process instance I and two possible changes (movement of activity C)

Note that the described compliance criterion is still too restrictive to serve as general correctness
principle. Concerning changes of a loop structure, for example, it might needlessly exclude instances
from migration, particularly if the loop is its nth run (n>1) and previous iterations do not comply with the
new schema version. We refer to (Rinderle et al., 2004b) for relaxations provided in this context.

Generally, it would be no good idea to guarantee compliance and to determine follow-up markings of
compliant instances by accessing the whole execution history and by trying to replay it on the modified
schema. This would cause a performance penalty, particularly if a large number of instances were running
on the schema to be modified (see below). ADEPT2 therefore utilizes the semantics of the applied change
operations as well as information on the change context to efficiently check for compliance and to adapt
state markings of compliant instances when migrating them to the new schema version (Rinderle et al.,
2004b). For example, an activity in state COMPLETED or RUNNING must be not deleted from a process
instance. Or when adding a new activity to a process instance or moving an existing one, the
corresponding execution history must not contain any entry related to successor activities of the added or
shifted activity. This would be the case, for example, if the successor nodes had marking
NOT_ACTIVATED or ACTIVATED. Obviously, this does not hold for the scenario depicted in Figure 7.

In summary, the ADEPT2 change framework is based on a well-defined correctness criterion, which is
independent of the ADEPT2 process meta model and which is based on an adapted notion of trace
equivalence (Rinderle et al., 2004a). This compliance criterion considers control as well as data flow
changes, ensures correctness of instances after migration, works correctly in connection with loop backs,
and does not needlessly exclude instances from migrations. To enable efficient compliance checks,
precise and easy to implement compliance conditions have been defined for each change operation.
ADEPT2 automatically adapts the states of compliant instances when migrating them to an updated
schema. Finally, we are currently working on the relaxation of the described compliance criterion in order
to increase the number of process instances that can be dynamically and automatically migrated to a new
process schema version (Rinderle-Ma, Reichert, & Weber, 2008a).

Scenarios for Dynamic Process Changes in ADEPT2

After having introduced the basic pillars of the ADEPT2 change framework we now sketch how ADEPT2
supports dynamic process changes at different levels.

-

Examinations

Wallace, Edgar

Smith, Karl

Miller, Anne

Jones, Isabelle

Exceptional case –
we need an additional

lab test !Examinations

Wallace, EdgarWallace, Edgar

Smith, KarlSmith, Karl

Miller, AnneMiller, Anne

Jones, IsabelleJones, Isabelle

Exceptional case –
we need an additional

lab test !

Examinations

Wallace, Edgar

Smith, Karl

Miller, Anne

Jones, Isabelle

Exception

Examinations

Wallace, EdgarWallace, Edgar

Smith, KarlSmith, Karl

Miller, AnneMiller, Anne

Jones, IsabelleJones, Isabelle

Exception

a) An exception occurs b) User presses the "exception button"

Examinations

Wallace, Edgar

Smith, Karl

Miller, Anne

Jones, Isabelle

Exception
Insert task?
Delete task?
Shift task?

Examinations

Wallace, EdgarWallace, Edgar

Smith, KarlSmith, Karl

Miller, AnneMiller, Anne

Jones, IsabelleJones, Isabelle

Exception
Insert task?
Delete task?
Shift task?

Select Activity
Schedule counsel examination

Lab Test
Prepare patient for operation

Inform patient

Wash patient

Schedule examination date

.........

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

Select Activity
Schedule counsel examination

Lab Test
Prepare patient for operation

Inform patient

Wash patient

Schedule examination date

.........

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

c) User selects type of the ad-hoc change d) User selects step to be inserted

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

End

StartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

Start immediately,, results are
needed before explanation of

operation risks

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

EndEnd

StartStartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

Start immediately,, results are
needed before explanation of

operation risks

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

End

StartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPT
Checking if insertion

of step is possible

- Please wait -

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

End

Start

EndEnd

StartStartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPT
Checking if insertion

of step is possible

- Please wait -

ADEPT
Checking if insertion

of step is possible

- Please wait -

e) User specifies where to insert the step f) System checks validity of the change

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

End

StartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPT
Insertion is possible!

Great !!

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

End

Start

EndEnd

StartStartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPT
Insertion is possible!

ADEPT
Insertion is possible!

Great !!

Lab Test

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle
Explanation

Operation Risks

X-Ray

Check
Anesthesiology

Examination

OK, now let us
continue with the

examination !

Lab TestLab Test

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle
Explanation

Operation Risks

X-Ray

Check
Anesthesiology

Examination

OK, now let us
continue with the

examination !

g) Change can be applied h) User continues work

Figure 9: Ad-hoc change in ADEPT2 (user view)

Ad-hoc Changes of Single Process Instances

Figure 9 a – h illustrate how the interaction between the ADEPT2 system and the end user looks like
when performing an ad-hoc change. In this example, we assume that during the execution of a particular
process instance (e.g., the treatment of a certain patient under risk) an additional lab test becomes
necessary. Assume that this medical test has not been foreseen at buildtime (cf. Figure 9a). As a
consequence, this particular process instance will have to be individually adapted if the change request is
approved by the system. After the user has pressed the "exception button" (cf. Figure 9b), he can specify
the type of the intended ad-hoc change (cf. Figure 9c). If an insert operation shall be applied, for example,

ADEPT2:
Insertion is possible

ADEPT2
Checking whether task

insertion is possible
-Please wait-

-

the system will display the tasks that can be added in the given context and for which the user has
respective authorization (cf. Figure 9d). As aforementioned, these tasks can be based on simple or
complex application components (e.g., write letter or send email), or even be complete processes.

Generally, authorized users can retrieve the task to be dynamically added to a particular process
instance from the ADEPT2 activity repository. This repository organizes the tasks in different categories,
provides query facilities to retrieve them, and maintains the information necessary to plug the tasks into
an instance schema (e.g., interface specification and task attributes). We restrict access to exactly those
tasks that can be added in the given context; i.e., selectable tasks depend on the profile of the current user,
the process type, the process instance, etc. For details we refer to (Weber et al.; 2005a). Finally, ADEPT2
also allows for the reuse of ad-hoc changes previously applied in a similar problem context. Basic to this
reusability are case-based reasoning techniques (Weber, Reichert, Wild, & Rinderle-Ma, 2008c).

Following this task selection procedure, the user simply has to state after which activities in the
process the execution of the newly added activity shall be started and before which activities it shall be
finished (cf. Figure 9e). Finally, the system checks whether the desired structural adaptation is valid in the
given state of the instance (cf. Figure 9f and Figure 9g). In this context, the same checks are performed as
during buildtime (e.g., to ensure for the absence of deadlocks). In addition, the current process instance
state is taken into account when modifying the instance.

As already discussed, such adaptations can be specified at a high level of abstraction (e.g. "Insert Step
X between activity set A1 and activity set A2"), which eases change definition significantly. All change
operations are guarded by pre-conditions which are either automatically checked by the system when the
operation is invoked or which are used to hide non-allowed changes from users. Post-conditions
guarantee that the resulting process instance is correct again. Furthermore, all change operations and
change patterns respectively are made available via the ADEPT2 API (application programming
interface) as well. The same applies for the querying interface of the ADEPT2 repository. This allows for
the implementation of sophisticated end user clients or even automated agents (Müller et al., 2004).

To enable change traceability ADEPT2 stores process instance changes in change logs (Rinderle et al.,
2006b, 2007b). Together with execution logs, which capture enactment information of process instances,
the structure and state of a particular process instance can be reconstructed at any time. Both change and
execution log are also valuable sources for process learning and process optimization (Günther et al.,
2008; Li et al., 2008b).

By performing the described ad-hoc deviation inside the PAIS the added task becomes an integral part

of the respective process instance. This way full system support becomes possible relieving the user from
handling the exception; i.e., task execution can be fully coordinated by the PAIS, the task can be
automatically assigned to user worklists, its status can be monitored by the PAIS, and its results can be
analyzed and evaluated in the context of the respective process instance. By contrast, if the exception had
been handled manually, i.e. outside the PAIS, it would be the intellectual responsibility of the end user to
accomplish task execution, monitoring and analysis, and to relate the task to the respective process in-
stance (e.g., by attaching a “post-it” to his screen). As we know from healthcare the latter approach unne-
cessarily burdens users resulting in organizational overload and omissive errors (Lenz & Reichert, 2007).

Process Schema Evolution

Though the support of ad-hoc modifications is very important, it is not yet sufficient. As motivated, for
long-running processes it is often required to adapt the process schema (from which new instances can be
created afterwards) due to organizational changes. Then process instances currently running on this

-

process schema can be affected by the change as well. If processes are of short duration only, already
running instances can be usually finished according to the old schema version. However, this strategy will
not be applicable for long running processes. Then the old process schema version may no longer be
applicable, e.g., when legal regulations have changed or when the old process reveals severe problems.

One solution would be to individually modify each of the running process instances by applying
corresponding ad-hoc changes (as described above). However, this would be too inefficient and error-
prone if a multitude of running process instances had been involved. Note that the number of active
process instances can range from dozens up to thousands (Bauer, Reichert, & Dadam, 2003); i.e.,
compliance checking and change propagation might become necessary for a large number of instances.

An adaptive process management system must be able to support correct changes of a process schema
and their propagation to already running process instances if desired. In other words, if a process schema
is changed and thus a new version of this schema is created, process instances should be allowed to
migrate to the new schema version (i.e., to be transferred and re-linked to the new process schema
version). In this context, it is of particular importance that ad-hoc changes of single process instances and
instance migrations do not exclude each other since both kinds of changes are needed for the support of
long-running processes (Rinderle, Reichert, & Dadam, 2004c + 2004d).

The ADEPT2 technology implements the combined handling of both kinds of changes. Process
instances which have been individually modified can be also migrated to a changed process schema if this
does not cause inconsistencies or errors in the following. All correctness checks (on the schema and the
state of the instances) needed and all adaptations to be accomplished when migrating the instances to the
new process schema version are performed by ADEPT2. The implementation is based on the change
framework and the formal foundations described before. ADEPT2 can precisely state under which
conditions a process instance can be migrated to the new process schema version. This allows for
checking the compliance of a collection of process instances with the changed schema version in an
efficient and effective manner. Finally, concurrent and conflicting changes at the process type and the
process instance level are managed in a reliable and consistent manner as well.

Figure 10 a – c illustrate how such a process schema evolution is conducted from the user’s point of
view in ADEPT2. The process designer loads the process schema from the process template repository,
adapts it (using the ADEPT2 process editor and the change patterns supported by it), and creates a new
schema version (cf. Figure 10a). Then the system checks whether the running process instances can be
correctly migrated to the new process schema version (cf. Figure 10 b+c). These checks are based on state
conditions and structural comparisons (in order to ensure compliance and soundness respectively).
Furthermore, the system calculates which adaptations become necessary to perform the migration at the
process instance level. The ADEPT2 system analyzes all running instances of the old schema and creates
a list of instances which can be migrated as well as a list of instances for which this is not possible
(together with a report which explains the different judgments). When pressing the "migration button”
ADEPT2 automatically conducts the migration for all selected process instances (see Figure 10d).

In ADEPT2, the on-the-fly migration of a collection of process instances to a modified process schema
does not violate correctness and consistency properties of these instances. At the system level this is
ensured based on the correctness principle introduced in the previous section. As example consider Figure
11 where a new schema version S’ is created from schema S on which three instances are running. In-
stance I1 can be migrated to the new process schema version. By contrast, instances I2 and I3 cannot
migrate. I3 has progressed too far and is therefore not compliant with the updated schema. Though there is
no state conflict for I2 this instance can also not migrate to S’. I2 was individually modified by a previous
ad-hoc change conflicting with the depicted schema change at the type level. More precisely, when
propagating the type change to I2 a deadlock-causing cycle would occur. The ADEPT2 change

-

framework provides efficient means to detect such conflicts. Basic to this are sophisticated conflict tests
(see Rinderle, Reichert, & Dadam, 2004d). In summary, we restrict propagation of a type change to those
instances for which the change does not conflict with instance state or previous ad-hoc changes.

Figure 11: Process schema evolution in ADEPT2 (system perspective)

Figure 10: Process schema evolution in ADEPT2 (user perspective)

-

Full Process Lifecycle Support Through Adaptive Processes

As shown, adaptive process management technology like ADEPT2 extends traditional PAISs with the
ability to deal with dynamic structural changes at different process levels. This enables full life cycle
support as depicted in Figure 12 (Weber, Reichert, Rinderle, & Wild, 2005b).

At build-time an initial representation of a process is created by explicitly modeling its template from
scratch (based on analysis results), by cloning an existing process template and adapting it, or by
discovering a process model through the mining of execution logs (1). The first two options have been
described earlier in this chapter; the latter one requires support by a sophisticated process mining tool like
ProM (van Dongen, de Medeiros, Verbeek, Weijters, & van der Aalst, 2005).

At run-time new process instances can be derived from the predefined process template (2). In general,
an instance is enacted according to the process template it was derived from. While automated activities
are executed without user interaction, non-automated activities are assigned to the worklists of users to be
worked on (3). The latter is based on actor assignment rules associated with the non-automated activity.

If exceptional situations occur during run-time, process participants may deviate from the predefined
schema (4). ADEPT2 balances well between flexibility and security in this context; i.e., process changes
are restricted to authorized users, but without nullifying the advantages of a flexible system by handling
authorizations in a too rigid way. In (Weber, Reichert, Wild, & Rinderle, 2005a) we discuss the
requirements relevant in this context and propose a comprehensive access control (AC) model with
special focus on adaptive PAISs. We support both the definition of user dependent and process type
dependent access rights, and allow for the specification of access rights for individual change patterns. If
desired, access rights can be specified at an abstract (i.e., coarse-grained) level (e.g., for a whole process
category or process template). Fine-grained specification of access rights (e.g., concerning the deletion of
a particular process activity) is supported as well, allowing context-based assistance of users when
performing a change. Generally, the more detailed the respective specifications, the more costly their
definition and maintenance becomes. Altogether our AC approach allows for the compact definition of
user dependent access rights restricting process changes to authorized users only. Finally, the definition of
process type dependent access rights is supported to only allow for those change commands which are
applicable within a particular process context. For further details we refer to (Weber et al., 2005a).

While execution logs record information about the start and completion of activities as well as their
ordering, process changes are recorded in change logs (5). The analysis of respective logs by a process
engineer and by business process intelligence tools, respectively, allows to discover malfunctions or
bottlenecks (Li, Reichert, & Wombacher, 2008c). In (Li, Reichert, & Wombacher, 2008b) we additionally
provide an approach which fosters learning from past ad-hoc changes; i.e., an approach which allows for
mining instance variants. As result we obtain a generic process model for which the average distance
between this model and the respective instance variants becomes minimal. By adopting this generic
model as new template in the PAIS, need for future ad-hoc adaptation decreases; i.e., mining execution
and change logs can result in an evolution of the process schema; i.e., an updated process schema version
(6). In addition, it becomes possible to provide recommendations to user about future process enactment
based on execution logs (e.g., Schonenberg, Weber, van Dongen, & van der Aalst, 2008).

If desired and possible, running process instance migrate to the new schema version and continue their
execution based on the new schema (7).

-

Figure 12: Process lifecycle management in ADEPT2 (see Weber et al., 2005b)

ARCHITECTURE OF THE ADEPT2 PROCESS MANAGEMENT SYSTEM

The design of the ADEPT2 system has been governed by a number of principles in order to realize a
sustainable and modular system architecture. The considered design principles refer to general
architectural aspects as well as to conceptual issues concerning the different system features. Our overall
goal was to enable ad-hoc flexibility and process schema evolution, together with other process support
features, in an integrated way, while ensuring robustness, correctness, extensibility, performance and
usability at the same time. This section summarizes major design principles and gives an overview of the
developed system architecture.

High-end process management technology like ADEPT2 has a complexity comparable to database
management systems. To master this complexity a proper and modular system architecture has been
chosen for ADEPT2 with clear separation of concerns and well-defined interfaces. This is fundamental to
enable exchangeability of implementations, to foster extensibility of the architecture, and to realize
autonomy and independency of the system components to a large extent. The overall architecture of
ADEPT2 is layered (cf. Figure 13). Thereby, components of lower layers hide as much complexity as
possible from upper layers. Basic components are combinable in a flexible way to realize higher-level
services like ad-hoc flexibility or process schema evolution. To foster this, ADEPT2 system components
are reusable in different context using powerful configuration facilities.

To make implementation and maintenance of the different system components as easy as possible,
each component is kept as simple as possible and only has access to the information needed for its proper
functioning. Furthermore, communication details are hidden from component developers and
independency from the used middleware components (e.g., database management systems) has been
realized. Two important design goals concern avoidance of code redundancies and system extensibility:

• Avoidance of code redundancies. One major design goal for the ADEPT2 system architecture was

to avoid code redundancies. For example, components for process modeling, process schema

-

evolution, and ad-hoc process changes are more or less based on the same set of change
operations. This suggests to implement these operations by one separate system component, and
to make this component configurable such that it can be reused in different context. Similar
considerations have been made for other ADEPT2 components (e.g., visualization, logging,
versioning, and access control). This design principle does not only reduce code redundancies,
but also results in better maintainability, decreased cost of change, and reduced error rates.

• Extensibility of system functions. Generally, it must be possible to add new components to the
overall architecture or to adapt existing ones. Ideally, such extensions or changes do not affect
other components; i.e., their implementations must be robust with respect to changes of other
components. As example assume that the set of supported change operations shall be extended
(e.g., to offer additional change patterns to users). This extension, however, must not affect the
components realizing process schema evolution or ad-hoc flexibility. In ADEPT2 we achieve
this by mapping high-level change operations internally to a stable set of low-level change
primitives (e.g., to add/delete nodes).

Figure 13 depicts the overall architecture of the ADEPT2 process management system, which features

a layered and service-oriented architecture. Each layer comprises different components offering services
to upper-layer components. The first layer is a thin abstraction on SQL, enabling a DBMS independent
implementation of persistency. The second layer is responsible for storing and locking different entities of
the process management system (e.g., process schemes and process instances). The third layer
encapsulates essential process support functions including process enactment and change management.
The topmost layer provides different buildtime and runtime tools to the user, including a process editor
and a monitoring component.

Persistence (DBMS)

LogManager

ProcessRepository ProcessManager DataManager

WorklistManager

OrgModelManager ResourceManagerActivityRepository

ExecutionManager RuntimeEnvironmentChangeOperations

ControlCenter

User interaction layer

Execution layer

Basic services layer

Low-level services layer

RT

RT

RT RT RT(BT) RT(BT)BT

BT/RT

BT/RT

BT

ProcessEditor OrgModelEditor Monitor Simulation/Test
BTBT BT RT

RT

Communication

Configuration &
Registry

Framework
Figure 13: Basic Architecture of ADEPT2 (BT: Buildtime; RT: Runtime)

Components of the ADEPT2 architecture are loosely coupled enabling the easy exchange of

component implementations. Furthermore, basic infrastructure services like storage management or the
techniques used for inter-component communication can be easily exchanged. Additional plug-in
interfaces are provided which allow for the extension of the core architecture, the data models, and the
user interface.

Implementation of the different components of the ADEPT2 architecture raised many challenges, e.g.,
with respect to storage representation of schema and instance data: Unchanged instances are stored in a
redundant-free manner by referencing their original schema and by capturing instance-specific data (e.g.,
activity states). As example consider instances I1, I3, I4, and I6 from Figure 14. For changed (”biased”)

-

instances, this approach is not applicable. One alternative would be to maintain a complete schema for
each biased instance, another to materialize instance-specific schemes on-the-fly. ADEPT2 follows a
hybrid approach: For each biased instance we maintain a minimal substitution block that captures all
changes applied to it so far. This block is then used to overlay parts of the original schema when
accessing the instance (I2 and I5 in our example from Figure 14).

Figure 14: Managing Template and Instance Objects in the ProcessManager (Logical View)

ADEPT2 provides sophisticated buildtime and runtime components to the different user groups. This

includes tools for modeling, verifying and testing process schemes, components for monitoring and
dynamically adapting process instances, and different worklist clients (incl. Web clients). Many
applications, however, require adapted user interfaces and functions to integrate process support features
the best possible way. On the one hand, the provided user components are configurable in a flexible way.
On the other hand, all functions (e.g., ad-hoc changes) offered by the process management system are
made available via programming interfaces (APIs) as well.

We have implemented the described architecture in a proof-of-concept prototype in order to
demonstrate major flexibility concepts and their interplay. Figure 15 shows a screen of the ADEPT2
process editor, which constitutes the main system component for modeling and adapting process schemes.

This editor allows to quickly compose new process templates out of pre-defined activity templates, to
guarantee schema correctness by construction and on-the-fly checks, and to integrate application
components (e.g., web services) in a plug-and-play like fashion. Another user component is the ADEPT2
Test Client. It provides a fully-fledged test environment for process execution and change. Unlike
common test tools, this client runs on a light-weight variant of the ADEPT2 process management system.
As such, various execution modes between pure simulation to production mode become possible.

SUMMARY AND OUTLOOK

The ADEPT2 technology meets major requirements claimed for next generation process management
technology. It provides advanced functionality to support process composition by plug & play of arbitrary
application components, it enables ad-hoc flexibility for process instances without losing control, and it
supports process schema evolution in a controlled and efficient manner. As opposed to many other PAISs
all these aspects work in interplay as well. For example, it is possible to propagate process schema

-

changes to individually modified process instances or to dynamically compose processes out of existing
application components. All in all such a complex system requires an adequate conceptual framework and
a proper system architecture. ADEPT2 considers both conceptual and architectural issues in the design of
a next generation process management system.

Challenges on which we are currently working include the following ones: dynamic changes of
distributed processes and process choreographies (Reichert & Bauer, 2007; Rinderle, Wombacher, &
Reichert, 2006c), data-driven modeling, coordination and adaptation of large process structures (Rinderle
& Reichert, 2006a; Müller, Reichert, & Herbst, 2007 + 2008), process configuration (Hallerbach, Bauer,
& Reichert, 2008; Thom, Reichert, Chiao, Iochpe, & Hess, 2008), process variants mining (Li et al.,
2008b), process visualization and monitoring (Bobrik et al., 2006, 2007), dynamic evolution of other
PAIS aspects (Rinderle & Reichert, 2005b and 2007; Ly, Rinderle, Dadam, & Reichert, 2005), and
evaluation models for (adaptive) PAISs (Mutschler, Reichert, & Rinderle, 2007; Mutschler & Reichert,
2008c). All these activities target at full process lifecycle support in process-aware information systems
(Weber, Reichert, Wild, & Rinderle-Ma, 2008c).

Figure 15: Screenshot of ADEPT2 Process Editor

REFERENCES

Adams, M., ter Hofstede, A., Edmond, D., & van der Aalst, W.M.P. (2006). A service-oriented imple-

mentation of dynamic flexibility in workflows. In Proceedings of the 14th Int'l Conf. on Cooperative
Information Systems (CoopIS'06), Montpellier, France, LNCS 4275, pp. 291-308.

Bassil, S., Benyoucef, M., Keller, R., Kropf, P. (2002): Addressing dynamism in e-negotiations by
workflow management systems. In Proceedings DEXA’02 Workshops, pp. 655-659.

Bassil, S., Keller, R., & Kropf, P. (2004). A workflow-oriented system architecture for the management
of container transportation. In Proceedings of the 2nd Int'l Conf. on Business Process Management
(BPM'04), Potsdam, Germany, LNCS 3080, pp. 116-131.

-

Bauer, T., Reichert, M., & Dadam, P. (2003). Intra-subnet load balancing in distributed workflow
management systems. Int'l Journal Cooperative Information Systems (IJCIS), 12(3), 295-323.

Bobrik, R., Bauer, T., & Reichert, M. (2006) Proviado – personalized and configurable visualizations of
business processes. In Proceedings 7th Int'l Conf. on Electronic Commerce and Web Technologies
(EC-WEB'06), Krakow, Poland, LNCS 4082, pp. 61-71.

Bobrik, R., Reichert, M, & Bauer, T. (2007). View-based process visualization. In Proceedings of the 5th
Int'l Conf. on Business Process Management (BPM'07), Brisbane, Austalia, LNCS 4714, pp. 88-95.

Casati, F., Ceri, S., Pernici, B., & Pozzi, G. (1998). Workflow evolution. Data and Knowledge
Engineering, 24(3), 211-238.

Dadam, P., Reichert, M., & Kuhn, K. (2000). Clinical workflows - the killer application for process-
oriented information systems? In Proceedings of the 4th Int’l Conf. on Business Information Systems
(BIS‘2000), Poznan, Poland, Springer, pp. 36-59.

Golani, M. & Gal, A. (2006). Optimizing exception handling in workflows using process restructuring. In
Proceedings of the 4th Int'l Conf. Business Process Management (BPM'06), Vienna, Austria, LNCS
4102, pp. 407-413.

Gschwind, T., Koehler, J., & Wong, J. (2008). Applying patterns during business process modeling. In
Proceedings of the 6th Int’l Conf. Business Process Management (BPM’08), Milan, Italy, LNCS 5240,
pp. 4-19.

Günther, C.W., Rinderle, S., Reichert, M., & van der Aalst, W.M.P. (2006). Change mining in adaptive
process management systems. In Proceedings of the 14th Int'l Conf. on Cooperative Information
Systems (CoopIS'06), Montpellier, France, LNCS 4275, pp. 309-326.

Günther, C.W., Rinderle-Ma, S., Reichert, M., van der Aalst, W.M.P., & Recker, J. (2008). Using process
mining to learn from process changes in evolutionary systems. Int'l Journal of Business Process
Integration and Management, 3(1), 61-78.

Hallerbach, A., Bauer, T., & Reichert, M. (2008). Managing process variants in the process lifecycle. In:
Proceedings of the 10th Int'l Conf. on Enterprise Information Systems (ICEIS'08), Barcelona, Spain,
pp. 154-161.

Karbe, B. & Ramsperger, N. (1991): Concepts and implementation of migrating office processes.
Wissensbasierte Systeme, pp. 136-147.

Khalaf, R., Keller, A., & Leymann, F. (2006). Business processes for web services: principles and
applications. IBM Systems Journal, 45(2), 425-446.

Lenz, R. & Reichert, M. (2007). IT support for healthcare processes – premises, challenges, perspectives.
Data and Knowledge Engineering, 61(1), 39-58.

Li, C., Reichert, M., & Wombacher, A. (2008a). On measuring process model similarity based on high-
level change operations. In Proceedings of the 27th Int’l Conf. on Conceptual Modeling (ER'08),
Barcelona, Spain. Springer, LNCS, 2008.

Li, C., Reichert, M., & Wombacher, A. (2008b). Discovering reference process models by mining process
variants. In Proceedings of the 6th Int'l Conference on Web Services (ICWS'08), Beijing, China. IEEE
Computer Society Press, 2008.

Li, C., Reichert, M., & Wombacher, A. (2008c). Mining based on learning from process change logs. In
Proceedings BPM’08 workshops – 4th Int’l Workshop on Business Process Intelligence (BPI'08),
Milan, Italy. LNBIP (to appear).

Ly, L.T., Rinderle, S., Dadam, P., & Reichert, M. (2005) Mining staff assignment rules from event-based
data. In Proceedings of the BPM'05 workshops, Nancy, France. Springer, LNCS 3812, pp. 177-190.

Ly, L.T., Göser, K., Rinderle-Ma, S., & Dadam, P. (2008) Compliance of semantic constraints – a re-
quirements analysis for process management systems. In Proceedings 1st Int'l Workshop on Gover-
nance, Risk and Compliance - Applications in Information Systems (GRCIS'08), Montpellier, France.

-

Ly, L.T., Rinderle, S., & Dadam, P. (2008) Integration and verification of semantic constraints in adaptive
process management systems. Data and Knowledge Engineering , 64(1), pp. 3-23.

Minor, M., Schmalen, D., Koldehoff, A., & Bergmann, R. (2007). Structural adaptation of workflows
supported by a suspension mechanism and by case-based reasoning. In Proceedings of the WETICE'07
workshops, IEEE Computer Press, pp. 370-375.

Müller, R., Greiner, U., & Rahm, E. (2004). AgentWork: A workflow system supporting rule-based
workflow adaptation. Data and Knowledge Engineering, 51 (2), 223-256.

Müller, D., Herbst, J., Hammori, M., & Reichert, M. (2006). IT support for release management processes
in the automotive industry. In Proceedings of the 4th Int'l Conf. on Business Process Management
(BPM'06), Vienna, Austria. LNCS 4102, pp. 368-377.

Müller, D., Reichert, M., & Herbst, J. (2007). Data-driven modeling and coordination of large process
structures. In Proceedings of the 15th Int'l Conf. on Cooperative Information Systems (CoopIS'07),
Vilamoura, Algarve, Portugal, LNCS 4803, pp. 131-149.

Müller, D., Reichert, M., & Herbst, J. (2008). A new paradigm for the enactment and dynamic adaptation
of data-driven process structures. In Proceedings of the 20th Int'l Conf. on Advanced Information
Systems Engineering (CAiSE'08), Montpellier, France, LNCS 5074, pp. 48-63.

Mutschler, B., Bumiller, J., & Reichert, M. (2006). Why process-orientation is scarce: an empirical study
of process-oriented information systems in the automotive industry. In Proceedings of the 10th Int’l
Conf. on Enterprise Computing (EDOC '06), Hong Kong, IEEE Computer Press, pp. 433-440.

Mutschler, B., Reichert, M., & Rinderle, S. (2007). Analyzing the dynamic cost factors of process-aware
information systems: a model-based approach. In Proceedings of the 19th Int'l Conf. on Advanced
Information Systems Engineering (CAiSE'07), Trondheim, Norway. LNCS 4495, pp. 589-603.

Mutschler, B., Weber, B., & Reichert, M. (2008a). Workflow management versus case handling: results
from a controlled software experiment. In Proceedings of the 23rd Annual ACM Symposium on Applied
Computing (SAC'08), Fortaleza, Brazil, pp. 82-89.

Mutschler, B., Reichert, M., & Bumiller, J. (2008b): Unleashing the effectiveness of process-oriented
information systems: problem analysis, critical success factors and implications, IEEE Transactions on
Systems, Man, and Cybernetics, 38(3), 280-291.

Mutschler, B. & Reichert, M. (2008c). On modeling and analyzing cost factors in information systems
engineering. In Proceedings of the 20th Int'l Conf. on Advanced Information Systems Engineering
(CAiSE'08), Montpellier, France. LNCS 5074, pp. 510-524.

Pesic, M., Schonenberg, M., Sidorova, N., & van der Aalst, W.M.P. (2007). Constraint-based workflow
models: change made easy. In Proceedings of the 15th Int'l Conf. on Cooperative Information Systems
(CoopIS'07), Vilamoura, Algarve, Portugal, LNCS 4803, pp. 77-94.

Reichert, M. & Dadam, P. (1997). A framework for dynamic changes in workflow management systems.
In Proc. 8th Int’l Workshop on Database and Expert Systems Applications, Toulouse, pp. 42–48.

Reichert, M. & Dadam, P. (1998a). ADEPTflex – supporting dynamic changes of workflows without
losing control. Journal of Intelligent Information Systems, 10(2), 93-129.

Reichert, M., Hensinger, C., & Dadam, P. (1998b). Supporting adaptive workflows in advanced
application environments. In Proceedings of the EDBT Workshop on Workflow Management Systems
(in conjunction with EDBT'98 conference), Valencia, Spain, pp. 100-109.

Reichert, M., Bauer, T., & Dadam, P. (1999): Enterprise-wide and cross-enterprise workflow-manage-
ment: challenges and research issues for adaptive workflows. In Proceedings of the Informatik’99
Workshop on Enterprise-wide and Cross-enterprise Workflow Management, CEUR Workshop
Proceedings, Vol. 24, pp. 56-64.

Reichert, M. (2000): Dynamische Ablaufänderungen in Workflow Management Systemen. Dissertation,
Universität Ulm, Fakultät für Informatik, Juli 2000.

-

Reichert, M., Dadam, P., & Bauer, T. (2003a). Dealing with forward and backward jumps in workflow
management systems. Int'l Journal Software and Systems Modeling, 2(1), 37-58.

Reichert, M., Rinderle, S., & Dadam, P. (2003b). On the common support of workflow type and instance
changes under correctness constraints. In Proc. 11th Int'l Conf. Cooperative Information Systems
(CooplS '03), Catania, Italy, LNCS 2888, pp. 407-425.

Reichert, M., Rinderle, S., Kreher, U., & Dadam, P. (2005). Adaptive process management with
ADEPT2. In Proceedings of the 21st Int'l Conf. on Data Engineering (ICDE'05), Tokyo.

Reichert, M. & Rinderle, S. (2006). On design principles for realizing adaptive service flows with BPEL.
In Proceedings EMISA'06, Hamburg, Lecture Notes in Informatics (LNI) P-95, pp. 133-146.

Reichert, M. & Bauer, T. (2007): Supporting ad-hoc changes in distributed workflow management
systems. In Proceedings of the 15th Int'l Conf. on Cooperative Information Systems (CoopIS'07),
Vilamoura, Algarve, Portugal, LNCS 4803, pp. 150-168.

Reijers, H. & van der Aalst, W.M.P. (2005). The effectiveness of workflow management systems:
predictions and lessons learned. Int’l Journal of Information Management, 5, 457–471.

Rinderle, S., Reichert, M., & Dadam, P. (2003). Evaluation of correctness criteria for dynamic workflow
changes. In Proceedings of the 1st Int'l Conf. on Business Process Management (BPM '03), Eindhoven,
Netherlands. Springer, LNCS 2678, pp. 41-57.

Rinderle, S., Reichert, M., & Dadam, P. (2004a). Correctness criteria for dynamic changes in workflow
systems - a survey. Data and Knowledge Engineering, 50(1), 9-34.

Rinderle, S., Reichert, M., & Dadam, P. (2004b): Flexible support of team processes by adaptive
workflow systems. Distributed and Parallel Databases, 16(1), 91-116.

Rinderle, S., Reichert, M., Dadam, P. (2004c): Disjoint and overlapping process changes - challenges,
solutions, applications. In Proceedings of the 12th Int'l Conf. Cooperative Information Systems
(CoopIS'04), Agia Napa, Cyprus, LNCS 3290, pp. 101-120.

Rinderle, S., Reichert, M., & Dadam, P. (2004d). On dealing with structural conflicts between process
type and instance changes. In Proceedings of the 2nd Int'l Conf. Business Process Management
(BPM'04), Potsdam, Germany, LNCS 3080, pp.274-289.

Rinderle, S., Weber, B., Reichert, M., & Wild, W. (2005a). Integrating process learning and process
evolution - a semantics based approach. In Proceedings of the 3rd Int'l Conf. Business Process
Management (BPM'05), Nancy, France, LNCS 3649, pp. 252-267.

Rinderle, S. & Reichert, M. (2005b). On the controlled evolution of access rules in cooperative
information systems. In Proceedings of the 13th Int'l Conf. on Cooperative Information Systems
(CoopIS'05), Agia Napa, Cyprus. Springer, LNCS 3760, pp. 238-255.

Rinderle, S. & Reichert, M. (2006a). Data-driven process control and exception handling in process
management systems. In Proceedings of the 18th Int'l Conf. on Advanced Information Systems
Engineering (CAiSE'06), Luxembourg, LNCS 4001, pp. 273–287.

Rinderle, S., Reichert, M., Jurisch, M., & Kreher, U. (2006b). On representing, purging and utilizing
change logs in process management systems. In Proceedings of the 4th Int'l Conf. Business Process
Management (BPM'06), Vienna, Austria, LNCS 4102, pp. 241-256.

Rinderle, S., Wombacher, A., & Reichert, M. (2006c). Evolution of process choreographies in DYCHOR.
In Proceedings of the 14th Int'l Conf. on Cooperative Information Systems (CoopIS'06), Montpellier,
France, LNCS 4275, pp. 273-290.

Rinderle, S. & Reichert, M. (2007a). A formal framework for adaptive access control models. Journal on
Data Semantics, IX, LNCS 4601, pp. 82-112.

Rinderle, S., Jurisch, M., Reichert, M. (2007b). On deriving net change information from change logs –
the DELTALAYER algorithm. In Proceedings of the 12th Conf. on Database Systems in Business,
Technology and Web (BTW'07), Aachen, Lecture Notes in Informatics, LNI-103, pp. 364-381.

-

Rinderle-Ma, S., Reichert, M., & Weber, B. (2008a). Relaxed compliance notions in adaptive process
management systems. In Proceedings of the 27th Int'l Conference on Conceptual Modeling (ER'08),
Barcelona, Spain. Springer, LNCS.

Rinderle-Ma, S., Reichert, M., & Weber, B. (2008b). On the formal semantics of change patterns in
process-aware information systems. In Proceedings of the 27th Int'l Conference on Conceptual
Modeling (ER'08), Barcelona, Spain. Springer, LNCS.

Rinderle-Ma, S. & Reichert, M. (2008c) Managing the lfe cycle of access rules in CEOSIS. In
Proceedings of the 12th IEEE Int’l Enterprise Computing Conference (EDOC'08), Munich, Germany.

Sadiq, S., Sadiq, W., Orlowska, M. (2001). Pockets of flexibility in workflow specifications. In
Proceedings of the 20th Int'l Conference on Conceptual Modeling (ER'01), Yokohama, Japan, LNCS
2224, pp. 513-526.

Schonenberg, H., Weber, B., van Dongen, B., & van der Aalst, W.M.P. (2008). Supporting flexible
processes by recommendations based on history. In Proceedings of the 6th Int’l Conf. on Business
Process Management (BPM’08). Milan, Italy, LNCS 5240, pp. 51-66.

Thom, L., Reichert, M., Chiao, C., Iochpe, C., & Hess, G. (2008). Inventing less, reusing more and
adding intelligence to business process modeling. In Proceedings of the 19th Int’l Conference on
Database and Expert Systems Applications (DEXA '08), Turin, Italy. LNCS 5181, pp. 837-850.

Van der Aalst, W.M.P., van Hee, K.M. (2002): Workflow management: models, methods, and systems
MIT Press.

Van der Aalst, W.M.P., ter Hofstede, A., Kiepuszewski, B., & Barros, A. (2003). Workflow patterns,
Distributed and Parallel Databases, 14 (1), 5–51.

Van der Aalst, W.M.P., Weske, M., & Grünbauer, D. (2005). Case handling: a new paradigm for business
process support. Data and Knowledge Engineering, 53 (2), 129-162.

Van Dongen, B., de Medeiros A., Verbeek, H., Weijters, A., & van der Aalst, W.M.P. (2005). The ProM
framework: a new era in process mining tool support. In Proceedings 26th Int’l Conf. on the
Applications and Theory of Petri Nets (ICATPN’05), Miami, USA, LNCS 3536, pp. 444-454.

Weber, B., Wild, W., & Breu, B. (2004). CBRFlow. enabling adaptive workflow management through
conversational case-based reasoning. In Proceedings of the ECCBR'04 conference. Madrid, Spain,
LNCS 3155, pp. 434-448.

Weber, B., Reichert, M. Wild, W., & Rinderle, S. (2005a). Balancing flexibility and security in adaptive
process management systems. In Proceedings of the 13th Int'l Conf. on Cooperative Information
Systems (CoopIS'05), Agia Napa, Cyprus, LNCS 3760, pp. 59-76.

Weber, B., Reichert, M., Rinderle, S., & Wild, W. (2005b). Towards a framework for the agile mining of
business processes. In Proceedings of the BPM'05 Workshops, Nancy, France, LNCS 3812, pp. 191-
202.

Weber, B., Rinderle, S., Wild, W., & Reichert, M. (2005c) CCBR–driven business process evolution. In
Proceedings of the 6th Int'l Conf. on Case-Based Reasoning (ICCBR'05), Chicago. LNCS 3620,
pp. 610-624.

Weber, B., Reichert, M., & Wild, W. (2006) Case-base maintenance for CCBR-based process evolution.
In Proceedings of the 8th European Conf. on Case-Based Reasoning (ECCBR'06), Ölüdeniz/Fethiye,
Turkey. LNCS 4106, pp. 106-120.

Weber, B., Rinderle, S., & Reichert, M. (2007). Change patterns and change support features in process-
aware information systems. In Proceedings of the 19th Int'l Conf. on Advanced Information Systems
Engineering (CAiSE'07), Trondheim, Norway, LNCS 4495, pp. 574-588.

Weber, B. & Reichert, M. (2008a). Refactoring process models in large process repositories. In
Proceedings of the 20th Int'l Conf. on Advanced Information Systems Engineering (CAiSE'08),
Montpellier, France, LNCS 5074, pp. 124-139.

-

Weber, B., Reichert, M., & Rinderle-Ma, S. (2008b). Change patterns and change support features –
enhancing flexibility in process-aware information systems. Data and Knowledge Engineering , 66(3),
438-466.

Weber, B., Reichert, M., Wild, W., & Rinderle-Ma, S. (2008c). Providing integrated life cycle support in
process-aware information systems. Int'l Journal of Cooperative Information Systems (IJCIS), World
Scientific Publ. (to appear)

Weske, M. (2000). Workflow management systems: formal foundation, conceptual design, imple-
mentation aspects., University of Münster, Germany, Habilitation Thesis, 2000.

Weske, M. (2007). Business Process Management. Berlin:Springer.

