
Computer Science - Research and Development manuscript No.
(will be inserted by the editor)

Peter Dadam · Manfred Reichert

The ADEPT Project: A Decade of Research and
Development for Robust and Flexible Process Support
Challenges and Achievements

Submitted: date / Accepted: date

Abstract This paper gives insights into the ADEPT
project. Its target was to develop a next generation pro-
cess management technology, which is by orders of mag-
nitudes more powerful and flexible than contemporary
process management systems. The ADEPT technology
should provide advanced features and properties within
one system, which seem to exclude each other, but which
are required for the support of a broad spectrum of pro-
cesses: ease-of-use for end users and system developers,
high flexibility through the support of non-trivial ad-hoc
deviations at the process instance level, quick implemen-
tation of process changes through process schema evolu-
tion, and correctness guarantees enabling robust execu-
tion of implemented processes. This paper describes the
background and the real-world cases which motivated
our research. It further explains the technological chal-
lenges we faced, describes the solutions we elaborated,
and discusses the current status of the ADEPT project.

Keywords Workflow Management · Business Process
Management · Process Flexibility · Process Change ·
Correctness by Construction · Robustness

CR Subject Classification H.4.1 · D.2.2 · D.2.11

1 Background - how all began

In 1992 we started the OKIS1 project – a pretty large and
broadly defined 3-years research project funded by the
State of Baden-Württemberg. In this project several cli-
nics, medical service units, and the computing center of

Peter Dadam and Manfred Reichert
Institute of Databases and Information Systems
University of Ulm
89069 Ulm, Germany
Tel.: +49/731/50-24131
Fax: +49/731/50-24134
E-Mail: {peter.dadam,manfred.reichert}@uni-ulm.de

1 OKIS is derived from the German name of the project and
stands for “Open Clinical Database and Information System
for the Integration of Autonomous Subsystems”

our university hospital were involved. The goal of OKIS
was to develop a concept for a cross-organizational, cli-
nical information system that is able to integrate auto-
nomous, heterogeneous departmental systems as well as
to offer services across system boundaries (e.g., schedu-
ling, resource management, and medical data exchange).
At the beginning of OKIS we looked at many aspects of
hospital information systems to understand the different
types of relevant information, the different kinds of in-
formation systems involved (e.g., radiology information
system, picture archiving and communication systems,
and lab systems), the privacy issues, the different types
and roles of doctors and nurses, characteristic proper-
ties of planning and scheduling tasks, and so forth. We
further investigated new developments (at that point in
time) like electronic patient record, communication ser-
vers, medical guidelines, and computer-assisted medical
diagnostics in order to understand which features a mo-
dern hospital information system should have [27].

The challenge of the service layer we wanted to de-
velop was rather clear in an early stage of the project:
Due to the heterogeneity of the underlying systems and
the evolutionary nature of the clinical domain one has to
decouple service provision from service implementation.
However, the discovery of services and their usage must
not be complicated. Therefore, long before web services
came into the game, we had elaborated the concept of a
cross-organizational “service bus” (that we called “soft-
ware bus” in [28]; see Fig. 1) into which new services
can be easily plugged in such that application programs
(providing the end-user interfaces) can use them.

While working on many different aspects of the over-
all problem we got the dim feeling that providing data
integration together with some electronic services would
be an improvement, but not be the big step forward our
colleagues from the university hospitals were hoping for.
Therefore, we had additional discussions with them as
well as other clinical staff members, and also took a clo-
ser look at the clinical workday. During these activities
it became more and more clear that the really big pro-
blem was not the inconvenient access to medical data.

2 Peter Dadam and Manfred Reichert

Abb. 1 OKIS software bus [28]

The much bigger and more challenging problem was the
non-existing support of the clinical processes! These pro-
cesses were only in the users’ minds. Notes on paper or
entries in a calendar system were the only help for phy-
sicians and nurses to not forget things. No active process
support or assistance by an information system was pro-
vided to avoid problems like omission errors, unnecessa-
rily pending tasks, or non-optimal task sequences (see
[15] for a description of the problem). This meant that
services provided by the Software Bus should be offered
to users in a process-oriented way.

We got fascinated about this challenge and we we-
re convinced that a software technology, which is able
to cope with clinical processes, would be also adequa-
te for many other domains and enable completely new
perspectives for information management systems. The-
refore, in 1995 we decided to start the ADEPT2 project
as a dedicated research activity in that subject area. At
the beginning we were confronted with many problems
and questions, not knowing where to start with and also
not knowing which aspects were highly relevant for the
final solution and which ones could be neglected. Ne-
vertheless we made a decision which should guide and
determine our whole research until today: ”We face the
clinical reality - we do not define any problem away!”
This motto resulted in the insights, requirements, and
technological challenges described in this paper.

Section 2 provides some insights into the clinical reali-
ty and identifies major requirements. Section 3 describes
relevant challenges and the research areas of the ADEPT
project. Section 4 discusses the overall technological chal-
lenges and the general “vision” of the ADEPT project.
In Section 5 we present some of the achievements made.
Section 6 describes the current development status and
the transition from a research prototype to an industrial
product. Finally, Section 7 concludes with a summary.

2 ADEPT stands for “Application Development based on
Encapsulated Pre-modeled Process Templates”

2 Facing the clinical reality

Our initial insights into relevant requirements were de-
rived from the OKIS project. Following this, from 1996
to 1997 we performed a dedicated workflow project with
Siemens-Nixdorf and our Women’s Hospital. In this pro-
ject we analyzed and documented the core processes of
this hospital, investigated organizational aspects (e.g.,
actor responsibilities, substitution rules, or legal regu-
lations), and evaluated what kind of exceptional cases
had occurred in the past and how good they were “pre-
dictable”. These insights were extremely helpful for us
to extend and refine the requirements identified in the
OKIS project, and to evaluate any suggested solution
against these real-world scenarios [13]. The issues des-
cribed in the sequel represent consolidated insights from
both projects (and are valid until today).

Robustness. By nature, clinical information systems
should be highly reliable. However, process-aware infor-
mation systems (PAIS) are inherently more complex than
traditional function- and data-centric information sys-
tems, simply because of the fact that the incorporated
process support is another source of errors. In traditional
information systems the processes are more or less on-
ly in the users’ minds [39]. Of course, humans also make
mistakes when performing processes, but these errors are
typically not charged to the information system. Howe-
ver, once processes are directly supported by a PAIS, all
process-related errors (e.g., deadlocks or program cras-
hes due to missing input data) will now be charged to
the PAIS and will directly affect its acceptance.

Flexibility and adaptivity of the clinical processes
must not be restricted. In a clinical environment any
PAIS will not be accepted by users if rigidity comes with
it. Deviations from the standard procedure constitute
the normal case, and physicians and nurses are accusto-
med to perform such deviations. The physician always
has the ultimate professional authority and responsibili-
ty regarding decisions about diagnostic and therapeutic
procedures. No computer program and thus no PAIS is
allowed to overrule or to restrict the doctors’ judgment.
Being faced with this aspect it became clear that any
kind of process technology that does restrict flexibility
will fail in such a domain. However, the demand for fle-
xibility is not only present in hospitals, it can be found
in almost all domains (e.g., [4; 5; 32; 33; 35; 58]). No
enterprise can take the risk to become inflexible, i.e., to
be unable to quickly and flexibly react on changes in the
market or in legal conditions, on detected inefficiencies
in their processes, or on exceptional situations [35].

The support of clinical processes cannot be simply
restricted to document-centered workflows, which would
make the realization of a PAIS much easier, because any
technological solution could then concentrate on control

The ADEPT Project 3

flow and would not have to deal with data flow issues.3
Instead, we are faced with the full spectrum of process
support ranging from simple form- or document-based,
human-centric workflows to production workflows with
manual activities, automatic activities, and need for ap-
plication integration. In addition, runtime flexibility can-
not be restricted to simple adjustments of a process sche-
ma (e.g., by replacing one activity by another), but more
complex structural changes at the process instance le-
vel should be possible as well. For example, an ongoing
treatment process might have to be changed to a large
extent due to the physical reaction of the patient on his
current medical drugs. However, such process flexibility
must not lead to a high risk of PAIS failures at runtime
or to a significant increase of the complexity when de-
veloping application functions. The great challenge for
us was to find a solution which ensures a high degree of
runtime flexibility on the one hand, and robustness as
well as ease of use on the other hand.

Ease of use. Although listing this requirement may
sound like the typical lip service, we considered ease of
use as very important for a broad usage of process ma-
nagement technology in the clinical domain (and not on-
ly there). Clinical staff works under high time pressure,
must often deal with exceptional situations, and is con-
stantly confronted with an information overload [15; 29].
This situation especially applies to university hospitals
which typically receive all complicated treatment cases
that ordinary hospitals are not able to handle. In addi-
tion, university hospitals educate physicians and nurses;
i.e., there are many staff members who are not very expe-
rienced. This, in turn, increases the pressure on clinical
staff. Some staff members have stress because of their
own missing routine and experience, while others suf-
fer from stress because they have to supervise the less
experienced colleagues in addition to their own duties.
Therefore, any PAIS which increases this stress because
of complicated handling will not be successful.

Ease of use must not only be achieved for end users,
but should also hold for the developers of processes and
corresponding application services. The problem is that
ease of use for users does not come for free; i.e., somebo-
dy has “to pay the price”. Supporting ad hoc changes at
the process instance level, or changing a process schema
at the process type level and propagating these changes
to running instances, requires a profound understanding
of basic PAIS concepts (e.g., correctness of process mo-
dels) as well as deep knowledge about PAIS internals
(e.g., the physical representation of process instances at
the machine level). If such a detailed and system-near
knowledge is required for process administrators or ap-
plication programmers in order to avoid PAIS failures

3 In this scenario there is no other data flow among pro-
cess activities than the document which is passed from one
activity to another during runtime.

in the context of dynamic process instance changes, the
battle will be lost before it will have begun.

3 Challenges

Taking all together, the ease of use aspect was probably
the most influential one for our whole research. However,
ease of use has different aspects and can be regarded from
different perspectives: the end user, the process imple-
menter, and the application developer. Our goal was to
develop a technology which enables ease of use for all of
them. Sections 3.1 to 3.3, therefore, focus on this aspect.
Other important aspects, addressed in the ADEPT pro-
ject as well, are discussed in Sections 3.4 and 3.5.

3.1 Challenge: Ease of use for process implementers

Ease of use for process implementers is influenced by se-
veral factors. An important one is how complicated it
is to create a new process schema; i.e., which constructs
and symbols are offered by the used process meta model,
what is their semantics, how intuitive is their usage, and
what kind of meta model related constraints have to be
obeyed during process modeling? And it is also import-
ant that the process meta model is expressive enough. As
another relevant factor process implementers should not
need to know any implementation detail about the appli-
cation functions the activities of a given process schema
shall be associated with; i.e., for them, preferably, there
should be no differences whether an application function
is implemented as web service, Java library routine, or
call interface to a legacy system. Instead, these applica-
tion functions should all look like procedures or methods
having input/output parameters. Finally, ease of use for
process implementers is also significantly influenced by
the implementation effort becoming necessary at their si-
de in order to ensure that the composed process will be
executable without runtime errors (e.g., concerning tes-
ting). From the very beginning it was clear for us that
these factors must not exclude each other, but have to
be considered in conjunction.

To speed up application development we pursued the
idea of process composition in a “plug & play” style com-
plemented by comprehensive correctness checks [8; 14]
(cf. Fig. 2). Our target was to accomplish these checks in
such a way that runtime errors during process execution
can be excluded to a large extent. As prerequisite, data
flows and other dependencies among application services,
which are relevant for their execution order, must be so-
mehow made known to the PAIS to be incorporated into
the correctness checks. From our practical experiences
it further became clear that intuitively usable modeling
constructs and automated correctness checks alone will
be not sufficient. A too liberal process meta model may
result in too many undetected (semantical) modeling er-
rors when checking correctness.

4 Peter Dadam and Manfred Reichert

ADEPT-CSRD--39.doc − 5 −

Process
Templates

Application
Functions

Repository

Process
Templates

Application
Functions

Repository

Figure 2: Composition of correct processes using plug & play [Dada97]

Another important issue in this context are process changes, more precisely changes of the process
schema. In the clinical domain it is very important that the applied diagnostic and therapeutic procedures
reflect the prevailing state of medical knowledge. Therefore, it must be possible to change these proce-
dures when the medical knowledge changes. Such a change may also affect ongoing process instances.
It must be possible to modify an existing process schema and to migrate its instances (as far as possible)
to the new schema, i. e. to perform process schema evolution [CCPP98]. However, as above, it must be
easy to use (for the process specialist), comprehensive changes must be possible, and correctness
checks on the system level should ensure robust execution of the adapted process instances.

3.2 Challenge: Ease of use for application developers

In the clinical domain (as typical for many other domains as well), one is confronted with existing (“leg-
acy”) applications, with specialized information systems, with different kinds of application functions and
services, different underlying implementations, with tasks which require user involvement, and with tasks
which can be automated. The challenge was to provide all these heterogeneous application functions and
services in a homogenized form to process implementer so that process composition in a plug & play
fashion as outlined in the previous section becomes reality. Our vision was that the process template fully
encapsulates the process with all its application functions and services, so that the process has just to be
“plugged” into the PAIS execution environment to be present. In addition, any manual activity coming with
a graphical (e. g. form-based) user interface shall smoothly integrate itself into the user’s desktop. Any
kind of “window over window over window” effect should be avoided. – This vision of “encapsulated proc-
ess templates” also gave the project its name: ADEPT = “Application Development based on Encapsu-
lated Premodeled Process Templates”.

Ease of use for application developers has meant to us, that we have to provide an easy to use imple-
mentation framework with easy to use application programming interfaces to perform these tasks. The
maxime was here: implemention of application components for PAIS should become not more compli-
cated than developing them for conventional application systems without process support. Especially, all
the complexity coming along with the support of ad-hoc flexibilty should not be put onto their shoulders, if
any possible.

3.3 Challenge: Ease of use for end-users

One aspect of “ease of use” for end-users is certainly to obey the typical human factors when designing
the user interface, like placement of information at the desktop, arrangement of entry fields, buttons, se-
lection of colors etc. We also experimented a little bit with user interface design, but this was not our main
focus. Instead, we concentrated on the issue how to make ad hoc deviations at the process instance level
simple so that, in principle, a doctor or a nurse can perform them autonomously in most cases (supposed
that they have the permission to do that). From the explanations above it should be clear that every solu-
tion approach which requires at the users’ side a deeper understanding of system-internals like “process
states” and “data flows” would have to fight with big acceptance problems. And the approach would com-
pletely fail if it is the users’ responsibility to ensure that their modifications do not lead to any subsequent
run-time errors when continuing the execution of the process instance. No doctor or nurse would accept
to take this risk!

When providing an end-user interface for ad hoc modifications it is very important to provide a reasonable
level of abstraction. Ideally, users should only express what they want to have and it should be the PAIS’
task to figure out how to do that, in case the action is admissible, in principle. Figure 3a – h illustrate how
the interaction between the PAIS and the end-user may look like, presuming that the user is able to un-

Abb. 2 Composition of processes using plug & play [11]

Another important issue concerns changes at the pro-
cess type level. In the clinical domain it is very important
that applied treatment procedures reflect the prevailing
state of medical knowledge. Therefore, it must be pos-
sible to adapt them when medical knowledge changes.
Such changes may also affect ongoing cases, i.e., it must
be possible to modify a process schema and to migrate its
instances to the new schema (we denote this as process
schema evolution [10; 49]). As motivated such change
feature should be easy to use (for the process specia-
list), comprehensive schema changes must be possible,
and correctness checks on the system level should ensure
robust execution of the adapted process instances.

3.2 Challenge: Ease of use for application developers

As typical for other domains, in a hospital we are con-
fronted with legacy systems offering special application
functions to users. These legacy systems are implemen-
ted based on different platforms, have tasks which requi-
re user involvement and such which can be automated,
and differ in their system interfaces, user interfaces, and
interaction styles. The challenge was to provide all the-
se heterogeneous application functions in a homogenized
form to process implementers in order to make process
composition in a plug & play fashion a reality. Our visi-
on was that the process template fully encapsulates the
process with all its application functions and services,
such that the process just has to be “plugged” into the
PAIS runtime environment to be executable. In addition,
any manual activity coming with a graphical (e.g. form-
based) user interface should smoothly integrate itself into
the user’s desktop; i.e., any kind of “window over window
over window” effect had to be avoided. - This vision of
“encapsulated process templates” also gave the project
its name: ADEPT = “Application Development based
on Encapsulated pre-modeled Process Templates”.

Ease of use for application developers meant to pro-
vide an easy to use implementation framework with in-
tuitive application programming interfaces to perform
all these tasks. Our maxim was to make the implemen-
tation of application components for a PAIS not more
complicated than developing them for conventional ap-
plication systems without process support. Particularly,

all complexity coming along with the support of ad-hoc
flexibility should not be put onto their shoulders.

3.3 Challenge: Ease of use for end users

Ease of use for end users includes adherence to typical
human factors when designing a user interface; e.g., pla-
cement of information at the desktop, arrangement of
entry fields, use of buttons, or selection of colors. We al-
so experimented a little bit with user interface design,
but this was not our primary focus. Instead, we studied
how to make ad-hoc deviations at the process instance
level as simple as possible, such that – in principle – a
doctor or nurse can perform them autonomously (sup-
posed that they have the permission to do that [54; 60]).
From the above explanations it should become clear that
every solution approach that requires from users a deeper
understanding of system internals (e.g., “process states”
and “data flows”) would have to fight with big acceptan-
ce problems. And such approach would completely fail if
it had been the user’s responsibility to ensure that their
ad-hoc changes do not lead to any subsequent runtime
errors in the execution of the modified process instance.
No doctor or nurse would accept to take this risk!

An end user interface for ad-hoc changes has to pro-
vide a sufficient level of abstraction. Users should only
express what they want to be changed, but it should be
the PAIS’ task to figure out how to do that (in case the
change is admissible). Fig. 3a-h illustrate how the inter-
action between PAIS and end user may look like, pre-
suming that the user is able to understand the meaning
of a simplified (i.e. abstracted) process graph. Regar-
ding this example assume that during the execution of
a process instance (e.g., the treatment of a certain pati-
ent under risk) an additional lab test becomes necessary.
Assume that this has not been foreseen at process im-
plementation time (cf. Fig. 3a). As a consequence, this
particular process instance will have to be individually
adapted if the change request is approved by the system.
After pressing the “exception button” (cf. Fig. 3b), the
user can specify the type of the intended ad-hoc change
(cf. Fig. 3c). If an insert operation shall be applied, for
example, the system will display the application func-
tions that can be selected in the given context (cf. Fig.
3d). These can be simple or complex application services,
interactive or automatic application functions, or even
complete processes. Following this, the user simply has
to state after which activities(s) in the process the exe-
cution of the newly added activity shall be started and
before which activities(s) it shall be finished (cf. Fig. 3e).
If the activity to be inserted requires additional data for
its input parameters, the PAIS will have to suggest the
insertion of an appropriate auxiliary task. Finally, the
system checks whether or not resulting process instance
adaptations are valid (cf. Fig. 3f and Fig. 3g). All the
validations needed to avoid runtime errors in the sequel

The ADEPT Project 5

ADEPT-CSRD--39.doc − 6 −

derstand the meaning of a simplied (i. e. abstracted) process graph. In this example it is assumed that
during the execution of a particular process instance (e.g., the treatment of a certain patient under risk) an
additional lab test becomes necessary. Assume that this has not been foreseen at process implementa-
tion time (cf. Figure 3a). As a consequence, this particular process instance will have to be individually
adapted if the change request is approved by the system. After the user has pressed the "exception but-
ton" (cf. Figure 3b), he can specify the type of the intended ad hoc change (cf. Figure 3c). If an insert
operation shall be applied, for example, the system will display the application functions that can be se-
lected in the given context (cf. Figure 3d).

Examinations

Wallace, Edgar

Smith, Karl

Miller, Anne

Jones, Isabelle

Exceptional case –
we need an additional

lab test !Examinations

Wallace, EdgarWallace, Edgar

Smith, KarlSmith, Karl

Miller, AnneMiller, Anne

Jones, IsabelleJones, Isabelle

Exceptional case –
we need an additional

lab test !

Examinations

Wallace, Edgar

Smith, Karl

Miller, Anne

Jones, Isabelle

Exception

Examinations

Wallace, EdgarWallace, Edgar

Smith, KarlSmith, Karl

Miller, AnneMiller, Anne

Jones, IsabelleJones, Isabelle

Exception

a) An exception occurs b) User presses the "exception button"

Examinations

Wallace, Edgar

Smith, Karl

Miller, Anne

Jones, Isabelle

Exception
Insert task?
Delete task?
Shift task?

Examinations

Wallace, EdgarWallace, Edgar

Smith, KarlSmith, Karl

Miller, AnneMiller, Anne

Jones, IsabelleJones, Isabelle

Exception
Insert task?
Delete task?
Shift task?

Select Activity
Schedule counsel examination

Lab Test
Prepare patient for operation

Inform patient

Wash patient

Schedule examination date

.........

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

Select Activity
Schedule counsel examination

Lab Test
Prepare patient for operation

Inform patient

Wash patient

Schedule examination date

.........

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

c) User selects type of the ad hoc change d) User selects activity to be inserted

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

End

StartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

Start immediately,, results are
needed before explanation of

operation risks

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

EndEnd

StartStartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

Start immediately,, results are
needed before explanation of

operation risks

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

End

StartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPT
Checking if insertion

of step is possible

- Please wait -

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

End

Start

EndEnd

StartStartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPT
Checking if insertion

of step is possible

- Please wait -

ADEPT
Checking if insertion

of step is possible

- Please wait -

e) User specifies where to insert the activity f) System checks validity of the change

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

End

StartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPT
Insertion is possible!

Great !!

Explanation
Operation Risks

X-Ray

Check
Anesthesiology

Examination

End

Start

EndEnd

StartStartExaminations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle

ADEPT
Insertion is possible!

ADEPT
Insertion is possible!

Great !!

Lab Test

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle
Explanation

Operation Risks

X-Ray

Check
Anesthesiology

Examination

OK, now let us
continue with the

examination !

Lab TestLab Test

Examinations

U Wallace, Edgar

U Miller, Anne

U Smith, Karl

U Jones, Isabelle
Explanation

Operation Risks

X-Ray

Check
Anesthesiology

Examination

OK, now let us
continue with the

examination !

g) Change can be applied h) User continues work

Figure 3: Executing an ad hoc modification from the end-user's point of view

These can be simple or complex application components (e.g., "write letter” or "send email” vs. applica-
tion services), interactive or automatic functions, or even complete processes. Now the user simply has to

Abb. 3 Executing an ad hoc modification from the end-user’s point of view

as well as the necessary adaptations of the process struc-
ture, data flow, and instance state should be completely
performed by the PAIS. In addition, the PAIS should al-
low for “intelligent” adaptations. For example, in order
to enable a maximal degree of freedom in executing the
newly added task, it should be insertable in parallel to
the activities which are located between the ones marked
as “after” and “before” in Fig. 3e (except that data flow
dependencies require a more restricted execution).

This example illustrates a rather simple user inter-
face. If more sophisticated, knowledge-based user inter-
faces are needed (e.g. [34; 19; 65]) this dialog can be

simplified or even omitted. However, our process studies
also revealed that ad-hoc changes are not always that
simple. In certain cases it is not sufficient to only replace
one activity by another or to just add a single activity
directly before or after the currently activated one. And
it is also not predictable in advance which parts of the
process may be affected by a change. Therefore, we must
also enable comprehensive structural changes that may
rearrange large parts of the process or even completely
replace them. Such complex changes are certainly beyond
that what normal end users are able to do. Instead they
require someone with appropriate knowledge in process

6 Peter Dadam and Manfred Reichert

modeling and process change. Such a person should have
an interface which offers a comprehensive set of change
operations. However, also in this case the PAIS should
ensure robustness of the modified process instance.

In environments where exceptions and thus ad-hoc
deviations occur rather frequently, it is often desirable
to use a knowledge management system to support the
user in detecting whether or not a similar exception al-
ready occurred in the past. Such a component should
store which decisions were made with which success to
solve the problem. By coupling it with the PAIS, it would
become possible to conveniently “recycle” previous deci-
sions and to automatically reapply changes at the process
instance level [51; 61; 63; 65].

Not directly related to ease of use, but also import-
ant for end users are response times in connection with
ad-hoc changes. Especially in the clinical domain, very
likely, ad-hoc changes often will have to be performed
under time pressure. Therefore, response times of the
PAIS in the range of several seconds or even minutes
(e.g., to decide on the correctness of an intended ad-
hoc change) are not acceptable. (Usually 3 seconds of
response time are considered as upper limit for interac-
tive tasks.) This means that the resulting solution must
also use efficient algorithms for adapting process instan-
ces and for checking their correctness. Further, they must
ensure short response times for scenarios in which ma-
ny process instances are simultaneously executed by the
PAIS. And the latter will be the normal case in large-
scale environments where thousands of process instances
are concurrently executed at the same time [7].

3.4 Complex ad-hoc changes and schema evolution

As discussed in Section 3.3 a PAIS should allow to hand-
le all kinds of exceptional situations. In order to enable
this without need for circumventing the PAIS, arbitrari-
ly complex ad-hoc changes at the process instance level
must be possible; e.g., authorized users should be allowed
to move activities or whole process fragments to another
position in the process graph.

Another important change aspect is to enable process
schema evolution at the type level. Like other companies,
hospitals are continuously adapting their organizational
structures, are changing staff responsibilities, are out-
sourcing or insourcing tasks, and so forth in order to im-
prove their (business) processes or to adequately react on
changes in legislation or market demands. Many of these
changes directly affect the processes supported by their
(clinical) PAIS, i.e., these processes have to be adapted
accordingly. While in some cases only simple attribute
changes are required (e.g., to adapt the staff assignment
rule of an activity), in others complex structural chan-
ges of the process schema become necessary. In case of
short-running processes, usually, it is sufficient to finish
the already started process instances according to the old
process schema, while new process instances refer to the

new schema. However, at the presence of long-running
processes (months up to years) or in case of important
and pressing changes this is not sufficient. Then it must
be possible to perform process schema evolution, i.e., to
migrate the process instances to the new schema version.
Note that this also includes process instances which have
been individually modified. – This is typical for today’s
environments where processes are executed manually; it
will be hard to accept for companies if a PAIS does not
support that. Both, complex ad-hoc changes and process
schema evolution must be easy to accomplish for process
experts. They should not require deep knowledge about
system internals and not require to modify processes at
a low level of abstraction.

3.5 Further requirements and challenges

To stay focused this paper concentrates on the tech-
nological challenges related to the described ease-of-use
aspects showing how they influenced our solutions and
how we dealt with the constraints we had to obey. In
order to give a somewhat more complete picture of the
problem domain, however, we want at least briefly men-
tion some other challenges we were also confronted with.

Hospitals and especially university hospitals are large
enterprises comprising many specialized clinics, having a
large number of employees (often several thousand), and
being confronted with thousands of “cases” (i.e. patients)
which must be handled simultaneously. Therefore, any
PAIS which does not scale up and which does not work
in a cross-organizational setting will fail in such an envi-
ronment. As the clinics of a university hospital may be
geographically dispersed, it is rather unrealistic to assu-
me that a centralized PAIS will always be the appropria-
te solution. Instead, concepts for the flexible, distributed
execution of processes had to be found [6; 7; 40; 37].

Hospitals are often confronted with patients having
multiple injuries, e.g., as a result of a traffic accident.
Assume that such a patient has a broken leg and some
injury to his head which have to be treated. It is not very
likely that a process schema exists to handle these two in-
juries in common. Instead, a process schema for handling
injured extremities and another for dealing with head
injuries may exist. Obviously, as they affect the same
patient in this case, they cannot be executed complete-
ly independent from each other. Problems of this kind
require concepts for inter-process coordination [22; 23].

Deadlines and temporal constraints play an import-
ant role in the clinical domain as well. Typically an ap-
pointment (e.g., for performing a surgery) is made for a
certain day and time which requires some preparatory
activities. These should be scheduled at the appropriate
points in time and warnings should be given by the PAIS
if processing of the remaining activities at normal speed
would jeopardize the deadline. Or in preparation of an
examination the administration of some drug might be-
come necessary. This drug should be administered not

The ADEPT Project 7

too early and not too late to achieve the desired effects.
Future PAIS should therefore incorporate appropriate
support for temporal constraint management [15; 20].

Finally, there are other challenges we have dealt with,
but which we cannot discuss in detail. They include issu-
es related to the learning from changes [21; 30], the effi-
cient representation of changes in adaptive PAIS [53; 52],
the visualization of business processes [9], and the evolu-
tion of organizational models and corresponding access
rules [31; 54; 55].

4 Technological challenges and our vision

The technological challenges elaborated in the previous
sections can be summarized as follows: We wanted to
develop a PAIS which is by order of magnitudes mo-
re powerful and flexible than contemporary PAIS are,
and whose change features are easy to use for end users,
process implementers, and application developers. This
sounds like a contradiction in itself, because we all know:
“There ain’t no such thing as a free lunch.” However, re-
garding the mentioned user groups for which ease of use
shall be achieved, we can see that one party is missing:
the implementers of the fundamental PAIS technology.
And we had one shining example to follow which had
enabled ease of use by hiding the complexity beneath
the surface: relational database technology. On the one
hand, it was the first database technology which made it
possible to support at the system level automatic query
optimization, data independence from physical storage
structures (relations, indexes), and powerful transaction-
based concurrency control. On the other hand, it offered
a user interface (SQL) which was by orders of magnitudes
easier to learn and to use than the database interfaces
before. And this was possible because it was based on
powerful theories (relational algebra, query optimizati-
on, concurrency control). - Our hope (and basic belief)
was that we can achieve a similar effect for PAIS if we
are able to develop the adequate underlying theory.

Our ambition was to develop a technology for PAIS,
which is broadly applicable, i.e., not only to simple ad-
ministrative processes, but also to highly dynamic and
complex ones (e.g., diagnostic and therapeutic processes
[24; 34; 19; 29]). The challenge was to develop a technolo-
gy which supports “correctness by construction” during
process composition and which guarantees correctness in
the context of ad-hoc changes at the process instance le-
vel. This challenge was probably the most influential one
for the whole ADEPT project. It had significant impact
on the development of the ADEPT process meta model
as well as on our work on process flexibility and process
adaptivity. It meant, in essence, the following:

1. We have to hide the inherent complexity of process-
orientation (especially in conjunction with flexibili-
ty) as far as possible from system administrators and
application programmers; i.e, we have to perform all

complex things “beneath the surface” in the process
management system.

2. We have to provide powerful, high-level interfaces to
application programmers, based on which they can
implement easy to use end user interfaces.

When developing the ADEPT process meta model we
were in a dilemma. On the one hand our analyses had
shown that clinical processes can be complex structu-
red; e.g., comprising alternative/parallel branchings and
loops. A process meta model should therefore provide
appropriate concepts to represent these structures ade-
quately, i.e., it should be expressive enough. On the other
hand our goal was to enable comprehensive and efficient
correctness checks during process modeling as well as in
conjunction with ad-hoc instance changes. The available
theoretical works on flexible processes at that time eit-
her required simple process models (e.g., without loops
[1], or without considering data flow [1; 66]), or required
expensive analyses to decide whether or not the desired
ad-hoc change can be granted [17].

Expressiveness of a process meta model has two ma-
jor aspects: One is the ability to model a large variety of
control flow structures in terms of process patterns [59].
Another one is how easy the semantics of the meta model
constructs or the resulting control flows can be under-
stood. First experiences indicated that process modeling
based on states and transitions (as used in Petri Nets for
example) is not very easy to understand for end users
(i.e., doctors and nurses in our case). Another issue was
that this notation quickly leads to large process models
due to many symbols. Opposed to that, Activity Nets
[26] were much easier to understand, but this approach
had other weaknesses, including the missing support of
loops and the context-dependent execution semantics of
nodes; e.g., depending on its context the syntactic sym-
bol for an activity node may represent a normal (sequen-
tial) node, an XOR split/join, or an AND split/join. We
also elaborated other formalisms (e.g., state and activity
charts, rule based approaches), but considered them not
being appropriate for our purpose. Altogether the pro-
cedure of defining the ADEPT process meta model was
no easy task and lasted several months during which we
evaluated many aspects and their impact on the meta
model and vice versa. Most headaches were caused by
two partially conflicting goals: expressiveness and formal
verification. All ideas were evaluated against the clinical
processes we had acquired in our hospital projects.

The resulting process meta model as illustrated in
Fig. 4 (see [41; 36] for details) does not look very fancy
at first glance. However, its “ingredients” were carefully
selected and complement each other. Thus the process
meta model is very helpful with respect to formal ve-
rification, ad-hoc changes, and process schema evoluti-
on. Its strength is the underlying theory which supports
both correctness by construction and efficient consisten-
cy checks [38; 64]. This theory precisely defines correct-
ness criteria for the ADEPT meta model (e.g., absence of

8 Peter Dadam and Manfred Reichert

deadlocks, no isolated nodes, all data flows correct under
all possible executions). It defines a comprehensive set of
change operations with pre-/post-conditions which ensu-
re that, if the desired change satisfies the preconditions,
the resulting process schema will again be correct. The
ADEPT change operations, for example, allow to serial-
ly insert an activity between two nodes, to insert it in
parallel or between two node sets, to move activities, to
delete activities, and so forth. All these operations obey
that data flow correctness is not violated [38; 36].

Another important property of the ADEPT process
meta model is that it incorporates not only the infor-
mation on the current state at the instance level, but
also information on how this state was reached. This al-
lows to quickly decide whether a desired ad-hoc change
can be granted or whether it affects an already passed
region of the process instance. The latter could (among
other things) cause data flow problems and is therefore
prohibited (with some exceptions concerning loops [49]).

The block structuring of the process meta model was
motivated by three aspects: First, experiments have shown
that they are easier to handle and to understand for users
when compared to unstructured process models. Second,
it allows to restrict the area in the graph which has to be
analyzed in the context of ad-hoc changes. This, in turn,
helps to speed up the required analyses [38]. Third, it si-
gnificantly simplifies the resulting structural adaptations
of the process schema [64].

Abb. 4 ADEPT Process Meta Model

5 Achievements

The achievements described in the following refer to the
ADEPT2 technology, and are structured along the chal-
lenges identified in Section 3.

5.1 Achievement: Ease of use for process implementers

For process modeling, ADEPT2 provides an intuitive
graphical editor. It applies a correctness by construction

principle by providing at any time only those operations
to the process implementer which allow to transform a
structurally correct process schema into another one.

Operations are enabled or disabled according to which
region in the process graph is marked for applying an
operation. Fig. 5 and Fig. 6 illustrate this relationship.

ADEPT-CSRD--39.doc − 10 −

formal verification, ad hoc changes, and process schema evolution. Its strength is the underlying theory
which supports both, correctness by construction as well as efficient consistency checks [ReDa98,
WRR08]. This theory precisely defines correctness criteria for the ADEPT process model (e. g. absence
of deadlocks, no isolated nodes, exactly one start end and one end node, all data flows correct under all
possible executions). It defines a comprehensive set of change operations with preconditions and post-
conditions which ensure that – if the desired change satisfies the preconditions – the resulting process
graph is again correct. The change operations comprise simple serial inserts between two nodes, parallel
insert between node sets, move operations, delete operations, etc. Of course, all these operations obey
that the correctness of the data flows is not violated (for a detailed description see [ReDa98]).

Another important property of the ADEPT process meta model is that it incorporates not only the informa-
tion on the current state at the instance level but also information how this state has been reached. This
allows to quickly decide whether a desired ad hoc change could be granted or if it would affect an histori-
cal state of the process instance. The latter could (among other things) cause data flow problems and,
therefore, is prohibited. – The block structuring of the process meta model was motived by three aspects:
Fristly, some experiments with users have shown that they are easier to handle and to understand for
them than when using unstructered process models. Secondly, it allows to restrict the area in the graph
which has to be analyzed in the context of ad hoc changes which in turn helps to speed up the required
analyses [ReDa98]. Thirdly, it simplifies significantly the resulting structural adaptations of the process
graph.

5 Achievements

For the subsequent discussion we refer to the challenges described in Section 3.

5.1 Achievement: Ease of use for process implementers

For process modelling, ADEPT2 provides an easy to understand graphical user interface. It applies a
"correctness by construction" principle by providing at any time only those operations to the process im-
plementer which transform a structurally correct process scheme into another structurally correct process
scheme. Operations are enabled or disabled according to which region in the graph has been marked for
applying an operation. Figure 5 and Figure 6 illustrate this relationship. In Figure 5.a no nodes are
marked. As a result, all operations in Figure 6.a are disabled, except "Insert Data Element" (which is not
visible here). In Figure 5.b only the node "OrderProc" is marked and, therefore, those operations are
enabled (cf. Figure 6.b) whose effects are precisly defined by this marking, like, e. g., Insert a surrounding
AND block, a surrounding XOR block, a surrounding loop block, or the deletion of the selected node. Also
"Insert data element" (which is always applicable) would be selectable again. In Figure 5.c two directly
adjacent nodes are marked. The green color indicates "begin of marked area" and the blue color indi-
cates "end of marked area". Again, those operations are enabled whose effect is precisely defined by
such kind of marking (cf. Figure 6.c): In addition to the operations of the previous example, also the "in
between" variants of these insertions are now enabled as well as the operation "Insert Node". At first
glance it may be astonishing that the marking illustrated in Figure 5.d only enables the operations illus-
trated in Figure 6.d (plus "Insert Data Element"). However, only for these operations the effect is precisely
defined by these markings. – Deficiencies not prohibited by this approach are checked on the fly and
reported continuously in the problem window of the Process Template Editor as illustrated in Figure 7.

a)

b)

c)

d)
Figure 5: Markings in the process graph Abb. 5 Markings in the process graph

In Fig. 5a no nodes are marked. As a result, all opera-
tions in Fig. 6a are disabled, except Insert Data Element
(which is not visible here). In Fig. 5b only activity “Or-
derProc” is marked and, therefore, those operations are
enabled (cf. Fig. 6b) whose effects comply with this se-
lection (e.g., to insert a surrounding AND block, a sur-
rounding XOR block, a surrounding loop block, or to
delete the selected activity). In addition, Insert Data
Element (which is always applicable) is selectable again.
In Fig. 5c two adjacent nodes are marked. The green co-
lor4 indicates “begin of marked area” and the blue color5
indicates “end of marked area”. Again, those operations
are enabled whose effect is precisely defined by such kind
of marking (cf. Fig. 6c): In addition to the operations of
the previous scenario, also the “in between” variants of
the insertions are now enabled as well as the operati-
on Insert Node. Finally, regarding the marking from
Fig. 5d, at first glance, it might be astonishing that on-
ly the operations depicted in Fig. 6d (plus Insert Data
Element) are enabled. However, only for these operations
the effect is precisely defined for the given markings.

Deficiencies not prohibited by this approach (e.g.,
concerning data flow) are checked on-the-fly and are re-
ported continuously in the problem window of the Pro-
cess Template Editor (cf. Fig. 7). Another goal was to
make the assignment of application functions to process
steps as simple as possible; i.e., a process implementer
should not need to know details about the implementa-
tion of application functions. However, this should not be
achieved by undermining the correctness by construction
principle. Both goals have been achieved. All kinds of
executables, that may be associated with process steps,
are first registered in the Activity Repository as activity
templates. An activity template provides all informati-
on to the Process Template Editor about mandatory or

4 light gray in a grayscale printout
5 dark gray in a grayscale printout

The ADEPT Project 9

ADEPT-CSRD--39.doc − 11 −

a) b) c) d)

Figure 6: Enabled change operations

Another important goal was make the assignment of application functions or services to process steps as
simple as possible. That is a conventional process implementer should not need to have any detailed
knowledge about implementation details of these components. However, this should not be achieved for
the price to undermine the correctness by construction principle. Both goals have been fully achieved. All
kinds of executables which can be associated with process steps are first registered in the Activity Re-
pository as so-called Activity Templates. An activity template provides all information to the Process
Template Editor (more precisely: the ADEPT2 service functions it is utilizing for this purpose) about man-
datory or optional input and input parameters as well as data dependencies to other activity templates.
The process implementer just drags and drops an activity template from the Activity Repository Browser
window of the Process Template Editor (see Figure 8) onto the desired location in the process graph like
indicated in Figure 2.

Figure 7: Reporting of detected deficiencies

Abb. 6 Enabled change operations

optional input and output parameters, as well as infor-
mation about data dependencies to other activity tem-
plates. The process implementer just drags and drops an
activity template from the Activity Repository Browser
window of the Process Template Editor (cf. Fig. 8) onto
the desired location in the process graph (cf. Fig. 2).

Depending on the intended purpose of usage, an ac-
tivity template can be very specific or rather generic.
When using a specific template everything can be fixed;
e.g., the input and output parameters and all settings. In
this case, the only remaining task for the process imple-
menter is to check whether the proposed mapping of in-
put/output parameters to process data elements (i.e., the
process variables used within this process to communica-
te among activities) is correct. Using a specific database
activity template, for example, allows to fix the input
and output parameters, the details of the database used,
the connection parameters, and the fully specified SQL
statement. A more generic Activity Template, in turn,
may leave open the SQL statement, the number and ty-
pes of input and output parameters, or the settings for
the database connection (in parts or even completely).

5.2 Achievement: Ease of use for application developers

As discussed in the previous section, all application func-
tions are represented by activity templates; i.e., a devel-
oper who wants to provide a new application function
or service must implement a corresponding activity tem-
plate and add it to the Activity Repository. This ma-
kes it then available and accessible within the ADEPT2
Process Template Editor during process modeling (cf.
Fig. 8). To simplify the implementation of such activity
templates, ADEPT2 provides several levels of abstrac-
tion. At the lowest one ADEPT2 provides a so-called
Execution Environment for each kind of basic operation
supported by ADEPT2. For example, ADEPT2 offers

execution environments for SQL statements, web ser-
vices, EXE files, BeanShell scripts, basic file operations,
and system-generated forms. However, the implementa-
tion of an execution environment requires some knowled-
ge about ADEPT2 internals and, therefore, will typically
not be the task of an ordinary application developer, but
will be performed by system implementers.

An execution environment defines the set of methods
needed to interact with the ADEPT2 runtime system as
well as to implement the operations and facilities that
shall be provided by the activity template. An activity
template for database access, for example, may allow the
user to specify connection details as illustrated in Fig. 9.

In general, the ADEPT2 runtime environment needs
some information about the runtime behavior of the acti-
vities; e.g., whether or not they may be aborted, suspen-
ded, or undone. The implementer of an activity templa-
te has to implement interface methods that inform the
ADEPT2 runtime environment which of these facilities
are supported by the activity. For this case he must al-
so provide the implementation of this functionality (see
[45] for background information on ADEPT2 internals).
The task of implementing a new activity template will
be simple, if it can be based on a generic activity tem-
plate. In this case, the implementation is essentially re-
duced to putting the appropriate entries into the set of
forms representing the activity template. For example, if
a database activity template shall be implemented which
selects a tuple from a predefined relation in a predefined
database based on a primary key value, one form will fix
the required input parameters and the output parame-
ters for the attribute values of the tuple, a second one
the database connection (cf. Fig. 9), and a third one the
SQL statement (cf. Fig. 10). Fig. 8 lists examples of
specialized activity templates which offer different kinds
of operations on a customer table.

10 Peter Dadam and Manfred Reichert

ADEPT-CSRD--39.doc − 11 −

a) b) c) d)

Figure 6: Enabled change operations

Another important goal was make the assignment of application functions or services to process steps as
simple as possible. That is a conventional process implementer should not need to have any detailed
knowledge about implementation details of these components. However, this should not be achieved for
the price to undermine the correctness by construction principle. Both goals have been fully achieved. All
kinds of executables which can be associated with process steps are first registered in the Activity Re-
pository as so-called Activity Templates. An activity template provides all information to the Process
Template Editor (more precisely: the ADEPT2 service functions it is utilizing for this purpose) about man-
datory or optional input and input parameters as well as data dependencies to other activity templates.
The process implementer just drags and drops an activity template from the Activity Repository Browser
window of the Process Template Editor (see Figure 8) onto the desired location in the process graph like
indicated in Figure 2.

Figure 7: Reporting of detected deficiencies Abb. 7 Reporting of detected deficiencies (problem window on the left at the bottom)

ADEPT-CSRD--39.doc − 12 −

Depending on the intended purpose of usage, such an activity template can be very specific or rather
generic. When using a specific activity template, everything may be fixed (the input parameters, the out-
put parameters, all settings, etc.). In this case, the only remaining task for the process implementer is to
check whether the proposed mapping of the input and output parameters to process data elements (i. e.,
the process variables used within this process to communicate among activities) is correct. Using a very
specific database actitivity template, in turn, may mean that everyting is fixed: the input and output pa-
rameters, the details of the database used and the connection parameters as well as the fully specified
SQL statement. A more generic Activity Template may leave open the SQL statement, the number and
types of input and output parameters, or the settings for the database connection (in parts or even com-
pletely).

5.2 Achievement: Ease of use for application developers

As indicated in Section 5.1, all application functions and services are represented in ADEPT2 by Activity
Templates. That is any developer who wants to provide a new application function or service will have to
implement a suitable activity template and put it into the Activity Repository. This makes an activity tem-
plate available and accessible within the Process Template Editor during process modeling, as illustrated
in Figure 8. To simplify the implementation of such activity templates, ADEPT2 provides several levels of
abstraction.

At the lowest level ADEPT2 provides a so-called Execution Environment for each kind of basic operation
which ADEPT2 supports. Among others, ADEPT2 offers execution environments for SQL statements,
web services, EXE files, BeanShell scripts, basic file operations, system-generated forms, etc. However,
the implementation of an execution environment requires some knowledge about ADEPT2 internals and,
therefore, will typically not be the task of an ordinary application developer, but will be performed by sys-
tem implementers.

Figure 8: Activity Repository Browser window in the Process Template Editor Abb. 8 Activity Repository Browser window in the Process Template Editor

The ADEPT Project 11

ADEPT-CSRD--39.doc − 13 −

An execution environment implements the set of methods needed to interact with the ADEPT2 run-time
system and to implement the desired operations and facilities which shall subsequently be offered by the
activity template. The resulting activity template for database access may allow the user to specifiy con-
nection details as illustrated in Figure 9. The ADEPT2 run-time environment, in turn, needs some informa-
tion about the run-time behaviour of these activities: are they abortable, suspensible, resettable, and
closeable? The implementer of an activity template has to implement methods which inform the ADEPT2
run-time environment which of these facilities is supported by the activity and, in case, has also to provide
the respective implementation for this functionality. (For some more background information on ADEPT2
internals see [Reic08].)

The task of implementing a new activity template is extremely simple, if it can be based on a generic Ac-
tivity Template. In this case, the implementation is essentially reduced to putting the appropriate entries
into the set of forms representing the activity template. For example, if a database activity template shall
be implemented which selects a tuple from a predefined relation in a predefined database based on a
primary key value, one form will fix the required input parameter, the output parameter(s) for the attribute
values of the tuple, the database connection (cf. Figure 9), and the SQL statement (cf. Figure 10). –
Figure 8 shows some examples of specialized activity templates which offer different kinds of operations
on the customer table.

Figure 9: Specifying connection details in a database activity template

Figure 10: Database activity template with predefined SQL statement

5.3 Achievement: Ease of use for end-users

To provide ease of use for end-users is mainly the task of the application developers. They decide how
"manual" process activities interact with the end-user. They also decide whether or not the standard
ADEPT2 workflow client is used or whether a dedicated client shall be provided. An important prerequiste
for providing an easy to use end-user interface is to provide the appropriate functions to the application
developer. In Figure 3 we have shown how an interaction with the end-user could look like in order to
perform an ad hoc deviation. To implement a workflow client with such capabilities, the application devel-

Abb. 9 Setting connection details in a DB activity template

ADEPT-CSRD--39.doc − 13 −

An execution environment implements the set of methods needed to interact with the ADEPT2 run-time
system and to implement the desired operations and facilities which shall subsequently be offered by the
activity template. The resulting activity template for database access may allow the user to specifiy con-
nection details as illustrated in Figure 9. The ADEPT2 run-time environment, in turn, needs some informa-
tion about the run-time behaviour of these activities: are they abortable, suspensible, resettable, and
closeable? The implementer of an activity template has to implement methods which inform the ADEPT2
run-time environment which of these facilities is supported by the activity and, in case, has also to provide
the respective implementation for this functionality. (For some more background information on ADEPT2
internals see [Reic08].)

The task of implementing a new activity template is extremely simple, if it can be based on a generic Ac-
tivity Template. In this case, the implementation is essentially reduced to putting the appropriate entries
into the set of forms representing the activity template. For example, if a database activity template shall
be implemented which selects a tuple from a predefined relation in a predefined database based on a
primary key value, one form will fix the required input parameter, the output parameter(s) for the attribute
values of the tuple, the database connection (cf. Figure 9), and the SQL statement (cf. Figure 10). –
Figure 8 shows some examples of specialized activity templates which offer different kinds of operations
on the customer table.

Figure 9: Specifying connection details in a database activity template

Figure 10: Database activity template with predefined SQL statement

5.3 Achievement: Ease of use for end-users

To provide ease of use for end-users is mainly the task of the application developers. They decide how
"manual" process activities interact with the end-user. They also decide whether or not the standard
ADEPT2 workflow client is used or whether a dedicated client shall be provided. An important prerequiste
for providing an easy to use end-user interface is to provide the appropriate functions to the application
developer. In Figure 3 we have shown how an interaction with the end-user could look like in order to
perform an ad hoc deviation. To implement a workflow client with such capabilities, the application devel-

Abb. 10 DB activity template with defined SQL statement

5.3 Achievement: Ease of use for end users

To provide ease of use for end users is mainly the task of
application developers. They decide how “manual” pro-
cess activities interact with the end user. They also de-
cide whether the standard ADEPT2 workflow client is
used or whether a dedicated client shall be provided. An
important prerequisite for realizing adequate user inter-
faces is to provide the appropriate methods to the appli-
cation developer. In Fig. 3 we have shown how an inter-
action with the end user could look like when performing
an ad-hoc change. To implement a workflow client with
such capabilities, the application developer can make use
of powerful system functions available at the ADEPT2
application programming interface (API):

– Querying the activity repository (using some filte-
ring) for available activities

– Marking the activity (or set of activities) after which
the new activity shall become selectable

– Retrieving from ADEPT2 the set of activities selec-
table as “end” activities for this insertion

– Marking the activity (or set of activities) which shall
serve as end activities

– Performing (tentatively) the insertion based on this
information

– Checking the ADEPT2 report on detected errors (e.g.
missing values for input parameter)

– Making the instance change persistent

Using this API one can also implement domain-specific
clients. In [19], for example, a knowledge-based approach

was used to perform most of the process instance adap-
tations automatically without user interaction.

5.4 Achievement: Complex ad hoc changes and process
schema evolution

Fig. 11 and Fig. 12 illustrate how a non-trivial ad hoc
change could look like. As example assume that a process
instance wants to issue a request for a book quote using
Amazon’s web service facilities, but then fails in doing so.
The user detects that his process instance is in trouble
and calls the system administrator for help. The system
administrator then invokes the ADEPT2 Process Moni-
tor to take a look at this process instance (cf. Fig. 11).
Looking into the execution log of the failed activity he
detects that its execution failed because the connection
to Amazon could not be established. Let us assume that
he considers this as a temporary problem and offers the
user to reset this activity so that it can be repeated on-
ce again. Being a friendly guy, he takes a short look at
the process instance and its data flow dependencies, and
sees that the result of this and the subsequent activity
is only needed when executing the “Choose offer” acti-
vity. Therefore, he offers the user to move these two ac-
tivities after activity “CheckSpecialOffers”; i.e., the user
can continue to work on this process instance before the
PAIS once again tries to connect to Amazon.

In order to accomplish this change he would switch
to the Instance Change Perspective of the Process Mo-
nitor which provides the same set of change operations
as the Process Template Editor. In fact, it is the Process
Template Editor, but is aware that a process instance has
been loaded and, therefore, all instance-related state in-
formation is taken additionally into account when enab-
ling or disabling change operations and when performing
correctness checks. The system administrator would now
mark the two nodes “Get Amazon offer” and “Get Ama-
zon price” as source area and the nodes “CheckSpecial
Offer” and “Choose offer” as target area, and then per-
form the operation Move nodes. The resulting process
graph is depicted in Fig. 12. Another option would be
to move node “RetrieveSnailOffer” (where we are wai-
ting for an E-Mail response) after “CheckSpecialOffer”
as well. Then “CheckSpecialOffer” would become imme-
diately selectable and thus executable.

Assume now that the web service problem lasts lon-
ger than expected and, therefore, the user may want to
call Amazon by phone to get the price that way. In this
case we would ask the system administrator to delete
the two activities in trouble and to replace them with a
form-based activity (which allows to enter the price ma-
nually and thus provides the value for the data element
previously written by activity “Get Amazon price”).

Regarding process schema evolution important goals
were to provide the full spectrum of change operations
for updating a process schema, to be able to migrate

12 Peter Dadam and Manfred Reichert

ADEPT-CSRD--39.doc − 14 −

oper can make use of powerful system functions available at the ADEPT2 application programming inter-
face (API) like:

- Querying the activity repository (using some filtering) for available activities

- Marking the activity (or set of activities) after which the new activity shall become selectable

- Retrieving from ADEPT2 the set of activities selectable as "end" activities for this insertion

- Marking the activity (or set of activities) which shall serve as end activities

- Performing (tentatively) the insertion based on this information

- Checking the ADEPT2 response whether any errors have been detected
 (e. g. missing input values for input parameters)

- Making the instance change persistent

However, using this API one can also implement completely different workflow clients. In [Grei05], for
example, a knowledge-based approach was used to perform most of these process instance adaptations
automatically without user interaction.

5.4 Achievement: Complex ad hoc changes and process schema evolution

As motivated in in Section 3.4, also complex ad hoc changes must be possible. Figure 11 and Figure 12
illustrate how such a non-trivial ad hoc change could look like. As example, assume that a process in-
stance wants to issue a request for quote for a book using Amazon's web service facilities and but fails in
doing so. The user detects that his process instance is in trouble and calls the system administrator for
help. The system administrator invokes the ADEPT2 Process Monitor to take a look at this process in-
stance (cf. Figure 11). Looking into the execution log of the failed activity he may detect that its execution
failed because the connection to Amazon could not be established. Let us assume, that he considers this
as a temporary problem and offers the user to reset this activity so that it can be repeated once again.
Being a friendly guy, he takes a short look a the process instance and its data flow dependencies and
sees that the result of this and the subsequent activity is only needed when executing the "Choose offer"
activity. He, therefore, offers the user to move these two activities after the activity "CheckSpecialOffers",
so that the user can continue to work on this process instance before the PAIS once again tries to con-
nect to Amazon.

Figure 11: Process Monitor: Monitoring Perspective

In order to do so, he would switch to the Instance Change Perspective of the Process Monitor which pro-
vides the same spectrum of change operations as the Process Template Editor. In fact, it 'is' the Process
Template Editor. However, it is aware that a process instance has been loaded and, therefore, all the
instance-related state information is taken additionally into account when enabling or disabling change
operations and when performing correctness checks. The system administrator would now mark the two
nodes "Get Amazon offer" and "Get Amazon price" as source area and the nodes "CheckSpecial Offer"
and "Choose offer" as target area and then perform the operation "Move nodes". The resulting process
graph is illustrated in Figure 12. He could also offer to move the node "RetrieveSnailOffer" (where we are
wating for an E-Mail response) after "CheckSpecialOffer" as well, then "CheckSpecialOffer" would be-
come immediately selectable (and thus executable). – Assume, the web service problem lasts longer and,

Abb. 11 Process Monitor: Monitoring Perspective

ADEPT-CSRD--39.doc − 15 −

therefore, the user may want to call Amazon by phone to get the price that way. In this case we would ask
the system adminstrator to delete the two activities in trouble, to replace them with a form-based activity
which allows to enter the price manually and which would provide the value for the data element which
was previously served by the activity "Get Amazon price".

With respect to process schema evolution, important goals were to allow the full spectrum of change op-
erations, to migrate both, not modified and individually modified process instances (as far as possible),
and to hide (at best all) the inherent complexity of performing all the necessary checks as well as the
required instance state adaptions as far as possible from the person in charge to perform this task. We
invested a lot of energy into this area in order to find an comprehensive solution to the problem [Rind04,
RRD04,RRD04b, RRD04c], but the results have justified these efforts.

Figure 12: Process Monitor: Instance Change Perspective

ADEPT Process
Composer

…

Repository

Process
Templates

Application
Functions

Process Designer /
Process Administrator

ADEPT Process
Composer

…

ADEPT2 Process
Composer

Create Process Template
Modify Process Template
Check Process Template

…

Repository

Process
Templates

Application
Functions

RepositoryRepository

Process
Templates

Application
Functions

Process Designer /
Process Administrator

...
Anwendungen / Application Server

Process 4
Process 3

Process 2
Process 1

Process 6
Process 5

Process 11
Process 10

Process 9
Process 8

Process 7

Process 14
Process 13

Process 12

ADEPT Process Management System

Process Execution Engine

Msg Queuing
Time MgmtAuthorization

Std Client API Web Clnt API
Role Mgmt

Dyn. Change APIModeling API
Admin. API

Recovery Audit Trail ...

...
Anwendungen / Application Server

Process 4
Process 3

Process 2
Process 1

Process 6
Process 5

Process 11
Process 10

Process 9
Process 8

Process 7

Process 14
Process 13

Process 12

ADEPT Process Management System

Process Execution Engine

Msg Queuing
Time MgmtAuthorization

Std Client API Web Clnt API
Role Mgmt

Dyn. Change APIModeling API
Admin. API

Recovery Audit Trail ...

ADEPT Process
Composer

…

Repository

Process
Templates

Application
Functions

RepositoryRepository

Process
Templates

Application
Functions

Process Designer /
Process Administrator

ADEPT Process
Composer

…

ADEPT2 Process
Composer

Create Process Template
Modify Process Template
Check Process Template

…

RepositoryRepository

Process
Templates

Application
Functions

RepositoryRepository

Process
Templates

Application
Functions

Process Designer /
Process Administrator

...
Anwendungen / Application Server

Process 4
Process 3

Process 2
Process 1

Process 6
Process 5

Process 11
Process 10

Process 9
Process 8

Process 7

Process 14
Process 13

Process 12

ADEPT Process Management System

Process Execution Engine

Msg Queuing
Time MgmtAuthorization

Std Client API Web Clnt API
Role Mgmt

Dyn. Change APIModeling API
Admin. API

Recovery Audit Trail ...

...
Anwendungen / Application Server

Process 4
Process 3

Process 2
Process 1

Process 6
Process 5

Process 11
Process 10

Process 9
Process 8

Process 7

Process 14
Process 13

Process 12

ADEPT Process Management System

Process Execution Engine

Msg Queuing
Time MgmtAuthorization

Std Client API Web Clnt API
Role Mgmt

Dyn. Change APIModeling API
Admin. API

Recovery Audit Trail ...

ADEPT Process
Composer

…

Repository

Process
Templates

Application
Functions

Process Designer /
Process Administrator

ADEPT Process
Composer

…

ADEPT2 Process
Composer

Create Process Template
Modify Process Template
Check Process Template

…

Repository

Process
Templates

Application
Functions

RepositoryRepository

Process
Templates

Application
Functions

Process Designer /
Process Administrator

...
Anwendungen / Application Server

Process 4
Process 3

Process 2
Process 1

Process 6
Process 5

Process 11
Process 10

Process 9
Process 8

Process 7

Process 14
Process 13

Process 12

ADEPT Process Management System

Process Execution Engine

Msg Queuing
Time MgmtAuthorization

Std Client API Web Clnt API
Role Mgmt

Dyn. Change APIModeling API
Admin. API

Recovery Audit Trail ...

...
Anwendungen / Application Server

Process 4
Process 3

Process 2
Process 1

Process 6
Process 5

Process 11
Process 10

Process 9
Process 8

Process 7

Process 14
Process 13

Process 12

ADEPT Process Management System

Process Execution Engine

Msg Queuing
Time MgmtAuthorization

Std Client API Web Clnt API
Role Mgmt

Dyn. Change APIModeling API
Admin. API

Recovery Audit Trail ...

check instances states!

ADEPT Process
Composer

…

Repository

Process
Templates

Application
Functions

Process Designer /
Process Administrator

ADEPT Process
Composer

…

ADEPT2 Process
Composer

Create Process Template
Modify Process Template
Check Process Template

…

Repository

Process
Templates

Application
Functions

RepositoryRepository

Process
Templates

Application
Functions

Process Designer /
Process Administrator

...
Anwendungen / Application Server

Process 4
Process 3

Process 2
Process 1

Process 6
Process 5

Process 11
Process 10

Process 9
Process 8

Process 7

Process 14
Process 13

Process 12

ADEPT Process Management System

Process Execution Engine

Msg Queuing
Time MgmtAuthorization

Std Client API Web Clnt API
Role Mgmt

Dyn. Change APIModeling API
Admin. API

Recovery Audit Trail ...

...
Anwendungen / Application Server

Process 4
Process 3

Process 2
Process 1

Process 6
Process 5

Process 11
Process 10

Process 9
Process 8

Process 7

Process 14
Process 13

Process 12

ADEPT Process Management System

Process Execution Engine

Msg Queuing
Time MgmtAuthorization

Std Client API Web Clnt API
Role Mgmt

Dyn. Change APIModeling API
Admin. API

Recovery Audit Trail ...

ADEPT Process
Composer

…

Repository

Process
Templates

Application
Functions

RepositoryRepository

Process
Templates

Application
Functions

Process Designer /
Process Administrator

ADEPT Process
Composer

…

ADEPT2 Process
Composer

Create Process Template
Modify Process Template
Check Process Template

…

RepositoryRepository

Process
Templates

Application
Functions

RepositoryRepository

Process
Templates

Application
Functions

Process Designer /
Process Administrator

...
Anwendungen / Application Server

Process 4
Process 3

Process 2
Process 1

Process 6
Process 5

Process 11
Process 10

Process 9
Process 8

Process 7

Process 14
Process 13

Process 12

ADEPT Process Management System

Process Execution Engine

Msg Queuing
Time MgmtAuthorization

Std Client API Web Clnt API
Role Mgmt

Dyn. Change APIModeling API
Admin. API

Recovery Audit Trail ...

...
Anwendungen / Application Server

Process 4
Process 3

Process 2
Process 1

Process 6
Process 5

Process 11
Process 10

Process 9
Process 8

Process 7

Process 14
Process 13

Process 12

ADEPT Process Management System

Process Execution Engine

Msg Queuing
Time MgmtAuthorization

Std Client API Web Clnt API
Role Mgmt

Dyn. Change APIModeling API
Admin. API

Recovery Audit Trail ...

check instances states!

a) Process schema change b) Check state of running instances

Abb. 12 Process Monitor: Instance Change Perspective

process instances (including those that were individually
modified) to a new schema version (as far as possible),
and to hide the inherent complexity of required checks
and instance state adaptations as best as possible from
the person in charge to perform this task. We invested a
lot of energy into this subject in order to find a compre-
hensive solution to the problem [43; 46; 48; 50]. For the
user (i.e., the process designer or process administrator),
process schema evolution is nearly as simple as editing
a process graph during ordinary process modeling. Like
in the context of instance adaptations the Process Tem-
plate Editor is invoked in a special mode such that it is
aware that a new schema version is derived from an exis-
ting one. After a new schema version is derived, one can
ask the ADEPT2 system to check which instances could
be migrated to the new schema version and which not.

These checks are based on well-defined compliance rules
[49; 56]. Only if there is a rule which qualifies an instan-
ce as being “migratable”, it is considered for migration,
otherwise its execution continues on the old schema. For
a more detailed description we refer to [16; 49].

6 Status of development: From ADEPT1 via
ADEPT2 to AristaFlow BPM Suite

In 1998 with ADEPT1 a first powerful prototype of the
ADEPT technology became operational, which was then
demonstrated at different events (e.g. [12; 25; 42]). It
served as implementation base for process-oriented ap-
plications with manual as well as automated activities,
and also provided some support for temporal constraints.

The ADEPT Project 13

Its most interesting feature, however, was certainly the
robust support of ad-hoc deviations. ADEPT1 served
as implementation platform for numerous projects (e.g.
[5; 4; 18; 19; 60]) and was later extended to support dis-
tributed execution [6; 7; 40] as well (cf. Section 3.5).

In 2001 we intensified our research on process sche-
ma evolution which led to a first series of publications in
2003 [42; 43; 47]. As it would have been too much effort to
modify the ADEPT1 code base in order to integrate the-
se concepts, we developed a standalone proof-of-concept
prototype [49]. In 2004 we received a research grant to
perform a joint project with University of Mannheim and
four industrial partners. The research project was named
AristaFlow and was running until end of 2007. One pro-
ject goal was to understand how the design and imple-
mentation of application functions could be supported
by tools in such a way, that all necessary information
to perform correctness checks during process modeling
using plug & play (cf. Sections 3.1 and 5.1) and ad-hoc
deviations can be automatically derived [2; 3]. The most
important goal was to design and implement in parts
the ADEPT2 process management system, which com-
prehensively supports all the functionalities developed in
the ADEPT and AristaFlow project [44; 45].

The power of the ADEPT2 technology and the pre-
versions demonstrating its capabilities attracted a num-
ber of companies. However, they could not base imple-
mentations of a real PAIS on an experimental system,
especially if its maintenance and further development
beyond 2007 was not assured. Therefore, at the begin-
ning of 2008 we founded a spin-off (AristaFlow GmbH,
Ulm) as joint venture with industrial partners to trans-
fer ADEPT2 into an industrial-strength product version
called AristaFlow BPM Suite, and to provide mainte-
nance support for it. The screen shots used for illustra-
ting ADEPT2 features in this paper have been taken
from a pre-version of this product. The product version
is now available for teaching and research purposes as
well as for commercial applications. 6

7 Summary

The research performed in the ADEPT project was mo-
tivated by problems we had identified in the clinical do-
main. This domain can be considered as “killer applica-
tion” for PAIS, because one has to cope with conflicting
goals: robustness, flexibility, and ease of use. To motiva-
te the technological challenges we described our findings
and insights from this domain in some detail. The most
influential decision was to follow the motto: “We do not
define any problem away”. We, therefore, never asked
ourselves: “Given a certain technology - what can we do

6 The AristaFlow BPM suite is provided free of charge to
universities for research and educational purposes. Please vi-
sit www.AristaFlow-Forum.de for more information on that.
For commercial usage please visit www.AristaFlow.com.

with it?”, but we asked instead: “Given these real-world
problems - which kind of technology is needed to adequa-
tely address them?” At the beginning, ADEPT was a
“high risk” research project because it was completely
unclear whether or not this goal was achievable.

The resulting ADEPT technology has brought us fur-
ther than we initially expected. Due to its “correctness
by construction” principle, it allows to model, modify,
and deploy processes very quickly. Its capabilities for ad-
hoc deviation in conjunction with instantaneous checking
of correctness does not only allow for the secure change
of process instances, but also offers a complete new de-
gree of freedom in modeling executable workflows. For
example, one can start to execute only partially mode-
led processes and complement them during runtime. As
example think of a project that will run three years. For
many projects, it is probably not very attractive to model
from the very beginning in great detail what shall be per-
formed in the third year. One can go even further and, by
starting with an empty process template, compose pro-
cess instances on-the-fly (and have nevertheless all the
full support of the underlying process management sys-
tem). Pre-modeling all possible exceptions one can think
of makes the process graph very complex and may allow
execution paths which are undesired. With the ADEPT2
technology, one could separate exception handling from
normal processing and use a knowledge-based system to
modify process instances only on demand [51; 61; 62].

For both ADEPT2 and AristaFlow, much effort has
been undertaken to make the API very powerful, but
also easy to use. Experiences with first applications im-
plemented on the new platform and utilizing the provi-
ded change capabilities make us confident that we have
achieved this goal [57; 58]. We believe that ADEPT2 and
AristaFlow show the capabilities, process technology will
have to offer in future to be broadly applicable. It shows
also that robustness, flexibility, and ease of use can be
achieved in conjunction with each other.

Danksagung The described achievements would not have
been possible without support from the partners in our va-
rious research projects, the staff members of our institute,
and the numerous students who contributed to the ADEPT
project. We mention just a few of them whose contribution
had some impact on the further development and research
directions of the project. We start with Klaus Kuhn, Birgit
Schultheiß, and Stephan Frank who contributed a lot to our
understanding of the clinical domain. As described in this
paper, it were these insights which significantly influenced
the whole project. Thomas Bauer addressed scalability issues
and elaborated the fundamentals for the distributed versi-
on of ADEPT1. Clemens Hensinger did an extraordinary job
the design and implementation of ADEPT1. The research of
Stefanie Rinderle-Ma was another big step forward. Her con-
tributions to process schema evolution extended the power of
the ADEPT technology significantly. Last but not least we
are indebted to Ulrich Kreher, Kevin Göser, Martin Jurisch,
and Markus Lauer for their great job in designing and imple-
menting ADEPT2 and transferring this technology into an
industrial-strength product.

14 Peter Dadam and Manfred Reichert

Literatur

1. Agostini A, De Michelis G (1998) Simple workflow
models. In: Proc. of the Workshop on Workflow-
Management, Lissabon, pp 146–163

2. Atkinson C, Stoll D, Acker H, Dadam P, Lauer M, Rei-
chert M (2006) Separating per-client and pan-client views
in service specification. In: Proc. IW-SOSE’06, pp 47–52

3. Atkinson C, Brenner D, Falcone G, Juhasz M (2008) Spe-
cifying high-assurance services. IEEE Comp (8):64–70

4. Bassil S, Benyoucef M, Keller R, Kropf P (2002) Ad-
dressing dynamism in e-negotiations by workflow mana-
gement systems. In: Proc. DEXA’02

5. Bassil S, Keller R, Kropf P (2004) A workflow-oriented
system architecture for the management of container
transportation. In: Proc. BPM’04, pp 116–131

6. Bauer T, Dadam P (2000) Efficient distributed workflow
management based on variable server assignments. In:
Proc. CAiSE’00, Stockholm, pp 94–109

7. Bauer T, Reichert M, Dadam P (2003) Intra-subnet
load balancing in distributed workflow management sys-
tems. Int’l Journal of Cooperative Information Systems
12(3):295–323

8. Blaser R (1996) Configuration of distributed applications
based on prefabricated program building blocks. Master’s
thesis, University of Ulm, DBIS Instiute, (in German)

9. Bobrik R, Reichert M, Bauer T (2007) View-based pro-
cess visualization. In: Proc. BPM’07, LNCS 4714, pp 88–
95

10. Casati F, Ceri S, Pernici B, Pozzi G (1998) Workflow
evolution. Data and Knowledge Eng 24(3):211–238

11. Dadam P (1997) Business information systems: Trends
and technological challenges. In: Proc. BIS’97, pp 509–
524

12. Dadam P, Reichert M (1998) The ADEPT WfMS project
at the University of Ulm. In: Proc. 1st European Work-
shop on Workflow and Process Management (WPM’98),
Zurich, Switzerland

13. Dadam P, Reichert M (2000) Towards a new dimensi-
on in clinical information processing. In: Proc. Medical
Informatics Europe Conference (MIE’00), pp 295–301

14. Dadam P, Kuhn K, Reichert M, Beuter T, Nathe M
(1995) ADEPT: An integrated ap-proach for the develop-
ment of flexible, reliable, cooperating asssistant systems
for the clinical domain. In: Proc. Annual Meeting of the
German Informatics Society (Informatik’95), pp 677–686

15. Dadam P, Reichert M, Kuhn K (2000) Clinical workflows
– the killer application for process-oriented information
systems? In: Proc. BIS’00, Poznan, Poland, pp 36–59

16. Dadam P, Reichert M, Rinderle S, Jurisch M, Acker H,
Göser K, Kreher U, Lauer M (2008) Towards truly flexi-
ble and adaptive process-aware information systems. In:
Proc. UNISCON’08, LNBIP 5, pp 72–83

17. Ellis C, Maltzahn C (1997) The Chautauqua workflow
system. In: Proc. Int’l Conf. on System Science, Maui,
Hawaii

18. Golani M, Gal A (2006) Optimizing exception hand-
ling in workflows using process restructuring. In: Proc.
BPM’06, LNCS 4102, pp 407–413

19. Greiner U, Müller R, Rahm E, Ramsch J, Heller B,
Löffler M (2000) AdaptFlow: Protocol-based medical
treatment using adaptive workflows. Methods of Infor-
mation in Medicine pp 80–88

20. Grimm M (1997) Adept-time: Temporal aspects in flexi-
ble workflow management systems. Master’s thesis, Uni-
versity of Ulm, DBIS Instiute, (in German)

21. Günther C, Rinderle-Ma S, Reichert M, van der Aalst
W, Recker J (2008) Using process mining to learn from
process changes in evolutionary systems. Int’l Journal of
Business Process Integration and Management, Special

Issue on Business Process Flexibility 3(1):61–78
22. Heinlein C (2001) Workflow and process synchronization

with interaction expressions and graphs. In: Proc. IC-
DE’01), pp 243–252

23. Heinlein C (2002) Synchronization of concurrent work-
flows using interaction expressions and coordination pro-
tocols. In: Proc. Confederated Int’l Conf. CoopIS’02,
DOA’02, and ODBASE’02, LNCS 2519, pp 54–71

24. Heinlein C, Kuhn K, Dadam P (1994) Representation of
medical guidelines using an clas-sification-based system.
In: Proc. CIKM ’94, pp 415–422

25. Hensinger C, Reichert M, Bauer T, Strzeletz T, Dadam
P (2000) Adeptworkflow - advanced workflow technolo-
gy for the efficient support of adaptive, enterprise-wide
processes. In: Proc. EDBT’00 Software Demonstration
Track, Constance, Germany, pp 29–30

26. IBM (1996) Workflow and Image Library: FlowMark and
VisualInfo with Windows. SG24-4712-00

27. Kuhn K, Reichert M, Nathe M, Beuter T, Dadam P
(1994) An infrastructure for cooperation and communi-
cation in an advanced clinical information system. In:
Proc. 18th Ann. Sym. on Computer Applications in Me-
dical Care 1994, (SCAMC ’94), pp 519–523

28. Kuhn K, Reichert M, Nathe M, Beuter T, Heinlein C,
Dadam P (1994) A conceptual approach to an open hos-
pital information system. In: Proc. 12th Int’l Congress
on Medical Informatics (MIE’94), pp 374–378

29. Lenz R, Reichert M (2007) IT support for healthcare
processes - premises, challenges, perspectives. Data and
Knowledge Engineering 61(1):39–58

30. Li C, , Reichert M, Wombacher A (2008) Discovering
reference process models by mining process variants. In:
Proc. ICWS’08, Beijing, pp 45–53

31. Ly T, Rinderle S, Dadam P, Reichert M (2005) Mining
staff assignment rules from event-based data. In: Proc.
BPM’05 workshops, LNCS 3812, pp 177–190

32. Müller D, Herbst J, Hammori M, Reichert M (2006) IT
support for release management processes in the automo-
tive industry. In: Proc. BPM’06, LNCS 4102, pp 368–377

33. Müller D, Reichert M, Herbst J (2008) A new paradigm
for the enactment and dynamic adaptation of data-driven
process structures. In: Proc. CAiSE’08, LNCS 5074, pp
48–63

34. Müller R, Greiner U, Rahm E (2004) AgentWork: A
workflow system supporting rule–based workflow adap-
tation. Data and Knowledge Engineering 51(2):223–256

35. Mutschler B, Reichert M, Bumiller J (2008) Unleashing
the effectiveness of process-oriented information systems:
Problem analysis, critical success factors and implicati-
ons. IEEE Transactions on Systems, Man, and Cyberne-
tics (Part C) 38(3):280–291

36. Reichert M (2000) Dynamische Ablaufänderungen in
Workflow-Management-Systemen. PhD thesis, Univer-
sität Ulm

37. Reichert M, Bauer T (2007) Supporting ad-hoc changes
in distributed workflow management systems. In: Proc.
CoopIS’07, LNCS 4803, pp 150–168

38. Reichert M, Dadam P (1998) ADEPTflex – supporting
dynamic changes of workflows without losing control.
Journal of Intelligent Information Systems 10(2):93–129

39. Reichert M, Dadam P (2000) Geschäfts-
prozessmodellierung und Workflow-Management:
Konzepte, Systeme und deren Anwendung. Industrie
Management 16(3):23–27, (in German)

40. Reichert M, Bauer T, Dadam P (1999) Enterprise-wide
and cross-enterprise workflow management: Challenges
and research issues for adaptive workflows. In: Proc.
Workshop Informatik ’99, CEUR 24, pp 56–64

41. Reichert M, Dadam P, Bauer T (2003) Dealing with for-
ward and backward jumps in workflow management sys-

The ADEPT Project 15

tems. Software and Systems Modeling 2(1):37–58
42. Reichert M, Rinderle S, Dadam P (2003) ADEPT work-

flow management system: Flexible support for enterprise-
wide business processes. In: Proc. BPM’03, LNCS 2678,
pp 370–379

43. Reichert M, Rinderle S, Dadam P (2003) On the common
support of workflow type and instance changes under cor-
rectness constraints. In: Proc. CoopIS’03, LNCS 2888, pp
407–425

44. Reichert M, Rinderle S, Kreher U, Dadam P (2005) Ad-
aptive process management with ADEPT2. In: Procee-
dings ICDE’05, pp 1113–1114

45. Reichert M, Dadam P, Jurisch M, Kreher U, Göser K,
Lauer M (2008) Architectural design of flexible process
management technology. In: Proc. PRIMIUM Subconfe-
rence at MKWI’08, CEUR 328, pp 415–422

46. Rinderle S (2004) Schema evolution in process manage-
ment systems. PhD thesis, University of Ulm

47. Rinderle S, Reichert M, Dadam P (2003) Evaluation of
correctness criteria for dynamic workflow changes. In:
Proc. BPM’03, LNCS 2678, pp 41–57

48. Rinderle S, Reichert M, Dadam P (2004) Disjoint and
overlapping process changes: Challenges, solutions, app-
lications. In: Proc. CoopIS’04, LNCS 3290, pp 101–120

49. Rinderle S, Reichert M, Dadam P (2004) Flexible sup-
port of team processes by adaptive workflow systems.
Distributed and Parallel Databases 16(1):91–116

50. Rinderle S, Reichert M, Dadam P (2004) On dealing with
structural conflicts between process type and instance
changes. In: Proc. BPM’04, LNCS 3080, pp 274–289

51. Rinderle S, Weber B, Reichert M, Wild W (2005) Inte-
grating process learning and process evolution - a seman-
tics based approach. In: Proc. BPM’05, LNCS 3649, pp
252–267

52. Rinderle S, Reichert M, Jurisch M, Kreher U (2006) On
representing, purging, and utilizing change logs in process
management systems. In: Proc. BPM’06, LNCS 4102, pp
241–256

53. Rinderle S, Jurisch M, Reichert M (2007) On deri-
ving net change information from change logs the
DELTALAYER-algorithm. In: Proc. BTW’07, LNI P-
103, pp 364–381

54. Rinderle-Ma S, Reichert M (2007) A formal framework
for adaptive access control models. In: Journal of Data
Semantics, IX, LNCS 4601, pp 82–112

55. Rinderle-Ma S, Reichert M (2008) Managing the life cycle
of access rules in CEOSIS. In: Proc. EDOC’08, Munich,
pp 257–266

56. Rinderle-Ma S, Reichert M, Weber B (2008) Relaxed
compliance notions in adaptive process management sys-
tems. In: Proc. ER’08, LNCS 5231, pp 232–247

57. Rüppel U, Wagenknecht A (2007) Improving emergency
management by formal dynamic process-modelling. In:
Proc. 24th Conf. on Information Technology in Construc-
tion (W78), pp 559–564

58. Rüppel U, Wagenknecht A (2008) Towards a process-
driven emergency management system for municipalities.
In: Proc. 12th Int’l Conf. on Computing in Civil and
Building Engineering

59. van der Aalst W, ter Hofstede A, Kiepuszewski B, Bar-
ros A (2003) Workflow patterns. Distributed and Parallel
Databases 14(1):5–51

60. Weber B, Reichert M, Wild W, Rinderle S (2005) Balan-
cing flexibility and security in adaptive process manage-
ment systems. In: CoopIS’05, LNCS 3760, pp 59–76

61. Weber B, Rinderle S, Wild W, Reichert M (2005) CCBR–
driven business process evolution. In: Proc. ICCBR’05,
Chicago, pp 610–624

62. Weber B, Reichert M, Wild W (2006) Case-base mainte-
nance for CCBR-based process evolution. In: Proceedings

ECCBR’06, LNCS 4106, pp 106–120
63. Weber B, Wild W, Lauer M, Reichert M (2006) Impro-

ving exception handling by discovering change dependen-
cies in adaptive process management systems. In: Busi-
ness Process Management Workshops 2006, pp 93–104

64. Weber B, Reichert M, Rinderle-Ma S (2008) Change pat-
terns and change support features – enhancing flexibili-
ty in process-aware information systems. Data and Kno-
weldge Engineering 66(3):438–466

65. Weber B, Reichert M, Wild W, Rinderle-Ma S (2009)
Providing integrated life cycle support in process-aware
information systems. Int’l Journal of Cooperative Infor-
mation Systems 18(1)

66. Weske M (2001) Formal foundation and conceptual de-
sign of dynamic adaptations in a workflow management
system. In: Proc. HICSS-34

Peter Dadam has been full
professor at the University of
Ulm and director of the In-
stitute of Databases and In-
formation Systems since 1990.
Before he started his work at
the University of Ulm he had
been director of the research
department for Advanced In-
formation Management (AIM)
at the IBM Heidelberg Science
Center (HDSC). At HDSC he
managed the AIM-P project
on advanced database techno-
logy and applications. Current
research areas include distri-
buted, cooperative information

systems, workflow management and database technology as
well as their use in advanced application areas. Peter was PC
Co-chair of the BPM07 conference in Brisbane, Australia. To-
gether with Manfred Reichert he will be General Co-chair of
the BPM09 conference in Ulm.

Manfred Reichert has been
full professor at the Universi-
ty of Ulm since January 2008.
From 2005 to 2007 he wor-
ked as Associate Professor at
the University of Twente (UT)
where he was coordinator of
the strategic research initiati-
ves on E-health (2005 - 2006)
and Service-oriented Compu-
ting (2007). At UT he was al-
so member of the Management
Board of the Centre for Tele-
matics and Information Tech-
nology which is the largest ICT
research institute in the Net-
herlands. He has worked on ad-

vanced issues related to process management technology and
service-oriented computing for ten years. Together with Peter
Dadam he pioneered the work on the ADEPT process ma-
nagement system, which currently provides the most advan-
ced technology for realizing flexible process-aware informati-
on systems. Manfred was PC Co-chair of the BPM08 confe-
rence in Milan and will be General Co-chair of the BPM09
conference in Ulm.

