

Flexibility for Distributed Workflows*

Manfred Reichert1,2, Thomas Bauer3, Peter Dadam1

1 Institute of Databases and Information Systems, University of Ulm, Germany
2 Information Systems Group, University of Twente, The Netherlands

3 Daimler AG, Group Research & Adv. Engineering, GR/EPD, Germany

Abstract
This chapter shows how flexibility can be realized for distributed workflows.
The capability to dynamically adapt workflow instances during runtime (e.g.,
to add, delete or move activities) constitutes a fundamental challenge for any
workflow management system (WfMS). While there has been significant
research on ad-hoc workflow changes and on related correctness issues, there
exists only little work on how to provide respective runtime flexibility in an
enterprise-wide context as well. Here, scalability at the presence of high loads
constitutes an essential requirement, often necessitating distributed (i.e.,
piecewise) control of a workflow instance by different workflow servers,
which should be as independent from each other as possible. This chapter
presents advanced concepts and techniques for enabling ad-hoc workflow
changes in a distributed WfMS as well. Our focus is on minimizing the com-
munication costs among workflow servers, while ensuring a correct execution
behavior as well as correctness of ad-hoc workflow changes at any time.

INTRODUCTION

For a variety of reasons enterprises are developing a growing interest in aligning their
information systems such that they become process-aware (Lenz, 2007; Müller, 2006;
Mutschler 2006; Mutschler, 2008a). Such process-aware information systems (PAISs)
offer the right tasks at the right point in time to the right actors along with the
information, resources and application services needed to perform these tasks
(Dadam, 2000). Business process management technology offers promising
perspectives to achieve this goal (Weske, 2007). Examples include workflow
management systems and case handling tools (Günther, 2008 a; Mutschler, 2008b).

A workflow management system (WfMS) enables computer-supported business
processes (i.e., workflows) to be executed in a distributed system environment (Bauer,
1999; Muth, 1998; Shegalov, 2001). Usually, a WfMS provides powerful tools for
implementing enterprise-wide, process-aware information systems (PAISs) (Dadam,

* Corresponding author: Prof. Dr. Manfred Reichert, University of Ulm, Faculty of Engineering and
Computer Science, Institute of Databases and Information Systems, Oberer Eselsberg, 89069 Ulm,
GERMANY; E-Mail: manfred.reichert@uni-ulm.de

1999). As opposed to data- or function-centered information systems, a WfMS
separates the specification of the process logic (i.e., the control and data flow between
the process activities) from application coding (Dadam, 2000; Weber, 2007); i.e.,
process logic can be described explicitly in terms of a workflow template providing
the schema for workflow enactment (workflow schema for short). The different
activities, in turn, are implemented as loosely coupled application services that can
expect that their input parameters are provided upon invocation by the WfMS and
which only have to produce correct values for their output parameters. Usually, the
core of the workflow layer is built by the WfMS which provides generic functions for
modeling, configuring, executing, and monitoring workflows.

This separation of concerns increases maintainability and reduces cost of change
(Mutschler, 2008a; Weber, 2008a); i.e., changes to one layer often can be performed
without affecting other layers; e.g., changing the execution order of workflow (WF)
activities or adding new activities to a WF schema can, to a large degree, be
accomplished without touching any of the associated application services (Dadam et
al., 2000). Furthermore, a WF schema can be checked for the absence of flaws already
at buildtime; i.e., deadlocks, livelocks and faulty data flow specifications (van der
Aalst, 2000; Reichert, 1998a) can be excluded in an early stage of the process
lifecycle (Weber, 2009; Weber, 2006a). At run-time, new WF instances can be
created and executed according to the underlying WF schema. When an activity
becomes activated, a respective work item is assigned to the worklists of authorized
users (which are determined based on the actor assignment associated with the
corresponding activity). One example of such a WfMS constitutes the ADEPT system
we have developed during the last years (Reichert, 2003c).

Problem Statement

A centralized WfMS shows deficits when being confronted with high loads or when
supporting cross-departmental processes (Reichert, 1999; Dadam, 2000). In the
ADEPT project, we have considered this by realizing a distributed WfMS made up of
several WF servers (Bauer, 1997; Bauer, 1999; Bauer, 2003; Montagut, 2007). In this
distributed variant of the ADEPT system, we allow WF designers to subdivide a WF
schema into several partitions which are then controlled ”piecewise” by different WF
servers in order to obtain favorable communication behavior. Note that similar
approaches have been discussed in literature (Alonso, 1995; Casati, 1996; Cichocki,
2000; Dogac, 1997; Gronemann, 1999; Guth, 1998; Kochut, 2003; Muth, 1998;
Schuster, 1999; Sheth, 1997; Weske, 1999).

Comparable to centralized WfMS, also a distributed WfMS needs to be flexible to
cover the broad spectrum of processes we can find in today’s organizations (Bassil,
2004; Kochut, 2003; Lenz, 2007; Minor, 2007; Müller, 2006; Reichert, 1998 b). Thus,
at the WF instance level it should be possible to flexibly deviate from the predefined
WF schema during runtime. As reported in literature (van der Aalst, 2001a; Pesic,
2007, Reichert, 1998a; Mourào, 2007; Weber 2006a) such ad-hoc workflow changes
become necessary to deal with exceptional and changing situations. Within the
ADEPT project we developed an advanced technology for the support of such ad-hoc
changes (Reichert, 1998a; Reichert, 2003a; Reichert, 2003b). In particular, ADEPT
allows authorized users (or agents) to dynamically modify running WF instances, but
without causing run-time errors or inconsistencies in the sequel (Rinderle, 2003).

In our previous work we considered distributed execution of a partitioned WF schema
and ad-hoc WF changes as separate issues (e.g., Reichert, 1998; Bauer, 2003). In fact,
we did not systematically examine how these two fundamental aspects of a large-scale
WfMS interact with each other. Obviously, integrated support of respective features is
by far not trivial as their goals are different. The support of ad-hoc WF changes and
the correct processing of the WF instances afterwards prescribe a logically central
control instance (i.e., a logically central WF server) to ensure correctness (Reichert,
1998a). This, however, contradicts to the accomplishments achieved by distributed
WF execution (Bauer, 1997; Bauer, 2000). Note that one central WF server always
decreases WfMS availability and increases communication costs between WF clients
and WF server (Kamath, 1996). One reason for this lies in the fact that a central
control engine must be informed of all changes concerning the state of a WF instance.
In particular, information on instance states is needed to decide whether an intended
ad-hoc change is applicable in a given context; i.e., whether the considered WF
instance is compliant with the resulting WF schema (Reichert, 1998a; Rinderle,
2004a; Rinderle-Ma, 2008a).

Contribution

This chapter provides an extended version of the work we presented in (Reichert,
2007). It describes an approach which enables ad-hoc changes of single WF instances
in a distributed WfMS; i.e., a WfMS with WF schema partitioning and distributed WF
control. As a prerequisite, distributed WF control must not affect applicability of ad-
hoc changes; i.e., each change, which is allowed for the central case, should be
applicable in the context of distributed WF execution as well. The support of such ad-
hoc changes, in turn, must not impact distributed WF control. In particular, distributed
WF execution should not necessitate a great deal of additional communication effort
due to the introduction of WF instance changes. Finally, ad-hoc changes should be
correctly performed and as efficiently as possible.

To deal with these requirements it is crucial to identify the WF servers of the
distributed WfMS to be involved in the synchronization of an ad-hoc change. Most
likely we have to consider those WF servers currently executing the respective WF in-
stance. These active servers need to know the schema and state of a changed WF in-
stance in order to correctly control its execution afterwards. We need an efficient ap-
proach for determining the set of active servers controlling a particular WF instance.
This must be possible without a substantial expense of communication efforts. In
addition, we have to decide whether, when and how a changed WF instance schema
has to be transmitted to other WF servers. As essential requirement the amount of
communication should not exceed acceptable limits.

This chapter is structured as follows: We first give background information needed
for the further understanding and we introduce basic issues related to distributed WF
execution as accomplished in the ADEPT approach. Following this, we first describe
how ad-hoc instance changes can be performed in the distributed variant of the
ADEPT WfMS. Then we show how individually modified WF instances can be
efficiently executed in such distributed WfMS. Finally, we describe our proof-of-
concept prototype and discuss related work. The chapter concludes with a summary
and outlook.

BACKGROUNDS

We first show how workflows can be modeled in the ADEPT WfMS. Following this
we discuss fundamental issues related to ad-hoc changes of single WF instances.

Workflow Modeling and Execution in ADEPT

When implementing a workflow in a PAIS its control and data flow has to be
explicitly defined based on the modeling constructs provided by the used WF meta
model. More precisely, for each business process to be supported, a WF type
represented by a WF schema is defined. For one particular WF type several WF
schemes may exist representing the different versions and the evolution of this WF
type over time. Figure 1 shows a simple example of a WF schema as modeled in
ADEPT. The depicted schema comprises seven activities connected through control
edges. Generally, control edges specify precedence relations between the activities.
For example, activity order medical examination is followed by activity make
appointment, whereas activities prepare patient and inform patient may be
executed in parallel. Furthermore, the WF schema contains a loop structure, which
allows for the repetitive execution of the depicted WF fragment.

The ADEPT WF meta model allows for the integrated modeling of different WF
aspects including activities, control and data flow, actor assignments, semantical
constraints, and resources. Here we focus on the first three perspectives.

Control flow modeling. As depicted in Figure 1, the control flow of a WF schema is
represented as attributed graph with distinguishable node and edge types. This allows
for efficient correctness checks and eases the handling of loop backs. Formally, a con-
trol flow schema corresponds to a tuple (N,E, ...) with node set N and edge set E. Each
control edge e ∈ E has one of the edge types CONTROL_E, SYNC_E or LOOP_E:
CONTROL_E expresses a normal precedence relation, whereas SYNC_E allows to
express a wait-for relation between activities of parallel branches (Reichert, 2000).
Finally, LOOP_E represents a loop backward edge. Similarly, each node n ∈ N has
one of the node types STARTFLOW, ENDFLOW, ACTIVITY, STARTLOOP,
ENDLOOP, AND-/XOR-Split, and AND-/XOR-Join. Based on these elements,
we can model sequences, parallel branchings, conditional branchings, and loop backs.
ADEPT adopts concepts from block-structured process description languages, but en-
riches them by additional control structures. More precisely, branchings as well as
loops have exactly one entry and one exit node. Furthermore, control blocks may be
nested, but must not overlap. As this limits expressive power, in addition, the afore-
mentioned synchronization edges can be used for process modeling (Reichert, 2000).

Data flow modeling. Data exchange between activities is realized through writing
and reading WF variables (denoted as data elements in the following). Data elements
are connected with input and output parameters of WF activities. Each input
parameter of a particular activity is mapped to exactly one data element by a read
data edge and each activity output parameter is connected to a data element by a write
data edge. An example is depicted in Figure 1. Activity order medical examination
writes data element patientID which is then read by subsequent activity perform ex­

amination. The total collection of data elements and data edges constitutes the data
flow schema. For its modeling, a number of restrictions has to be met. The most im-
portant one ensures that all data elements mandatorily read by an activity X must have
been written before X is started. In particular, this must be ensured independent from
the execution path leading to activation of X.

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientId

report

data element

AND join

data flow control flow

yes

no

role = doctor

role = radiologist

Actor =
Actor("peform examination")

STARTLOOP

AND split

ENDLOOP

write data edge

read data edge

loop backward edge
(ET =LOOP_E)

normal control edge
(ET =CONTROL_E)

Figure 1 Example of a simple ADEPT WF schema

Based on a given WF schema new WF instances can be created and executed. ADEPT
orchestrates them according to the defined control flow. Regarding a single activity,
initially, its status is set to NOT_ACTIVATED. It changes to ACTIVATED when all
preconditions for executing this activity are met. In this case corresponding work
items are inserted into the worklists of authorized users. If one of them selects the
respective item from his worklist, activity status changes to RUNNING and respective
work items are removed from other worklists. Furthermore, the application service
associated with the activity is started. At successful termination, activity status
changes to COMPLETED. Generally, a large number of WF instances being in
different states may run on a particular WF schema. To determine which activities are
to be executed next, WF enactment in ADEPT is based on a well-defined operational
semantics (Reichert, 1998a; Reichert, 2000). Furthermore, for each WF instance we
maintain information about its current state by assigning respective markings to the
nodes and edges of its WF schema. Figure 2 shows two WF instances running on the
WF schema depicted in Figure 1.

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientID

report

LOOP_Etrue

false

user = "Dr. Quincy"

role = radiologist

WF instance graph I1

patientId = "Smith"

current value: "Smith"

NS=NodeState,
 NS = ACTIVATED

 NS = RUNNING

 NS = COMPLETED

ES = EdgeState
 ES = TRUE_SIGNALED

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientID

report

LOOP_E true

false

Actor = "Dr. Bond"

Actor = "Dr. Kitchen"

WF instance graph I2

patientID = "Major"

current value: "Major"

Actor = "Dr. Kitchen"

report = Id4763

patientID = "Major"

report = Id4763

Figure 2: Examples of two WF instances running on the WF schema from Figure 1

Ad-hoc Workflow Changes in ADEPT

To allow users to flexibly react in exceptional situations and to dynamically evolve
the structure of in-progress WF instances over time, ADEPT provides support for ad-
hoc changes. Generally, WF flexibility can be achieved either through structural
adaptations of WF schemes (Reichert 1998; Rinderle, 2004a; Rinderle, 2005) or by
allowing for loosely specified WF schemes, which can be refined by users during
runtime according to predefined criteria (Adams, 2006; Han, 1998; Sadiq 2001; Sadiq
2005; Weber, 2007). This chapter focuses on structural schema adaptations of single
WF instances; i.e., ad-hoc changes which can be applied to single WF instances in
order to cope with exceptional situations.

Usually, the introduction of ad-hoc changes results in an instance-specific WF schema
(Reichert, 1998a), which we also denote as the execution schema of the instance in the
following; i.e., change effects are instance-specific and do not affect any other WF
instance. In a medical treatment process, for example, current medication of a
particular patient might have to be discontinued due to an allergic reaction of this
particular patient.

ADEPT provides a set of high-level change operations and change patterns,
respectively, for realizing structural schema adaptations. In particular, respective
change operations abstract from the concrete schema transformations becoming
necessary to realize a particular change. Examples of ADEPT change operations
include the insertion of a schema fragment between two activity sets or the movement
of a fragment from its current position within a WF schema to a new one. Generally,
change operations can be applied to the whole WF schema, i.e., the region to which
the respective change operation is applied can be chosen dynamically (as opposed to
late modeling approaches where changes are restricted to a predefined region).
Therefore, the ADEPT change operations are suited for dealing with exceptions.
Furthermore, it becomes possible to associate pre- and post-conditions with them.
This, in turn, enables us to guarantee soundness when applying the respective change
operations (Reichert, 1998a). Preserving soundness will be of particular importance if

ad-hoc changes are introduced by end users or – even more challenging – by software
agents (Golani, 2006; Bassil, 2004).

We do not present all change patterns supported by ADEPT here, but only give three
examples. For details on process change patterns as well as their formal semantics we
refer to (Weber, 2007; Weber, 2008a; Rinderle-Ma, 2008b):

• Insert fragment: This operation can be used to add a schema fragment (i.e., a
single activity or a complete block) to a WF schema. One parameterization
describes the position at which the new fragment is embedded in the respective
WF schema. For example, ADEPT allows to serially insert a fragment between
two directly succeeding activities as well as to insert new fragments between two
sets of activities meeting certain constraints. Special cases of the latter variant
include the insertion of a fragment in parallel to another one (parallel insert; see
Figure 3a) or the additional association of the newly added fragment with an
execution condition (conditional insert).

• Delete fragment. This operation can be used to remove single activities or blocks.

• Move Fragment. This operation allows users to move a fragment from its current
position to a new one. Like for Insert Process Fragment, an important
parameterization specifies the way the fragment is re-embedded in the WF
schema. Although the move operation could be realized by the combined use of
the insert and delete operation, ADEPT introduces it as separate operation, since it
provides a higher level of abstraction to users.

By the combined use of these and other change operations, complex schema
adaptations can be realized at a high level of abstraction.

So far, we have only considered structural issues. An example of an ad-hoc change
applied at the WF instance level is shown in Figure 4. The depicted WF instance is
modified by inserting new activity x in parallel to the existing activity b. Taking the
user specification of the desired change (“insert activity x between a and c”), first of
all, ADEPT checks whether this change can be applied; i.e., whether all correctness

 a)

b)

Add Activity X parallel to Block (B,

B
D

E
C

F
H

I
G

X

A

A B
D

E
C

F
H

I
G

X

silent
activity

c)

A C B
Delete Activity B

A CA CB

A

C

D

B

A D B
Delete Activity C empty branch

A

C

D

B

Figure 3. Insertion (a) and deletion (b+c) of process activities in ADEPT

properties guaranteed by formal checks at buildtime are further met. If this is the case,
ADEPT automatically calculates the basic schema transformations (i.e., change pri-
mitives like insert node or delete edge) to be applied to the execution schema of the
given WF instance. In addition, it determines the new state of the WF instance in
order to correctly proceed with the flow of control afterwards. In our example the
state of the newly inserted activity x is automatically set to ACTIVATED; i.e., the
corresponding activity is immediately inserted into worklists of potential actors.

As illustrated in Figure 4 c, the required WF schema transformations (i.e., basic
change primitives), together with the change specification, are recorded in the change
history of the WF instance (Rinderle, 2006a). This history will be required, for
example, if the WF instance has to be partially rolled back (Reichert, 2003a).
Furthermore, ADEPT logs the occurrence of change events (and a reference to the
corresponding change history entry) in the execution history of the WF instance as
well. As example take the entry DynModif(1) in Figure 4 b which refers to the
aforementioned ad-hoc change. Finally, the execution history contains other essential
instance data, e.g., concerning the start and completion of activities.

Figure 4. (Simplified) example of an ad-hoc instance change in a centralized WfMS with a)

WF execution schema, b) execution history, and c) change history

Uncontrolled changes can lead to inconsistencies or errors. First of all, an ad-hoc
change must result in a structurally correct WF instance schema. For example,
deleting an activity can lead to missing input data for subsequent activities. This, in
turn, can result in activity crashes or malfunctions when invoking the associated
application service. Or, if a control edge is dynamically added without any checks,
this can lead to deadlock-causing, cyclic dependencies. Besides structural soundness,
we have to ensure that the respective WF instance is compliant with the modified WF
schema (Casati 1998; Reichert, 1998; Rinderle, 2003; Rinderle, 2004a; Rinderle-Ma,
2008a); i.e., its execution log should be producible on the new WF schema as well.
This will be not the case, if an activity is added to an already processed region of a
WF schema. Generally, compliance is needed to avoid deadlocks or livelocks.

ADEPT precludes such errors and also ensures compliance. For this reason, formal
pre- and post-conditions are defined for each change operation. They concern the state

as well as the structure of the WF instance. Before introducing an ad-hoc change,
ADEPT analyzes whether it is permissible on the basis of the current state and
structure of the WF instance; i.e., whether the defined pre- and post-conditions of the
applied change operations can be met. Only if this is the case the structure and state of
the WF execution graph will be modified accordingly. Regarding our example from
Figure 4, for instance, it would not be allowed to delete the already completed activity
a or to add a new activity as predecessor of a.

DISTRIBUTED WORKFLOW EXECUTION IN ADEPT

We investigated the requirements of enterprise-wide and cross-organizational WF-
based applications in detail (Reichert, 1999). In the following we provide a brief
summary of fundamental concepts we developed for distributed WF control. Though
illustrations are based on ADEPT, the general principles behind them can be applied
to other WfMS as well.

Usually, WfMS with one central WF server will be not adequate if the WF
participants (i.e., the actors working on the activities) are distributed across multiple
enterprises or organizational units. In such a case, the use of one central WF server
will restrict the autonomy of the involved partners and be disadvantageous with
respect to response times. Particularly, if organizations are widespread, response times
will significantly increase due to long distance communications between WF clients
and central WF server. In addition, owing to the large number of users and co-active
WF instances typical for enterprise-wide applications, the WfMS is generally
subjected to an extremely heavy load (Kamath, 1996; Sheth, 1997).

For these reasons, in the distributed variant of the ADEPT WfMS, a WF instance may
be controlled by multiple WF servers; i.e., its schema may be partitioned at buildtime,
and the partitions be controlled piecewise by the different WF servers during runtime
(Bauer, 1997).1 As soon as the execution of a partition completes, control over the WF
instance is handed over to the next WF server. We denote the hand-over of the
instance control from one WF server to another as instance migration.2 An example is
depicted in Figure 5.

When migrating a WF instance from one WF server to another, a description of its
state has to be transferred to the target server before this server may take over control;
i.e., before it may continue with instance execution. This includes, for example,
information about the state of WF activities as well as WF relevant data; i.e., data
elements connected with output parameters of activities. – To simplify matters, we
assume that the WF templates (i.e., the WF type schemes) are replicated and stored on
all relevant servers of the distributed WfMS.

To avoid unnecessary communication between WF servers, ADEPT allows to control
parallel branches of an instance independent from each other – at least as long as no
synchronization due to other reasons (e.g., ad-hoc changes) becomes necessary. In
Figure 5 b, WF server s3, which currently controls activity d, normally does not know

1 To achieve better scalability, in ADEPT the same partition of different WF instances (with same type)
can be controlled by multiple WF servers. Respective concepts, however, are outside the scope of this
book chapter and are presented in (Bauer, 2003).
2 In this context, migration should not be mixed up with the migration of a WF instance to a modified
WF schema. Issues concerning the latter can be found in (Casati, 1998; Rinderle, 2004a-c).

how far execution has progressed in the upper branch (activities b and c). As
advantage the WF servers controlling the activities of parallel branches do not need to
be synchronized.

partition 1

partition 2

partition 3
WF server s3

a

b c

d

e

WF server s2

WF server s1

normal control flow

control flow
and migration

ACTIVATED
(the activity was inserted
in the worklists)

RUNNING
(the activity is currently
executed by a user)

COMPLETED
(the execution of the
activity was finished)

partition 1

partition 2

partition 3
WF server s3

a

b c

d

e

WF server s2

WF server s1

a)

b)

migration

Activity States:
currently
involved

currently
involved

currently
involved

AND-split

AND-join

Figure 5. (a) Migration of a WF instance (from s1 to s3); (b) resulting state of the instance

The partitioning of WF schemes and distributed WF control have been successfully
utilized in other approaches as well (Casati, 1996; Muth, 1998). In ADEPT, we also
target at the minimization of communication costs. Concrete experiences we gained in
working with commercial WfMS have shown that there is a great deal of
communication between the WF server and its WF clients (e.g., displaying worklists),
oftentimes necessitating the exchange of large amounts of data. This may result in an
overloaded communication system.

Hence, the WF servers responsible for controlling activities in ADEPT are defined in
such a way that communication in the overall system is reduced: Typically, the WF
server controlling a particular activity is selected in a way such that it is located in the
subnet to which most of the potential actors of the respective activity belong. (Bauer,
1997) describes respective algorithms. This way of selecting the server contributes to
avoid cross-subnet communication between the WF server and its WF clients. Further
benefits are improved response times and increased availability. This is achieved
since neither a gateway nor a WAN is interposed when executing activities. Finally,
the efficiency of the described approach – with respect to WF server load and
communication costs – has been proven by means of comprehensive simulations
(Bauer, 1999).

Usually, WF servers are assigned to the activities of a WF schema already at
buildtime. In some cases, however, this static approach is insufficient. Extensions will
become necessary if dependent actor assignments exist; e.g., activity n may have to
be performed by the same actor as preceding activity m. Consequently, the potential
actors of activity n depend on the concrete actor who processes activity m. Since this
set of prospective actors can only be determined at run-time, WF server assignment
should be deferred to runtime as well. Then, a server in a suitable subnet can be
selected; i.e., one that is most favorable for the actors defined. For this purpose,
ADEPT supports variable server assignments (Bauer, 2000; Bauer, 1999); i.e.,
expressions like "server in subnet of the actor performing activity m" can be assigned
to activities and then be evaluated at runtime. This allows for the dynamic selection of

the WF server, which shall control the respective activity instance. Finally, (Bauer,
2004) deals with dynamic changes of server assignments in distributed WfMS.

REALIZING AD-HOC CHANGES IN A DISTRIBUTED WFMS

In a distributed WfMS it should be possible to perform ad-hoc changes of single WF
instances just as in a central WfMS: The WfMS has to check whether the change may
be applied taking the current structure and state of the respective WF instance into
account. If the ad-hoc change is applicable (i.e., the instance has not progressed too
far), the corresponding schema transformations will be determined and the WF
schema belonging to the WF instance be modified accordingly (including adaptations
of the WF instance state if required).

In order to check whether an intended ad-hoc change of a distributed WF instance is
valid, first of all, the distributed WfMS needs to know the global state of the WF
instance (or at least relevant parts of it). In case of parallel execution branches, for
example, this state information may be distributed over several WF servers. It then
has to be retrieved from these WF servers when the change shall be applied. How WF
instance data can be efficiently transferred between the servers of a distributed WfMS
has been described in (Bauer, 2001).

In the following we present a method for determining the WF servers on which the
state information, relevant for checking the applicability of a particular ad-hoc
change, is located. In contrast to a central WfMS, generally, in a distributed WfMS it
is not sufficient to modify the execution schema of the WF instance solely on that WF
server which controls the ad-hoc change. Otherwise, errors or inconsistencies might
occur since the other WF servers might use outdated schema and state information
when controlling the respective WF instance. In the following we show which WF
servers have to be involved in the change procedure and how corresponding change
protocols look like in ADEPT.

Synchronizing Workflow Servers in the Context of Ad-hoc Changes

An authorized user may invoke an ad-hoc change on any WF server which currently
controls the WF instance in question. Yet as a rule, this WF server alone will not
always be able to correctly perform the change. If other WF servers currently control
parallel branches of the respective instance, state information from these WF servers
might be needed as well. In addition, the WF server initiating the ad-hoc change must
ensure that the change is also considered for the execution schemes of the respective
WF instance, being managed by these other WF servers. This becomes necessary to
enable these servers to correctly proceed with the flow in the sequel (see below). A
naive solution would be to involve all WF servers of the WfMS by a broadcast.
However, this approach is impractical in most cases as it is excessively expensive. In
addition, all server machines of the WfMS must be available before an ad-hoc change
can be performed. We come up with three alternative approaches:

Alternative 1 (Synchronize all Servers Concerned by the WF Instance). Alternative
1 considers all WF servers of the distributed WfMS which controlled the respective
WF instance in the past, which are currently controlling respective WF activities, or
which will be involved in the execution of future activities. Though the effort
involved in communication is greatly reduced when compared to the naive solution

mentioned above, it may still be unduly large. For example, communication with
those WF servers which were involved in controlling the WF instance in the past, but
which will not re-participate in future, is superfluous. They do not need to be
synchronized any more and the state information managed by these WF servers has
already been transferred in previous migrations.

Alternative 2 (Synchronize all Current and Future Servers of the WF Instance). To
be able to control a WF instance, a WF server needs to know its current execution
schema. This, in turn, requires knowledge of all ad-hoc changes performed so far.
Therefore, a new ad-hoc change must be made public to those WF servers which are
either currently active in controlling the WF instance or which will be involved in its
control in future. Thus, it seems to make sense to synchronize exactly these WF ser-
vers. However, with this approach, problems arise in connection with conditional
branches. For XOR-splits, which are evaluated in future, it cannot always be deter-
mined in advance which execution branch will be chosen. As different execution
branches may be controlled by different WF servers, the set of relevant WF servers
cannot be calculated immediately. Generally, it is only possible to determine those
WF servers potentially be involved in the control of the WF instance in future.

The situation will become worse if variable server assignments are used. Then, for a
given WF instance it is not possible to determine the WF servers that will be
potentially involved in the execution of future activities. Note that runtime data of the
WF instance, as required for evaluating WF server assignment expressions, may not
even exist at this point in time; e.g., in Figure 6, during execution of activity g, the
WF server of activity j cannot be determined since the actor responsible for activity i
has not been fixed yet. Thus the system will not always be able to synchronize future
servers of the WF instance when an ad-hoc change takes place. As these WF servers
do not need to be informed about the change at this time (since they do not yet control
the WF instance) we suggest another approach.

a
g

b

 i j
s1

s4

s5

s1

subnet(actor(i))

d
s3

e

h
s4

subnet(actor(c))
c
s2

 f
s1

x

Mb,c Mc,d Md,e

Mf,g

Mh,i

Me,i

Mi,j

Figure 6. Insertion of activity x between activities g and d by server s4.

Alternative 3 (Synchronize all Current Servers of the WF Instance). The only
workable solution is to synchronize exclusively those WF servers currently involved
in the control of the WF instance, i.e., the active WF servers. Generally, it is not
trivial at all to determine which WF servers these in fact are. The reason is that in case
of distributed WF control, for an active WF server of a WF instance, the execution
state of the activities being executed in parallel (by other WF servers) is not known.
As depicted in Figure 6, for example, WF server s4, which controls activity g, does
not know whether migration Mc,d has already taken place and, as a result, whether the
parallel branch is being controlled by WF server s2 or WF server s3. In addition, it

will be not possible to determine which WF server controls a parallel branch, without
further effort, if variable server assignments are used. In Figure 6, for example, the
WF server assignment of activity e refers to the actor of activity c, which is not
known by WF server s4. – In the following, we restrict our considerations to
Alternative 3.

Determining the Set of Active Servers of a Workflow Instance

As explained above, generally, a WF server is not always able to determine from its
local state information which other WF servers are currently executing activities of a
specific WF instance. And it is no good idea to use a broadcast call to search for these
WF servers, as this would result in exactly the same drawbacks as described above for
the naive solution. We, therefore, require an approach for explicitly managing the
active WF servers of a WF instance. The administration of these WF servers,
however, should not be carried out by a fixed (and therefore central) WF server since
this might lead to bottlenecks, thus negatively impacting the availability of the whole
WfMS. For this reason, in ADEPT, the set of active WF servers (ActiveServers) is
managed by a ServerManager specific to the WF instance. For this purpose, for
example, the start server of the WF instance can be used as ServerManager.
Normally, this WF server varies for each of the WF instances (even if they are of the
same WF type), thus avoiding bottlenecks.3

The start WF server can be easily determined from the local execution history by any
WF server involved in the control of the WF instance. In the following we show how
the set of active servers of a specific WF instance is managed by the ServerManager,
how it can be determined, and how ad-hoc changes can be synchronized.

Managing Active WF Servers of a WF Instance
As aforementioned, for the ad-hoc change of a WF instance we require the set
ActiveServers, which comprises all WF servers currently involved in the control of the
WF instance. This set, which may be changed due to migrations, is explicitly
managed by the ServerManager. Thereby, the following two rules have to be
considered:

1. Multiple migrations of the same WF instance must not overlap arbitrarily, since
this would lead to inconsistencies when changing the set of active WF servers.

2. For a given WF instance the set ActiveServers must not change due to migrations
during the execution of an ad-hoc change. Otherwise, wrong WF servers would be
involved in the ad-hoc change or necessary WF servers would be left out.

As we will see in the following, we prevent these two cases by the use of several
locks.4 In the following, we describe the algorithms necessary to satisfy these

3 Using this policy there may be scenarios where the same WF server would be always used as all WF
instances in the WfMS are created on the same WF server. (An excellent example is the server that
manages the terminals used by the tellers in a bank.) In this case, the ServerManager should be selected
arbitrarily when a WF instance is generated.
4 A robust behavior of the distributed WfMS could also be achieved by performing each ad-hoc change
and each migration (incl. the adaptation of the set ActiveServers) within a distributed transaction (with
2-phase-commit). But this approach would be very restrictive since during the execution of such an
operation, “normal WF execution” would be prevented. That means, while performing a migration, the
whole WF instance would be locked and, therefore, even the execution of activities actually not

requirements. Algorithm 1 shows the way migrations are performed in ADEPT. It
interacts with Algorithm 2 by calling procedure UpdateActiveServers (remotely),
which is defined by this algorithm. This procedure manages the set of active WF
servers currently involved in the WF instance; i.e., it updates this set consistently in
case of WF server changes.

Algorithm 1 illustrates how a migration is carried out in our approach:

Algorithm 1 (Performing a Migration)

 input
 Inst: ID of the WF instance to be migrated
 SourceServer: source server of the migration (it performs Algorithm 1)
 TargetServer: target server of the migration
 begin
 // determine the ServerManager for this WF instance from its execution history
 ServerManager = StartServer(Inst);
 // request a non-exclusive lock and an exclusive short-term lock from the ServerManager
 RequestSharedLock(Inst) ServerManager;5
 RequestShortTermLock(Inst) ServerManager;
 // change the set of active servers (cf. Algorithm 2)
 if LastBranch(Inst) then
 // the migration is performed for the last execution branch of the WF instance, that
 // is active at the SourceServer
 UpdateActiveServers(Inst, SourceServer, LogOff, TargetServer) ServerManager;
 else // another execution path is active at SourceServer
 UpdateActiveServers(Inst, SourceServer, Stay, TargetServer) ServerManager;

 // perform the actual migration and release the non-exclusive lock
 MigrateWorkflowInstance(Inst) TargetServer;
 ReleaseSharedLock(Inst) ServerManager;
 end.

Algorithm 1 is initiated and executed by a source WF server that hands over control to
a target WF server. First, the SourceServer requests a non-exclusive lock from the
ServerManager, which prevents that the migration is performed during an ad-hoc
change.6 Then an exclusive, short-term lock is requested. This lock ensures that the
ActiveServers set of a given WF instance is not changed simultaneously by several
migrations within parallel branches. (Both lock requests may be incorporated into a
single call to save a communication cycle.) The SourceServer reports the change of
the ActiveServers set to the ServerManager, specifying whether it remains active for
the concerned WF instance (Stay), or whether it is not involved any longer (LogOff).
If, for example, in Figure 6 the migration Mb,c is executed before Mf,g, the option Stay
will be used for the migration Mb,c since WF server s1 remains active for this WF
instance. Thus, the option LogOff will be used for the subsequent migration Mf,g as it
ends the last branch controlled by s1. The (exclusive) short-term lock prevents that
these two migrations may be executed simultaneously. This ensures that it is always
clear whether or not a WF server remains active for a WF instance when a migration

concerned would not be possible. Such a restrictive approach is not acceptable for any WfMS.
However, it is not required in our approach and we realize a higher degree of parallel execution while
achieving the same robustness.
5 p() s means that procedure p is called and then executed by server s.
6 For details see Algorithm 3. The lock does not prevent several migrations of one and the same WF
instance from being performed simultaneously.

has completed. Next, the WF instance data (e.g., the current state of the WF instance)
is transmitted to the target WF server of the migration. Since this is done after the
exclusive short-term lock has been released (by UpdateActiveServers), several
migrations of the same WF instance may be executed simultaneously. The algorithm
ends with the release of the non-exclusive lock.

Algorithm 2 is used by the ServerManager to manage the WF servers currently
involved in controlling a given WF instance. To fulfill this task, the ServerManager
also has to manage the locks mentioned above. If the procedure UpdateActiveServers
is called with the option LogOff, the source WF server of the migration is deleted
from the set ActiveServers(Inst) (i.e., the set of active WF servers with respect to the
given WF instance). The reason for this is that this WF server is no longer involved in
controlling this WF instance. The target WF server for the migration, however, is
always inserted into this set independently of whether it is already contained or not
because this operation is idempotent.

The short-term lock requested by Algorithm 1 before the invocation of Update-
ActiveServers prevents Algorithm 2 from being run in parallel more than once for a
given WF instance. This helps to avoid an error due to overlapping changes of the set
ActiveServers(Inst). When this set has been adapted, the short-term lock is released.

Algorithm 2 (UpdateActiveServers: Managing the active WF Servers)
 input
 Inst: ID of the affected WF instance
 SourceServer: source server of the migration
 Option: indicates whether source server is further involved in the WF instance
 (Stay) or not (LogOff)
 TargetServer: target server of the migration
 begin
 // update the set of active WF servers of the WF instance Inst
 if Option = LogOff then
 ActiveServers(Inst) = ActiveServers(Inst) − {SourceServer};

 ActiveServers(Inst) = ActiveServers(Inst) ∪ {TargetServer};
 ReleaseShortTermLock(Inst); // release the short-term lock
 end.

Performing Ad-hoc Changes

While the previous subsection has described how the ServerManager handles the set
of currently active WF servers for a particular WF instance, we now show how this
set is utilized when ad-hoc changes are performed.

First of all, if no parallel branches are currently executed, trivially, the set of active
WF servers contains exactly one element, namely the current WF server. This case
may be easily detected by making use of the state and structure information (locally)
available at the current WF server. The same applies to the special case that currently
all parallel branches are controlled by the same WF server. In both cases, the method
described in the following is not needed and therefore not applied. Instead, the WF
server currently controlling the WF instance performs the ad-hoc change without
consulting any other WF server. Consequently, this WF server need also not
communicate with the ServerManager. For this special case, therefore, no additional
synchronization effort occurs (when compared to the central case).

We now consider the case that parallel branches exist; i.e., an ad-hoc change of the
WF instance may have to be synchronized between multiple WF servers. The WF
server which coordinates the ad-hoc change then requests the set ActiveServers from
the ServerManager. When performing the ad-hoc change, it is essential that this set is
not changed due to concurrent migrations. Otherwise, wrong WF servers would be
involved in the change procedure. In addition, it is vital that the WF execution schema
of the WF instance is not restructured due to concurrent modifications, since this may
result in an incorrect schema.

To prevent either of these errors we introduce Algorithm 3. It requests an exclusive
lock from the ServerManager to avoid the aforementioned conflicts. This lock
corresponds to a write lock (Gray, 1993) in a database system and is incompatible
with read locks (RequestSharedLock in Algorithm 1) and other write locks of the
same WF instance. Thus, it prevents that migrations are performed simultaneously to
an ad-hoc change of the WF instance.

Algorithm 3 (Performing an Ad-hoc Change)
 input
 Inst: ID of the WF instance to be modified
 Modification: specification of the ad-hoc change
 begin
 // calculate the ServerManager for this WF instance
 ServerManager = StartServer(Inst);
 // request an exclusive lock from the ServerManager and calculate the set of active WF servers
 RequestExclusiveLock(Inst) ServerManager;
 ActiveServers = GetActiveServers(Inst) ServerManager;
 // request a lock from all servers, calculate the current WF state, and perform
 // the change (if possible)
 for each Server s ∈ ActiveServers do
 RequestStateLock(Inst) s;
 GlobalState = GetLocalState(Inst);
 for each Server s ∈ ActiveServers do
 LocalState = GetLocalState(Inst) s;
 GlobalState = GlobalState ∪ LocalState;
 if DynamicModificationPossible(Inst, GlobalState, Modification) then
 for each Server s ∈ ActiveServers do
 PerformDynamicModification(Inst, GlobalState, Modification) s;
 // release all locks
 for each Server s ∈ ActiveServers do
 ReleaseStateLock(Inst) s;
 ReleaseExclusiveLock(Inst) ServerManager;
 end.

As soon as the lock has been granted in Algorithm 3, a query is sent to acquire the set
of active WF servers of this WF instance.7 Then a lock is requested at all WF servers
belonging to the set ActiveServers in order to prevent local changes to the state of the
WF instance. Any activities already started, however, may be finished normally since
this does not affect the applicability of an ad-hoc change. Next the (locked) state
information is retrieved from all active WF servers. Remember that the resulting
global and current state of the WF instance is required to check whether the ad-hoc
modification to be performed is permissible or not. In Figure 6, for example, WF
server s4, which is currently controlling activity g and which wants to insert activity

7 This query may be combined with the lock request into a single call to save one communication cycle.

x after activity g and before activity d, normally does not know the current state of
activity d (from the parallel branch). Yet the ad-hoc change will be permissible only if
activity d has not been started at the time the change is initiated (Reichert, 1998a). If
this is the case, the ad-hoc change is performed at all active WF servers of the WF
instance (PerformDynamicModification). Afterwards, the locks are released and any
blocked migrations or modification procedures may then be carried out.

Illustrating Example

How migrations and ad-hoc changes work together is explained by means of an
example. Figure 7a shows a WF instance currently controlled by exactly one WF
server, i.e. WF server s1. Figure 7b shows the same WF instance after it migrated to a
second WF server s2. In Figure 7c execution was continued. One can also see that
each of the two WF servers must not always possess complete information about the
global state of the WF instance.

Assume now that an ad-hoc change shall be performed, which is coordinated by WF
server s1. Afterwards, both WF servers shall possess the current schema of the WF
instance to correctly proceed with the flow of control. With respect to the (complete)
current state of the WF instance, it is sufficient that it is known by the coordinator s1
(since only this WF server has to decide on the applicability of the desired change).
The other WF server only carries out the change (as specified by WF server s1).

DISTRIBUTED EXECUTION OF A MODIFIED WORKFLOW
INSTANCE

If a migration of a WF instance has to be performed its current state has to be
transmitted to the target WF server. In ADEPT, this is done by transmitting the
relevant parts of the execution history of the WF instance together with the values of
WF relevant data (i.e., data elements) (Bauer, 2001). If an ad-hoc change was
previously performed, the target WF server of a migration also needs to know the
modified execution schema of the WF instance in order to be able to control the WF
instance correctly afterwards. In the approach introduced in the previous section, only
the active WF servers of the WF instance to be modified have been involved in the
ad-hoc change. Consequently, the WF servers controlling subsequent activities still
have to be informed about the conducted change. In our approach, the necessary
information is transmitted upon migration of the WF instance to the WF servers in
question. Since migrations are rather frequently performed in distributed WfMS, this
communication needs to be performed efficiently. We first introduce a method that
meets this requirement to a satisfactory degree. Then we present an enhancement that
additionally precludes redundant data transfer.

c

s2s2

s2

s1s1

s1

view of the WF server s :1

migration M from server s to server sa,d 1 2

c

s2s2

s2

s1s1

s1

c

s2s2

s2

s1s1

s1

view of the WF server s :2

to prepare a dynamic modification (insertion of x after {a} and before {c, e} by the server s),
s requests state information from the server s

1

1 2

c

s2s2

s2

s1s1

s1

c

s2s2

s2

s1s1

s1

performance of the dynamic modification by server s (modification of the execution graph at all active
servers, these are s and s in the example)

1

1 2

c

s2s2

s2

s1s1

s1

c

s2s2

s2

s1s1

s1

s1 s1

distributed execution of WF activities (b by s) and d (by s) (in case of normal WF execution, no state
synchronization is performed between the servers of parallel branches)

1 2

c

s2s2

s2

s1s1

s1

c

s2s2

s2

s1s1

s1

a)

b)

c)

d)

e)

ø

Figure 7. Effects of migrations and ad-hoc changes on the (distributed) execution schema of a
WF instance (local view of the WF servers)

Efficient Transmission of Data about Ad-hoc Changes

In the following, we examine how a changed WF execution schema can be
communicated to the target WF server of a migration. The key objective of this
investigation is the development of an efficient technique that reduces
communication-related costs as best as possible. Obviously, the simplest way to
communicate the current execution schema of the respective WF instance to the
migration target server is to transmit this schema in whole. Yet this technique burdens
the communication system unnecessarily because the related WF graph of this WF
schema may comprise a large number of nodes and edges. This results in an enormous
amount of data to be transferred – an inefficient and cost-intensive approach.

Apart from this, the entire execution schema does not need to be transmitted to the
migration target server as the related WF template has been already located there.
(Note that a WF template is being deployed to all relevant WF servers before any WF
instance may be created from it.) In fact, in most cases the current WF schema of the
WF instance is almost identical to the WF schema associated with the WF template.
Thus it is more efficient to transfer solely the relatively small amount of data which
specifies the change operations applied to the WF instance; i.e., to use the change
history for this purpose. In the ADEPT approach, the migration target server needs
this history anyway (Reichert, 1998a; Rinderle, 2006a), so that its transmission does
not lead to additional efforts. When the base operations recorded in the change history
are applied to the original WF schema of the WF template, the result is the current
WF schema of the given WF instance. This simple technique significantly reduces
communication efforts. In addition, as typically only very few changes are performed
on any individual WF instance, computation time is kept to a minimum.

Enhancing the Method used to Transmit Change Histories

Generally, one and the same WF server can be involved more than once in the
execution of a WF instance – especially in conjunction with loop backs. In our
example from Figure 8, for instance, WF server s1 hands over control to WF server
s2 after completion of activity b, but will receive control again later on in the flow to
execute activity d. Since each WF server stores the change history until being
informed that the given WF instance has been completed, such a WF server s already
knows the history entries of the changes it has performed itself. In addition, s knows
any changes that had been effected by other WF servers before s handed over the
control of the WF instance to another WF server for the last time. Hence the data re-
lated to this part of the change history need not be transmitted to the WF server. This
further reduces the amount of data required for the migration of the “current execution
schema”.

Transmitting Change History Entries

An obvious solution for avoiding redundant transfer of change history entries is as
follows: The migration source server determines from the existing execution history
exactly which changes the target WF server does already know. The related entries
are then simply not transmitted when migrating the WF instance. In the example
given in Figure 8, WF server s2 can determine, upon ending activity c, that the
migration target server s1 does already know Changes 1 and 2. In the execution
history (cf. Figure 8e), references to these changes (DynModif(1) and DynModif(2))
have been recorded before entry End(b, s1, ...) (which was logged when completing
activity b). As this activity was controlled by WF server s1, this WF server does
already know the Changes 1 and 2. Thus, for the migration Mc,d, only the change
history entry corresponding to Change 3 needs to be transmitted. The transmitted part
of the change history is concatenated with the part already being present at the target
server before this WF server creates the new execution schema and proceeds with the
flow of control.

In some cases, however, redundant transfer of change history data cannot be avoided
with this approach. As example take migrations Md,e and Mh,f to WF server s3. For

both migrations, using the above approach, all entries corresponding to Changes~1, 2,
and 3 must be transmitted since WF server s3 was not involved in the execution of the
WF instance thus far. The problem is that migration source servers s1 and s4 are
unable, from their locally available history data, to derive whether the other migration
from the parallel branch has already been effected or not. Therefore, the entire change
history has to be transmitted. Yet with the more advanced approach set out in the
following, we can avoid such redundant data transfer.

dcs1

s1 s4

s1 s2 s1 s3

s3

d)

e) Start(a, s , ...), DynModif(1), End(a, s , ...), DynModif(2), Start(b, s , ...), End(b, s , ...),
Start(c, s , ...), DynModif(3), End(c, s , ...)

1 1 1 1

2 2

 i
s3

dcs1

s1 s4

s1 s2 s1 s3

s3

c)

 dcs1

s1

s1 s2 s1 s3

s3

b)

 dc
s1 s1 s2 s1 s3 s3

a)

start of activity a
insertion of activity g (controlled by server s) after activity a and before activity f1

completion of activity a
insertion of activity h (controlled by server s) after activity g and before activity f4

execution of activity b and start of activity c
insertion of activity i (controlled by server s) after activity f
completion of activity c

3

Figure 8. (a-d) WF instance and (e) execution history of WF server s2 after completion of
activity c. – In case of distributed WF control, with each entry the execution history records
the server being responsible for the control of the corresponding activity.

Requesting Change History Entries

To avoid redundant data transmissions, we introduce a more sophisticated method.
With this method, the necessary change history entries are explicitly requested by the
migration target server. When a migration takes place, the target WF server informs
the source WF server about the history entries it already knows. The source WF server
then only transmits those change history entries of the WF instance yet missing on the
side of the target server. In ADEPT, a similar method has been used for transmitting
execution histories; i.e., necessary data is provided on basis of a request from the
migration target server (Bauer, 2001). Here, no additional effort is expended for

communication, since both the request for and the transmission of change history
entries may be carried out within same communication cycle.

With the described method, requesting the missing part of a change history is efficient
and easy to implement in our approach. If the migration target server was previously
involved in the control of the WF instance, it would already possess all entries of the
change history up to a certain point (i.e., it knows all ad-hoc changes that had been
applied to the respective WF instance before this server handed over control the last
time). But from this point on, it does not know any further entries. It is thus sufficient
to transfer the ID of the last known entry to the migration source server to specify the
required change history entries. The source WF server then transmits all change
history entries made after this point.

The method described above is implemented by means of Algorithm 4, which is
executed by the migration source server as part of the MigrateWorkflowInstance
procedure (cf. Algorithm 1). This procedure also effects transmission of the execution
history and of WF relevant data. Algorithm 4 triggers the transmission of the change
history by requesting the ID of the last known change history entry from the target
WF server. If no change history for the given WF instance is known at the target WF
server it will return NULL. In this case, the entire change history is relevant for the
migration and is therefore transmitted to the target WF server. Otherwise, the target
WF server requires only that part of the change history, which follows the specified
entry. This part is copied into the history RelevantChangeHistory and transmitted to
the target WF server. This data may be transmitted together with the mentioned WF
execution data to save a communication cycle.

Algorithm 4 (Transmission of Change History Data)
 input
 Inst: ID of the WF instance to be changed
 TargetServer: server, which receives the change history
 begin
 // start the transmission of the change history by asking for the ID of the last known entry
 LastEntry = GetLastEntry(Inst) TargetServer;
 // calculate the relevant part of the change history
 if LastEntry = NULL then // change history totally unknown at the target WF server
 Relevant = True;
 else // all entries until LastEntry (incl.) are known by the target server
 Relevant = False;
 // initialize the position counters for the original and the new change history
 i = 1; j = 1;
 // read the whole change history of WF instance Inst
 while ChangeHistory(Inst)[i] ≠ EOF} do
 if Relevant = True then // put the entry in the result (if necessary)
 RelevantChangeHistory[j] = ChangeHistory(Inst)[i];
 j = j + 1;
 // check whether the end of that part of the change history, that is known by the
 // target WF server, is reached
 if EntryID(ChangeHistory(Inst)[i]) = LastEntry then
 Relevant = True;
 i = i + 1;
 // perform the transmission of the change history
 TransmitChange(Inst, RelevantChangeHistory) TargetServer;
 end.

Algorithm 4 is illustrated by means of the example given in Figure 8: Concerning the
migration Mc,d the target WF server s1 already knows the ad-hoc changes 1 and 2.
Thus it responds to the request of the source server with LastEntry = 2. The migration
source server then ignores the change history entries for changes 1 and 2, transmitting
only the entry for change 3 to target WF server s1. This result is identical to the one
achieved in the approach for transmitting change history entries.

For the migrations Mh,f and Md,e, without loss of generality, it is assumed that Mh,f is
executed before Md,e.8 Since there has been no change history of this WF instance
located on WF server s3 yet, the target WF server of migration Mh,f returns LastEntry
= NULL. Therefore, the entire change history is transmitted to s3. In the subsequent
migration Md,e, the target WF server s3 then already knows change history entries 1 –
3, so that LastEntry = 3 will be returned in response to the source server query.
(When the while loop in Alg. 4 is run, variable Relevant is not set to True until history
entries 1 – 3 have been processed. Since there exist no further entries in the change
history, RelevantModificationHistory remains empty with the result that no change
history entries have to be transmitted.) Finally, the problem of redundant data transfer,
as described at the beginning of this section, is thus avoided here.

To sum up, with the described approach not only ad-hoc modifications can be
performed efficiently in a distributed WfMS, but transmission costs for migrating
changed WF instances can be kept low as well.

PROOF-OF-CONCEPT PROTOTYPE

All methods presented in this chapter have been implemented in a powerful proof-of-
concept prototype. It demonstrates feasibility of ad-hoc changes in a distributed
WfMS and shows how the developed concepts work in conjunction with each other.

Buildtime Components

Our proof-of-concept prototype supports the WF designer by powerful tools. They
support the definition of WF templates, the modeling of organizational entities and
their relationships, the specification of access control constraints (e.g., authorizations
concerning WF changes; Weber, 2005b), and the plug-in of application services. All
relevant information is stored in a repository. In addition, XML-based descriptions of
the defined models can be created; e.g., to export them to other tools or to deploy
them to the WF servers of the distributed WfMS.

For WF modeling we offer a syntax-driven, graphical WF editor. A sample screen is
depicted in Figure 9. It shows a clinical workflow as modeled in ADEPT. The upper
part of this screen shows the control flow of this workflow, whereas the lower part
displays the input parameters of the currently selected activity calculate dose (as well
as the mapping of these parameters to data elements). Additional information about

8 A lock at the target WF server prevents the migrations from being carried out concurrently in an un-
coordinated manner. This ensures that migrations for one and the same WF instance are serialized; i.e.,
the lock is maintained from start of migration, while change history entries (and other WF-related data
(Bauer, 2001)) are acquired and transmitted, until the entries have finally been integrated into the
change history at the target WF server. This lock prevents history entries from being requested redun-
dantly due to the request being based on obsolete local information.

the selected activity is shown on the right-hand side. Further down, a pacemaker box
is displayed, which helps the WF designer to navigate through larger models. We
explain the WF model from Figure 9 in more detail, since we refer to it in the
following. This model describes the medication of a patient during a treatment cycle
in a hospital. The workflow starts with the patient's admission to a ward (by a ward
nurse). It then proceeds with activities instruct patient (by ward physician) and
collect patient data (by ward nurse). Afterwards, the flow splits into two parallel
branches which may be executed concurrently. The upper branch comprises the
activities of a medical examination performed in another department (perform
examination and write report both with user role radiologist), whereas the lower
branch defines preparatory steps performed at the ward side (e.g., calculate dose,
produce drug). These two branches contain some other activities (read report,
validate dose) not displayed in Figure 9. When both branches are completed, they are
joined and the produced drug is administered to the patient, some aftercare is
provided, and the patient is discharged (also not displayed in Figure 9).

Our prototype supports the WF designer in calculating optimal WF server
assignments for the respective WF activities; i.e., in partitioning the WF schema such
that overall communication costs become minimal at runtime. For this purpose, we
have implemented advanced algorithms which make use of the information from the
organizational model (i.e., roles as well as locations of actors). Concerning our
example from Figure 9, respective WF instances are controlled by WF servers s1 and
s2. The calculated WF server assignments are displayed below the activity nodes.
Accordingly, activities perform examination and write report are controlled by WF
server s2, whereas all other activities are carried out by WF server s1.

Furthermore, the developed WF editor supports the designer in modeling error-free
WF templates (e.g., by excluding deadlocks and by ensuring data flow correctness) –
we denote this capability as correctness by construction. To achieve it, both on-the-fly
checks during editing and complete model checks initiated by the designer at any
point in time are possible. In any case, a new WF template may only be released, if all
correctness and consistency checks are successfully passed. Note that this is
fundamental for the support of ad-hoc changes as well. An adaptive WfMS will only
be able to guarantee consistency if a WF instance is consistent before a change as
well. This, in turn, is crucial for the WfMS to guarantee a reliable and robust
execution behavior of the distributed WF instances.

S1 S1 S1

S1 S1

S2 S2

Figure 9. Workflow Editor

A new release of a WF template can be introduced to the distributed WfMS by
deploying it to relevant WF servers. For this, an XML-based description is sent to the
WF servers and imported into their run-time databases. – We omit descriptions of
other build-time components since they are not relevant in the context of this paper
(Reichert, 2003c).

Runtime Components

Our proof-of-concept prototype comprises run-time clients for end users, process
administrators, and system administrators. They provide support for configuring the
distributed WfMS, for managing WF instances, for handling user worklists, for
defining ad-hoc WF changes, and for monitoring WF instance execution.

To monitor the progress of WF instances in ADEPT and to demonstrate the effects of
ad-hoc changes, we offer a monitoring component. It enables authorized users (e.g.,
process administrators) to visualize the execution schema of a WF instance together
with the information related to that WF instance. A sample screen is depicted in
Figure 10. It shows the execution schema of a WF instance which was created from
the WF template depicted in Figure 9. Activities admit patient, instruct patient and
collect patient data are completed (indicated by symbol), whereas activity
calculate dose is currently activated (expressed by symbol). The upper part of
Figure 10 displays the data elements read and written by the currently selected activity
(calculate dose in this example) as well as detailed information about the activity
(e.g., state, actor assignment, execution mode, server assignment, earliest / latest
starting times, etc.). All relevant information is managed by WF server s1 which
controls activity calculate dose. We provides a powerful application programming
interface for accessing respective information.

Actually, the depicted monitoring client only shows the execution schema from the
viewpoint of WF server s1 (to which this client is connected). However, WF server
s1 does not know how far execution has proceeded in the upper branch of the parallel
branching (currently controlled by WF server s2). For example, WF server s1 does
not know whether activity perform examination has been activated, started, or
completed yet.

Figure 10. Monitoring client (before applying an ad-hoc change to the depicted WF instance)

How can an ad-hoc change be realized in the given scenario? End users must be able
to define such change at a high level of abstraction; i.e., without need to be familiar
with the WF editor or to have knowledge about distributed execution of the WF
instance. For this purpose we offer easy-to-use runtime clients to the actors.9

We now come back to our WF instance from Figure 10. Assume that an authorized
user (connected to WF server s1) wants to insert activity perform allergy test after
activity instruct patient and before activities write report and produce drug; i.e.,
the user wants the allergy test to be started after instruction of the patient and to be
completed before a report is written and the drug is produced. If this change is applied
to the WF instance from Figure 10, the execution schema from Figure 11 will result.
Here, node n1 represents an AND-split which resulted from the transformation of the
change into respective schema adaptations (Reichert, 1998a; Dadam, 1998). Also note
that state information from WF server s2 had to be retrieved and the techniques
presented in the previous sections were applied.

Figure 11. Monitoring client (after applying the ad-hoc change to the depicted WF instance)

DISCUSSION

In literature, we can find a number of approaches addressing issues related to
scalability and distributed WF execution. Besides centralized WfMS, which include
most commercial systems (e.g. Staffware (Staffware, 2003)), several distributed
WfMS consisting of multiple WF servers exist. Some of them assign a WF instance
(as a whole) always to the same WF server. Examples include Exotica/Cluster
(Alonso, 1994) and MOBILE (Jablonski, 1997); the latter approach was extended in
(Schuster, 1999). Comparable to our techniques, the approaches provided by
MENTOR (Muth, 1998) and WIDE (Casati, 1996) select the WF server for a WF
activity next to its potential actors. CodAlf, BPAFrame (Schill, 1996), and METEOR2
(Sheth, 1997), in turn, allocate the WF server for a WF activity on that node where its
corresponding application service is located. Furthermore, completely distributed
WfMS, like Exotica/FMQM (Alonso, 1995) and INCAs (Barbará, 1996}, use the

9 To enable application developers to implement customized runtime components, we provide a
powerful application programming interface (API) to them. Its functionality goes far beyond the APIs
of existing WfMS. For example, our API provides powerful change operations, which hide as much of
the complexity of an ad-hoc change as possible from users.

machines of the actors as WF servers. Finally, there are approaches for distributed WF
management, which do not have a special strategy for distributing the activities to the
WF servers; e.g., EVE (Geppert, 1998), METUFlow (Dogac, 1997), MOKASSIN
(Gronemann, 1999), WASA2 (Weske, 1998; Weske, 1999), and the Petri-net based
approach presented in (Guth, 1998).

Similarly, many groups deal with issues related to ad-hoc WF changes. They focus on
different issues arising in this context. Like ADEPT (Reichert, 1998a), Chautauqua
(Ellis, 1997), WASA2 (Weske, 1998), and WF nets (van der Aalst, 2001a+b) deal
with issues related to the correctness and consistency of modified WF instances.
CBRFlow (Weber, 2004), ProCycle (Rinderle, 2005; Weber, 2005a; Weber, 2006b),
and CAKE2 (Minor, 2007), for example, additionally apply knowledge-based
techniques (e.g., case-based reasoning) to increase WfMS flexibility and to foster the
reuse of ad-hoc changes. The approaches described in (van der Aalst, 2001b) uses
generic WF models to deal with dynamic WF changes. In this context, a generic WF
model describes a family of WF models (i.e., model variants) of the same WF type.
Consequently, an (ad-hoc) change is handled by migrating a WF instance between
different members of the same process family. This is supported by defining a
minimal representative for each process family and by specifying rules for
transferring a variant to the minimal representative (and vice versa). An approach
based on inheritance, which uses generic inheritance-preserving transformation and
transfer rules, is suggested by (van der Aalst, 2002). With this approach, certain errors
in connection with changes can be avoided by choosing appropriate inheritance
notions. Finally, there are several approaches aiming at the support of WF schema
evolution and the propagation of the resulting schema changes to already running WF
instances (if compliant to the new scheme). Corresponding work has been done in
MOKASSIN (Joeris, 1998), WIDE (Casati, 1998), TRAM (Kradolfer, 1999),
ADEPT2 (Rinderle, 2004a-c; Rinderle-Ma, 2008a), and WASA2 (Weske, 1998).

There are only few projects which allow for ad-hoc changes as well as distributed WF
control. In particular, how these two fundamental features of a large-scale WfMS
impact each other has not yet been investigated in detail. The major objective of the
aforementioned approaches was not to develop a scalable and flexible WfMS which is
efficient with regard to communication costs. This has been systematically
investigated in this chapter.

There are few approaches which address both WF changes and distributed WF
execution. WIDE allows WF schema changes and their propagation to running WF
instances (Casati, 1998). In addition, control of WF instances can be distributed
(Casati, 1996). Thereby, the set of potential actors of an activity determines the WF
server which has to control this activity. In MOKASSIN (Gronemann, 1999; Joeris,
1998} and WASA2 (Weske, 1998+1999), distributed WF execution is realized
through an underlying CORBA infrastructure. Both approaches do not discuss the
criteria used to determine a concrete distribution of the WF activities; i.e., the
question which WF server has to control a specific activity remains open. Here,
changes may be applied at both the WF schema and the WF instance level.

INCAs (Barbará, 1996) uses rules for WF instance coordination. WF control is
distributed with a given WF instance being controlled by that processing station that
belongs to the actor of the current activity. The mentioned rules are used to calculate
the processing station of the subsequent activity and, thereby, the actor of that
activity. With this approach, it becomes possible to modify the rules, what results in

an ad-hoc change of the WF instance behavior. As opposed to our approach, none of
these works explicitly addresses how ad-hoc changes and distributed WF execution
interact. The approach proposed in (Cichocki, 2000) enables some kind of flexibility
in distributed WfMS as well, especially in the context of virtual enterprises. However,
it does not allow to adapt the structure of in-progress WF instances. Instead, the
activities of a WF template represent placeholders for which the concrete
implementations are selected at run-time – a similar approach is provided by pockets
of flexibility (Sadiq, 2001; Sadiq, 2005). Finally, DYCHOR allows for structural
changes of process choreographies, but without taking state information into account
(Rinderle, 2006b).

There are several approaches for distributed WF management where a WF instance is
controlled by one and the same WF server over its entire lifetime; e.g., Exotica
(Alonso, 1994) and MOBILE (Jablonski, 1997). The latter approach was extended in
(Schuster, 1999) such way that a sub-process may be controlled by a different WF
server to be determined at run-time. Though migrations are not performed, different
WF instances may be controlled by different WF servers. Furthermore, since a central
control component (i.e., WF engine) exists for each WF instance in these approaches,
ad-hoc changes may be performed just as in a central WfMS. Yet there is a drawback
with respect to communication costs (Bauer, 1999) since the distribution model does
not allow to select the most favorable WF server for the individual activities. When
developing our approach, we therefore did not follow such an approach since the
additional costs incurred in standard WF execution are higher than the savings
generated due to the (relatively seldom performed) ad-hoc changes.

SUMMARY AND OUTLOOK

Both distributed WF execution and ad-hoc WF changes are essential features of any
WfMS in order to enable flexible process-aware information systems. However, each
of these aspects is closely linked with a number of requirements and objectives that
are, to some extent, opposing. Typically, the central control instance required for ad-
hoc changes impacts the efficiency of (distributed) WF execution. For these reasons
we cannot afford to consider these two fundamental aspects separately. In this book
chapter, an investigation of exactly how these two features interact has been
presented. Our results have shown that are, in fact, compatible. We have realized ad-
hoc changes in a distributed WfMS efficiently. Our approach also allows for the
efficient distributed control of changed WF instances. The described techniques make
use of the fact that only a parts of the relatively small change history need to be
transmitted when transferring a modified WF execution schema to another WF server.
This is vital as migrations are frequently performed operations. As demonstrated with
our proof-of-concept prototype, our approach succeeds in seamlessly integrating both
distributed WF execution and ad-hoc changes into a single system.

There is room for further optimization regarding the selection of the WF servers that
need to be synchronized in the context of an ad-hoc change. If such a change affects
only a particular region of the WF schema, it could be performed by only those active
WF servers controlling that region of the WF instance. This would reduce
synchronization and communication efforts. In the extreme case, if only a single
branch of a parallel branching has to be changed, only a single server must perform
the change. However, activities belonging to parallel branches may be impacted by
the change performed (e.g. due to dependencies in the data flow), thus necessitating

synchronization of the respective WF servers in these cases. Our work has shown that
the opportunity to deploy such an enhancement is fairly rare so that a significant
improvement in the behavior of the system cannot be expected.

Generally, non-trivial interdependencies exist among the different features of a
WfMS, which should be carefully analyzed and understood. One cannot implement
such WfMS by adding one balcony to the other to deal with situation-specific
problems. Instead a proper framework is needed which allows to argue about WF
correctness and which covers all possible scenarios. The ADEPT1 project (Dadam,
1998) has reflected this way of thinking from the very beginning. In ADEPT2
(Reichert, 2005), we have extended respective research activities to other aspects as
well, e.g., concerning the mining and evolution of access control constraints (Ly,
2005; Rinderle-Ma, 2007+2008c) or different techniques for learning from ad-hoc
changes (Rinderle, 2005; Günther, 2006; Li, 2008). Recently, we have started our
research on WF change patterns (Weber, 2007+ 2008a+2009; Rinderle-Ma, 2008b),
WF refactoring techniques (Weber, 2008b), and data-driven WF coordination and
adaptation (Müller, 2007+2008).

REFERENCES

van der Aalst, W.M.P., & ter Hofstede, A. (2000). Verification of workflow task structures: a Petri-net-
based approach. Information Systems, 25(1), 43–69.

van der Aalst, W.M.P. (2001 a). Exterminating the dynamic change bug: a concrete approach to
support workflow change. Information Systems Frontiers, 3(3), 297–317

van der Aalst, W.M.P. (2001 b). How to handle dynamic change and capture management information:
an approach based on generic workflow models. Int. Journal of Computer Systems, Science, and
Engineering, 16(5), 295–318.

van der Aalst, W.M.P., & Basten, T. (2002). Inheritance of workflows: an approach to tackling
problems related to change. Theoretical Computer Science, 270(1-2), 125-203.

Adams, M., ter Hofstede, A., Edmond, D., & van der Aalst, W.M.P. (2006). Worklets: a service-
oriented implementation of dynamic flexibility in workflows, In: Proc. Coopis'06 (pp. 291-308).

Alonso, G., Kamath, M., Agrawal, D., El Abbadi, A., Günthör, R., & Mohan, C. (1994). Failure
handling in large scale workflow management systems. TR RJ9913, IBM Almaden Research Center.

Alonso, G., Mohan, C., Günthör, R., Agrawal, D., El Abbadi, A., & Kamath, M. (1995). Exotica/
FMQM: persistent message-based architecture for distributed workflow management. In Proc. IFIP
Working Conf. on Inf. Syst. for Decentralized Organisations, Trondheim, Norway.

Barbará, D., Mehrotra, S., & Rusinkiewicz, M. (1996). INCAs: Managing dynamic workflows in
distributed environments. Journal of Database Management, 7(1), 5–15.

Bassil, S., Keller, R., & Kropf, P. (2004). A workflow-oriented system architecture for the management
of container transportation, in: Proc. BPM'04 (pp. 116-131), Potsdam, Germany, LNCS 3080.

Bauer, T., & P. Dadam (1997). A distributed execution environment for large-scale workflow
management systems with subnets and server migration. In Proc. CoopIS’97 (pp. 99–108).

Bauer, T., & Dadam, P. (1999). Efficient distributed control of enterprise-wide and cross-enterprise
workflows. In Proc. GI-Workshop on Enterprise-wide and Cross-enterprise Workflow Management:
Concepts, Systems, Applications (pp. 25–32), Paderborn, Germany.

Bauer, T., & Dadam, P. (2000). Efficient distributed workflow management based on variable server
assignments. In Proceedings CAiSE’00 (pp. 94–109), Stockholm, Sweden.

Bauer, T., Reichert, M., & Dadam, P. (2001). Effiziente Übertragung von Prozessinstanzdaten in
verteilten Workflow-Management-Systemen. Informatik - Forschung und Entwicklung, 16(2), 76-92.

Bauer, T., Reichert, M., & Dadam, P. (2003). Intra-subnet load balancing for distributed workflow
management systems. International Journal of Cooperative Information Systems, 12(3), 295–323.

Bauer, T., & Reichert, M. (2004). Dynamic change of server assignments in distributed workflow
management systems. In: Proc. ICEIS'04 (pp. 91-98), Porto, Portugal.

Casati, F., Grefen, P., Pernici, B., Pozzi, H., & Sánchez. G. (1996). WIDE: workflow model and
architecture. CTIT Technical Report 96-19, University of Twente, The Netherlands.

Casati, F., Ceri, S., Pernici, B., & Pozzi, G. (1998). Workflow evolution. Data & Knowledge
Engineering, 24(3), 211–238.

Cichocki, A., Georgakopoulos, D., & Rusinkiewicz, M. (2000). Workflow migration supporting virtual
enterprises. In Proceedings BIS’00 (pp. 20–35), Poznán, Poland.

Dadam, P., & Reichert, M. (1998). The ADEPT WfMS Project at the University of Ulm. Proc. 1st
European Workshop on Workflow Management, Zurich, Switzerland.

Dadam, P., & Reichert, M., eds. (1999). Enterprise-wide and cross-enterprise workflow management:
concepts, systems, applications. CEUR Workshop Proceedings, Vol. 24.

Dadam, P., Reichert, M., & Kuhn, K. (2000). Clinical workflows - the killer application for process-
oriented information systems? In: Proc. 4th Int'l Conf. on Business Information Systems (BIS'00)
(pp. 36-59), Poznan, Poland.

Dogac, A. et al. (1997). Design and implementation of a distributed workflow management system:
METUFlow. In: Proc. NATO Advanced Study Institute on Workflow Management Systems and Inter-
operability (pp. 61–91), Istanbul, Turkey.

Ellis, C.A., & Maltzahn, C. (1997). The Chautauqua workflow system. In Proc. 30th Hawaii Int. Conf.
on System Sciences, Maui, Hawaii.

Geppert, A., & Tombros, D. (1998). Event-based distributed workflow execution with EVE. In Proc.
IFIP Int. Conf. on Distributed Systems Platforms and Open Distributed Processing (pp. 427–442).

Golani, M., & Gal, A. (2006). Optimizing exception handling in workflows using process restructuring,
In: Proc. BPM'06 (pp. 407-413), Vienna, Austria, LNCS 4102.

Gray, J., & Reuter, A. (1993). Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers.

Gronemann, B., Joeris, G., Scheil, S., Steinfort, M., & Wache, H. (1999). Supporting cross organi-
zational engineering processes by distributed collaborative workflow management - the MOKASSIN
approach. In Proc. 2nd Symposium on Concurrent Multidisciplinary Engineering, Bremen, Germany.

Günther, C.W., Rinderle, S., Reichert, M., & van der Aalst, W.M.P. (2006). Change mining in adaptive
process management systems. In: Proc. 14th Int'l Conf. on Cooperative Information Systems
(Coopls'06) (pp. 309-326), Montpellier, France. Springer, LNCS 4275.

Günther, C.W., Reichert, M., & van der Aalst, W.M.P. (2008 a) Supporting flexible processes with
adaptive workflow and case Handling. In: Proceedings WETICE'08, 3rd IEEE Workshop on Agile
Cooperative Process-aware Information Systems, Rome, Italy.

Günther, C.W., Rinderle-Ma, S., Reichert, M., van der Aalst, W.M.P., & Recker, J. (2008 b) Using
process mining to learn from process changes in evolutionary systems. Int'l Journal of Business
Process Integration and Management, Special Issue on Business Process Flexibility , 3(1), 61-78

Guth, V., Lenz, K., & Oberweis, A. (1998). Distributed workflow execution based on fragmentation of
Petri nets. In Proc. 15th IFIP World Computer Congress: Telecooperation - The Global Office,
Teleworking and Communication Tool (pp. 114–125).

Han, Y., & Sheth, A. (1998). On adaptive workflow modeling. In Proc. 4th Int. Conf. on Information
Systems Analysis and Synthesisis, Orlando

Hallerbach, A., Bauer, T., & Reichert, M. (2008). Managing process variants in the process lifecycle.
In: Proc. 10th Int'l Conf. on Enterprise Information Systems (ICEIS'08), (pp. 154-161), Barcelona.

Jablonski, S. (1997). Architecture of workflow management systems. Informatik, Forschung und
Entwicklung, 12(2), 72–81.

Joeris, G., & Herzog, O. (1998). Managing evolving workflow specifications. In Proceedings
CoopIS’98 (pp. 310–321), New York.

Kamath, M., Alonso, G., Günthör, R., & Mohan, C. (1996). Providing high availability in very large
workflow management systems. In Proc. EDBT’96 (pp. 427–442), Avignon, France.

Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., & Cardoso, J. (2003).
IntelliGEN: a distributed workflow system for dscovering protein-protein interactions, Distributed and
Parallel Databases, 13 (1), 43-72.

Kradolfer, M., & Geppert, A. (1999). Dynamic workflow schema evolution based on workflow type
versioning and workflow migration. In Proc. CoopIS’99 (pp. 104–114), Edinburgh, Scotland.

Lenz, R., & Reichert, M. (2007). IT support for healthcare processes - premises, challenges,
perspectives. Data & Knowledge Engineering, 61, 82–111.

Li, C., Reichert, M., & Wombacher, A. (2008). Discovering reference process models by mining
process variants. In: Proc. 6th Int'l IEEE Conference on Web Services (ICWS'08), Beijing, pp. 45-53

Ly, L.T., Rinderle, S., Dadam, P., & Reichert, M. (2005). Mining staff assignment rules from event-
based data. In: Proc. Workshop on Business Process Intelligence (BPI) (pp. 177-190), Workshop in
conjunction with BPM'05 conference, Nancy, France, LNCS 3812.

Minor, M., Schmalen, D., Koldehoff, A., & Bergmann, R. (2007). Structural adaptation of workflows
supported by a suspension mechanism and by case-based reasoning, In: Proc. WETICE'07 (pp. 370-
375), Paris.

Montagut, F., & Molva, R. (2007). Enforcing integrity of execution in distributed workflow
management systems, In: IEEE Conf. on Services Computing (SCC’07) (pp. 1-8)

Mourào, H., & Antunes, P. (2007). Supporting effective unexpected exceptions handling in workflow
management systems, In: Proc. SAC'07 (pp. 1242-1249)

Müller, D., Herbst, J., Hammori, M., & Reichert, M. (2006). IT support for release management
processes in the automotive industry. In: Proc. 4th Int'l Conf. on Business Process Management
(BPM'06) (pp. 368-377), Vienna, Austria, LNCS 4102.

Müller, D., Reichert, M., & Herbst, J. (2007). Data-driven modeling and coordination of large process
structures. In: Proc. 15th Int'l Conf. on Cooperative Information Systems (CoopIS’07) (pp. 131-149),
Vilamoura, Portugal, LNCS 4803.

Müller, D. and Reichert, M., & Herbst, J. (2008) A new paradigm for the enactment and dynamic
adaptation of data-driven process structures. In: Proc. 20th Int'l Conf. on Advanced Information
Systems Engineering (CAiSE'08) (pp. 48-63), Montpellier, France, LNCS 5074.

Muth, P., Wodtke, D., Weißenfels, J., Kotz-Dittrich, A., & Weikum, G. (1998). From centralized
workflow specification to distributed workflow execution. J of Intelligent Inf. Sys., 10(2), 159–184.

Mutschler, B., Bumiller, J., & Reichert, M. (2006). Why Process-Orientation is Scarce: An empirical
study of process-oriented information systems in the automotive industry. In: Proc. 10th IEEE Int.
Conf. on Enterprise Computing (EDOC '06) (pp. 433-440), Hong Kong, China.

Mutschler, B., Reichert, M., & Bumiller, J. (2008 a). Unleashing the effectiveness of process-oriented
information systems: problem analysis, critical success factors and implications. IEEE Transactions on
Systems, Man, and Cybernetics (Part C), 38(3), 280-291.

Mutschler, B., Weber, B., & Reichert, M. (2008 b). Workflow management versus case handling:
results from a controlled software experiment. In: Proc. 23rd Annual ACM Symposium on Applied
Computing (SAC'08) (pp. 82-89), Fortaleza, Ceará, Brazil.

Pesic, M., Schonenberg, M., Sidorova, N., van der Aalst, W.M.P. (2007). Constraint-based workflow
models: change made easy., in: Proc. CoopIS'07 (pp. 77-94), Vilamoura, Portugal, LNCS 4803.

Reichert, M., & Dadam, P. (1998 a). ADEPTflex – supporting dynamic changes of workflows without
losing control. Journal of Intelligent Information Systems, 10(2), 93–129, 1998.

Reichert, M., Hensinger, C., & Dadam, P. (1998 b). Supporting adaptive workflows in advanced
application environments. In: Proc. EDBT Workshop on Workflow Management Systems (pp. 100-109),
March 1998, Valencia, Spain.

Reichert, M., Bauer, T., & Dadam, P. (1999). Enterprise-wide and cross-enterprise workflow
management: challenges and research issues for adaptive workflows. In: Proc. Workshop Informatik
'99, CEUR Workshop Proceedings, Vol. 24 (pp. 56-64), Paderborn, Germany.

Reichert, M. (2000). Dynamische Ablaufänderungen in Workflow-Management-Systemen. PhD thesis,
University of Ulm (in German).

Reichert, M., Dadam, P., & Bauer, T. (2003 a). Dealing with forward and backward jumps in workflow
management systems. Int'l Journal Software and Systems Modeling, 2(1), 37-58.

Reichert, M., Rinderle, S., & Dadam, P. (2003 b). On the common support of workflow type and
instance changes under correctness constraints. In: Proc. 11th Int'l Conf. Cooperative Information
Systems (CooplS '03) (pp. 407-425), Catania, Italy, LNCS 2888.

Reichert, M., Rinderle, S., & Dadam, P. (2003 c) ADEPT workflow management system - flexible
support for enterprise-wide business processes. In: Proc. 1st Int'l Conf. on Business Process
Management (BPM '03) (pp. 371-379), Eindhoven, Netherlands, LNCS 2678.

Reichert, M., Rinderle, S., Kreher, U., & Dadam, P. (2005) Adaptive process management with
ADEPT2. In: Proc. Int'l Conf. on Data Engineering (ICDE'05) (pp. 1113-1114), Tokyo.

Reichert, M., & Bauer, T. (2007): Supporting ad-hoc changes in distributed workflow management
aystems. In Proc. CoopIS'07 (pp. 150 – 168), Vilamoura, Portugal, LNCS 4803.

Rinderle, S., Reichert, M., & Dadam, P. (2003) Evaluation of correctness criteria for dynamic
workflow changes. In: Proc. 1st Int'l Conf. on Business Process Management (BPM '03) (pp. 41-57),
Eindhoven, Netherlands, LNCS 2678,

Rinderle, S., Reichert, M., & Dadam, P. (2004 a). Flexible support of team processes by adaptive
workflow systems. Distributed and Parallel Databases, 16(1), 91–116.

Rinderle, S., Reichert, M., & Dadam, P. (2004 b). Disjoint and overlapping process changes:
challenges, solutions, applications. In: Proc. 11th Int'l Conf. on Cooperative Information Systems
(CooplS'04) (pp. 101-121), October 2004, Agia Napa, Cyprus. LNCS 3290.

Rinderle, S., Reichert, M., & Dadam, P. (2004 c). On dealing with structural conflicts between process
type and instance changes. In: Proc. 2nd. Int'l Conf. Business Process Management (BPM'04) (pp. 274-
289), June 2004, Potsdam, Germany, LNCS 3080.

Rinderle, S., Weber, B., Reichert, M., & Wild, W. (2005) Integrating process learning and process
evolution - a semantics based approach. In: Proc. 3rd Int'l Conf. on Business Process Management
(BPM'05) (pp. 252-267), Nancy, France. LNCS 3649.

Rinderle, S., Reichert, M., Jurisch, M., & Kreher, U. (2006 a) On representing, purging, and utilizing
change logs in process management systems. In: Proc. 4th Int'l Conf. on Business Process
Management (BPM'06) (pp. 241-256), Vienna, Austria, LNCS 4102.

Rinderle, S., Wombacher, A., & Reichert, M. (2006 b) Evolution of process choreographies in
DYCHOR. In: Proc. 14th Int'l Conf. on Coop. Inf. Sys. (pp. 273-290), Montpellier, LNCS 4275.

Rinderle-Ma, S., & Reichert, M. (2007). A formal framework for adaptive access control models.
Journal on Data Semantics IX , Springer, LNCS 4601, 82-112.

Rinderle-Ma, S., Reichert, M., & Weber, B. (2008 a). Relaxed compliance notions in adaptive process
management systems. In: Proc. 27th Int'l Conf. on Conceptual Modeling (ER'08) (pp. 232-247),
Barcelona, Spain, LNCS 5231.

Rinderle-Ma, S., Reichert, M., & Weber, B. (2008 b) On the formal semantics of change patterns in
process-aware information systems. In: Proc. 27th Int'l Conference on Conceptual Modeling (ER'08)
(pp. 279-293), Barcelona, Spain, LNCS 5231.

Rinderle-Ma, S., & Reichert, M. (2008 c). Managing the life cycle of access rules in CEOSIS. In: Proc.
of the 12th IEEE Int’l Enterprise Computing Conference (EDOC'08) (pp. 257-266), Munich, Germany.

Sadiq, S., Sadiq, W., & Orlowska, M. (2001). Pockets of flexibility in workflow specifications, In:
Proc. ER'01 (pp. 513-526).

Sadiq, S., Sadiq, W., & Orlowska, M. (2005). A framework for constraint specification and validation
inflexible workflows, Information Systems, 30 (5), 349-378.

Schill, A., & Mittasch, C. (1996). Workflow management systems on top of OSF DCE and OMG
Corba. Distributed Systems Engineering, 3(4), 206-233

Schuster, H., Neeb, J., & Schamburger, R. (1999). A configuration management approach for large
workflow management systems. In Proc. Int. Conf. on Work Activities Coordination and Collabo-
ration, San Francisco, 1999.

Shegalov, G., Gillmann, M., & Weikum, G. (2001). XML-enabled workflow management for e-
services across heterogeneous platforms. VLDB Journal, 10(1), 91–103.

Sheth, A., & Kochut, K.J. (1997). Workflow applications to research agenda: scalable and dynamic
work coordination and collaboration systems. In: Proc. NATO Advanced Study Institute on Workflow
Management Systems and Interoperability (pp. 12–21), Istanbul, Turkey.

Staffware (2003). Server Administration Guide. Tool Documentation.

Weber, B., Wild, W., & Breu, R. (2004). CBRFlow - enabling adaptive workflow management through
conversational case-based reasoning. In Proc. ECCBR'04 (pp. 434-448), Madrid, Spain, LNCS 3155.

Weber, B., Rinderle, S., Wild, W., & Reichert, M. (2005 a). CCBR-driven business process evolution.
In: Proc. 6th Int'l Conf. on Case-Based Reasoning (ICCBR'05) (pp. 610-624), Chicago, LNCS 3620.

Weber, B., Reichert, M., Wild, W., & Rinderle, S. (2005 b) Balancing flexibility and security in
adaptive process management systems. In: Proc. 13th Int'l Conf. on Cooperative Information Systems
(CooplS '05) (pp. 59-76), Agia Napa, Cyprus. LNCS 3760.

Weber, B., Reichert, M., Rinderle, S., & Wild, W. (2006 a). Towards a framework for the agile mining
of business processes. In: BPM'05 Workshop Proceedings (pp. 191-202), Nancy, LNCS 3812.

Weber, B., Reichert, M., & Wild, W. (2006 b). Case-base maintenance for CCBR-based process
evolution. In: Proc. 8th European Conf. on Case-Based Reasoning (ECCBR'06) (pp. 106-120),
Ölüdeniz, Turkey. LNCS 4106.

Weber, B., Rinderle, S., & Reichert, M. (2007). Change patterns and change support features in
process-aware information systems. In Proc. 19th Int’l Conf. on Advanced Information Systems
Engineering (CAiSE’07) (pp. 574–588), Trondheim, LNCS 4495.

Weber, B., Reichert, M. & Rinderle-Ma, S. (2008). Change patterns and change support features -
enhancing flexibility in process-aware information systems. Data and Knowledge Engineering, 66(3),
438-466.

Weber, B., & Reichert, M. (2008 b). Refactoring process models in large process repositories., in:
Proc. CAiSE'08 (pp. 124-139), Montpellier, France, LNCS 5074.

Weber, B., Reichert, M., Wild, W., & Rinderle-Ma, S. (2009). Providing integrated life cycle support
in process-aware information systems. Int'l Journal of Cooperative Information Systems (IJCIS), 18(1).

Weske, M. (1998). Flexible modeling and execution of workflow activities. In Proc. 31st Hawaii Int.
Conf. on Sys Sciences (pp. 713–722), Hawaii.

Weske, M. (1999). Workflow management through distributed and persistent CORBA workflow
objects. In Proc. CAiSE’99 (pp. 446–450), Heidelberg, Germany.

Weske, M. (2007). Business process management: concepts, methods, technology, Springer.

