
Flexibility in Process-aware Information Systems

Manfred Reichert, Stefanie Rinderle-Ma, and Peter Dadam

Institute of Databases and Information Systems, Ulm University, Germany,
{manfred.reichert, stefanie.rinderle, peter.dadam}@uni-ulm.de

Abstract. Process-aware information systems (PAIS) must be able to
deal with uncertainty, exceptional situations, and environmental changes.
Needed business agility is often hindered by the lacking flexibility of
existing PAIS. Once a process is implemented, its logic cannot be adapted
or refined anymore. This often leads to rigid behavior or gaps between
real-world processes and implemented ones. In response to this drawback,
adaptive PAIS have emerged, which allow to dynamically adapt or evolve
the structure of process models under execution. This paper deals with
fundamental challenges related to structural process changes, discusses
how existing approaches deal with them, and shows how the various
problems have been exterminated in ADEPT2 change framework. We
also survey existing approaches fostering flexible process support.

1 Introduction

In many application domains process-aware information systems (PAIS) will be
not accepted by users if rigidity comes with them [1–4]. Instead, it should be
possible to quickly implement new processes, to enable on-the-fly adaptations of
running ones, to defer decisions regarding the exact process logic to runtime, and
to evolve implemented processes over time. Consequently, process flexibility has
been identified as one of the fundamental needs for any PAIS and different en-
abling technologies have emerged [5–8]. They support adaptive processes [9–11],
declarative models [7], late modeling [12, 13], and data-driven processes [14, 15].
Basically, we need to be able to deal with uncertainty, to cope with exceptions,
and to evolve processes over time:

– Ability to deal with uncertainty. The implemented process is based on a
loosely or partially specified model, where the full specification is made dur-
ing runtime and may be unique to each process instance. Rather than en-
forcing control through a rigid, or highly prescriptive model, that attempts
to capture every aspect, the model is defined in a more declarative or incom-
plete way that allows individual instances to determine their own processes.

– Ability to adapt processes. The implemented process is able to react to ex-
ceptions, which may or may not be foreseen and which affect one or a few
instances. Generally, it must be possible to adapt the structure and/or state
of the process model of a particular instance. Respective adaptations, how-
ever, must not affect other instances being executed on this model as well.

– Ability to evolve processes. A process model has to be changed when the busi-
ness process evolves. One challenge concerns the handling of long-running,
active instances, which were initiated based on the old model, but now need
to comply with the new specification. Potentially, thousands of active in-
stances may be affected.

This paper focuses on structural adaptations of process models at different levels.
Adaptations of single process instances (e.g., to add, delete or move activities)
become necessary to deal with exceptional situations and often have to be ac-
complished in an ad-hoc manner [11]. Model changes at the process type level,
in turn, have to be continuously conducted to evolve the PAIS [9, 5]. It must
be also possible to dynamically migrate running process instances to new model
versions. Important challenges are to perform instance migrations on-the-fly, to
guarantee compliance of migrated instances with the new model version, and to
avoid performance penalties. Our ADEPT2 change framework addresses these
challenges and explicitly covers the latter two kinds of flexibility; i.e., the adap-
tation and evolution of processes. However, through its ability to support late
binding of sub-processes and to dynamically evolve or define these sub-processes,
ADEPT2 is also able to support late modeling, and thus to deal with certain
kinds of uncertainty.

The ultimate ambition of structural process adaptations during runtime is
to ensure correctness of the modified instances afterwards. First, structural and
behavioral soundness have to be guaranteed already at the model level (i.e.,
without considering instance states). Second, when performing instance adapta-
tions this must not lead to flaws (e.g., deadlocks); i.e., none of the guarantees
ensured by formal checks at build time must be violated due to the runtime
adaptation. As example consider Fig. 1 where the model on the left-hand side
is structurally modified by arranging parallel activities B and C in sequence af-
terwards. The instance running on the old model (with B being enabled and C
being completed) does not comply with the new model version since its marking
cannot be transferred to it (B must be completed before C may start). Such unde-
sired runtime situations are denoted as dynamic change bug [16]. To exterminate
them adequate correctness criteria are needed; e.g., to decide whether a given
process instance is compliant with a modified process model and – if yes – how
to adapt instance states when migrating the instance to the new model version.

D A B C

C

A D

B Process
Instance I:

Change ∆

dynamic change bug

Fig. 1. Dynamic change bug

In the following we deal with different correctness notions for dynamic process
changes and discuss the strengths and weaknesses of the approaches relying on

them. Based on these considerations we show how we deal with respective issues
in ADEPT2, which constitutes one of the very few adaptive PAIS which allows
for structural process changes during runtime at instance and type level. Section
2 introduces fundamental challenges emerging in the context of dynamic process
changes and discusses existing approaches for dealing with them. Section 3 shows
how ADEPT2 tackles the different challenges and exterminates dynamic change
bugs. This includes both the control and the data flow perspective as well has
the viewpoint of users. We survey alternative solutions for process flexibility in
Section 4 and conclude with a summary in Section 5.

2 Fundamental challenges of dynamic process changes

2.1 Basic notions

When implementing a new process in a PAIS its logic has to be explicitly de-
fined based on the provided process meta model. For each business process to be
supported, a process type represented by a process schema (i.e., process model)
is defined. For one particular process type several schemes may exist represent-
ing the different versions and the evolution of this type over time. Based on a
process schema an arbitrary number of new process instances can be created and
executed. The PAIS orchestrates them according to the defined process logic.

For defining structural process adaptations two options exist. On the one
hand, respective schema adaptations can be defined based on a set of change
primitives (e.g., to add or delete edges). Following this approach, realization of
a particular structural adaptation usually requires the application of multiple
change primitives. To specify structural adaptations at this low level of abstrac-
tion, however, is a complex and error-prone task. Another, more favorable option
is to base structural adaptations on high-level change patterns [6, 17], which ab-
stract from the concrete schema transformations to be conducted (e.g., to add
a process fragment parallel to an activity or to move a fragment to a new posi-
tion). Instead of specifying a set of change primitives the user applies one or few
high-level change operations to define the required structural change.

Definition 1 (Process change). Let PS be the set of all process schemas and
let S, S’ ∈ PS. Let further ∆ = <op1, . . . , opn> denote a process change which
applies change operations opi i = 1, . . . , n, n ∈ N sequentially. Then:

1. S[∆> S′ if and only if ∆ is correctly applicable to S. S’ is the process schema
resulting from the application of ∆ to S (i.e., S’ ≡ S + ∆). We call a change
∆ correctly applicable to a schema S if all formal pre-conditions of ∆ are
met for S or resulting schema S’ is a correct process schema according to the
correctness criteria set out by the process meta model of interest.

2. S[∆>S’ if and only if there are process schemas S1, S2, . . . , Sn+1 ∈ PS with
S = S1, S’ = Sn+1 and for 1 ≤ i ≤ n: Si[∆i>Si+1 with ∆i = <opi>

We assume that change ∆ is applied to a sound process schema S [18]; i.e., S
obeys the specific correctness constraints set out by the used process meta model

(e.g., bipartite graph structure for Petri Nets). We denote this as structural
soundness. We further claim that S’ must obey behavioral soundness; i.e., any
instance executed on S’ must not run into a deadlock or livelock. This can be
achieved in two ways. Either ∆ itself preserves soundness based on pre-/post-
conditions of the applied change patterns [11], or ∆ is first applied on a schema
copy and soundness of the resulting schema version S’ is checked afterwards.

Another basic notion used in the following is process trace. Such trace se-
quentially logs the entries about the start and completion of process activities.

Definition 2 (Trace). Let PS be the set of all process schemas and let A
be the total set of activities (or more precisely activity labels) based on which
process schemas S ∈ PS are specified (without loss of generality we assume
unique labeling of activities). Let further QS denote the set of all possible traces
producible on process schema S ∈ PS. A particular trace σS

I ∈ QS of instance
I on S is defined as σS

I = < e1, . . . , ek > (with ei ∈{Start(a), End(a)}, a ∈ A,
i = 1, . . . , k, k ∈ N). The temporal order of ei in σS

I reflects the order in which
activities were started and/or completed over S.1

2.2 Under which conditions may process instances be adapted?

Most approaches dealing with structural instance adaptations [16, 19, 10, 5, 8]
focus on correctness; i.e., applying a change to a running instance must neither
violate its structural nor behavioral soundness. The correctness criteria used
by adaptive PAIS vary and have led to different implementations [9]. Basically,
there are structural and behavioral correctness criteria. While criteria from the
former group try to structurally relate the process schema before the change to
the resulting schema version [16, 8] (e.g., using inheritance relations for realizing
the schema mapping), the latter are based on execution traces; i.e., they compare
which traces are producible on a process schema before and after its change.

Structural criteria. One approach relying on structural criteria in con-
nection with dynamic changes exists for WF Nets [16]. A WF Net is a labeled
place/transition net representing a control flow schema [16, 20]. A sound WF Net
has to be connected, safe, and deadlock free as well as free of dead transitions.
Furthermore, sound WF Nets always properly terminate. Behavior of a process
instance is described by a marked WF net. Core idea of the corresponding change
framework is as follows: An instance I on schema S (represented by a marked
WF Net) is considered as compliant with the modified schema S′ := S + ∆, if S
and S′ are related to each other under given inheritance relations; i.e., either S
is a subclass of S′ or vice versa. The following two kinds of inheritance relations
are used [16]: A schema S is a subclass of another schema S′ if one cannot distin-
guish behaviors of S and S′ anymore either (1) when only executing activities of
S which also belong to S′ or (2) when arbitrary activities of S are executed, but
only effects of activities being present in S′ as well are taken into account. Thus,
Inheritance Relation (1) works by blocking and Inheritance Relation (2) can be

1 An entry of a particular activity can occur multiple times due to loopbacks.

realized by hiding a subset of the activities from S. More precisely, blocked ac-
tivities are not considered for execution. Hiding activities implies that they are
renamed to the silent activity τ . (A silent activity τ has no visible effects and
is used, for example, for structuring purposes.) Consider the example from Fig.
2 where the newly inserted activities X and Y are hidden by labeling them to
the silent activity τ . Thus, S′ is a subclass of S. Further inheritance relations
can be obtained by combined hiding and blocking of activities. Based on these
inheritance relations we can state the following correctness criterion:

Criterion CC 1 (Compliance under inheritance relations) Let S be a process
schema which is correctly transformed into another schema S’ by applying change
∆. Then instance I on S is compliant with S’ if S and S’ are related to each other
under inheritance (see [16] for a formal definition).

CC 1 ensures structural and behavioral soundness of instance I after applying
change ∆ to it. The question remains how to ensure CC 1; i.e., how to check
whether ∆ is an inheritance preserving change and therefore S and S′ are related
under inheritance. [16] defines precise conditions with respect to S and S′. When
inserting a new net N into S, S and S′ will be related under inheritance if N
and S have exactly one place in common. This will be the case, for example, if a
cyclic structure Nc is inserted into S (resulting in S’) as shown in Fig. 2. Since S′

is a subclass of S when hiding X and Y in Nc, soundness of I on S′ is guaranteed.
Checking inheritance of arbitrary process schemes is PSPACE-complete [16].

A B

Instance I on S:
A B

X τ

Y τ

I on S’:
Nc

Fig. 2. Inheritance preserving change: insertion of cyclic structure

Using inheritance relations restricts the set of applicable changes to additive
and subtractive ones. There is no adequate relation based on hiding/blocking
activities in connection with order-changing operations. Nevertheless, this ap-
proach covers many relevant changes and copes with them without need for
accessing instance states. It can be used for both correctness checks on single
instances and on instance collections (e.g., WF Nets with colored tokens). It is
debatable whether it also works with concurrent changes. Assume, for example,
that instance I on S is changed resulting in instance-specific schema SI , which
is related to S under inheritance. Assume further that at process type level S
is changed to S’ (which is again under inheritance with S). Then it has to be
analyzed whether SI and S’ are also related to each other under inheritance.

Behavioral criteria. A widely-used correctness property is the trace-based
compliance criterion introduced by [19]. Intuitively, change ∆ on schema S (i.e.,
S[∆ > S′) can be correctly applied to instance I on S iff the execution of

I, taken place so far, can be ”simulated” on the new schema version S′ as
well. [19] bases compliance on trying to replay trace σS

I of I on S′. If this is
possible, behavioral soundness can be guaranteed when migrating I to S′ [19, 5].
In summary, compliance is fundamental for changing both, single instances and
instance collections. Basically, it also allows for concurrent changes. We discuss
respective extensions in Section 3.5. Finally, the idea of preserving traces by
structural changes based on Petri Nets is described in [21, 10].

2.3 How to adapt instance states after dynamic changes?

In addition to decide whether change ∆ can be correctly applied to an instance,
it becomes necessary to properly and correctly adapt instance states afterwards.

Structural approaches. [16] provides transfer rules based on the aforemen-
tioned inheritance relations (cf. Criterion CC 1) to cope with marking adapta-
tions in the context of WF net changes. After applying change ∆ to schema S
(i.e., S[∆ > S′), necessary marking adaptations are realized by mapping mark-
ings of instances running on S onto markings on S′. Adapting markings after
inserting parallel branches, for example, is complicated since in some cases we
have to insert additional tokens to avoid deadlocks. Fig. 3 shows an example. By
just mapping the token of s3 on S to place s3 on S’, a deadlock is produced. [16]
proposes to insert an additional token on s5 (progressive transfer rule). Though
the resulting marking on S’ is correct, the semantics of newly inserted tokens is
debatable, particularly, if colored tokens (i.e., data flows) are considered as well.

Transfer rules insert new control tokens to avoid deadlocks in the sequel

A B C D

progressive
transfer rule

X

 A B C D

Instance I: Transfer Rule

s3 s3

s5

Fig. 3. Marking adaptation policy in [16, 20]

Another approach has been proposed for Flow Nets [10] for which an explicit
mapping between the markings of the net before and after the change has to be
specified. This is done manually by adding flow jumpers; i.e., transitions mapping
tokens from the old to the new net (cf. Fig. 4). Both single instances or instance
collections can be migrated. The handling of concurrent changes at instance
and type level, however, is cumbersome, since several new net versions have to
be merged with the old net via flow jumpers. Manually specifying mappings
between instance markings is not a realistic option in practice. As it can be see
from Fig. 4 respective mappings already become complex for simple scenarios.

Behavioral approaches. Checking compliance means to replay instance
traces on the changed process schema. Thus, marking adaptations come for free.
However, at the presence of thousands of running instances, replaying whole
traces becomes too expensive. In Sect. 3 we introduce a more sophisticated ap-
proach for automatically checking compliance and adapting instance markings. It

has been realized in ADEPT2 [5] and utilizes specific properties of the ADEPT2
meta model as well as the semantics of the ADEPT2 change patterns.

 A B C D
A B C D

A

B

C

D

I on S with marking m: I on SCOC with marking m:

flow jumper old change region N1

new change region N2

N1

Fig. 4. Marking mapping (Synthetic Cut Over Change) [10]

2.4 Discussion

Generally, a correctness criterion is needed which preserves structural and behav-
ioral soundness of the dynamically adapted instances (cf. Fig. 5). This criterion
should be valid independent from the used process meta model. Nonetheless, it
is always applied in the context of a concrete meta model and change framework.
Like serializability in database systems, defining a proper correctness notion is
only one side of the coin. The other is to check it efficiently, particularly at the
presence of a multitude of instances. When applying the criterion for a particu-
lar meta model, logical optimizations for checking it can be based on exploiting
meta model properties as well as the semantics of the applied change operations.
Additional optimizations are conceivable at the implementation level.

Framework-specific

Meta-model independent

General correctness
criterion for dynamic

process change

Implementation-specific

Logical realization
for process meta

model

Optimizations and
implementation

Fig. 5. Correctness of process change – general view

3 Dynamic process changes in ADEPT2

We now elaborate compliance as meta model independent correctness criterion
in the context of a concrete process meta model (i.e., ADEPT2 WSM Nets [5]).
We show how compliance can be efficiently checked and instance markings be
automatically adapted when performing dynamic instance changes.

3.1 WSM Nets

Well-Structured Marking-Nets (WSM Nets) as applied in ADEPT2 can be used
to represent process schemes by attributed serial-parallel graphs (cf. Fig. 6a).
Consider Fig. 6a, which depicts an example of a WSM Net. A WSM Net S

is structurally sound if the following constraints hold: S has a unique start
and a unique end node. Except for these start and end nodes each activity
node has at least one incoming and one outgoing control edge e ∈ CtrlE2.
Structuring nodes such as AND-Splits, XOR-Split, AND-Joins, and XOR-Joins
can be distinguished based on their node type (6a). Loop backs can be explicitly
modeled via loop edges e ∈ LoopE (cf. Fig. 6a). Basically, WSM Nets are block-
structured, where control blocks (sequences, branchings, loops) can be nested,
but must not overlap. We additionally allow to relax this block structure and
to synchronize the execution order of activities from parallel branches by means
of so-called sync links e ∈ SyncE if required. Such sync links must not cross
the boundary of a loop block; i.e., an activity from a loop block must not be
connected with an activity from outside the loop block via a sync link (and vice
versa). Furthermore, Sfwd = (N,CtrlE, SyncE) constitutes an acyclic graph
which allows to exclude deadlocks due to cyclic ”wait-for” dependencies.

c) Trace σI
S

START(A),END(A),START(B), START(LS,1st it),
END(LS), START(K),END(K),END(B,sc1),
START(F),END(F),START(G),END(G),
START(H),END(H),START(N),END(N),
START(J),END(J), START(LE),
END(LE,TRUE),START(Ls,2

nd it),
END(LS),START(C),END(C),START(L),
END(L),START(E),START(F),
END(F),START(G),END(G), START(H),END(H)

d) Reduced representation of trace σI
S

START(A),END(A),START(B),START(K),END(K),
END(B,sc1),START(Ls,2

ndit),
END(LS),START(C),END(C),START(L),
END(L),START(E),START(F),
END(F),START(G),END(G),START(H), END(H)

NT=AND join

A

E

D

C

B

sc1
 (default)

sc2
M

d1 d2 d3

G

F

H

LS LE J

N

L K

write data
edge

read data edge

NT=AND split

NT=
XOR split

NT=XOR join

NT=STARTLOOP NT=ENDLOOP

ET=CONTROL_E

ET=SYNC_E

ET=LOOP_E b) Process instance I:

NS=NodeState ES = EdgeState
 NS = ACTIVATED NS = RUNNING ES = TRUE_SIGNALED

 NS = SKIPPED NS = COMPLETED ES = FALSE_SIGNALED

a) Process schema S modeled as WSM Net:

A

E

D

C

B

M

G

F

H

LS LE J

N

L K

2nd iteration

Fig. 6. WSM Net with running instance, traces, and marking rules

2 i.e.; S is connected

For WSM Nets, data flow is realized by associating process data elements
to activities by read and write edges (cf. Fig. 6a). For activities with manda-
tory input parameters linked to global data elements, it has to be ensured that
respective data elements are always written by a preceding activity at runtime
independent of which execution path is chosen.

Taking the WSM Net S from Fig. 6a new process instances can be cre-
ated and executed (cf. Fig. 6b). Thereby, the execution state of an instance
I is captured by marking function MSI =(NSSI , ESSI) where SI denotes the
instance-specific schema of I. MSI assigns to each activity n its current status
NS(n) and to each edge e its current marking ES(e). Markings are determined
according to well defined firing rules. Based on the local context of an activity
(i.e., incoming and outgoing edges), the activity marking can be determined [11];
markings of already passed regions and skipped branches are preserved (except
loop backs). Activities marked as Activated are ready to fire (i.e., enabled)
and can be worked on. Their status then changes to Running and afterwards
to Completed. Activities belonging to non-selected execution branches obtain
marking Skipped and can no longer be selected for execution (e.g., activity D
in Fig. 6). Concerning data elements, different versions of a data object can be
stored, which is important for the handling of partial rollback operations.

To cope with exceptional situations, instances can be individually modified
by applying high-level change patterns (e.g., to insert or move activities). For
such individually modified instances the instance-specific schema deviates from
the original one they were started on. Respective instances are denoted as bi-
ased. To capture information about instance-specific changes, logically, each in-
stance I runs on an instance-specific schema SI with S[∆I > SI ; ∆I denotes
the instance-specific bias. For unbiased instances, ∆I =<> and consequently
SI ≡ S hold. According to the change patterns framework presented in [6,
22], Tab. 1 presents some high-level change operations, which can be used to
define or structurally modify process schemes. A high-level change operation re-
alizes a particular variant of a change pattern (e.g., serial or parallel insertion of
activities). In ADEPT2 these change operations include formal pre- and post-
conditions. They automatically perform necessary schema transformations while
ensuring structural soundness. One typical example of such a change operation
is the insertion of an activity and its embedding into the process context.

Currently, we are working on an extension of the ADEPT2 meta model to
further increase expressiveness and to cover frequent workflow patterns (see
[23] for details). Generally, there exists a trade-off between expressiveness of
a meta model and support for structural adaptations in imperative approaches.
ADEPT2 has been designed with the goal to enable the latter, i.e., to allow for
the efficient implementation of adaptation patterns, restrictions on the process
meta model are made. Similar restrictions in terms of expressiveness hold for
other approaches supporting structural adaptations [24, 8]. On the other hand,
YAWL is a reference implementation for workflow patterns and therefore allows
for a high degree of expressiveness [25]. Structural adaptations have not yet been

Table 1. A selection of high-level change operations on process schemas

Change pattern Design choice Effects on schema S
AP1: Insert activity

serial inserts the activity between directly succeeding
ones

insert between node sets
without condition inserts the activity parallel to existing ones

with condition conditional insert of the activity
AP2: Delete activity deletes the activity from schema S
AP3: Move activity

serial moves the activity to position between directly suc-
ceeding activities

move between node sets
without condition moves the activity parallel to existing ones
with condition conditional move of the activity

addressed in YAWL and their implementation would be more difficult due to the
higher expressiveness (see Section 4 for more details).

3.2 Checking compliance in ADEPT2

In Section 2 two approaches for ensuring correctness of dynamically adapted
instances are presented. CC 1 enables correctness checks for process changes
without taking instance state into account. However, this comes for the price of
a restricted set of change patterns (e.g., no order-changing operations). On the
other side, traditional compliance [19] uses full instance information as captured
by execution traces. Doing so allows for all kinds of change patterns. However,
traditional compliance has turned out to be too restrictive (e.g., in conjunction
with loops). Apart from this it is expensive to check. ADEPT2 follows an elegant
compromise between these two compliance criteria abolishing their particular
limitations. This is achieved by extending traditional compliance to overcome
its restrictiveness. Furthermore, precise conditions for ensuring compliance are
elaborated, which only take dedicated instance information into account. First
of all, we formalize traditional compliance criterion CC 2:

Criterion CC 2 (Compliance of unbiased instances) Let S be a sound process
schema and let I be an unbiased process instance running on S with associated
execution trace σS

I . Assume that change ∆ transforms S into another sound
process schema S′ (i.e., S[∆ > S′). Then: I will be compliant with S’ (i.e., it
can migrate to S’) if its execution trace σS

I can be correctly replayed on S’.

CC 2 depends on the representation (i.e. view) of trace σS
I . One is the

Start/End view on σS
I . It logs both start and end events of executed activi-

ties (cf. Fig. 6c). Taking this view on σS
I we obtain an instance with correct

marking when replaying it on S′ [9]; i.e., I can continue execution based on S′

afterwards while structural and behavioral soundness are preserved. However,
this view is too restrictive in conjunction with changes of cyclic process struc-
tures [5]. If a loop is affected by a change, but has already undergone some

iterations, the respective instance will be always considered as non-compliant
with S′ (i.e., trace entries related to finished iterations cannot be replayed on
the adapted schema) though a migration of this instance would not lead to er-
rors in the sequel. ADEPT2 therefore applies a reduced representation σS

I red
of σS

I , which corresponds to a (logical) projection of σS
I only on current loop

iterations; i.e., for loop activities we only consider entries written during the last
iteration of the respective loop (cf. Fig. 6d). Note that this approach is fostered
by the block-structuring of WSM Nets. In addition, data flow correctness can
be ensured by enriching execution traces with information about data access;
i.e., read and write access on data elements. This is crucial in connection with
dynamic process changes [5]. We dig into data flow correctness in Section 3.4.

A B C D

Process Schema S:

Instance I:

S’

Δ = moveActivityBetweenNodeSets(S, B, A, D)

 evaluate

 NS = ACTIVATED NS = RUNNING

NS = COMPLETED ES = TRUE_SIGNALED

X

CtrlEΔ
add = { A → C, B → D }

CtrlEΔ
del = { B → C}

A

B

C

D

A B C D A

B

C

D A

B

C

D

 evaluate

1 2

Fig. 7. Adapting markings for WSM Nets

CC 2 constitutes a logical correctness notion similar to serializability in data-
base systems. Another challenge is to efficiently check it. A naive solution would
be to try to replay instance traces on S′ and to verify whether resulting instance
states on S′ are correct. Obviously, this can cause a performance penalty if a
multitude of instances shall be migrated. Generally, a change framework has to
provide methods which ensure CC 2 and can be efficiently checked. ADEPT2
provides methods which make use of the semantics of the applied change opera-
tions (cf. Tab. 1) and the model-inherent markings of WSM Nets for all change
patterns supported [5, 6]. Contrary to many approaches (e.g., [26, 16]), ADEPT2
is able to deal with order-changing operations as well. (A discussion on the com-
plexity of compliance checking for different change patterns and a comparison
with other approaches can be found in [9].) As example consider Fig. 7 where
activity B is moved to the position between activities A and D. Instead of re-
playing complete trace σS

I of I on S′, according to the ADEPT2 compliance
conditions for moving activities, the following has to be checked: I is compli-
ant with S′ if for all newly inserted control edges in CtrlEadd

∆ their destination
activities are not running or completed yet. In the latter case (i.e., state of re-
spective activities is Running or Completed), the state of the associated source
node is Completed and compliance can be only ensured if the entries of source
and destination node within trace σS

I red have the right order (i.e., END entry of
source node before START entry of destination node). For our example from Fig.

7, the destination activities of edges in CtrlEadd
∆ (i.e., C and D) have not been

started yet. Consequently, activity B can be moved as described for instance I.
As can be seen from this example, moving activities is one of the few cases,

where we might have to exploit additional information from trace σS
I red. In

connection with newly added control edges, the associated orders must be already
reflected by the entries of the trace. If the destination activities of the new control
edges have not been started yet, the right order will be always guaranteed.
Otherwise, the actual order has to be checked based on the execution trace. For
inserting and deleting activities, checking node states is sufficient (see [27, 28]
for a complete summary of compliance conditions and respective proofs).

3.3 Adapting instance markings in ADEPT2

We have described how CC 2 can be ensured and which information is needed.
Our goal was to prevent access to whole instance traces. By holding this maxim
we now discuss how compliant instances can be automatically migrated to an
adapted schema. One challenge, not adequately solved by other approaches, con-
stitutes the efficient and correct adaptation of instance markings. According to
CC 2, the marking of a migrated instance must be the same as it can be obtained
when replaying its (reduced) trace on the new schema version. How extensive
marking adaptations turn out depends on the kind and scope of the change. Ex-
cept from initialization of newly added nodes and edges, no marking adaptations
become necessary if the instance has not yet entered the change region. In other
cases more extensive marking adaptations are required. An activated activity X,
for example, will have to be deactivated if control edges are inserted with X as
target activity. Conversely, a newly added activity will have to be activated or
skipped if all predecessors already have marking COMPLETED or SKIPPED.

We utilize information on the change context to decide on marking adapta-
tions. We illustrate this by means of an example. Consider Fig. 7 where B is
moved to the position between A and D. The algorithm first determines which
nodes and edges have to be potentially (re)marked. In the given case these sets
can be determined based on the inserted and deleted control edges. Then, the
algorithm steps through the initial node and edge sets and adapts instance mark-
ings step by step. In Fig. 7, these steps are denoted as intermediate steps. First of
all, for newly inserted control edge A −→ C, an adaptation has to be done; since
source node A is already completed, A −→ C is marked as True Signaled. Con-
sequently, in the next step, destination node C has to be marked as Activated
since all incoming edges have marking True Signaled. For the other newly in-
serted edge B −→ D and deleted edge A −→ B no marking adaptation becomes
necessary. Thus, the algorithm terminates with the desired marking of I on S′.

Based on the compliance criterion, the dynamic change bug as discussed
in literature (e.g. [29, 16] is not present anymore in ADEPT2. More precisely,
the application of the change operation as depicted in Fig. 1 would be rejected in
ADEPT2 based on the corresponding compliance conditions. Furthermore, even
for order-changing operations, markings can be automatically adapted without
need for interacting with users. Basically, the described approach for ensuring

compliance can be transfered to other process meta models as well. We have
shown this for BPEL [30] and for Activity Nets [31].

3.4 Data Flow Correctness

So far, we have not considered data flow correctness in connection with process
changes. Basically, we have to ensure correctness of the modeled data flow when
directly changing it (e.g., by adding or deleting data edges) as well as when
adapting the associated control flow structure. Regarding the latter, ADEPT2
will only allow for control flow changes if data flow correctness can be preserved
afterwards [28]. As example take process schema S from Fig. 7 and assume that
B writes data element d and C reads it afterwards. Regarding this scenario, data
flow correctness would be not preserved if we conducted the depicted adaptation
(i.e., to move B from its position between A and C to the position parallel to
C). Since B would then be ordered in parallel to C, we could not guarantee any
longer that B writes d before C reads this data element. As another scenario,
assume that change ∆ inserts two activities A and B in an arbitrary schema
S, where A is writing data element d, which is read by B afterwards. In this
case, ∆ would not be correctly applicable, if A is inserted within one branch of
an alternative branching. In this case, it cannot be ensured that A is activated
during runtime and d is written accordingly.

read data
a) Process Instance I

Events START(A) END(A) START(B) END(B) START(C)
written
data
elements

- (d1,5)
(d2,1)

- (d2,2) -

read data
elements

- - - - (d1,5)

b) Data-Consistent Representation of
Execution History σI

S dc

Completed Running

∆ = (deleteDataEdge(C, d1, read),
addDataEdge(C, d2, read))

A B C D

d1 d2

5 5
2

?

d3

write data
edge

value of data
object

1

Fig. 8. Data Consistency Problem

Altogether, to avoid such structural flaws, a given sequence of change oper-
ations can be only applied in ADEPT2 if structural and behavioral soundness
is guaranteed afterwards. In the given example, the structural pre-conditions of
the move operation would disallow the application of the intended change since
in schema in S′ the read access of C to d has no preceding write access to this
data element.

Another challenge is to preserve the correctness of the data flow schema when
changing it. As example consider the scenario depicted in Fig. 8. Activity C has
been started and has already read value 5 of data element d1. Assume that, due
to a modeling error, read data edge (C, d1, read) shall be deleted and read data
edge (C, d2, read) be inserted instead. Consequently, C should have read value
2 of data element d2 (instead of data value 5). Such inconsistent read behavior
has to be prohibited since it can lead to errors and inconsistencies in the sequel
(e.g., if instance execution is aborted and therefore has to be rolled back). Using

any representation of execution trace σS
I as introduced so far, this erroneous case

cannot be detected, i.e., the the instance would be classified as compliant.
We need an adapted form of σS

I considering data flow as well. We denote
σS

I
dc as data-consistent trace representation of σS

I with σS
I

dc = <e1, . . . , ek>:
ei ∈ {START(a)(d1,v1),...,(dn,vn) END(a)(d1,v1),...,(dm,vm)}, a ∈ A where tuple
(di, vi) describes a read/write access of activity a on data element di ∈ DS

with associated value vi (i = 0, . . . , k). Using this data-consistent representation
of σS

I the problem illustrated in Fig. 8a is resolved.

3.5 Concurrent process adaptations

Being able to cope with changes of single instances or a collection of instances
in isolated manner is crucial to meet practical needs. However, changes do not
always occur separately from each other. Assume that instance I on schema S is
modified due to an exception resulting in instance-specific schema SI (i.e. S[∆I >
SI). If later S is changed as well due to new legal regulations resulting in S′ (i.e.
S[∆ > S′), the challenge is to decide how to cope with concurrent changes ∆I

and ∆ (cf. Fig. 9): May I migrate to S′ and - if yes - how does the instance-specific
change (i.e., bias) turn out on S′? The latter question is particularly interesting if
∆I and ∆ are overlapping; i.e., they have some or all change effects in common
(e.g., deletion of same activity). Then ∆I has to be adapted on S′ since S′

already reflects parts of ∆I . Fig. 9 illustrates the different cases in connection
with dynamic change. If S is transformed into S′, the user might want to exclude
some of the instances due to specific constraints. For all others, migration to S′ is
desired. First, we have to distinguish between instances still running according
to S (unbiased instances) and those individually modified (biased instances).
For biased instances it is further important to know whether concurrent schema
and instances changes are disjoint or overlap since further migration strategy
depends on that. For all instances we need adequate correctness criteria (see [28,
32] for respective extensions of compliance and migration strategies).

user
 constraints

running

instances

Migration not desired

Biased instancesUnbiased instances

Compliant
instances

Non-compliant
 instances

 Instances with
disjoint bias

 Instances with
overlapping bias

Compliant
instances

Non-compliant
 instances

Compliant
instances

Non-compliant
 instances

Migration desired

S S‘
I on S

I on SI S‘I = ?

∆

∆I
∆

Fig. 9. Instance migration – big picture

3.6 How users interact with ADEPT2?

So far, ADEPT2 has been applied in several domains including healthcare, au-
tomotive development, construction engineering, logistics, and e-negotiation [1,
2, 33, 34]. While for some applications the provided ADEPT2 clients were suffi-
cient to adequately assist users in adapting their processes [34, 1], in other cases
specific client components were implemented based on the application program-
ming interfaces offered by ADEPT2. AgentWork [33], for example, provides a
rule-based planning component for the healthcare domain that automatically
derives adaptations of patient treatment processes to be applied in a given con-
text. Here, users only have to approve the suggested instance changes, which are
then automatically carried out by the system; i.e., ADEPT2 serves as engine to
implement the changes. CONSENSUS [1], in turn, uses the existing ADEPT2
clients to realize the flexibility and dynamism needed to accommodate to the
various contingencies and obstacles that can appear during e-negotiations.

In all these case studies the provision of high-level change patterns and
the change framework described were considered as strong points in favor of
ADEPT2. Based on the lessons learned we are currently extending the meta
model for WSM nets with additional workflow patterns [23]. Furthermore, we
developed techniques targeting at improved user assistance. In [35], for exam-
ple, we present an approach which uses conversational case-based reasoning to
allow for the reuse of previously applied ad-hoc changes in similar problem con-
text. We are also developing mechanisms to incorporate semantical constraints
into adaptive PAIS in order to prohibit semantically counterproductive changes
[36]. ADEPT2 expresses semantic constraints in terms of rules and verifies them
during buildtime, runtime, and in connection with process changes. We further
provide an authorization component, which allows to restrict process changes
to authorized users, but without nullifying the advantages of a flexible PAIS by
handling authorizations in a too rigid way [37]. Finally, we are investigating the
concept of process views in connection with dynamic process changes [38]. Basic
idea is to provide abstract views to users and to allow them to apply changes to
these views and to propagate the view updates back to the underlying process.

4 Discussion

To effectively deal with exceptions through structural process adaptations and
to enable process evolution have been major design goals of the ADEPT2 tech-
nology. In the previous sections we have presented basic issues and concepts to
attain these goals and to enable dynamic structural changes of different process
aspects. This section provides a survey on the state-of-the art (see also [9, 17]),
but extends it with a summary of approaches dealing with uncertainty as well.
Furthermore we discuss alternative solutions for enabling process flexibility in-
cluding declarative approaches [7] and case handling [14]. For a discussion of
techniques for process evolution we refer to [9, 17].

Dealing with Exceptions. While expected exceptions are usually consid-
ered during buildtime by specifying exception handlers to resolve the respec-

tive exceptions during runtime [39], non-anticipated situations, in turn, may
require structural adaptations of single process instances [3, 11]. A comprehen-
sive overview of exception handling mechanisms is provided by [40]. Depending
on the type of exception different handling strategies can be pursued (e.g., to roll
back parts of the process), which are described as exception handling patterns in
[40]. Exception handling often requires combined use of such patterns resulting
in rather complex routines. The Exlet approach [41], for example, addresses this
problem by allowing for the combination of different exception handling patterns
to an exception handling process called Exlet. Similarly, [42] suggests the usage
of meta workflows for coordinating exception handling. While exception handling
patterns are well suited for dealing with expected exceptions, non-anticipated
situations, in turn, often require structural adaptations of individual process in-
stances as well [39]. Besides ADEPT2, several other approaches support ad-hoc
changes [8, 24, 6], however, only the ADEPT2 framework allows for high-level
change patterns (e.g., to insert, move or delete activities and process fragments,
respectively) instead of change primitives (e.g., to add or delete nodes and edges
in the process graph) [6]. To ensure correctness of run-time changes, sound-
ness needs to be guaranteed. When conducting instance-specific changes, using
change primitive (e.g., WASA2 [8] or CAKE2 [24]), soundness of the resulting
process schema cannot be guaranteed and correctness of a process schema has to
be explicitly checked after applying the respective set of primitives. ADEPT2, in
turn, associates pre-/ post-conditions with the high-level change patterns, which
allows to guarantee soundness. Finally, PAISs supporting instance-specific adap-
tations should be able to cope with concurrent changes as well. While many sys-
tem prohibit concurrent process instance changes (e.g., FLOWer [14], WASA2
[8]), ADEPT2 supports them based on optimistic concurrent change techniques;
CAKE2, in turn, supports concurrent process instance changes using pessimistic
locking [24].

Dealing with Uncertainty. Flexible PAIS must be also able to cope with
uncertainty. Common to existing approaches is the idea to defer decisions re-
garding the exact control-flow to runtime [13, 17]. Instead of requiring a process
model to be fully specified prior to execution, parts of the model can remain
unspecified and be refined during run-time when more information is available.
Examples for such techniques are Late Binding, Late Modeling and Late Com-
position of Process Fragments. Finally, data-driven processes provide for some
flexibility regarding the exact control-flow as well [15, 14, 43].

Late binding allows to defer the selection of activity implementations to run-
time; i.e., the implementation of the respective activity is chosen out of a set
of process fragments at runtime either based on rules or user decisions [17].
As example consider Worklets [13], which allow for late binding of sub-process
fragments to activities. At buildtime, the respective activity is modeled as a
placeholder. Late Modeling and Composition, in turn, are techniques which go
one step beyond by allowing parts or whole of the process to be defined during
runtime [12, 44]. Late Modeling allows for modeling selected parts of a process

schema at runtime. At buildtime a placeholder activity as well as constraints for
modeling the respective sub-process are defined. Usually, the modeling of the
placeholder activity needs to be completed before its execution can start. Even
more flexibility is provided by Late Composition. It allows users to compose ex-
isting process fragments on-the-fly; e.g., by dynamically introducing control de-
pendencies between them. There is no predefined schema, but the (sub-)process
instance is created in an ad-hoc way by selecting from the available fragments
and obeying the predefined constraints. For both techniques, the model being
dynamically defined may or may not be controlled by constraints. Complete lack
of constraints can defeat the purpose of a PAIS, where as too many constraints
may introduce rigidity that compromises the dynamic process [45].

[46, 12] propose an approach for the late modeling of process fragments. A
part of the process (termed Pocket of Flexibility) is deemed to be of a dynamic
nature and is defined through a set of activities and a set of constraints defined
on them. At runtime, the undefined part is detailed for a given process instance
based on tacit knowledge and obeying the prescribed constraints. In contrast,
the approach provided by DECLARE [44, 7] enables late composition of process
fragments. Basically, the whole process is defined in a declarative way. However,
DECLARE can also be used in combination with imperative languages (e.g.,
YAWL). In this scenario, not the entire process model is described in a declar-
ative way, but only sub-processes. Like in the Pocket of Flexibility approach a
process model is defined as a set of activities and a set of constraints. During
runtime process instances can be composed whereby any behavior is allowed
which is not prohibited by any constraints. Data-driven processes as supported
by the case handling tool FLOWer [14] do not predefine the exact control-flow,
but orchestrate the execution of activities based on the data assigned to a case.
Thereby, different kinds of data objects are distinguished. Mandatory and re-
stricted data objects are explicitly linked to one or more activities. If a data
object is mandatory, a value will have to be assigned to it before the activity
can be completed. If a data object is restricted for an activity, this activity needs
to be active in order to assign a value to the data object. Free data objects, in
turn, are not explicitly associated with a particular activity and can be changed
at any time during a case execution and consequently provide for flexibility dur-
ing run-time. [47] compares workflow management and case handling with means
of a controlled experiment. Recently, additional paradigms for the data-driven
modeling and adaptation of large process structures have emerged. In particular,
they allow for the transformation of data model changes to process adaptations
as well as for sophisticated exception handling procedures [48, 15].

5 Summary and Outlook

We have provided a general discussion on flexibility issues in adaptive PAIS
and we surveyed the state-of-the-art. As core of any approach enabling dynamic
process changes, adequate correctness notions are needed. When implementing
them within a PAIS and making use of the formal properties of the underlying

process meta model as well as change framework, different optimizations can
be realized. Similarly, optimized techniques for the automated adaptation of in-
stance states can be provided when migrating process instances to a modified
schema. Along these challenges, we have discussed different correctness criteria
and their application to specific process meta models. On one side we have con-
sidered structural criteria and their (logical) realization within Petri-net based
PAIS. On the other side, we have analyzed approaches using traces for deciding
whether an instance is compliant with a modified schema. Since both kinds of
approaches come along with limitations, we have presented the ADEPT2 ap-
proach. ADEPT2 uses consolidated instance data and exploits the semantics of
the applied change operations in order to abolish the limitations of pure struc-
tural and behavioral approaches. Finally, we have addressed issues related to
concurrent changes, data flow correctness, and use of ADEPT2. Future work
will extend our analysis of correctness criteria for dynamic process change. We
will elaborate to what degree existing correctness notions can be relaxed to in-
crease the number of compliant process instances [32]. Furthermore, there are
still many open questions regarding the realization of concurrent process changes
(e.g., how to deal with partly overlapping changes) and the management of the
process variants resulting from instance changes. In this context, we are develop-
ing intelligent analysis techniques to learn from process changes [49–51]. Finally,
we are currently working on issues related to the dynamic adaptation of orga-
nizational rules and access constraints [52, 53], to process variant management
[54], and to process model refactoring [55].

References

1. Bassil, S., Keller, R., Kropf, P.: A workflow–oriented system architecture for the
management of container transportation. In: BPM’04. (2004) 116–131

2. Lenz, R., Reichert, M.: IT support for healthcare processes - premises, challenges,
perspectives. Data and Knowledge Engineering 61 (2007) 39–58

3. Müller, R., Greiner, U., Rahm, E.: AgentWork: A workflow system supporting
rule–based workflow adaptation. Data and Knowlege Engineering 51 (2004) 223–
256

4. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release man-
agement processes in the automotive industry. In: BPM’06. LNCS 4102 (2006)
368–377

5. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

6. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features
in process-aware information systems. In: CAiSE’07. LNCS 4495 (2007) 574–588

7. Pesic, M., Schonenberg, H., Sidorova, N., van der Aalst, W.: Constraint-based
workflow models: Change made easy. In: CoopIs’07. (2007) 77–94

8. Weske, M.: Workflow management systems: Formal foundation, conceptual design,
implementation aspects. University of Münster (2000) Habilitation Thesis.

9. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering 50 (2004) 9–34

10. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: COOCS’95. (1995) 10–21

11. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. Journal of Intelligent Information Systems 10 (1998) 93–
129

12. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specifications.
In: ER’01. (2001) 513–526

13. Adams, M., Hofstede, A., Edmond, D., van der Aalst, W.: Worklets: a service-
oriented implementation of dynamic flexibility in workflows. In: CoopIS’06. (2006)
291–308

14. van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: a new paradigm for
business process support. Data and Knowledge Engineering 53 (2005) 129–162

15. Müller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and
dynamic adaptation of data-driven process structures. In: CAiSE’08. LNCS 5074
(2008) 48–63

16. van der Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoretical Computer Science 270 (2002) 125–203

17. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data and
Knowledge Engineering 66 (2008) 438–466

18. Dehnert, J., Zimmermann, A.: On the suitability of correctness criteria for business
process models. In: BPM’05. (2005) 386–391

19. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

20. van der Aalst, W., Weske, M., Wirtz, G.: Advanced topics in workflow manage-
ment. Int’l Journal of Integrated Design and Process Science 7 (2003)

21. Haddad, S., Pradat-Peyre, J.: New efficient petri nets reductions for parallel pro-
grams verification. Parallel Processing Letters 16 (2006) 101–116

22. Rinderle-Ma, S., Reichert, M., Weber, B.: On the formal semantics of change
patterns in process-aware information systems. In: ER’08. LNCS 5231, Barcelona
(2008) 279–293

23. Wolz, J.: New control and data flow concepts in ADEPT2. Master’s thesis, Ulm
University (2008)

24. Minor, M., Schmalen, D., Koldehoff, A., Bergmann, R.: Structural adaptation of
workflows supported by a suspension mechanism and by case-based reasoning. In:
WETICE’07. (2007)

25. van der Aalst, W., ter Hofstede, A.: Yawl: Yet another workflow language. Infor-
mation Systems 30 (2005) 245–275

26. Agostini, A., De Michelis, G.: Improving flexibility of workflow management sys-
tems. In: BPM’00. (2000) 218–234

27. Rinderle, S., Reichert, M., Dadam, P.: Supporting workflow schema evolution by
efficient compliance checks. Technical Report UIB2003-02, Ulm University (2003)
(available at http://www.uni-ulm.de/in/iui-dbis/forschung/publikationen.html).

28. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis, Ulm
University (2004)

29. van der Aalst, W.: Exterminating the dynamic change bug: A concrete approach
to support worfklow change. Information Systems Frontiers 3 (2001) 297–317

30. Reichert, M., Rinderle, S.: On design principles for realizing adaptive service flows
with BPEL. In: EMISA’06. (2006) 133–146

31. Reichert, M., Rinderle, S., Dadam, P.: On the common support of workflow type
and instance changes under correctness constraints. In: CoopIS’03. LNCS 2888
(2003) 407–425

32. Rinderle-Ma, S., Reichert, M., Weber, B.: Relaxed compliance notions in adaptive
process management systems. In: ER’08. LNCS 5231, Barcelona (2008) 232–247

33. Müller, R.: Event-Oriented Dynamic Adaptation of Workflows. PhD thesis, Uni-
versity of Leipzig, Germany (2002)

34. Golani, M., Gal, A.: Optimizing exception handling in workflows using process
restructuring. In: BPM’06. (2006) 407–413

35. Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing integrated life
cycle support in process-aware information systems. Int’l Journal of Cooperative
Information Systems (IJCIS) 18 (2009)

36. Ly, L., Rinderle, S., Dadam, P.: Integration and verification of semantic constraints
in adaptive process management systems. DKE 64 (2008) 3–23

37. Weber, B., Reichert, M., Wild, W., Rinderle, S.: Balancing flexibility and security
in adaptive process management systems. In: CooplS ’05. LNCS 3760 (2005) 59–76

38. Bobrik, R., Reichert, M., Bauer, T.: View-based process visualization. In: BPM’07.
LNCS 4714 (2007) 88–95

39. Reichert, M., Dadam, P., Bauer, T.: Dealing with forward and backward jumps
in workflow management systems. Software and Systems Modeling (SOSYM) 2
(2003) 37–58

40. Russell, N., van der Aalst, W., ter Hofstede, A.: Exception Handling Patterns in
Process-Aware Information Systems. In: CAiSE’06. (2006) 288–302

41. Adams, M., ter Hofstede, A., van der Aalst, W., Edmond, D.: Dynamic, extensible
and context-aware exception handling for workflows. In: CoopIS’07. (2007)

42. Kumar, A., Wainer, J.: Meta workflows as a control and coordination mechanism
for exception handling in workflow systems. Dec. Support Sys. 40 (2004) 85–105

43. Rinderle, S., Reichert, M.: Data-driven process control and exception handling in
process management systems. In: Proc. CAiSE’06. LNCS 4001 (2006) 273–287

44. Pesic, M.: Constrained-based Workflow Management Systems – Shifting Control
to Users. PhD thesis, TU Eindhoven (2008)

45. Wainer, J., de Lima Bezerra, F.: Constraint-Based Flexible Workflows. In: Group-
ware: Design, Implementation, and Use. Springer (2003)

46. Mangan, P., Sadiq, S.: A constraint specification approach to building flexible
workflows. J of Research and Practice in Inf Technology 35 (2002) 21–39

47. Mutschler, B., Weber, B., Reichert, M.: Workflow management versus case han-
dling: Results from a controlled software experiment. In: SAC’08. (2008) 82–89

48. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of
large process structures. In: Proc. CoopIS’07. LNCS 4803 (2007) 131–149

49. Li, C., , Reichert, M., Wombacher, A.: Discovering reference process models by
mining process variants. In: ICWS’07, Beijing (2008) 45–53

50. Guenther, C., Rinderle-Ma, S., Reichert, M., van der Aalst, W., Recker, J.: Using
process mining to learn from process changes in evolutionary systems. Int’l Journal
of Business Process Integration and Management 3 (2008) 61–78

51. Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based
on high-level change operations. In: ER’08. LNCS 5231, Barcelona (2008) 248–264

52. Rinderle-Ma, S., Reichert, M.: Managing the life cycle of access rules in CEOSIS.
In: Proc. EDOC’08, Munich (2008) 257–266

53. Rinderle-Ma, S., Reichert, M.: A formal framework for adaptive access control
models. In: Journal of Data Semantics, IX. LNCS 4601 (2007) 82–112

54. Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process
lifecycle. In: ICEIS’08, Barcelona (2008) 154–161

55. Weber, B., Reichert, M.: Refactoring process models in large process repositories.
In: CAiSE’08. LNCS 5074, Montpellier (2008) 124–139

