
Computer Science - Research and Development manuscript No.
(will be inserted by the editor)

Barbara Weber · Shazia Sadiq · Manfred Reichert

Beyond Rigidity - Dynamic Process Lifecycle Support
A Survey on Dynamic Changes in Process-aware Information Systems

Submitted: date / Accepted: date

Abstract The economic success of an enterprise increas-
ingly depends on its ability to react to changes in its
environment in a quick and flexible way. To cope with
emerging business trends, responsiveness to change is a
significant competitive advantage. Similar to the lifecycle
in conventional information systems development, stud-
ies on lifecycle support for business processes are often
sweeping the issues of runtime change management un-
der the banner of maintenance. However, the pervasive-
ness of dynamic changes in business processes warrants
targeted attention. This paper presents a detailed review
of challenges and techniques that exist for the lifecycle
management of dynamic processes. For each of the lifecy-
cle phases we discuss the needs and deliberate on various
developments from both academia and industry.

Keywords Business Process Management · Dynamic
Process · Business Process Lifecycle · Process-aware
Information System

CR Subject Classification H.4.1 · D.2.2 · D.2.11

Barbara Weber
Department of Computer Science
Univ. of Innsbruck, Austria
Tel.: +43/512/507-6474
Fax: +43/512/507-9871
E-Mail: Barbara.Weber@uibk.ac.at

Shazia Sadiq
School of Inf. Technology and Electrical Eng.
The University of Queensland, Australia
Tel: +61 7 3365 3481
Fax: +61 7 3365 1999
E-Mail: shazia@itee.uq.edu.au

Manfred Reichert
Institute of Databases and Inf. Systems
Ulm University, Germany
Tel.: +49/731/50-24135
Fax: +49/731/50-24134
E-Mail: manfred.reichert@uni-ulm.de

1 Introduction

Historically speaking, business process support has been
a major driver for enterprise information systems for a
significant period of time. The overall goal is to overco-
me the drawbacks of functional over-specialization and
lack of overall process control [9; 25; 38; 42]. Techno-
logy response to this business demand was met with a
suite of technologies ranging from groupware and office
automation, to workflow systems, and more recently to
business process management technology. Just as data-
base management systems provided a means of abstrac-
ting application logic from data logic, workflow mana-
gement systems separate coordinative process logic from
application logic. Every system generation has provided
additional functionality through a variety of supporting
tools. Although workflow management technology has
delivered a great deal of productivity improvements, it
has been mainly designed for the support of static (i.e.,
pre-defined) and repetitive business processes, which re-
quire a basic level of coordination between human per-
formers and some application services.

More recently Business Process Management (BPM)
has been used as broader term to reflect the fact that
a business process may or may not involve human par-
ticipants, and often crosses organizational boundaries.
There is currently a wide spread interest on BPM tech-
nologies, especially in light of emerging paradigms sur-
rounding web services and their application to dynamic
process composition [42; 63]. In this context, the notion
of PAIS (Process Aware Information System) provides a
guiding framework to understand and deliberate on the
above developments [12; 101]. In general, a PAIS archi-
tecture can be viewed as 4-tier system (cf. Fig. 1). As
fundamental characteristic, a PAIS provides the means
to separate process logic from application code. For this
purpose, at buildtime the process logic has to be explicit-
ly defined based on the elements provided by a process
meta model (e.g., Workflow Nets [83] or WSM Nets [55]).
At runtime the PAIS then orchestrates the processes ac-

2 B. Weber, S. Sadiq and M. Reichert

cording to the defined logic and coordinates process rele-
vant applications and other resources. Examples of PAIS
enabling technologies include workflow management sys-
tems like Staffware [12], WebSphere Process Server [22],
ADEPT2 [49; 52], and YAWL [85] as well as case hand-
ling systems (e.g., FLOWer [87; 12; 43]).

Web ServiceWeb Service

Java
Application

Java
Application

Process Modeling, Execution and Control

Worklist User 1 Worklist User 2 Worklist User 3

Presentation
Layer

Process
Layer

Application
Layer

Persistency
Layer

A
rc

hi
te

ct
ur

e
of

 a
 P

A
IS

Web ServiceWeb Service

Legacy
Application

Legacy
Application

Web ServiceWeb Service

C++
Application

C++
Application

Web ServiceWeb Service Web ServiceWeb Service

Database
Database

Database

Abb. 1 Architecure of a PAIS

In spite of several success stories on the uptake of
PAISs, and the growing process orientation of compa-
nies, so far, BPM and related technologies have not had
the wide spread adoption that was expected. A major re-
ason for this is the limited support of dynamic changes,
which inhibits the ability of an organization to respond
to business changes in an agile way [42; 84]. To deal
with exceptions, uncertainty and evolving processes, it
is widely recognized that a PAIS needs to provide run-
time flexibility [97; 96; 78]. This can either be achieved
through structural process changes and adaptations of
the process state, or by supporting loosely specified pro-
cess models, which can be refined during runtime accor-
ding to predefined criteria and rules. To address this need
for flexible and easily adaptable PAISs several competing
paradigms for process change and process flexibility have
been developed (e.g., adaptive processes [49; 1; 99], case
handling [87], and declarative processes [46]).

This paper provides a detailed review of methods,
tools and technologies provided to address flexibility is-
sues in PAISs. Challenges, innovations and limitations
of existing approaches are presented along the phases of
the process lifecycle [94]. Further, we introduce, where
necessary, additional lifecycle phases relevant to dyna-
mic PAISs warranting flexibility in their operation. The
aims of the paper can be summarized as follows:

– getting a clear picture of business process lifecycle
management

– obtaining an appreciation and understanding of the
unique set of challenges that dynamic processes face

– knowing the particular distinguishers of dynamic pro-
cesses in all phases of the lifecycle

– getting a better understanding of how to ideally cope
with process changes in information systems

– being aware of gaps in industry needs and existing
solutions for lifecycle support of dynamic processes

To facilitate the discussion we first present a typical
process lifecycle as it is promoted in both research and
practice on BPM (cf. Fig. 2). The role of the different
phases can be summarized as follows:

– Design. The design of business processes is prima-
rily a management function driven by business ob-
jectives. The translation of such a high-level design
into concrete (i.e., executable) models constitutes a
pre-requisite for any PAIS.

– Model. Process modeling is a well studied field with
formal (e.g., Petri Nets) and commercial (e.g., Busi-
ness Process Modeling Notation) contributions. As
with any modeling exercise, issues related to expres-
siveness and complexity have been widely debated.
Section 3 discusses this phase in the context of dyna-
mic processes.

– Execute. Flexible executability of process models is
fundamental for the realization of dynamic processes.
Issues relevant for this phase are discussed in Section
4. They include exception handling and treatment of
unanticipated process changes.

– Monitor. Monitoring relates to traceability and post
execution analysis, and is particularly important for
dynamic processes. Through monitoring process im-
provements can be identified thus triggering subse-
quent process evolution. We discuss this phase in Sec-
tion 5.

Model

Execute

Monitor

Design

Abb. 2 Traditional Process Lifecycle

In this paper, our primary focus is on those phases
of the process lifecycle managed through the technology
infrastructure (i.e., we deal with executable processes),
namely process modeling, execution and monitoring.

The paper is organized as follows. We first characte-
rize the dynamic process and discuss the impact of its
characteristics on the process lifecycle in Section 2. We
then provide a detailed discussion on the methods, tools

Beyond Rigidity - Dynamic Process Lifecycle Support 3

and technologies that are available for the phases of the
lifecycle (i.e., modeling, execution and monitoring) and
are affected by dynamic characteristics (cf. Sections 3, 4
and 5). Section 6 discusses a number of trade-offs that
exist when designing a PAIS for the support of dynamic
processes. Finally, Section 7 concludes with a summary.

2 Understanding the Dynamic Process

In order to discuss the characteristics of the dynamic
process, we first introduce some basic terminology and a
running example.

For each business process to be supported (e.g., hand-
ling a customer request or processing an insurance claim),
a process type T represented by a process schema S has to
be defined. For one particular process type several pro-
cess schemes may exist, representing the different ver-
sions and the evolution of this process type over time.
In the following discussion, we will use a typical notion
of process schema, depicted as a directed graph, which
comprises a set of nodes – representing process activities
or control connectors (e.g., XOR-Split, AND-Join) – and
a set of control edges (i.e., precedence relations) between
them. Activities can either be atomic or complex. While
an atomic activity is associated with an invokable appli-
cation service, a complex activity contains a sub process
or, more precisely, a reference to a sub process schema
S′. This allows for the hierarchical decomposition of pro-
cess schemes. In addition, a process schema comprises a
set of data elements and a set of data edges. A data edge
links an activity with a data element and represents a
read or write data access of this activity.

Fig. 3a shows a simplified version of the control-flow
perspective of a healthcare process representing a cru-
ciate rupture treatment (in BPMN notation). The de-
picted process schema consists of ten activities and six
control connectors: Activity Patient Admission is fol-
lowed by activity Anamnesis & Clinical Examination
in the flow of control, whereas activities X-ray, MRT and
Sonography can be processed in parallel (i.e., in arbitra-
ry order). Activities Initial Treatment & Operation
Planning as well as Operative Treatment will be con-
ditionally executed if the preceding medical examinati-
ons show that the patient is suffering from a cruciate
rupture and non-operative treatment does not constitu-
te a viable option. Based on the process schema depic-
ted in Fig. 3a, at runtime new process instances can be
created and executed (cf. Fig. 3b). Regarding process
instance I1 in Fig. 3b, for example, activities Patient
Admission, Anamnesis & Clinical Examination and
X-ray are completed, activity Non Operative Therapy
is skipped, and MRT and Sonography are concurrently ac-
tivated. Completion events related to the activities of a
process instance are recorded in a trace. The traces for
instances I1 to I4 are illustrated in Fig. 3b. Generally, as
in the case of the above example, a large number of in-

stances in different states may be present for a particular
process schema.

Taking this example, we now consider selected cha-
racteristic scenarios for dynamic processes:
– The cruciate rupture treatment process depicted in

Fig. 3a usually includes the following three diagno-
stic procedures: a magnetic resonance tomography
(MRT), an X-ray, and a sonography. Assume now
that this treatment process is performed for a pati-
ent with cardiac pacemaker. Then the MRT has to
be skipped for this patient, i.e., the activity repre-
senting the MRT task has to be dynamically deleted
from the corresponding process instance.

– A particular patient suffers from an effusion in his
knee and the physician decides to conduct an addi-
tional puncture, i.e., a corresponding activity has to
be dynamically added to a process instance.

– Different medical treatments exist, however, the ex-
act ordering of the diagnostic and therapeutic pro-
cedures is decided during runtime. Process instances
(representing the treatment process of a particular
patient) are dynamically modelled or composed out
of predefined activities.

– The MRT scan of a particular patient is blurred and
thus has to be redone.

– Due to new legal regulations it becomes necessary to
inform patients about alternative treatment methods
before applying one of them. This requires the modi-
fication of the process schema (e.g., inserting activity
Inform Patient). The law requires that this rule is
applied to ongoing treatment processes as well (if still
possible). As a consequence the schema of a process
type has to be changed and respective changes have
to be propagated to already running process instan-
ces of this type.
These scenarios identify a range of functions which

are not easily manifested in a traditional process lifecy-
cle. For example, instance-specific changes during runti-
me as needed for the patient with the cardiac pacemaker
are only supported by few PAISs [97]. Also the support
for loosely specified process models which can be refi-
ned during runtime does not constitute standard func-
tionality of a contemporary PAIS. In fact these functions
warrant specific extended functionality in the PAIS. Be-
low we present an overarching taxonomy to define the
problem space of dynamic process support (cf. Fig. 4).

We perceive dynamic processes to be characterized
by three major requirements, namely support for flexi-
bility, adaptation, and evolution. Each requirement has
profound impact on various phases of the process life-
cycle as illustrated in Fig. 4. Below we present a brief
summary of each requirement to provide the basic ratio-
nale and motivation behind. This is followed by detailed
discussions in the subsequent sections.

Flexibility represents the ability of the implemented
process to execute on the basis of a loosely or partially
specified model, which is fully specified at runtime and

4 B. Weber, S. Sadiq and M. Reichert

x

+ + x x x

x

+ + x x x

Activated

a) Process Type Level

b) Process Instance Level

Process Schema S

Completed Skipped

Execution Trace:
σ1 = < „Patient Admission“, „Anamnesis & Clinical Examination“, „X-ray“>

Execution Trace:
σ2 = < „Patient Admission“>

Execution Trace:
σ4 = < „Patient Admission“, „Anamnesis & Clinical Examination“, „Non Operative
Therapy“>

Process Instance I1

Execution Trace:
σ3 = < „Patient Admission“, „Anamnesis & Clinical Examination“, „MRT“,
„X-ray“, „Sonography“>

Process Instance I2

Process Instance I3 Process Instance I4

Activity

XOR-Split/Join

AND-Split/Join

Activity States:

Patient
Admission xAnamnesis &

Clinical Examination

Non Operative Therapy

Sonography

MRT

X-ray

Initial Treatment &
Operation Planning

Non Operative Therapy 1

Operative Treatment

Discharge &
Documentation

+ + x x

x

x

+

x

+ + x x x

x

+ + x x x

clinicalSuspicionOf
CruciateRupture = „Yes“

cruciateRupture = „Yes“ and
operationIndicated = „Yes“

Abb. 3 Core Concepts (Control-Flow Perspective)

Abb. 4 Taxonomy for Characterizing Dynamic Processes

which may be unique to each instance. Due to the pre-
sence of a high degree of choices, not all of which can
be anticipated and hence pre-defined, flexible processes
need to be defined in a more relaxed or ”flexible”manner.
Thus, rather than enforcing control through a rigid or
highly prescriptive model that attempts to capture eve-
ry step and every option within the process, the model is
defined in a way that allows individual instances to de-

termine their own (unique) processes. Such an approach
to modeling raises several challenges including the fle-
xible configuration of process models at design time or
their constraint-based definition during runtime.

Adaptation represents the ability of the implemen-
ted processes to cope with exceptional circumstances. On
the one hand, this includes the handling of expected ex-
ceptions, which can be anticipated and thus captured in
the process schema. On the other hand, this covers the
handling of unanticipated exceptions, which usually are
addressed through structural changes of single process
instances (e.g., to add or delete activities).

Evolution represents the ability of the implemen-
ted process to change when the business process evolves.
This evolution may be incremental as for process impro-
vements, or radical as for process innovation or process
re-engineering [44]. In any case, the assumption is that
the processes have pre-defined models, and a change cau-
ses these models to be modified. The biggest problem
here is the handling of running process instances, which
were initiated based on the old model, but are required
to comply with the new specification from now on. Since
potentially thousands of active instances may be affec-

Beyond Rigidity - Dynamic Process Lifecycle Support 5

ted by a given process change the issue of compliance is
rather critical. Traceability of changes and minining of
dynamic processes are issues closely related to process
evolution which also have to be considered.

3 Modeling Phase

The modeling phase typically constitutes the translati-
on of business strategy into a process model in a given
language. Before we discuss modeling issues for dynamic
processes, it is important to establish a clear understan-
ding of the process design phase, which in fact precedes
the modeling phase as depicted in our lifecycle diagram
(cf. Fig. 2). Process design is primarily a management
function. During the era of process orientation, a number
of approaches for the design of business processes have
been proposed, including Six Sigma [45], Porter’s value
chain [47], Rummler’s management theory [70], Capa-
bility Maturity Model [80], Process Improvement [21],
Process Handbook [33], Reference Models [77], and Pro-
cess Templates [76].

There exist significant contributions towards under-
standing the difficulties in translating the process design
into executable models. In particular we refer to the work
of Davenport1 towards understanding and bridging the
business-IT divide. It is argued that management pull
and technology push need to be aligned, which does not
naturally happen unless senior executives become inten-
sively involved in process initiatives, and at the same
time, BPM tools generate systems that are aligned with
business strategies and hence demonstrate a clear outco-
me in terms of business value.

Another noteworthy contribution is the work on work-
flow patterns [86; 71; 72; 82]. Patterns allow a means of
assessing the expressiveness of a given process modeling
language which, in turn, provides an indication of its
capability to align with process design. A pre-requisite
to this analysis is that the strategy definition or pro-
cess design can be related to a documented pattern. The
complexity of establishing this relationship should not be
underestimated due to the nature of process design do-
cuments that result from business strategic planning and
articulation. That is, achieving a fit (lossless translation)
is a task requiring great expertise.

Due to the high cost of process design and mode-
ling, the modeling of dynamic processes is a lost cause
to begin with. It is evident that the changes that a dyna-
mic process will undergo, cannot always be anticipated
and built into the original process model. No organiza-
tion will be prepared to invest in an expensive process
design and modeling initiative if it is known that the mo-
del will need to be changed almost immediately after its
deployment. Therefore, a radically different approach is
warranted for the modeling of dynamic processes.

1 see www.tomdavenport.com for details

A key characteristic of dynamic processes is that they
are knowledge intensive (e.g., [9; 25; 38]). Thus the pro-
cess flow is governed by rich knowledge rather than a
well-defined control flow. This knowledge is generally on-
ly tacitly available. That is, it cannot be found in corpo-
rate policy manuals or industry standards, but is derived
from the experiences of domain experts (knowledge wor-
kers), or from external factors which may be unique for
every case or process instance. Examples of such scenari-
os include healthcare, automotive engineering, customer
relationship management, civil engineering, and many
more. Note that translating business strategies into pro-
cess models is already a difficult task at the presence of
clear guidelines. Thus, the lack of explicit articulation
makes process modeling extremely difficult for dynamic
and knowledge intensive processes.

With the sketched background, we present below the
major approaches for modeling dynamic processes.

3.1 Granularity Control

The granularity of a process activity has not been pre-
scribed in any process modeling approach, and right-
ly so. Since an activity is a black box as far as the
PAIS is concerned, it may actually comprise a number of
sub-activities, whose existence or inter-dependencies are
not disclosed to the process. As example consider activi-
ty Anamnesis & Clinical Examination in the process
schema depicted in Fig. 3a. Obviously, this activity com-
prises several sub-activities (e.g., recording the medical
history of the patient, physically examining the patient,
documenting results of this examination) which are not
explicitly defined in the process schema. This provides
flexibility to the user regarding the order in which he
performs these sub-activities. Generally, a simple option
for modeling dynamic aspects of a process is to exclude
them from process control, and hence have the flexibility
in performing the sub-activities. Clearly, the application
of this approach is rather limited. Whenever process con-
trol is required, granularity control will be meaningless.

3.2 Flexibility by Enumeration

Another way to achieve flexibility is to enumerate all
possible execution paths in the process model. During
runtime one specific execution path is then chosen. This
kind of flexibility can be realized with any PAIS as it
only requires alternative branching support. For dynamic
processes this approach is only of limited use as it relies
on the assumption that all possible execution paths can
be predefined in advance.

6 B. Weber, S. Sadiq and M. Reichert

3.3 Process Configuration

Typically, for a particular business process, different va-
riants exist. Each of them constitutes an adjustment of
a reference process to specific requirements. Commerci-
al BPM tools do not adequately support the modeling
and management of process variants. Either the process
variants have to be specified in separate models or they
are expressed in terms of conditional branches within the
same process model (cf. Section 3.2). Both approaches,
however, often lead to considerable model redundancies
increasing maintenance efforts.

An important area related to process configuration
is reference process modeling. Usually, a reference pro-
cess has recommending character, covers a family of pro-
cess models, and can be customized in different ways to
meet specific needs. Configurable event-driven process
chains (C-EPCs), for example, enable customization of
reference process models [69; 24]. When modeling a re-
ference process, activities (and decision nodes) in EPCs
can be annotated to indicate whether or not they are
mandatory. This information is considered when confi-
guring the C-EPCs. A similar approach is presented in
[89]. Here, the concepts for configuring a reference pro-
cess model (i.e., to enable, hide or block configurable
process elements) are transferred to executable (work-
flow) models.

Finally, Provop [20] provides an operational approach
for managing process variants based on a master process
model. In particular, process variants can be configu-
red by applying a set of high-level change operations to
a given master process. Provop supports context-aware
process configuration, i.e., a process variant can be confi-
gured automatically by only applying those adjustments
relevant in the given process context [19].

The approaches presented in [69], [89] and [24] allow
for the configuration of process variants by removing ac-
tivities from the reference process model (through hiding
or blocking) and thus require the reference process model
to contain all possible behavior. The Provop approach,
in turn, suggests using change operations to adapt or ex-
tend the reference model in the desired way depending
on the context. Thus, it is not required to capture all
possible behavior in the reference process model.

3.4 Late Binding

The concept of late binding is well known in program-
ming environments, and has been also used extensive-
ly in workflow systems for resource allocation (e.g., role
based performer assignment) [101]. With Worklets a si-
milar concept has been proposed for dynamic processes
[1]. Worklets enable late binding of services or sub pro-
cess fragments to process activities at runtime. Thus, at
design time, the activity is merely modeled as placehol-
der. At runtime, an appropriate service is selected and

bound to the process activity (cf. Fig. 5). Regarding our
example, for instance, activity X-ray may be bound to
an internal service of the hospital or to the service of an
external provider in case this task shall be outsourced for
the given case. Generally, the challenge is to ensure the
structural (e.g., data flow compatibility) and semantic
(contribution towards process goal) fit of the service.

Ac#vity Metamodel
<Id, … Applica-on>

WSDL
Service

Design -me

Run -me

Abb. 5 Late Binding of Services to Activities

3.5 Late Modeling

Late modeling enables users to define parts or whole of
the process at runtime. The model being defined at run-
time may or may not be controlled by design guidelines
or constraints. Complete lack of any constraints on the
late modeling can defeat the purpose of a PAIS, whereas
too many constraints may introduce a rigidity that com-
promises the dynamic process. Basically, there are four
options for late modeling:

– Option 1 (whole process, unconstrained). The
whole process schema may be defined during runtime
without need to consider any constraint.

– Option 2 (parts of the process, unconstrained).
Parts of the process are predefined, while parts can
be flexibly defined during run-time.

– Option 3 (parts of the process, constrained).
Parts of the process may be well defined, whereas
other parts of it can have a prohibitive number of
execution options that can only be determined at run-
time (under given constraints) based on tacit know-
ledge (e.g., a particular combination of case features
or an expert opinion of a knowledge worker).

– Option 4 (whole process, constrained). This con-
stitutes a special case of Option 3.

In [75] an approach for the late modeling of process
fragments based on Option 3 (and Option 4 respective-
ly) is proposed. This approach is illustrated by Fig. 6. A
part of the process (indicated as activity B, and termed
Pocket of Flexibility) is deemed to be of dynamic nature
and is defined through a set of activities (P, Q, R) and

Beyond Rigidity - Dynamic Process Lifecycle Support 7

a set of constraints defined on them (presented here in
plain English for simplicity). At runtime, the pocket of
flexibility is concretized for a given process instance ba-
sed on tacit knowledge. Fig. 6 shows a particular design
of the process, noting that it is also valid in terms of the
prescribed constraints (i.e., activity P needs to be exe-
cuted before Q). Regarding the healthcare domain, for
example, a pocket of flexibility may represent a process
step within a treatment process which covers clinical dia-
gnostics (i.e., a set of diagnostic procedures and a set of
constraints for their use). The concrete diagnostic pro-
cedures for a particular patient and their control flow
are chosen during runtime. For a survey on modeling
constraint networks as well as analyzing constraint sa-
tisfiability we refer to [29].

+

Set of Ac*vi*es

Set of Constraints

P before Q
S with T

+

Abb. 6 Late Modeling

Similarly, DECLARE [46] provides support for the
late composition of process fragments through a graphi-
cal constraint modeling language. Generally, when using
DECLARE the whole process is defined in a declara-
tive way (Option 4). However, DECLARE can also be
used in combination with imperative modeling languages
(e.g., YAWL) to realize Option 3 as well. In this parti-
cular scenario not the entire process model is defined in
a declarative way, but only sub-processes. Like for the
Pocket of Flexibility approach a process model is defi-
ned as a set of activities and a set of constraints (cf. Fig.
7a). During runtime process instances can be composed
whereby any behavior not prohibited by any constraint
is allowed. Fig. 7a depicts a declarative process model
consisting of 6 activities and 2 constraints. Activities A
and B are mutually exclusive, while there exists a respon-
se constraint between activities C and F, i.e., F must be
executed eventually after C.

Existing challenges for late modeling include the spe-
cification and (efficient) verification of constraints as well
as adequate end-user support for late modeling.

This section has discussed the specification and ve-
rification of constraints for late modeling. Issues related
to runtime support are discussed in Section 4.3.

F

Late Composition

A B

C

D
E

F A

C

D

E

F
Possible Next Steps

Declarative Process Model

Can Instance I1 terminate?

Instance I1

A F C

A

B

C

D

E
Possible Next Steps Can Instance I1 terminate?

Instance I2

D C F

F

a.) Process Type Level b.) Process Instance Level

Abb. 7 Late Composition in DECLARE

4 Execution Phase

Runtime flexibility is one of the core challenges for any
PAIS and requires the ability to deal with exceptions,
uncertainty and evolving processes. While expected ex-
ceptions are usually considered during buildtime by spe-
cifying exception handlers [73], non-anticipated situati-
ons may require structural process adaptations [97]. In
addition, to be able to efficiently deal with uncertainty,
a PAIS should support loosely specified process models
that can be refined during runtime. Section 4.1 discus-
ses issues related to the handling of expected exceptions
and Section 4.2 introduces structural process adaptati-
ons. Finally, Section 4.3 covers strategies for dealing with
uncertainty.

4.1 Dealing with Expected Exceptions

The handling of expected exceptions has been widely
discussed in literature and many different approaches
have been proposed to effectively cope with this issue
[8; 13; 32; 18; 41].

A comprehensive overview of ways to deal with excep-
tions is provided by [73]. Depending on the type of excep-
tion that is detected during process execution different
exception handling strategies can be pursued. [73] re-
presents such strategies as exception handling patterns.
Each strategy describes (1) how the work item on which
the exception is based should be handled, (2) how the
process instance for which the exception is raised (and
other related instances) shall be handled, and (3) what
recovery actions are undertaken. In general, work items
are handled by changing the state of a process instance
(i.e., its behavior), but not its schema (i.e., its structure).
For example, in the context of our running example, the
MRT scan for a particular patient might be blurred, thus
requiring the respective activity to be redone. In additi-
on, state changes can also affect the current process in-
stance or a related process instance (e.g., cancel process

8 B. Weber, S. Sadiq and M. Reichert

instance). Finally, it might be necessary to compensate
or rollback the effects of the exception.

Exception handling often requires combined use of
several exception handling patterns resulting in rather
complex routines. The Exlet approach [2; 3] addresses
this problem by allowing for the combination of diffe-
rent exception handling patterns to an exception hand-
ling process called Exlet. An Exlet is executed in parallel
to the corresponding process instance and may be reused
in other context when similar exceptions re-occur.

The ADEPT2 process management system provides
comprehensive support for dealing with both anticipa-
ted and non-anticipated exceptions [48]. For example,
ADEPT2 enables different kinds of forward and back-
ward jumps in the flow of control while preserving data
consistency of the corresponding process instance [50].

4.2 Dealing with Unanticipated Changes

While exception handling patterns are well suited for de-
aling with expected exceptions, non-anticipated situati-
ons often require structural adaptations of single process
instances during runtime [97]. Such ad-hoc changes lead
to an adapted process instance schema [49]. In particu-
lar, their effects are instance-specific and must not af-
fect any other process instance. As example consider our
cruciate rupture treatment process, which usually inclu-
des activities magnetic resonance tomography (MRT),
X-ray, and sonography. As aforementioned, for a par-
ticular patient the MRT may have to be skipped as he
has a cardiac pacemaker (cf. Fig. 8). The corresponding
activity deletion is instance-specific and must therefore
not affect the treatment process of any other patient.

In the following we discuss fundamental requirements
related to ad-hoc process changes at the instance level:
conducting ad-hoc changes at a high level of abstraction,
ensuring correctness of modified process instances, access
control for ad-hoc changes, user assistance and change
reuse, and handling of concurrent changes.

4.2.1 Support for Changes at High-level of Abstraction

Two different options exist for realizing structural ad-
aptations of a process schema [97]. On the one hand,
structural adaptations can be realized based on a set
of change primitives like add node, remove node, add
edge, remove edge, and move edge. Following this ap-
proach, the realization of a particular adaptation (e.g., to
delete an activity or to add a new one) usually requires
the application of multiple change primitives. Specifying
structural adaptations at this low level of abstraction,
however, is a complex and error-prone task. General-
ly, when applying a single change primitive (e.g., WA-
SA2 [99], CAKE2 [37] or InConcert [102]), soundness of
the resulting process schema (e.g., absence of deadlocks)

cannot be guaranteed. Therefore, for more complex pro-
cess meta models it is not possible to associate formal
pre-/post-conditions with the application of single pri-
mitives. Instead, schema correctness has to be explicitly
checked after applying the respective set of primitives.

On the other hand, structural adaptations can be ba-
sed on change patterns, i.e., high-level change operations
(e.g., to insert a process fragment between two sets of
nodes), which abstract from the concrete schema trans-
formations to be conducted. Instead of specifying a set of
change primitives the user applies one or more high-level
change operations to realize the desired process schema
adaptation. Approaches following this direction often as-
sociate pre- and post-conditions with the high-level ope-
rations, which enables the PAIS to guarantee soundness
when applying corresponding change operations [49; 7].
Note that soundness becomes a fundamental issue when
changes are applied by end users or even more challen-
ging by automated software agents [4; 14; 10; 41].

Fig. 9 illustrates the benefit of using change patterns
instead of change primitives. The original process schema
on the left side consists of a single activity A. Assume now
that a process change shall be accomplished inserting ac-
tivity B in parallel to A. On the one hand this change can
be accomplished by using one high-level change opera-
tion parallelInsert (S, B, A) which adds activity B
parallel to A. Applying this change pattern the user just
has to specify a couple of parameters. On the other hand,
change primitives can be used to realize the desired ad-
aptation. In the given example, the transformation of
the original process schema into the new schema versi-
on requires nine change primitives (cf. Fig. 9). Using the
high-level operation parallelInsert instead, from the
perspective of the user, eight operations can be saved.

Ch P tt Ch P i iti

Insert B parallel to A

9 Change Primitives1 High-Level Change Operation

Change Patterns Change Primitives

Add Node (B)
Add Node (AND-Split)
Add Node (AND-JOIN)
M Ed ((St t A) (St t AND S lit))

parallelInsert (S, B, A)

Move Edge ((Start, A), (Start, AND-Split))
Move Edge ((End, A), (AND-Join, End)
Add Edge (AND-Split, A)
Add Edge (AND-Split, B)
Add Ed (A AND J i)Add Edge (A, AND-Join)
Add Edge (B, AND-Join)

Abb. 9 Change Patterns vs. Change Primitives

[96; 97] provide a catalog of 14 change patterns (cf.
Fig. 12) and an evaluation of selected PAISs along them.
For a description of the formal semantics of process change
patterns we refer to [67].

Beyond Rigidity - Dynamic Process Lifecycle Support 9

Patient
Admission xAnamnesis &

Clinical Examination

Non Operative Therapy

Sonography

MRT

X-ray

Initial Treatment &
Operation Planning

Non Operative Therapy 1

Operative Treatment

Discharge &
Documentation

+ + x x

x

Process Instance I1 Delete(I1,MRT)

Abb. 8 Example for an Instance-specific Change
Adaptation Patterns

Adaptation Patterns

AP14: Copy Process Fragment

AP13: Update Condition

AP12 Remove Control Dependency

AP11: Add Control Dependency

AP10: Embed Process Fragment in Conditional Branch

AP9: Parallelize Activities

AP8: Embed Process Fragment in Loop

AP7: Inline Sub Process

AP6: Extract Sub Process

AP5: Swap Process Fragment

AP4: Replace Process Fragment

AP3: Move Process Fragment

AP2: Delete Process Fragment

AP1: Insert Process Fragment

Abb. 10 Catalogue of Adaptation Patterns

4.2.2 Correctness of Ad-hoc Changes

An essential component of any change framework must
be to ensure correctness and consistency of process in-
stances when dynamically adapting them. First, struc-
tural and behavioral soundness of the modified process
schema should be guaranteed independent from whether
or not the change is applied at the instance level. Fur-
thermore, when performing structural schema changes at
the instance level, this must not lead to inconsistent or
erroneous process states afterwards. Therefore, a correct-
ness criterion is needed to decide whether or not a given
process instance is compliant with a modified process
schema [7; 99; 74; 59]. A detailed overview of correctness
issues emerging in connection with ad-hoc process chan-
ges can be found in [57; 68]. Finally, a recently conducted
evaluation of flexible PAISs shows that correctness issues
in the context of ad-hoc changes are often ignored [97].

4.2.3 Access Control for Changes

The support of runtime changes leads to increased pro-
cess flexibility. This imposes several security issues as the
PAIS becomes more vulnerable to misuse [93; 11]. The-
refore, the application of changes at the process type as
well as the process instance level should be restricted to
authorized users. An example of an access control fra-
mework existing in this context is SecServ [93], which is
a security service tailored towards the specific needs of
adaptive PAISs enabling runtime flexibility. SecServ al-
lows for both user dependent and process type dependent
access rights. While the former restrict access to aut-
horized users in order to avoid misuse (e.g., only users
with role physician are authorized to insert the X-ray

activity), the latter access rights are applied to only al-
low for change commands useful within a particular con-
text (e.g., activity vacation request must not be inserted
in medical treatment processes). SevServ supports both
the specification and validation of static and dynamic
constraints (i.e., constraints considering runtime data).

4.2.4 User Assistance and Change Reuse

For the practical applicability of a flexible PAIS end-user
support is crucial. Although the use of change patterns
ensures that no errors or inconsistencies are introduced,
a flexible PAIS demands for more advanced user sup-
port. In the context of unplanned instance changes “simi-
lar”deviations (i.e., combinations of one or more change
pattern) often occur more than once. Think of, for ex-
ample, the clinical domain where patients with similar
problems may have to be treated over and over again.
Generally, the from scratch definition of changes requi-
res significant user experience. To improve this situation
several proposals for facilitating ad-hoc changes through
change reuse have been made [61; 31; 35; 36; 98; 92; 95].
For example, [98] presents a case-based reasoning ap-
proach for annotating changes with contextual informa-
tion (e.g., about the reasons for the deviation). Corre-
sponding annotations are then memorized together with
the changes and can be retrieved later in similar pro-
blem situations. Fig. 11 illustrates such a memorized case
along our running healthcare example.

4.2.5 Controlling Concurrent Changes

Any PAIS supporting instance-specific adaptations should
be able to cope with concurrent ad-hoc changes. When
two users want to apply different ad-hoc changes to a
particular process instance at the same time, the PAIS
has to ensure that no inconsistencies or errors occur. In
addition, it has to be guaranteed that no inconsistent
states are introduced, when process instances are chan-
ged, but their execution proceeds. The easiest way to
avoid such problems is to prohibit concurrent changes.
WASA2 [100], for example, locks the entire process in-
stance when an instance-specific change is performed.

10 B. Weber, S. Sadiq and M. Reichert

Patient
Admission xAnamnesis &

Clinical Examination

Non Operative Therapy

Sonography

MRT

X-ray

Initial Treatment &
Operation Planning

Non Operative Therapy 1

Operative Treatment

Discharge &
Documentation

+ + x x

x

Process Instance I1 Delete(I1,MRT)

pdc1 = The treatment of cruciate ruptures routinely includes a magnetic resonance
tomography (MRT), an X-ray and a sonography. However, for a particular
patient the MRT may have to be skipped as the respective patient has a
cardiac pacemaker.

solc1 = <Delete(SI,MRT)>
qaSetc1= {(Does the patient have a cardiac pacemaker?, patient.hasPacemaker = ‘Yes‘)}
freqc1 = 1

C
as

e
c 1

Abb. 11 Using Context Information to Foster Change Reuse [98]

FLOWer [87], in turn, avoids change conflicts by pro-
hibiting users to simultaneously change the same ca-
se (i.e, process instance). As opposed to these approa-
ches, ADEPT2 [52] and CAKE2 [35] provide support
for concurrent changes. While ADEPT2 supports con-
current ad-hoc changes of a particular process instance
based on optimistic techniques, locking is used in CA-
KE2. The breakpoint mechanism provided by CAKE2
only suspends those parts of a process instance which
have to be changed. Parallel branches, not affected by
the change, may proceed with their execution.

4.3 Dealing with Uncertainty

In addition to the handling of expected and unexpected
exceptions a flexible PAIS must be able to deal with un-
certainty. There exist several proposals on how to deal
with this challenge [1; 75; 46; 87]. Common to all of them
is the idea to cope with uncertainty by deferring decisions
regarding the exact flow of control to runtime. Instead
of requiring a process schema to be fully specified pri-
or to execution, parts of the schema remain unspecified.
Examples for such techniques are Late Binding, Late Mo-
deling and Late Composition of Process Fragments (see
also Sections 3.4 and 3.5) as well as Multi-Instance Acti-
vities. Finally, data-driven processes have been proposed
in this context as well [87; 56; 39; 40].

Late Binding allows deferring the selection of the im-
plementation of a particular process activity (e.g., a Web
service or a Java program) to runtime. The concrete im-
plementation is selected either based on predefined rules
or on user decisions.

Late Modeling offers more freedom and allows for mo-
deling selected parts of the process schema at runtime.
Prior to execution only a placeholder activity has to be
provided, its implementation is modeled during runti-
me. The modeling of the placeholder activity needs to
be completed before its execution may start. For exam-
ple, the process variant depicted in Fig. 6 replaces the

placeholder activity B with a process fragment compri-
sing activities P, Q, R and U. The depicted variant is valid
as it obeys all execution constraints imposed by the pro-
cess model. A particular variant of late modeling is pro-
vided by Late Composition, which enables the on-the-fly
composition of process fragments from the process repo-
sitory (e.g., by dynamically introducing control depen-
dencies between a predefined set of activities and process
fragments, respectively). There is no predefined schema,
but the process instance is created in an ad-hoc way by
selecting from the available activities in the repository
and obeying the predefined constraints. Fig. 7b shows
two process instances which have been created based on
the declarative process model depicted in Fig. 7a. Consi-
dering the partial trace of instance I1 possible activities
to be executed next are A, C, D, E and F. Activity B can-
not be executed for I1 as it is mutually exclusive with A.
In its current state I1 cannot be terminated as the re-
sponse constraint between activities C and F is violated.
By contrast, process instance I2 has an execution state
for which termination is possible.

Moreover, Multi-Instance Activity allows for deferring
the decision on how often a specific activity shall be exe-
cuted to runtime, while the activity itself needs to be
predefined at design time [86]. [56] discusses how the
multi-instance pattern can be used to deal with certain
kinds of exceptions during process execution.

Data-driven processes, as realized by [87; 39; 40; 53;
23], offer promising perspectives with respect to flexible
process execution and adaptation.

The case-handling system FLOWer [87], for exam-
ple, does not predefine the exact flow of control, but or-
chestrates the execution of activities based on the data
assigned to a case (i.e., process instance). Thereby, dif-
ferent kinds of data objects are distinguished (cf. Fig.
12). Mandatory and restricted data objects are explicit-
ly linked to one or more activities. If a data object is
mandatory for an activity, a value has to be assigned
to it before the activity can be completed (e.g., Data
Object 5 in Fig. 12). If a data object is restricted for

Beyond Rigidity - Dynamic Process Lifecycle Support 11

an activity, this activity needs to be active in order to
assign a value to the data object. Free data objects, in
turn, are not explicitly associated with a particular ac-
tivity and can be changed at any point in time during
case execution (e.g., Data Object 3 in Fig. 12). This, in
turn, provides additional flexibility during runtime. In
[16] a qualitative comparison of case-handling an flexible
workflow technology is given, while [43] compares both
technologies along a controlled experiment.

Another data-driven approach is provided by CORE-
PRO [39; 40], which enables data-driven creation and
adaptation of large process structures during runtime.
For this purpose COREPRO establishes a strong linka-
ge between (product) data structures and process struc-
tures. In particular, it translates (dynamic) changes of
a currently processed data structure into corresponding
adaptations of the related process structure under execu-
tion. COREPRO uses comprehensive consistency criteria
in order to ensure that dynamic adaptations of a pro-
cess structure lead to a correct process structure again.
In summary, COREPRO addresses the full life cycle of
data-driven, dynamic process structures.

Change reuse is not only relevant for structural pro-
cess adaptations, but also for loosely specified process
models. The more flexibility is provided, the bigger the
need for user support becomes. In the context of late
binding, [1] suggests incrementally evolving selection ru-
les. To better support late modeling, [30] fosters reuse
by making past process instances available to the user
through a search interface and by saving frequently re-
occurring instances as templates. Alternatively, in the
context of declarative processes, [79] proposes the usage
of log-based recommendations to support users in selec-
ting among several different options the one which meets
the user’s goals best. Finally, in [90] a recommendation
service for product data models is presented. Like in [79]
recommendations are used for assisting users in selecting
the step meeting performance goals of the process best.

5 Monitoring and Diagnosing Phase

The monitoring and diagnosing phase is particularly im-
portant for dynamic processes. It comprises support for
both the real-time monitoring of the state and structure
of dynamically evolving process instances and the post-
execution analysis of completed ones.

Through monitoring authorized users (e.g., process
administrators) can get a quick overview of the execu-
tion status and structure of a particular process instan-
ce (e.g., whether or not instance execution is delayed)
or a collection of process instances (e.g., using a busi-
ness dashboard which provides an abstract visualization
of the status of these processes). Process diagnosis, in
turn, focuses on the comprehensive analysis of a collec-
tion of process instances in order to identify potential

process improvements. The latter can be accomplished,
for example, by evolving the corresponding process sche-
ma accordingly. In the context of long running processes,
this additionally necessitates support for the controlled
migration of running process instances to the new sche-
ma version.

Section 5.1 discusses aspects related to the traceabili-
ty of dynamic processes and Section 5.2 presents selected
approaches for diagnosing and mining dynamic proces-
ses. In Section 5.3 we show how identified process opti-
mizations can be realized in an adaptive PAIS. Finally,
Section 5.4 discusses further relevant issues.

5.1 Traceability of Changes and Monitoring of Dynamic
Processes

To ensure traceability of a dynamic process the PAIS
must be able to restore both its execution schema and
its execution state at any point in time. Generally, for
dynamic processes it is therefore not sufficient to only
log normal execution events (e.g., related to the start
or completion of activities) in corresponding traces, but
it additionally becomes necessary to store information
about applied process adaptations in change logs [62; 64].
Further, it should be possible to correlate change log ent-
ries with semantical information (e.g., about the reasons
and the context of the applied instance changes [98]).
The latter is important for analyzing ad-hoc deviations
and for learning from these changes.

By utilizing execution logs and correlating them with
application-specific data, for example, the PAIS may pro-
vide sophisticated components for real-time monitoring
as well as for process performance management (e.g.,
evaluating a set of key performance indicators). The lat-
ter enables comprehensive analyses of the execution data
of process instance collections and requires sophisticated
support for business process visualization [5; 6].

5.2 Diagnosing and Mining of Dynamic Processes

A PAIS supporting dynamic processes stores informati-
on about ad-hoc deviations in change logs. Obviously,
corresponding log information provides promising per-
spectives with respect to the diagnosis and analysis of
dynamic processes. In [15; 17] two change mining tech-
niques are presented: multiphase change mining and mi-
ning of changes processes with regions. Both approaches
do not only analyze the execution logs of the operational
processes, but also consider the changes applied at the
process instance level. The change processes discovered
through process mining provide an aggregated overview
of all changes that happened so far. Using process mining
as analysis tool, [17] shows how better support can be
provided for dynamic processes by understanding when
and why process changes become necessary.

12 B. Weber, S. Sadiq and M. Reichert

mandatory data object restricted data object

Activity 1 Activity 2

Activity 3

Activity 4

Activity 6

Data
Object 1

Data
Object 2

Data
Object 4

Data
Object 5

Data
Object 3

Data
Object 7

Data
Object 6

form

User 1 User 2

execute role redo role

active
activity

Possible Actions of User 2:

- Activity 4 can be executed

Current Situation:
- Activity 4 is active
- Data Objects 1,2,3 and 4 are available, i.e.,
 values for the data objects have been entered

Activity 5

- Activity 2 can be redone at any time
- Activity 3 cannot be executed CONSTRAINT

- Activity 5 cannot be executed CONSTRAINT
- Activity 6 cannot be executed CONSTRAINT

Constraints:
- Activity 3 can be completed if Data Object 5 is available
- Activity 5 can be executed if Activities 3 and 4 is completed
- Activity 6 can be executed if Activity 5 is completed

available Data Objects not available Data Objects

available data object not available data object

Abb. 12 Data Driven Case Handling (adapted from [43])

In the MinAdept project [27] even more advanced
algorithms for mining a collection of process (instance)
variants have been developed. For example, [26] provi-
des a cluster-based technique that fosters learning from
past process changes by mining the corresponding collec-
tion of configured process variants. As result we obtain
a generic process model for which the average distan-
ce between this model and the mined process variants
(i.e., number of high-level change operations needed to
transform one model into the other [28]) becomes mini-
mal. By adopting this generic model as reference model
in the PAIS, need for future process adaptations at the
instance level decreases.

5.3 Process Schema Evolution

In order to deal with the evolving nature of dynamic pro-
cesses (e.g., to cope with changes of legal regulations or
to implement process optimizations), a PAIS must sup-
port process schema changes at the type level (in the
following also denoted as schema evolution). Such a pro-
cess schema evolution may also require the propagation
of the changes to ongoing process instances, particular-
ly if these instances are long-running [51]. For example,
let us assume that in a patient treatment process, due
to new legal requirements, patients have to be educated
about potential risks before a surgery takes place. Let
us further assume that this change is also relevant for
patients for which the treatment has already been star-
ted. In such a scenario, stopping all ongoing treatments,
aborting them, and re-starting them is not a viable op-
tion. As a large number of treatment processes might be
concurrently running, applying this change manually to
all ongoing treatment processes is also not a feasible op-
tion. Instead, efficient PAIS support is required to add
this new activity to all patient treatments for which this
is still feasible (e.g., if the surgery has not yet started).

Generally, to support changes at the process type le-
vel, version control for process schemes is needed. In case
of long-running processes, as motivated, the controlled
migration of already running instances from the old to
the new process schema version should be possible when
conducting a schema change at the type level [59].

If no version control is provided, either the designer
will have to manually create a copy of the process sche-
ma to be changed or the original schema will be over-
written. In the latter case, running instances can either
be withdrawn from the runtime environment or they re-
main associated with the modified schema. Depending
on current instance execution state and on how changes
are propagated to instances progressed too far, missing
version control can lead to inconsistent states and – worst
case – to deadlocks or other severe runtime errors.

By contrast, if a PAIS provides explicit version con-
trol already running process instances may remain asso-
ciated with the old schema version, while new instances
can be created based on the new schema version. This
approach leads to the co-existence of process instances
belonging to different schema versions.

Furthermore, for an already running process instance
a controlled migration to the new process schema versi-
on will be possible, if the instance in its current exe-
cution state is compliant with the new schema version
(see Fig. 13 for example). In the latter context the PAIS
should be also able to deal with ”concurrent” changes
at the process type and the process instance level (see
[51; 60; 58] for detailed discussions on this topic). In this
context well elaborated correctness criteria are needed
to not needlessly exclude process instances from being
migrated to the new schema version [68].

As shown in the DYCHOR project [63] things beco-
me even more complicated when changing the schema
of a process choreography, i.e., the interaction protocol
representing the coordination of multiple processes.

Beyond Rigidity - Dynamic Process Lifecycle Support 13

A B
D

C

+ + E FX

Y

A B
D

C

+ + E FX

Y

A B
D

C

+ + E FX

Y

A B
D

C

+ + E FX

Y

Type change overwrites schema S

Process Schema S’

Schema Evolution

Process Schema S

Process Instance I1

Change
is propagated to

all running
process instances

a.) Schema is overwritten and instances are migrated – Design Choice F1[2]

Process Instance I2

Process Instance I1

Process Instance I2

Inconsistent states after change propagation

Insert X between A and B
Insert Y between C and AND-Join1

AND-Split1
AND-Join1

A B
D

C

+ + E F

A B
D

C

+ + E F

A B
D

C

+ + E F

A B
D

C

+ + E FX

Y

A B
D

C

+ + E FX

Y

AND-Split1
AND-Join1

Inconsistent
state

A B
D

C

+ + E FX

Y

A B
D

C

+ + E FX

Y

Type change results into a new version of schema S

Process Schema S’

Schema Evolution

Process Schema S

Process Instance I1

b.) Co-existence of instances of different schema versions – Design Choice F1[3]

Process Instance I2

Process Instance I3

Process Instance I4

Process Instance I5

Old instances remain with schema S
Instances created from S (before schema evolution) Instances created from S’ (after schema evolution)

AND-Split1
AND-Join1

A B
D

C

+ + E F A B
D

C

+ + E FX

Y

A B
D

C

+ + E FX

Y

A B
D

C

+ + E FA B
D

C

+ + E F

A B
D

C

+ + E F

A B
D

C

+ + E FA B
D

C

+ + E F

A B
D

C

+ + E FX

Y

A B
D

C

+ + E FX

Y

Insert X between A and B
Insert Y between C and AND-Join1

AND-Split1
AND-Join1

Type change results into a new version of schema S

Process Schema S‘

Schema Evolution

Process Schema S

Process Instance I1

Propagation
of compliant

process instances
to schema S’

(incl. state adaptations)

c.) Instance Migration - Design Choice F1[5]

Process Instance I2

Process Instance I3

Process Instance I1

Process Instance I2

Migration of compliant process instances to S’

AND-Split1
AND-Join1

A B
D

C

+ + E F A B
D

C

+ + E FX

Y

A B
D

C

+ + E FX

Y

A B
D

C

+ + E FA B
D

C

+ + E F

A B
D

C

+ + E FA B
D

C

+ + E F

A B
D

C

+ + E FA B
D

C

+ + E F Process Instance I3 not compliant with S’

A B
D

C

+ + E FX

Y

A B
D

C

+ + E FX

Y

A B
D

C

+ + E FX

Y

A B
D

C

+ + E FX

Y

Insert X between A and B
Insert Y between C and AND-Join1

AND-Split1
AND-Join1

Abb. 13 Migrating compliant process instances to a new process schema version.

5.4 Further Issues

With the increasing adoption of PAISs large process re-
positories will emerge over time [54]. The evolution of
process models bears the risk that redundancies are in-
troduced leading to unnecessary complexity [91]. When
no continuous efforts are undertaken to keep process mo-
dels simple, not only changes will become increasingly
complex and time-consuming, but errors become mo-
re probable as well (as a recently conducted study by
[34] revealed). In this context [91] proposes 11 behavior-
preserving refactoring techniques, which are especially
suited for business process models (cf. Fig. 14). These
refactorings are applicable to (hierarchically structured)
process models as well as to process model variants de-
rived from a generic process schema. Respective refac-
toring techniques allow process designers to improve the
design of process models and to remove redundancies in-
troduced as the result of model adaptations.

Adaptation Patterns

RF11: Pull Up Instance ChangeRF6: Inline Process Fragment

Catalogue of Process Model Refactorings

RF10: Remove Unused Branches

Refactorings for Model Evolution

RF9: Generalize Variant Change

Refactorings for Process Variants

RF8: Remove Redundancies

RF7: Re-label Collection

RF5: Replace Process Fragment by Reference

RF4: Extract Process Fragment

RF3: Substitute Process Fragment

RF2: Rename Process Schema

RF1: Rename Activity

Refactorings for Process Model Trees

Abb. 14 Catalogue of Process Model Refactorings

6 Discussion

When designing PAISs, which provide support for dyna-
mic processes, several trade-offs exist. The most import-
ant ones are discussed in this section.

Trade-off between degree of control in impe-
rative and in declarative approaches. Imperative
approaches allow to precisely prescribe the control as
well as the data flow of the processes to be implemen-
ted. This, in turn, provides the basis for comprehensi-
ve correctness checks, seamless integration of application
services (with input and output parameters), and many
other useful PAIS functions, but at the price of less a-
priori-flexibility. However, as shown in the previous sec-
tions, there are imperative approaches which provide a
high degree of runtime flexibility by allowing authorized
users to deviate from the prescribed flow of control. As
opposed to imperative approaches, declarative modeling
approaches only describe what to do, but do not pre-
scribe in detail how to do things. While this provides
more in-build-flexibility to users, with increasing com-
plexity of the processes it will decrease ease-of-use and
aggravate the implementation of more advanced PAIS
functions (e.g., concerning application integration). Ob-
viously, both paradigms have their right to exist and are
certainly not able to completely replace each other.

Trade-off between expressiveness and flexibili-
ty in imperative approaches. Obviously, there exists
a trade-off between expressiveness of a process meta mo-
del and the provided support for dynamic structural ad-
aptations. For example, ADEPT2 has been designed with
the goal to enable the latter [49]. To allow for an efficient
implementation of adaptation patterns, well elaborated
restrictions on the process meta model have been ma-
de. Similar restrictions in terms of expressiveness hold
for other approaches supporting structural adaptations
(e.g., CAKE2 [35] and WASA2 [100]). On the other hand,
YAWL is a reference implementation for process patterns
and therefore allows for a high degree of expressiveness
[85]. Structural adaptations have not yet been addres-
sed in YAWL and their implementation would be more

14 B. Weber, S. Sadiq and M. Reichert

S h SE t M k
Schema S‘:

Examine
patient

Make
appointm

ent

Ente
r

orde
r

Inform
patient

Make
appointm

ent

Schema S:

A B C ED

Examine
patient

Make
appointm

ent

Ente
r

orde
r

Inform
patient

Make
appointm

entA B D
X

C E

In
st

an
ce

s

e
In

st
an

ce
s

C
re

at
e

Process

Process designer /
Process administrator

M
ig

ra
te

Instance I1
Execution

Log

Arbeitsliste
Tätigkeit 1
Tätigkeit 2
Tätigkeit 3
Tätigkeit 4

Process
ExecutionInstance I1 with ad-hoc

change

Instance-

Pr
oc

es
s

op
tim

ie
ru

ng
en

Actor
Change

Log

specific
ChangeProcess

Monitoring &
Mining

Case Base
Reuse Changes

Abb. 15 Revised Process lifecycle

difficult due to the higher expressiveness. However, the
integration of Worklets/Exlets with YAWL has shown
that late binding can be easily realized for expressive
process meta models as well [1; 2]. Furthermore, the de-
clarative process management tool DECLARE [46] has
been integrated as a service for YAWL, which allows for
the runtime composition of sub process fragments in a
declarative way.

Trade-off between flexibility and support in
declarative approaches. It seems that the trade-off
between expressiveness and flexibility does not exist to
the same degree for declarative systems. Corresponding
systems can be characterized as both expressive and fle-
xible. However, compared to imperative approaches the
potential for process automation is limited. As declarati-
ve process models allow for any behavior not prohibited
by constraints, process models tend to provide several
alternative options how to proceed with a process in-
stance. Whenever several options exist user interaction
is needed to select the most appropriate one. With incre-
asing size and complexity of process models the task of
selecting the best alternative path to proceed, becomes
increasingly difficult for end users. Consequently, advan-
ced user support is needed to guide end users through
the process.

7 Summary and Outlook

To reflect the specific challenges for the lifecycle mana-
gement of dynamic processes the simple life cycle model
depicted in Fig. 2 needs to be complemented. Fig. 15
illustrates the revised lifecycle model. At buildtime an

initial representation of a business process is created eit-
her by explicitly modeling the process (based on analy-
sis results) or by discovering process models through the
mining of execution logs [88] (1). At runtime new pro-
cess instances can be derived from the predefined process
schema (2). In general, process instances are executed
according to the process type schema they were deri-
ved from, and (non-automated) activities are assigned
to process participants to perform the respective acti-
vities (3). However, when exceptional situations occur
during runtime, process participants may deviate from
the predefined schema (4). While execution logs record
information about the start and completion of activities
as well as their ordering, process changes are recorded in
change logs (5). The analysis of respective logs by a pro-
cess engineer and process intelligence tools respectively
allows discovering malfunctions or bottlenecks [81; 88].
This information often results in an evolution of the pro-
cess schema (6). If desired, changes can be propagated
to running process instance (7).

It it worth mentioning that work on dynamic pro-
cesses has to be complemented by approaches providing
similar flexibility for process aspects other than con-
trol and data flow. For example, in the CEOSIS project
[65; 66], (dynamic) changes of organizational models as
well as access constraints are studied in-depth.

Literatur

1. Adams M, ter Hofstede A, Edmond D, van der Aalst
W (2006) Worklets: A service-oriented implementation
of dynamic flexibility in workflows. In: Proc. Coopis’06,
LNCS 4275, pp 291–308

Beyond Rigidity - Dynamic Process Lifecycle Support 15

2. Adams M, ter Hofstede A, Edmond D, van der Aalst W
(2007) Dynamic and extensible exception handling for
workflows. Tech. Rep. BPM-07-03, BPMcenter.org

3. Adams M, ter Hofstede A, van der Aalst W, Edmond D
(2007) Dynamic, extensible and context-aware excepti-
on handling for workflows. In: Proc. CoopIS’07, LNCS
4803

4. Bassil S, Keller R, Kropf P (2004) A workflow-oriented
system architecture for the management of container
transportation. In: Proc. BPM’04, LNCS 3080, pp 116–
131

5. Bobrik R, Bauer T, Reichert M (2006) Proviado perso-
nalized and configurable visualizations of business pro-
cesses. In: Proc. EC-WEB’06, LNCS 4082, pp 61–71

6. Bobrik R, Reichert M, Bauer T (2007) View-based pro-
cess visualization. In: Proc. BPM’07, LNCS 4714, pp
88–95

7. Casati F (1998) Models, semantics, and formal methods
for the design of workflows and their exceptions. PhD
thesis, University of Milano

8. Casati F, Fugini MG, Mirbel I (1999) An environ-
ment for designing exceptions in workflows. Inf Syst
24(3):255–273

9. Dadam P, Reichert M, Kuhn K (2000) Clinical work-
flows – the killer application for process-oriented infor-
mation systems? In: Proc. BIS’00, Poznan, Poland, pp
36–59

10. de Leoni M, Mecella M, de Giacomo G (2007) High-
ly dynamic adaptation in process management systems
through execution monitoring. In: Proc. BPM’07, LNCS
4714, pp 182–197

11. Domingos D, Rito-Silva A, Veiga P (2003) Authorizati-
on and access control in adaptive workflows. In: Proc.
ESORICS’03, pp 23–38

12. Dumas M, ter Hofstede A, van der Aalst W (eds) (2005)
Process Aware Information Systems. Wiley Publ.

13. Eder J, Liebhart W (1996) Workflow recovery. In: Coo-
pIS’96, pp 124–134

14. Golani M, Gal A (2006) Optimizing exception hand-
ling in workflows using process restructuring. In: Proc.
BPM’06, LNCS 4102, pp 407–413

15. Günther C, Rinderle S, Reichert M, van der Aalst W
(2006) Change mining in adaptive process management
systems. In: Proc. CoopIS’06, LNCS 4275, pp 309–326

16. Günther C, Reichert M, van der Aalst W (2008) Sup-
porting flexible processes with adaptive workflow and
case handling. In: Proc. WETICE’08

17. Günther C, Rinderle-Ma S, Reichert M, van der Aalst
W, Recker J (2008) Using process mining to learn from
process changes in evolutionary systems. Int’l Journal of
Business Process Integration and Management, Special
Issue on Business Process Flexibility 3(1):61–78

18. Hagen C, Alonso G (2000) Exception handling in work-
flow management systems. IEEE Transactions on Soft-
ware Engineering 26(10):943–958

19. Hallerbach A, Bauer T, Reichert M (2008) Context-
based configuration of process variants. In: Prof.
TCoB’08, pp 31–40

20. Hallerbach A, Bauer T, Reichert M (2008) Mana-
ging process variants in the process lifecycle. In: Proc.
ICEIS’08, Barcelona, pp 154–161

21. Harmon P (2003) Business Process Change - A Mana-
ger’s guide to Improving, redesigning and Automating
Processes. Morgan Kaufmann

22. Kloppmann M, Knig D, Leymann F, Pfau G, Roller
D (2008) Business process choreography in WebSphere.
combining the power of BPEL and J2EE. IBM Systems
Journal 43(2):270–296

23. Küster J, Ryndina K, Gall H (2007) Generation of busi-
ness process models for object life cycle compliance. In:

BPM’07, LNCS 4714, pp 165–181
24. la Rosa M, Lux J, Seidel S, Dumas M, ter Hofstede A

(2007) Questionnaire-driven configuration of reference
process models. In: Proc. CAiSE’07, LNCS 4495, pp
424–438

25. Lenz R, Reichert M (2007) IT support for healthcare
processes - premises, challenges, perspectives. Data and
Knowledge Engineering 61(1):39–58

26. Li C, , Reichert M, Wombacher A (2008) Discovering
reference process models by mining process variants. In:
Proc. ICWS’08, Beijing, pp 45–53

27. Li C, , Reichert M, Wombacher A (2008) Mining process
variants: Goals and issues. In: Proc. SCC’08, Honolulu,
Hawaii, pp 573–576

28. Li C, Reichert M, Wombacher A (2008) On measuring
process model similarity based on high-level change ope-
rations. In: Proc. ER’08, Barcelona, LNCS 5231, pp
248–264

29. Lu R (2008) Constraint based flexible business process
management. PhD thesis, School of Information Tech-
nology and Electrical Engineering. The University of
Queensland, Brisbane, Australia

30. Lu R, Sadiq S (2006) Managing process variants as an
information resource. In: Proc. BPM06, pp 426–431

31. Lu R, Sadiq S (2007) On the discovery of preferred work
practice through business process variants. In: Proc.
ER’07

32. Luo Z, Sheth A, Kochut K, Miller J (2000) Excepti-
on handling in workflow systems. Applied Intelligence
13(2):125–147

33. Malone T, Crowston K, Herman G (2003) Organizing
Business Knowledge - The MIT Process Handbook. The
MIT Press

34. Mendling J (2007) Detection and prediction of errors in
epc business process models. PhD thesis, Vienna Univ.
of Economics and Business Administration

35. Minor M, Schmalen D, Koldehoff A, Bergmann R (2007)
Structural adaptation of workflows supported by a sus-
pension mechanism and by case-based reasoning. In:
Proc. WETICE’07, pp 370–375

36. Minor M, Tartakovski A, Bergmann R (2007) Repre-
sentation and structure-based similarity assessment for
agile workflows. In: Proc. ICCBR’07, pp 224–238

37. Minor M, Tartakovski A, Schmalen D, Bergmann R
(2008) Agile workflow technology and case-based change
reuse for long-term processes. International Journal of
Intelligent Information Technologies 1(4):80–98

38. Müller D, Herbst J, Hammori M, Reichert M (2006)
IT support for release management processes in the au-
tomotive industry. In: Proc. BPM’06, LNCS 4102, pp
368–377

39. Müller D, Reichert M, Herbst J (2007) Data-driven mo-
deling and coordination of large process structures. In:
Proc. CoopIS’07, LNCS 4803, pp 131–149

40. Müller D, Reichert M, Herbst J (2008) A new paradigm
for the enactment and dynamic adaptation of data-
driven process structures. In: Proc. CAiSE’08, LNCS
5074, pp 48–63

41. Müller R, Greiner U, Rahm E (2004) AgentWork: A
workflow system supporting rule–based workflow adap-
tation. Data and Knowledge Engineering 51(2):223–256

42. Mutschler B, Reichert M, Bumiller J (2008) Unlea-
shing the effectiveness of process-oriented information
systems: Problem analysis, critical success factors and
implications. IEEE Transactions on Systems, Man, and
Cybernetics (Part C) 38(3):280–291

43. Mutschler B, Weber B, Reichert M (2008) Workflow ma-
nagement versus case handling - results from a control-
led software experiment. In: Proc. SAC’08, pp 82–89

16 B. Weber, S. Sadiq and M. Reichert

44. Netjes M, Mansar S, Reijers H, van der Aalst W (2007)
An evolutionary approach for business process redesign
- towards an intelligent system. In: Proc. ICEIS (3), pp
47–54

45. Pande P, Neuman R, Cavanagh R (2000) The Six Sigma
Way: How GE, Motorola, and Other Top Companies are
Honing Their Performance. Mc-Graw Hill

46. Pesic M, Schonenberg M, Sidorova N, van der Aalst W
(2007) Constraint-based workflow models: Change ma-
de easy. In: Proc. CoopIS’07, LNCS 4803, pp 77–94

47. Porter M (1985) Competitive Advantage: Creating and
Sustaining Superior Performance. Free Press

48. Reichert M (2000) Dynamische Ablaufänderungen in
Workflow-Management-Systemen. PhD thesis, Univer-
sität Ulm

49. Reichert M, Dadam P (1998) ADEPTflex – supporting
dynamic changes of workflows without losing control.
Journal of Intelligent Information Systems 10(2):93–129

50. Reichert M, Dadam P, Bauer T (2003) Dealing with
forward and backward jumps in workflow management
systems. Software and Systems Modeling 2(1):37–58

51. Reichert M, Rinderle S, Dadam P (2003) On the com-
mon support of workflow type and instance changes un-
der correctness constraints. In: Proc. CoopIS’03, LNCS
2888, pp 407–425

52. Reichert M, Rinderle S, Kreher U, Dadam P (2005) Ad-
aptive process management with ADEPT2. In: Procee-
dings ICDE’05, pp 1113–1114

53. Reijers H, Limam S, van der Aalst W (2003) Product-
based workflow design. MIS 20(1):229–262

54. Reijers H, Mans R, van der Toorn R (2009) Improved
model management with aggregated business process
models. Data and Knowledge Engineering (to appear)

55. Rinderle S (2004) Schema evolution in process manage-
ment systems. PhD thesis, University of Ulm

56. Rinderle S, Reichert M (2006) Data-driven process con-
trol and exception handling in process management sys-
tems. In: Proc. CAiSE’06, LNCS 4001, pp 273–287

57. Rinderle S, Reichert M, Dadam P (2004) Correctness
criteria for dynamic changes in workflow systems – a
survey. Data and Knowledge Enginnering 50(1):9–34

58. Rinderle S, Reichert M, Dadam P (2004) Disjoint and
overlapping process changes: Challenges, solutions, ap-
plications. In: Proc. CoopIS’04, LNCS 3290, pp 101–120

59. Rinderle S, Reichert M, Dadam P (2004) Flexible sup-
port of team processes by adaptive workflow systems.
Distributed and Parallel Databases 16(1):91–116

60. Rinderle S, Reichert M, Dadam P (2004) On dealing
with structural conflicts between process type and in-
stance changes. In: Proc. BPM’04, LNCS 3080, pp 274–
289

61. Rinderle S, Weber B, Reichert M, Wild W (2005) In-
tegrating process learning and process evolution - a se-
mantics based approach. In: Proc. BPM’05, LNCS 3649,
pp 252–267

62. Rinderle S, Reichert M, Jurisch M, Kreher U (2006)
On representing, purging, and utilizing change logs in
process management systems. In: Proc. BPM’06, LNCS
4102, pp 241–256

63. Rinderle S, Wombacher A, Reichert M (2006) Evolu-
tion of process choreographies in DYCHOR. In: Proc.
CoopIS’06, LNCS 4275, pp 273–290

64. Rinderle S, Jurisch M, Reichert M (2007) On deri-
ving net change information from change logs the
DELTALAYER-algorithm. In: Proc. BTW’07, LNI P-
103, pp 364–381

65. Rinderle-Ma S, Reichert M (2007) A formal framework
for adaptive access control models. In: Journal of Data
Semantics, IX, LNCS 4601, pp 82–112

66. Rinderle-Ma S, Reichert M (2008) Managing the life
cycle of access rules in CEOSIS. In: Proc. EDOC’08,
Munich, pp 257–266

67. Rinderle-Ma S, Reichert M, Weber B (2008) On the
formal semantics of change patterns in process-aware
information systems. In: Proc. ER’08, LNCS 5231, pp
279–293

68. Rinderle-Ma S, Reichert M, Weber B (2008) Relaxed
compliance notions in adaptive process management
systems. In: Proc. ER’08, LNCS 5231, pp 232–247

69. Rosemann M, van der Aalst W (2007) A configura-
ble reference modelling language. Information Systems
32(1):1–23

70. Rummler GA, Brache AP (Year) Improving Performan-
ce: How to Manage the White Space in the Organization
Chart. Jossey-Bass Publishers

71. Russell N, ter Hofstede A, Edmond D, van der Aalst
W (2004) Workflow data patterns. Tech. Rep. FIT-TR-
2004-01, Queensland University of Technology

72. Russell N, ter Hofstede A, Edmond D, van der Aalst W
(2004) Workflow resource patterns. Tech. Rep. WP 127,
Eindhoven Univ. of Technology

73. Russell N, van der Aalst W, ter Hofstede A (2006) Ex-
ception handling patterns in process-aware information
systems. In: Proc. CAiSE’06, pp 288–302

74. Sadiq S (2000) Handling dynamic schema changes in
workflow processes. In: Proc. 11th Australian Database
Conference

75. Sadiq S, Sadiq W, Orlowska M (2005) A framework for
constraint specification and validation in flexible work-
flows. Information Systems 30(5):349 – 378

76. SAP (2008) Sap solution maps:
www.sap.com/solutions

77. Scheer AW (1994) Business Process Engineering: Mo-
dels for Industrial Enterprises. Springer

78. Schonenberg H, Mans R, Russell N, Mulyar N, van der
Aalst W (2008) Process flexibility: A survey of contem-
porary approaches. In: CIAO! / EOMAS, pp 16–30

79. Schonenberg H, Weber B, van Dongen B, van der Aalst
W (2008) Supporting flexible processes through log-
based recommendations. In: Proc. BPM’08, LNCS 5240,
pp 51–66

80. SEI (2008) Capability maturity model:
www.sei.cmu.edu/cmmi

81. Subramaniam S, Kalogeraki V, Gunopulos D, Casati F,
Castellanos M, Dayal U, Sayal M (2007) Improving pro-
cess models by discovering decision points. Information
Systems 32(7):1037–1055

82. Thom L, Reichert M, Iochpe C (2009) Activity patterns
in process-aware information systems: Basic concepts
and empirical evidence. International Journal of Busi-
ness Process Integration and Management (IJBPIM)

83. van der Aalst W (1998) The application of petri nets
to workflow management. The Journal of Circuits, Sys-
tems and Computers

84. van der Aalst W, Jablonski S (2000) Dealing with work-
flow change: Identification of issues an solutions. Int’l
Journal of Comp Systems, Science and Engineering
15(5):267–276

85. van der Aalst W, ter Hofstede A (2005) YAWL:
Yet another workflow language. Information Systems
30(4):245–275

86. van der Aalst W, ter Hofstede A, Kiepuszewski B, Bar-
ros A (2003) Workflow patterns. Distributed and Par-
allel Databases 14(1):5–51

87. van der Aalst W, Weske M, Grünbauer D (2005) Case
handling: A new paradigm for business process support.
Data and Knowledge Engineering 53(2):129–162

88. van der Aalst W, Reijers H, Weijters A, van Dongen B,
de Medeiros AA, Song M, Verbeek H (2007) Business

Beyond Rigidity - Dynamic Process Lifecycle Support 17

process mining: An industrial application. Information
Systems 32(1):713–732

89. van der Aalst W, Dumas M, Gottschalk F, ter Hofstede
A, la Rosa M, Mendling J (2008) Correctness-preserving
configuration of business process models. pp 46–61

90. Vanderfeesten I, Reijers H, van der Aalst W (2008) Pro-
duct based workflow support: A recommendation ser-
vice for dynamic workflow execution. Tech. Rep. BPM-
08-03, BPMcenter.org

91. Weber B, Reichert M (2008) Refactoring process models
in large process repositories. In: Proc. CAiSE’08, LNCS
5074, pp 124–139

92. Weber B, Wild W, Breu R (2004) CBRFlow: Enabling
adaptive workflow management through conversational
CBR. In: Proc. ECCBR’04, LNCS 3155, pp 434–448

93. Weber B, Reichert M, Wild W, Rinderle S (2005) Ba-
lancing flexibility and security in adaptive process ma-
nagement systems. In: CoopIS’05, LNCS 3760, pp 59–76

94. Weber B, Reichert M, Rinderle S, Wild W (2006) To-
wards a framework for the agile mining of business
processes. In: BPM’05 Workshop Proceedings, 1st Int’l
Workshop on Business Process Intelligence (BPI’05) in
conjunction with (BPM ’05), LNCS 3812, pp 191–202

95. Weber B, Reichert M, Wild W (2006) Case-base main-
tenance for CCBR-based process evolution. In: Proc.
ECCBR’06, LNCS 4106, pp 106–120

96. Weber B, Rinderle S, Reichert M (2007) Change pat-
terns and change support features in process-aware in-
formation systems. In: Proc. CAiSE’07, LNCS 4495, pp
574–588

97. Weber B, Reichert M, Rinderle-Ma S (2008) Change
patterns and change support features – enhancing flexi-
bility in process-aware information systems. Data and
Knoweldge Engineering 66(3):438–466

98. Weber B, Reichert M, Wild W, Rinderle-Ma S (2009)
Providing integrated life cycle support in process-aware
information systems. Int’l Journal of Cooperative Infor-
mation Systems 18(1)

99. Weske M (2000) Workflow management systems: For-
mal foundation, conceptual design, implementation
aspects. University of Münster, Habil Thesis

100. Weske M (2001) Formal foundation and conceptual de-
sign of dynamic adaptations in a workflow management
system. In: Proc. HICSS-34

101. Weske M (2007) Business Process Management: Con-
cepts, Methods, Technology. Springer

102. Xerox (1997) InConcert Technical Product Overview

Barbara Weber obtained her
Ph.D. in Economics at the In-
stitute of Information Systems,
University of Innsbruck (Aus-
tria). Since 2004, she is rese-
archer at the Department of
Computer Science at the Uni-
versity of Innsbruck where she
is currently working on her ha-
bilitation. Barbara is a mem-
ber of the Quality Engineering
(QE) research group and head
of the research cluster on busi-
ness processes and workflows
at QE. Her main research inte-
rests are agile and flexible pro-
cesses and intelligent user sup-

port in flexible systems. This spans several technology areas

including workflow management systems, case-based reaso-
ning, process-oriented knowledge management, enterprise in-
formation systems, process mining, and agile software deve-
lopment.

Shazia Sadiq is currently
working in the School of Infor-
mation Technology and Elec-
trical Engineering at The Uni-
versity of Queensland, Brisba-
ne, Australia. She is part of the
Data and Knowledge Enginee-
ring (DKE) research group and
is involved in teaching and re-
search in databases and infor-
mation systems. Shazia holds
a PhD from The University
of Queensland in Information
Systems and a Masters degree
in Computer Science from the
Asian Institute of Technology,
Bangkok, Thailand. Her main

research interests are innovative solutions for Business Infor-
mation Systems that span several areas including business
process management, governance, risk and compliance, data
quality management, workflow systems, and service oriented
computing.

Manfred Reichert has been
full professor at the Universi-
ty of Ulm since January 2008.
From 2005 to 2007 he wor-
ked as Associate Professor at
the University of Twente (UT)
where he was coordinator of
the strategic research initiati-
ves on E-health (2005 - 2006)
and Service-oriented Compu-
ting (2007). At UT he was al-
so member of the Management
Board of the Centre for Tele-
matics and Information Tech-
nology which is the largest ICT
research institute in the Net-
herlands. He has worked on ad-

vanced issues related to process management technology and
service-oriented computing for ten years. Together with Peter
Dadam he pioneered the work on the ADEPT process ma-
nagement system, which currently provides the most advan-
ced technology for realizing flexible process-aware informati-
on systems. Manfred was PC Co-chair of the BPM08 confe-
rence in Milan and will be General Co-chair of the BPM09
conference in Ulm.

