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Abstract. This paper gives insights into the ADEPT project. Its target was to
develop a next generation process management technology, which is by orders of
magnitudes more powerful and flexible than contemporary process management
systems. The ADEPT technology should provide advanced features and proper-
ties within one system, which seem to exclude each other, but which are required
for the support of a broad spectrum of processes: ease-of-use for end users and
system developers, high flexibility through the support of non-trivial ad-hoc de-
viations at the process instance level, quick implementation of process changes
through process schema evolution, and correctness guarantees enabling robust
execution of implemented processes. This paper describes the background and
the real-world cases which motivated our research. It further explains the techno-
logical challenges we faced, describes the solutions we elaborated, and discusses
the current status of the ADEPT project.

1 Background - how all began

In 1992 we started the OKIS1 project - a pretty large and broadly defined 3-years re-
search project funded by the State of Baden-Württemberg. In this project several clin-
ics, medical service units, and the computing center of our university hospital were in-
volved. The goal of OKIS was to develop a concept for a cross-organizational, clinical
information system that is able to integrate autonomous, heterogeneous departmental
systems as well as to offer services across system boundaries (e.g., scheduling, resource
management, and medical data exchange). At the beginning of OKIS we looked at many
aspects of hospital information systems to understand the different types of relevant
information, the different kinds of information systems involved (e.g., radiology infor-
mation system, picture archiving and communication systems, and lab systems), the
privacy issues, the different types and roles of doctors and nurses, characteristic proper-
ties of planning and scheduling tasks, and so forth. We further investigated new devel-
opments (at that point in time) like electronic patient record, communication servers,
medical guidelines, and computer-assisted medical diagnostics in order to understand
which features a modern hospital information system should have [1].

1 OKIS is derived from the German name of the project and stands for “Open Clinical Database
and Information System for the Integration of Autonomous Subsystems”



The challenge of the service layer we wanted to develop was rather clear in an early
stage of the project: Due to the heterogeneity of the underlying systems and the evolu-
tionary nature of the clinical domain one has to decouple service provision from service
implementation. However, the discovery of services and their usage must not be com-
plicated. Therefore, long before web services came into the game, we had elaborated
the concept of a cross-organizational “service bus” (that we called “software bus” in
[2]; see Fig. 1) into which new services can be easily plugged in such that application
programs (providing the end-user interfaces) can use them.

Fig. 1: OKIS software bus [2]

While working on many different aspects of the overall problem we got the dim
feeling that providing data integration together with some electronic services would
be an improvement, but not be the big step forward our colleagues from the university
hospitals were hoping for. Therefore, we had additional discussions with them as well as
other clinical staff members, and also took a closer look at the clinical workday. During
these activities it became more and more clear that the really big problem was not the
inconvenient access to medical data. The much bigger and more challenging problem
was the non-existing support of the clinical processes! These processes were only in
the users’ minds. Notes on paper or entries in a calendar system were the only help for
physicians and nurses to not forget things. No active process support or assistance by an
information system was provided to avoid problems like omission errors, unnecessarily
pending tasks, or non-optimal task sequences (see [3] for a description of the problem).
This meant that services provided by the Software Bus should be offered to users in a
process-oriented way.

We got fascinated about this challenge and we were convinced that a software tech-
nology, which is able to cope with clinical processes, would be also adequate for many
other domains and enable completely new perspectives for information management
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systems. Therefore, in 1995 we decided to start the ADEPT2 project as a dedicated
research activity in that subject area. At the beginning we were confronted with many
problems and questions, not knowing where to start with and also not knowing which
aspects were highly relevant for the final solution and which ones could be neglected.
Nevertheless we made a decision which should guide and determine our whole research
until today: "We face the clinical reality - we do not define any problem away!" This
motto resulted in the insights, requirements, and technological challenges described in
this paper.

The remainder of this paper is organized as follows: Section 2 provides some in-
sights into the clinical reality and identifies major requirements. Section 3 describes
relevant challenges and the research areas of the ADEPT project. Section 4 discusses
the overall technological challenges and the general “vision” of the ADEPT project. In
Section 5 we present some of the achievements made. Section 6 describes the current
development status and the transition from a research prototype to an industrial product.
Finally, Section 7 concludes with a summary.

2 Facing the clinical reality

Our initial insights into relevant requirements were derived from the OKIS project.
Following this, from 1996 to 1997 we performed a dedicated workflow project with
Siemens-Nixdorf and our Women’s Hospital. In this project we analyzed and docu-
mented the core processes of this hospital, investigated organizational aspects (e.g., ac-
tor responsibilities, substitution rules, or legal regulations), and evaluated what kind of
exceptional cases had occurred in the past and how good they were “predictable”. These
insights were extremely helpful for us to extend and refine the requirements identified
in the OKIS project, and to evaluate any suggested solution against these real-world
scenarios [4]. The issues described in the sequel represent consolidated insights from
both projects (and are valid until today).

Robustness. By nature, clinical information systems should be highly reliable. How-
ever, process-aware information systems (PAIS) are inherently more complex than tra-
ditional function- and data-centric information systems, simply because of the fact that
the incorporated process support is another source of errors. In traditional information
systems the processes are more or less only in the users’ minds [5]. Of course, hu-
mans also make mistakes when performing processes, but these errors are typically not
charged to the information system. However, once processes are directly supported by
a PAIS, all process-related errors (e.g., deadlocks or program crashes due to missing
input data) will now be charged to the PAIS and will directly affect its acceptance.

Flexibility and adaptivity of the clinical processes must not be restricted. In a clin-
ical environment any PAIS will not be accepted by users if rigidity comes with it. De-
viations from the standard procedure constitute the normal case, and physicians and

2 ADEPT stands for “Application Development based on Encapsulated Pre-modeled Process
Templates”
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nurses are accustomed to perform such deviations. The physician always has the ulti-
mate professional authority and responsibility regarding decisions about diagnostic and
therapeutic procedures. No computer program and thus no PAIS is allowed to overrule
or to restrict the doctors’ judgment. Being faced with this aspect it became clear that any
kind of process technology that does restrict flexibility will fail in such a domain. How-
ever, the demand for flexibility is not only present in hospitals, it can be found in almost
all domains (e.g., [6–11]). No enterprise can take the risk to become inflexible, i.e., to
be unable to quickly and flexibly react on changes in the market or in legal conditions,
on detected inefficiencies in their processes, or on exceptional situations [10].

The support of clinical processes cannot be simply restricted to document-centered
workflows, which would make the realization of a PAIS much easier, because any tech-
nological solution could then concentrate on control flow and would not have to deal
with data flow issues.3 Instead, we are faced with the full spectrum of process support
ranging from simple form- or document-based, human-centric workflows to production
workflows with manual activities, automatic activities, and need for application inte-
gration. In addition, runtime flexibility cannot be restricted to simple adjustments of a
process schema (e.g., by replacing one activity by another), but more complex structural
changes at the process instance level should be possible as well. For example, an on-
going treatment process might have to be changed to a large extent due to the physical
reaction of the patient on his current medical drugs. However, such process flexibility
must not lead to a high risk of PAIS failures at runtime or to a significant increase of
the complexity when developing application functions. The great challenge for us was
to find a solution which ensures a high degree of runtime flexibility on the one hand,
and robustness as well as ease of use on the other hand.

Ease of use. Although listing this requirement may sound like the typical lip service,
we considered ease of use as very important for a broad usage of process management
technology in the clinical domain (and not only there). Clinical staff works under high
time pressure, must often deal with exceptional situations, and is constantly confronted
with an information overload [3, 12]. This situation especially applies to university hos-
pitals which typically receive all complicated treatment cases that ordinary hospitals are
not able to handle. In addition, university hospitals educate physicians and nurses; i.e.,
there are many staff members who are not very experienced. This, in turn, increases the
pressure on clinical staff. Some staff members have stress because of their own missing
routine and experience, while others suffer from stress because they have to supervise
the less experienced colleagues in addition to their own duties. Therefore, any PAIS
which increases this stress because of complicated handling will not be successful.

Ease of use must not only be achieved for end users, but should also hold for the
developers of processes and corresponding application services. The problem is that
ease of use for users does not come for free; i.e., somebody has “to pay the price”.
Supporting ad hoc changes at the process instance level, or changing a process schema
at the process type level and propagating these changes to running instances, requires
a profound understanding of basic PAIS concepts (e.g., correctness of process models)

3 In this scenario there is no other data flow among process activities than the document which
is passed from one activity to another during runtime.
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as well as deep knowledge about PAIS internals (e.g., the physical representation of
process instances at the machine level). If such a detailed and system-near knowledge
is required for process administrators or application programmers in order to avoid
PAIS failures in the context of dynamic process instance changes, the battle will be lost
before it will have begun.

3 Challenges

Taking all together, the ease of use aspect was probably the most influential one for
our whole research. However, ease of use has different aspects and can be regarded
from different perspectives: the end user, the process implementer, and the application
developer. Our goal was to develop a technology which enables ease of use for all
of them. Sections 3.1 to 3.3, therefore, focus on this aspect. Other important aspects,
addressed in the ADEPT project as well, are discussed in Sections 3.4 and 3.5.

3.1 Challenge: Ease of use for process implementers

Ease of use for process implementers is influenced by several factors. An important
one is how complicated it is to create a new process schema; i.e., which constructs
and symbols are offered by the used process meta model, what is their semantics, how
intuitive is their usage, and what kind of meta model related constraints have to be
obeyed during process modeling? And it is also important that the process meta model is
expressive enough. As another relevant factor process implementers should not need to
know any implementation detail about the application functions the activities of a given
process schema shall be associated with; i.e., for them, preferably, there should be no
differences whether an application function is implemented as web service, Java library
routine, or call interface to a legacy system. Instead, these application functions should
all look like procedures or methods having input/output parameters. Finally, ease of use
for process implementers is also significantly influenced by the implementation effort
becoming necessary at their side in order to ensure that the composed process will be
executable without runtime errors (e.g., concerning testing). From the very beginning it
was clear for us that these factors must not exclude each other, but have to be considered
in conjunction.

To speed up application development we pursued the idea of process composition
in a “plug & play” style complemented by comprehensive correctness checks [13, 14]
(cf. Fig. 2). Our target was to accomplish these checks in such a way that runtime er-
rors during process execution can be excluded to a large extent. As prerequisite, data
flows and other dependencies among application services, which are relevant for their
execution order, must be somehow made known to the PAIS to be incorporated into
the correctness checks. From our practical experiences it further became clear that in-
tuitively usable modeling constructs and automated correctness checks alone will be
not sufficient. A too liberal process meta model may result in too many undetected
(semantical) modeling errors when checking correctness.

Another important issue concerns changes at the process type level. In the clini-
cal domain it is very important that applied treatment procedures reflect the prevailing
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Figure 2: Composition of correct processes using plug & play [Dada97] 

Another important issue in this context are process changes, more precisely changes of the process 
schema. In the clinical domain it is very important that the applied diagnostic and therapeutic procedures 
reflect the prevailing state of medical knowledge. Therefore, it must be possible to change these proce-
dures when the medical knowledge changes. Such a change may also affect ongoing process instances. 
It must be possible to modify an existing process schema and to migrate its instances (as far as possible) 
to the new schema, i. e. to perform process schema evolution [CCPP98]. However, as above, it must be 
easy to use (for the process specialist), comprehensive changes must be possible, and correctness 
checks on the system level should ensure robust execution of the adapted process instances. 

3.2 Challenge:  Ease of use for application developers 

In the clinical domain (as typical for many other domains as well), one is confronted with existing (“leg-
acy”) applications, with specialized information systems, with different kinds of application functions and 
services, different underlying implementations, with tasks which require user involvement, and with tasks 
which can be automated. The challenge was to provide all these heterogeneous application functions and 
services in a homogenized form to process implementer so that process composition in a plug & play 
fashion as outlined in the previous section becomes reality. Our vision was that the process template fully 
encapsulates the process with all its application functions and services, so that the process has just to be 
“plugged” into the PAIS execution environment to be present. In addition, any manual activity coming with 
a graphical (e. g. form-based) user interface shall smoothly integrate itself into the user’s desktop. Any 
kind of “window over window over window” effect should be avoided. – This vision of “encapsulated proc-
ess templates” also gave the project its name: ADEPT = “Application Development based on Encapsu-
lated Premodeled Process Templates”. 

Ease of use for application developers has meant to us, that we have to provide an easy to use imple-
mentation framework with easy to use application programming interfaces to perform these tasks. The 
maxime was here: implemention of application components for PAIS should become not more compli-
cated than developing them for conventional application systems without process support. Especially, all 
the complexity coming along with the support of ad-hoc flexibilty should not be put onto their shoulders, if 
any possible. 

3.3 Challenge:  Ease of use for end-users 

One aspect of “ease of use” for end-users is certainly to obey the typical human factors when designing 
the user interface, like placement of information at the desktop, arrangement of entry fields, buttons, se-
lection of colors etc. We also experimented a little bit with user interface design, but this was not our main 
focus. Instead, we concentrated on the issue how to make ad hoc deviations at the process instance level 
simple so that, in principle, a doctor or a nurse can perform them autonomously  in most cases (supposed 
that they have the permission to do that). From the explanations above it should be clear that every solu-
tion approach which requires at the users’ side a deeper understanding of system-internals like “process 
states” and “data flows” would have to fight with big acceptance problems. And the approach would com-
pletely fail if it is the users’ responsibility to ensure that their modifications do not lead to any subsequent 
run-time errors when continuing the execution of the process instance. No doctor or nurse would accept 
to take this risk! 

When providing an end-user interface for ad hoc modifications it is very important to provide a reasonable 
level of abstraction. Ideally, users should only express what they want to have and it should be the PAIS’ 
task to figure out how to do that, in case the action is admissible, in principle. Figure 3a – h illustrate how 
the interaction between the PAIS and the end-user may look like, presuming that the user is able to un-

Fig. 2: Composition of processes using plug & play [15]

state of medical knowledge. Therefore, it must be possible to adapt them when medical
knowledge changes. Such changes may also affect ongoing cases, i.e., it must be pos-
sible to modify a process schema and to migrate its instances to the new schema (we
denote this as process schema evolution [16, 17]). As motivated such change feature
should be easy to use (for the process specialist), comprehensive schema changes must
be possible, and correctness checks on the system level should ensure robust execution
of the adapted process instances.

3.2 Challenge: Ease of use for application developers

As typical for other domains, in a hospital we are confronted with legacy systems of-
fering special application functions to users. These legacy systems are implemented
based on different platforms, have tasks which require user involvement and such which
can be automated, and differ in their system interfaces, user interfaces, and interaction
styles. The challenge was to provide all these heterogeneous application functions in a
homogenized form to process implementers in order to make process composition in
a plug & play fashion a reality. Our vision was that the process template fully encap-
sulates the process with all its application functions and services, such that the process
just has to be “plugged” into the PAIS runtime environment to be executable. In ad-
dition, any manual activity coming with a graphical (e.g. form-based) user interface
should smoothly integrate itself into the user’s desktop; i.e., any kind of “window over
window over window” effect had to be avoided. - This vision of “encapsulated process
templates” also gave the project its name: ADEPT = “Application Development based
on Encapsulated pre-modeled Process Templates”.

Ease of use for application developers meant to provide an easy to use implementa-
tion framework with intuitive application programming interfaces to perform all these
tasks. Our maxim was to make the implementation of application components for a
PAIS not more complicated than developing them for conventional application systems
without process support. Particularly, all complexity coming along with the support of
ad-hoc flexibility should not be put onto their shoulders.
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3.3 Challenge: Ease of use for end users

Ease of use for end users includes adherence to typical human factors when designing
a user interface; e.g., placement of information at the desktop, arrangement of entry
fields, use of buttons, or selection of colors. We also experimented a little bit with
user interface design, but this was not our primary focus. Instead, we studied how to
make ad-hoc deviations at the process instance level as simple as possible, such that
- in principle - a doctor or nurse can perform them autonomously (supposed that they
have the permission to do that [18, 19]). From the above explanations it should become
clear that every solution approach that requires from users a deeper understanding of
system internals (e.g., “process states” and “data flows”) would have to fight with big
acceptance problems. And such approach would completely fail if it had been the user’s
responsibility to ensure that their ad-hoc changes do not lead to any subsequent runtime
errors in the execution of the modified process instance. No doctor or nurse would
accept to take this risk!

An end user interface for ad-hoc changes has to provide a sufficient level of ab-
straction. Users should only express what they want to be changed, but it should be the
PAIS’ task to figure out how to do that (in case the change is admissible). Fig. 3a-h illus-
trate how the interaction between PAIS and end user may look like, presuming that the
user is able to understand the meaning of a simplified (i.e. abstracted) process graph.
Regarding this example assume that during the execution of a process instance (e.g.,
the treatment of a certain patient under risk) an additional lab test becomes necessary.
Assume that this has not been foreseen at process implementation time (cf. Fig. 3a). As
a consequence, this particular process instance will have to be individually adapted if
the change request is approved by the system. After pressing the “exception button” (cf.
Fig. 3b), the user can specify the type of the intended ad-hoc change (cf. Fig. 3c). If an
insert operation shall be applied, for example, the system will display the application
functions that can be selected in the given context (cf. Fig. 3d). These can be simple
or complex application services, interactive or automatic application functions, or even
complete processes. Following this, the user simply has to state after which activities(s)
in the process the execution of the newly added activity shall be started and before
which activities(s) it shall be finished (cf. Fig. 3e). If the activity to be inserted requires
additional data for its input parameters, the PAIS will have to suggest the insertion of an
appropriate auxiliary task. Finally, the system checks whether or not resulting process
instance adaptations are valid (cf. Fig. 3f and Fig. 3g). All the validations needed to
avoid runtime errors in the sequel as well as the necessary adaptations of the process
structure, data flow, and instance state should be completely performed by the PAIS.
In addition, the PAIS should allow for “intelligent” adaptations. For example, in order
to enable a maximal degree of freedom in executing the newly added task, it should
be insertable in parallel to the activities which are located between the ones marked
as “after” and “before” in Fig. 3e (except that data flow dependencies require a more
restricted execution).

Note that this example illustrates a rather simple user interface. If more sophis-
ticated, knowledge-based user interfaces are needed (e.g. [20–22]) this dialog can be
simplified or even omitted. However, our process studies also revealed that ad-hoc
changes are not always that simple. In certain cases it is not sufficient to only replace
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one activity by another or to just add a single activity directly before or after the cur-
rently activated one. And it is also not predictable in advance which parts of the process
may be affected by a change. Therefore, we must also enable comprehensive structural
changes that may rearrange large parts of the process or even completely replace them.
Such complex changes are certainly beyond that what normal end users are able to do.
Instead they require someone with appropriate knowledge in process modeling and pro-
cess change. Such a person should have an interface which offers a comprehensive set
of change operations. However, also in this case the PAIS should ensure robustness of
the modified process instance.

In environments where exceptions and thus ad-hoc deviations occur rather fre-
quently, it is often desirable to use a knowledge management system to support the
user in detecting whether or not a similar exception already occurred in the past. Such
a component should store which decisions were made with which success to solve the
problem. By coupling it with the PAIS, it would become possible to conveniently “re-
cycle” previous decisions and to automatically reapply changes at the process instance
level [23–25, 22].

Not directly related to ease of use, but also important for end users are response
times in connection with ad-hoc changes. Especially in the clinical domain, very likely,
ad-hoc changes often will have to be performed under time pressure. Therefore, re-
sponse times of the PAIS in the range of several seconds or even minutes (e.g., to decide
on the correctness of an intended ad-hoc change) are not acceptable. (Usually 3 seconds
of response time are considered as upper limit for interactive tasks.) This means that the
resulting solution must also use efficient algorithms for adapting process instances and
for checking their correctness. Further, they must ensure short response times for sce-
narios in which many process instances are simultaneously executed by the PAIS. And
the latter will be the normal case in large-scale environments where thousands of pro-
cess instances are concurrently executed at the same time [26].

3.4 Complex ad-hoc changes and schema evolution

As discussed in Section 3.3 a PAIS should allow to handle all kinds of exceptional sit-
uations. In order to enable this without need for circumventing the PAIS, arbitrarily
complex ad-hoc changes at the process instance level must be possible; e.g., autho-
rized users should be allowed to move activities or whole process fragments to another
position in the process graph.

Another important change aspect is to enable process schema evolution at the type
level. Like other companies, hospitals are continuously adapting their organizational
structures, are changing staff responsibilities, are outsourcing or insourcing tasks, and
so forth in order to improve their (business) processes or to adequately react on changes
in legislation or market demands. Many of these changes directly affect the processes
supported by their (clinical) PAIS, i.e., these processes have to be adapted accordingly.
While in some cases only simple attribute changes are required (e.g., to adapt the staff
assignment rule of an activity), in others complex structural changes of the process
schema become necessary. In case of short-running processes, usually, it is sufficient
to finish the already started process instances according to the old process schema,
while new process instances refer to the new schema. However, at the presence of long-
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running processes (months up to years) or in case of important and pressing changes
this is not sufficient. Then it must be possible to perform process schema evolution,
i.e., to migrate the process instances to the new schema version. Note that this also in-
cludes process instances which have been individually modified. - This is typical for
today’s environments where processes are executed manually; it will be hard to accept
for companies if a PAIS does not support that. Both, complex ad-hoc changes and pro-
cess schema evolution must be easy to accomplish for process experts. They should not
require deep knowledge about system internals and not require to modify processes at
a low level of abstraction.

3.5 Further requirements and challenges

To stay focused this paper concentrates on the technological challenges related to the
described ease-of-use aspects showing how they influenced our solutions and how we
dealt with the constraints we had to obey. In order to give a somewhat more complete
picture of the problem domain, however, we want at least briefly mention some other
challenges we were also confronted with.

Hospitals and especially university hospitals are large enterprises comprising many
specialized clinics, having a large number of employees (often several thousand), and
being confronted with thousands of “cases” (i.e. patients) which must be handled si-
multaneously. Therefore, any PAIS which does not scale up and which does not work
in a cross-organizational setting will fail in such an environment. As the clinics of a
university hospital may be geographically dispersed, it is rather unrealistic to assume
that a centralized PAIS will always be the appropriate solution. Instead, concepts for
the flexible, distributed execution of processes had to be found [27, 26, 28, 29].

Hospitals are often confronted with patients having multiple injuries, e.g., as a result
of a traffic accident. Assume that such a patient has a broken leg and some injury to his
head which have to be treated. It is not very likely that a process schema exists to
handle these two injuries in common. Instead, a process schema for handling injured
extremities and another for dealing with head injuries may exist. Obviously, as they
affect the same patient in this case, they cannot be executed completely independent
from each other. Problems of this kind require concepts for inter-process coordination
[30, 31].

Deadlines and temporal constraints play an important role in the clinical domain as
well. Typically an appointment (e.g., for performing a surgery) is made for a certain day
and time which requires some preparatory activities. These should be scheduled at the
appropriate points in time and warnings should be given by the PAIS if processing of the
remaining activities at normal speed would jeopardize the deadline. Or in preparation
of an examination the administration of some drug might become necessary. This drug
should be administered not too early and not too late to achieve the desired effects.
Future PAIS should therefore incorporate appropriate support for temporal constraint
management [3, 32].

Finally, there are other challenges we have dealt with, but which we cannot discuss
in detail. They include issues related to the learning from changes [33, 34], the efficient
representation of changes in adaptive PAIS [35, 36], the visualization of business pro-
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cesses [37], and the evolution of organizational models and corresponding access rules
[38, 18, 39].

4 Technological challenges and our vision

The technological challenges elaborated in the previous sections can be summarized
as follows: We wanted to develop a PAIS which is by order of magnitudes more pow-
erful and flexible than contemporary PAIS are, and whose change features are easy to
use for end users, process implementers, and application developers. This sounds like
a contradiction in itself, because we all know: “There ain’t no such thing as a free
lunch.” However, regarding the mentioned user groups for which ease of use shall be
achieved, we can see that one party is missing: the implementers of the fundamental
PAIS technology. And we had one shining example to follow which had enabled ease
of use by hiding the complexity beneath the surface: relational database technology. On
the one hand, it was the first database technology which made it possible to support at
the system level automatic query optimization, data independence from physical stor-
age structures (relations, indexes), and powerful transaction-based concurrency control.
On the other hand, it offered a user interface (SQL) which was by orders of magnitudes
easier to learn and to use than the database interfaces before. And this was possible
because it was based on powerful theories (relational algebra, query optimization, con-
currency control). - Our hope (and basic belief) was that we can achieve a similar effect
for PAIS if we are able to develop the adequate underlying theory.

Our ambition was to develop a technology for PAIS, which is broadly applicable,
i.e., not only to simple administrative processes, but also to highly dynamic and com-
plex ones (e.g., diagnostic and therapeutic processes [40, 20, 21, 12]). The challenge
was to develop a technology which supports “correctness by construction” during pro-
cess composition and which guarantees correctness in the context of ad-hoc changes
at the process instance level. This challenge was probably the most influential one for
the whole ADEPT project. It had significant impact on the development of the ADEPT
process meta model as well as on our work on process flexibility and process adaptivity.
It meant, in essence, the following:

1. We have to hide the inherent complexity of process-orientation (especially in con-
junction with flexibility) as far as possible from system administrators and applica-
tion programmers; i.e, we have to perform all complex things “beneath the surface”
in the process management system.

2. We have to provide powerful, high-level interfaces to application programmers,
based on which they can implement easy to use end user interfaces.

When developing the ADEPT process meta model we were in a dilemma. On the
one hand our analyses had shown that clinical processes can be complex structured;
e.g., comprising alternative/parallel branchings and loops. A process meta model should
therefore provide appropriate concepts to represent these structures adequately, i.e., it
should be expressive enough. On the other hand our goal was to enable comprehensive
and efficient correctness checks during process modeling as well as in conjunction with
ad-hoc instance changes. The available theoretical works on flexible processes at that
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time either required simple process models (e.g., without loops [41], or without consid-
ering data flow [41, 42]), or required expensive analyses to decide whether or not the
desired ad-hoc change can be granted [43].

Expressiveness of a process meta model has two major aspects: One is the ability
to model a large variety of control flow structures in terms of process patterns [44]. An-
other one is how easy the semantics of the meta model constructs or the resulting control
flows can be understood. First experiences indicated that process modeling based on
states and transitions (as used in Petri Nets for example) is not very easy to understand
for end users (i.e., doctors and nurses in our case). Another issue was that this notation
quickly leads to large process models due to many symbols. Opposed to that, Activ-
ity Nets [45] were much easier to understand, but this approach had other weaknesses,
including the missing support of loops and the context-dependent execution semantics
of nodes; e.g., depending on its context the syntactic symbol for an activity node may
represent a normal (sequential) node, an XOR split/join, or an AND split/join. We also
elaborated other formalisms (e.g., state and activity charts, rule based approaches), but
considered them not being appropriate for our purpose. Altogether the procedure of
defining the ADEPT process meta model was no easy task and lasted several months
during which we evaluated many aspects and their impact on the meta model and vice
versa. Most headaches were caused by two partially conflicting goals: expressiveness
and formal verification. All ideas were evaluated against the clinical processes we had
acquired in our hospital projects.

The resulting process meta model as illustrated in Fig. 4 (see [46, 47] for details)
does not look very fancy at first glance. However, its “ingredients” were carefully se-
lected and complement each other. Thus the process meta model is very helpful with re-
spect to formal verification, ad-hoc changes, and process schema evolution. Its strength
is the underlying theory which supports both correctness by construction and efficient
consistency checks [48, 49]. This theory precisely defines correctness criteria for the
ADEPT meta model (e.g., absence of deadlocks, no isolated nodes, all data flows cor-
rect under all possible executions). It defines a comprehensive set of change operations
with pre-/post-conditions which ensure that, if the desired change satisfies the precon-
ditions, the resulting process schema will again be correct. The ADEPT change opera-
tions, for example, allow to serially insert an activity between two nodes, to insert it in
parallel or between two node sets, to move activities, to delete activities, and so forth.
All these operations obey that data flow correctness is not violated [48, 47].

Another important property of the ADEPT process meta model is that it incorpo-
rates not only the information on the current state at the instance level, but also infor-
mation on how this state was reached. This allows to quickly decide whether a desired
ad-hoc change can be granted or whether it affects an already passed region of the pro-
cess instance. The latter could (among other things) cause data flow problems and is
therefore prohibited (with some exceptions concerning loops [17]).

The block structuring of the process meta model was motivated by three aspects:
First, experiments have shown that they are easier to handle and to understand for users
when compared to unstructured process models. Second, it allows to restrict the area in
the graph which has to be analyzed in the context of ad-hoc changes. This, in turn, helps
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to speed up the required analyses [48]. Third, it significantly simplifies the resulting
structural adaptations of the process schema [49].

Fig. 4: ADEPT Process Meta Model

5 Achievements

The achievements described in the following refer to the ADEPT2 technology, and are
structured along the challenges identified in Section 3.

5.1 Achievement: Ease of use for process implementers

For process modeling, ADEPT2 provides an intuitive graphical editor. It applies a cor-
rectness by construction principle by providing at any time only those operations to the
process implementer which allow to transform a structurally correct process schema
into another one.

Operations are enabled or disabled according to which region in the process graph
is marked for applying an operation. Fig. 5 and Fig. 6 illustrate this relationship.

In Fig. 5a no nodes are marked. As a result, all operations in Fig. 6a are disabled,
except Insert Data Element (which is not visible here). In Fig. 5b only activity “Or-
derProc” is marked and, therefore, those operations are enabled (cf. Fig. 6b) whose
effects comply with this selection (e.g., to insert a surrounding AND block, a surround-
ing XOR block, a surrounding loop block, or to delete the selected activity). In addition,
Insert Data Element (which is always applicable) is selectable again. In Fig. 5c two
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formal verification, ad hoc changes, and process schema evolution. Its strength is the underlying theory 
which supports both, correctness by construction as well as efficient consistency checks [ReDa98, 
WRR08]. This theory precisely defines correctness criteria for the ADEPT process model (e. g. absence 
of deadlocks, no isolated nodes, exactly one start end and one end node, all data flows correct under all 
possible executions). It defines a comprehensive set of change operations with preconditions and post-
conditions which ensure that – if the desired change satisfies the preconditions – the resulting process 
graph is again correct. The change operations comprise simple serial inserts between two nodes, parallel 
insert between node sets, move operations, delete operations, etc. Of course, all these operations obey 
that the correctness of the data flows is not violated (for a detailed description see [ReDa98]). 

Another important property of the ADEPT process meta model is that it incorporates not only the informa-
tion on the current state at the instance level but also information how this state has been reached. This 
allows to quickly decide whether a desired ad hoc change could be granted or if it would affect an histori-
cal state of the process instance. The latter could (among other things) cause data flow problems and, 
therefore, is prohibited. – The block structuring of the process meta model was motived by three aspects: 
Fristly, some experiments with users have shown that they are easier to handle and to understand for 
them than when using unstructered process models. Secondly, it allows to restrict the area in the graph 
which has to be analyzed in the context of ad hoc changes which in turn helps to speed up the required 
analyses [ReDa98]. Thirdly, it simplifies significantly the resulting structural adaptations of the process 
graph. 

5 Achievements 

For the subsequent discussion we refer to the challenges described in Section 3. 

5.1 Achievement:  Ease of use for process implementers 

For process modelling, ADEPT2 provides an easy to understand graphical user interface. It applies a 
"correctness by construction" principle by providing at any time only those operations to the process im-
plementer which transform a structurally correct  process scheme into another structurally correct process 
scheme. Operations are enabled or disabled according to which region in the graph has been marked for 
applying an operation. Figure 5 and Figure 6 illustrate this relationship. In Figure 5.a no nodes are 
marked. As a result, all operations in Figure 6.a are disabled, except "Insert Data Element" (which is not 
visible here). In  Figure 5.b only the node "OrderProc" is marked and, therefore, those operations are 
enabled (cf. Figure 6.b) whose effects are precisly defined by this marking, like, e. g., Insert a surrounding 
AND block, a surrounding XOR block, a surrounding loop block, or the deletion of the selected node. Also 
"Insert data element" (which is always applicable) would be selectable again. In Figure 5.c two directly 
adjacent nodes are marked. The green color indicates "begin of marked area" and the blue color indi-
cates "end of marked area". Again, those operations are enabled whose effect is precisely defined by 
such kind of marking (cf. Figure 6.c): In addition to the operations of the previous example, also the "in 
between" variants of these insertions are now enabled as well as the operation "Insert Node". At first 
glance it may be astonishing that the marking illustrated in Figure 5.d only enables the operations illus-
trated in Figure 6.d (plus "Insert Data Element"). However, only for these operations the effect is precisely 
defined by these markings. – Deficiencies not prohibited by this approach are checked on the fly and 
reported continuously in the problem window of the Process Template Editor as illustrated in Figure 7. 

a) 
 

b) 
 

c) 
 

d)  
Figure 5: Markings in the process graph  Fig. 5: Markings in the process graph

 
ADEPT-CSRD--39.doc − 11 − 

    

a) b) c) d) 

Figure 6: Enabled change operations 

Another important goal was make the assignment of application functions or services to process steps as 
simple as possible. That is a conventional process implementer should not need to have any detailed 
knowledge about implementation details of these components.  However, this should not be achieved for 
the price to undermine the correctness by construction principle. Both goals have been fully achieved. All 
kinds of executables which can be associated with process steps are first registered in the Activity Re-
pository as so-called Activity Templates. An activity template provides all information to the Process 
Template Editor (more precisely: the ADEPT2 service functions it is utilizing for this purpose) about man-
datory or optional input and input parameters as well as data dependencies to other activity templates. 
The process implementer just drags and drops an activity template from the Activity Repository Browser 
window of the Process Template Editor (see Figure 8) onto the desired location in the process graph like 
indicated in Figure 2.  

 

Figure 7: Reporting of detected deficiencies 

Fig. 6: Enabled change operations

adjacent nodes are marked. The green color4 indicates “begin of marked area” and the
blue color5 indicates “end of marked area”. Again, those operations are enabled whose
effect is precisely defined by such kind of marking (cf. Fig. 6c): In addition to the op-
erations of the previous scenario, also the “in between” variants of the insertions are
now enabled as well as the operation Insert Node. Finally, regarding the marking
from Fig. 5d, at first glance, it might be astonishing that only the operations depicted in
Fig. 6d (plus Insert Data Element) are enabled. However, only for these operations
the effect is precisely defined for the given markings.

Deficiencies not prohibited by this approach (e.g., concerning data flow) are checked
on-the-fly and are reported continuously in the problem window of the Process Tem-
plate Editor (cf. Fig. 7). Another goal was to make the assignment of application func-
tions to process steps as simple as possible; i.e., a process implementer should not

4 light gray in a grayscale printout
5 dark gray in a grayscale printout
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need to know details about the implementation of application functions. However, this
should not be achieved by undermining the correctness by construction principle. Both
goals have been achieved. All kinds of executables, that may be associated with process
steps, are first registered in the Activity Repository as activity templates. An activity
template provides all information to the Process Template Editor about mandatory or
optional input and output parameters, as well as information about data dependencies
to other activity templates. The process implementer just drags and drops an activity
template from the Activity Repository Browser window of the Process Template Editor
(cf. Fig. 8) onto the desired location in the process graph (cf. Fig. 2).
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Another important goal was make the assignment of application functions or services to process steps as 
simple as possible. That is a conventional process implementer should not need to have any detailed 
knowledge about implementation details of these components.  However, this should not be achieved for 
the price to undermine the correctness by construction principle. Both goals have been fully achieved. All 
kinds of executables which can be associated with process steps are first registered in the Activity Re-
pository as so-called Activity Templates. An activity template provides all information to the Process 
Template Editor (more precisely: the ADEPT2 service functions it is utilizing for this purpose) about man-
datory or optional input and input parameters as well as data dependencies to other activity templates. 
The process implementer just drags and drops an activity template from the Activity Repository Browser 
window of the Process Template Editor (see Figure 8) onto the desired location in the process graph like 
indicated in Figure 2.  

 

Figure 7: Reporting of detected deficiencies 
Fig. 7: Reporting of detected deficiencies (problem window on the left at the bottom)

Depending on the intended purpose of usage, an activity template can be very spe-
cific or rather generic. When using a specific template everything can be fixed; e.g., the
input and output parameters and all settings. In this case, the only remaining task for
the process implementer is to check whether the proposed mapping of input/output pa-
rameters to process data elements (i.e., the process variables used within this process to
communicate among activities) is correct. Using a specific database activity template,
for example, allows to fix the input and output parameters, the details of the database
used, the connection parameters, and the fully specified SQL statement. A more generic
Activity Template, in turn, may leave open the SQL statement, the number and types
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Depending on the intended purpose of usage, such an activity template can be very specific or rather 
generic. When using a specific activity template, everything may be fixed (the input parameters, the out-
put parameters, all settings, etc.). In this case, the only remaining task for the process implementer  is to 
check whether the proposed mapping of the input and output parameters to process data elements (i. e., 
the process variables used within this process to communicate among activities) is correct. Using a very 
specific database actitivity template, in turn, may mean that everyting is fixed: the input and output pa-
rameters, the details of the database used and the connection parameters as well as the fully specified 
SQL statement. A more generic Activity Template may leave open the SQL statement, the number and 
types of input and output parameters, or the settings for the database connection (in parts or even com-
pletely). 

5.2 Achievement:  Ease of use for application developers 

As indicated in Section 5.1, all application functions and services are represented in ADEPT2 by Activity 
Templates. That is any developer who wants to provide a new application function or service will have to 
implement a suitable activity template and put it into the Activity Repository. This makes an activity tem-
plate available and accessible within the Process Template Editor during process modeling, as illustrated 
in Figure 8. To simplify the implementation of such activity templates, ADEPT2 provides several levels of 
abstraction. 

At the lowest level ADEPT2 provides a so-called Execution Environment for each kind of basic operation 
which ADEPT2 supports. Among others, ADEPT2 offers execution environments for SQL statements, 
web services, EXE files, BeanShell scripts, basic file operations, system-generated forms, etc. However, 
the implementation of an execution environment requires some knowledge about ADEPT2 internals and, 
therefore, will typically not be the task of an ordinary application developer, but will be performed by sys-
tem implementers.  

 

Figure 8: Activity Repository Browser window in the Process Template Editor 
Fig. 8: Activity Repository Browser window in the Process Template Editor

of input and output parameters, or the settings for the database connection (in parts or
even completely).

5.2 Achievement: Ease of use for application developers

As discussed in the previous section, all application functions are represented by ac-
tivity templates; i.e., a developer who wants to provide a new application function or
service must implement a corresponding activity template and add it to the Activity
Repository. This makes it then available and accessible within the ADEPT2 Process
Template Editor during process modeling (cf. Fig. 8). To simplify the implementation
of such activity templates, ADEPT2 provides several levels of abstraction. At the lowest
one ADEPT2 provides a so-called Execution Environment for each kind of basic oper-
ation supported by ADEPT2. For example, ADEPT2 offers execution environments for
SQL statements, web services, EXE files, BeanShell scripts, basic file operations, and
system-generated forms. However, the implementation of an execution environment re-
quires some knowledge about ADEPT2 internals and, therefore, will typically not be
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the task of an ordinary application developer, but will be performed by system imple-
menters.

An execution environment defines the set of methods needed to interact with the
ADEPT2 runtime system as well as to implement the operations and facilities that shall
be provided by the activity template. An activity template for database access, for ex-
ample, may allow the user to specify connection details as illustrated in Fig. 9.

In general, the ADEPT2 runtime environment needs some information about the
runtime behavior of the activities; e.g., whether or not they may be aborted, suspended,
or undone. The implementer of an activity template has to implement interface methods
that inform the ADEPT2 runtime environment which of these facilities are supported by
the activity. For this case he must also provide the implementation of this functionality
(see [50] for background information on ADEPT2 internals). The task of implementing
a new activity template will be simple, if it can be based on a generic activity template.
In this case, the implementation is essentially reduced to putting the appropriate entries
into the set of forms representing the activity template. For example, if a database activ-
ity template shall be implemented which selects a tuple from a predefined relation in a
predefined database based on a primary key value, one form will fix the required input
parameters and the output parameters for the attribute values of the tuple, a second one
the database connection (cf. Fig. 9), and a third one the SQL statement (cf. Fig. 10).
- Fig. 8 lists examples of specialized activity templates which offer different kinds of
operations on a customer table.
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An execution environment implements the set of methods needed to interact with the ADEPT2 run-time 
system and to implement the desired operations and facilities which shall subsequently be offered by the 
activity template. The resulting activity template for database access may allow the user to specifiy con-
nection details as illustrated in Figure 9. The ADEPT2 run-time environment, in turn, needs some informa-
tion about the run-time behaviour of these activities: are they abortable, suspensible, resettable, and 
closeable? The implementer of an activity template has to implement methods which inform the ADEPT2 
run-time environment which of these facilities is supported by the activity and, in case, has also to provide 
the respective implementation for this functionality. (For some more background information on ADEPT2 
internals see [Reic08].) 

The task of implementing a new activity template is extremely simple, if it can be based on a generic Ac-
tivity Template. In this case, the implementation is essentially reduced to putting the appropriate entries 
into the set of forms representing the activity template. For example, if a database activity template shall 
be implemented which selects a tuple from a predefined relation in a predefined database based on a 
primary key value, one form will fix the required input parameter, the output parameter(s) for the attribute 
values of the tuple, the database connection (cf. Figure 9), and the SQL statement (cf. Figure 10). – 
Figure 8 shows some examples of specialized activity templates which offer different kinds of operations 
on the customer table. 

 

Figure 9:  Specifying connection details in a database activity template 

 

Figure 10: Database activity template with predefined SQL statement 

5.3 Achievement:  Ease of use for end-users 

To provide ease of use for end-users is mainly the task of the application developers. They decide how 
"manual" process activities interact with the end-user. They also decide whether or not the standard 
ADEPT2 workflow client is used or whether a dedicated client shall be provided. An important prerequiste 
for providing an easy to use end-user interface is to provide the appropriate functions to the application 
developer. In Figure 3 we have shown how an interaction with the end-user could look like in order to 
perform an ad hoc deviation. To implement a workflow client with such capabilities, the application devel-

Fig. 9: Setting connection details in a DB activity template

5.3 Achievement: Ease of use for end users

To provide ease of use for end users is mainly the task of application developers. They
decide how “manual” process activities interact with the end user. They also decide
whether the standard ADEPT2 workflow client is used or whether a dedicated client
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An execution environment implements the set of methods needed to interact with the ADEPT2 run-time 
system and to implement the desired operations and facilities which shall subsequently be offered by the 
activity template. The resulting activity template for database access may allow the user to specifiy con-
nection details as illustrated in Figure 9. The ADEPT2 run-time environment, in turn, needs some informa-
tion about the run-time behaviour of these activities: are they abortable, suspensible, resettable, and 
closeable? The implementer of an activity template has to implement methods which inform the ADEPT2 
run-time environment which of these facilities is supported by the activity and, in case, has also to provide 
the respective implementation for this functionality. (For some more background information on ADEPT2 
internals see [Reic08].) 

The task of implementing a new activity template is extremely simple, if it can be based on a generic Ac-
tivity Template. In this case, the implementation is essentially reduced to putting the appropriate entries 
into the set of forms representing the activity template. For example, if a database activity template shall 
be implemented which selects a tuple from a predefined relation in a predefined database based on a 
primary key value, one form will fix the required input parameter, the output parameter(s) for the attribute 
values of the tuple, the database connection (cf. Figure 9), and the SQL statement (cf. Figure 10). – 
Figure 8 shows some examples of specialized activity templates which offer different kinds of operations 
on the customer table. 

 

Figure 9:  Specifying connection details in a database activity template 

 

Figure 10: Database activity template with predefined SQL statement 

5.3 Achievement:  Ease of use for end-users 

To provide ease of use for end-users is mainly the task of the application developers. They decide how 
"manual" process activities interact with the end-user. They also decide whether or not the standard 
ADEPT2 workflow client is used or whether a dedicated client shall be provided. An important prerequiste 
for providing an easy to use end-user interface is to provide the appropriate functions to the application 
developer. In Figure 3 we have shown how an interaction with the end-user could look like in order to 
perform an ad hoc deviation. To implement a workflow client with such capabilities, the application devel-

Fig. 10: DB activity template with defined SQL statement

shall be provided. An important prerequisite for realizing adequate user interfaces is to
provide the appropriate methods to the application developer. In Fig. 3 we have shown
how an interaction with the end user could look like when performing an ad-hoc change.
To implement a workflow client with such capabilities, the application developer can
make use of powerful system functions available at the ADEPT2 application program-
ming interface (API):

– Querying the activity repository (using some filtering) for available activities
– Marking the activity (or set of activities) after which the new activity shall become

selectable
– Retrieving from ADEPT2 the set of activities selectable as “end” activities for this

insertion
– Marking the activity (or set of activities) which shall serve as end activities
– Performing (tentatively) the insertion based on this information
– Checking the ADEPT2 report on detected errors (e.g. missing values for input pa-

rameter)
– Making the instance change persistent

Using this API one can also implement domain-specific clients. In [21], for exam-
ple, a knowledge-based approach was used to perform most of the process instance
adaptations automatically without user interaction.

5.4 Achievement: Complex ad hoc changes and process schema evolution

Fig. 11 and Fig. 12 illustrate how a non-trivial ad hoc change could look like. As ex-
ample assume that a process instance wants to issue a request for a book quote using
Amazon’s web service facilities, but then fails in doing so. The user detects that his
process instance is in trouble and calls the system administrator for help. The system
administrator then invokes the ADEPT2 Process Monitor to take a look at this process
instance (cf. Fig. 11). Looking into the execution log of the failed activity he detects
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that its execution failed because the connection to Amazon could not be established.
Let us assume that he considers this as a temporary problem and offers the user to re-
set this activity so that it can be repeated once again. Being a friendly guy, he takes a
short look at the process instance and its data flow dependencies, and sees that the result
of this and the subsequent activity is only needed when executing the “Choose offer”
activity. Therefore, he offers the user to move these two activities after activity “Check-
SpecialOffers”; i.e., the user can continue to work on this process instance before the
PAIS once again tries to connect to Amazon.
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oper can make use of powerful system functions available at the ADEPT2 application programming inter-
face (API) like:  

- Querying the activity repository (using some filtering) for available activities 

- Marking the activity (or set of activities) after which the new activity shall become selectable 

- Retrieving from ADEPT2 the set of activities selectable as "end" activities for this insertion 

- Marking the activity (or set of activities) which shall serve as end activities 

- Performing (tentatively) the insertion based on this information 

- Checking the ADEPT2 response whether any errors have been detected 
  (e. g. missing input values for input parameters) 

- Making the instance change persistent 

However, using this API one can also implement completely different workflow clients. In [Grei05], for 
example, a knowledge-based approach was used to perform most of these process instance adaptations 
automatically without user interaction. 

5.4 Achievement:  Complex ad hoc changes and process schema evolution 

As motivated in in Section 3.4, also complex ad hoc changes must be possible. Figure 11 and Figure 12 
illustrate how such a non-trivial ad hoc change could look like. As example, assume that a process in-
stance wants to issue a request for quote for a book using Amazon's web service facilities and but fails in 
doing so. The user detects that his process instance is in trouble and calls the system administrator for 
help. The system administrator invokes the ADEPT2 Process Monitor to take a look at this process in-
stance (cf. Figure 11). Looking into the execution log of the failed activity he may detect that its execution 
failed because the connection to Amazon could not be established. Let us assume, that he considers this 
as a temporary problem and offers the user to reset this activity so that it can be repeated once again. 
Being a friendly guy, he takes a short look a the process instance and its data flow dependencies and 
sees that the result of this and the subsequent activity is only needed when executing the "Choose offer" 
activity. He, therefore, offers the user to move these two activities after the activity "CheckSpecialOffers", 
so that the user can continue to work on this process instance before the PAIS once again tries to con-
nect to Amazon. 

 

Figure 11: Process Monitor: Monitoring Perspective 

In order to do so, he would switch to the Instance Change Perspective of the Process Monitor which pro-
vides the same spectrum of change operations as the Process Template Editor. In fact, it 'is' the Process 
Template Editor. However, it is aware that a process instance has been loaded and, therefore, all the 
instance-related state information is taken additionally into account when enabling or disabling change 
operations and when performing correctness checks. The system administrator would now mark the two 
nodes "Get Amazon offer" and "Get Amazon price" as source area and the nodes "CheckSpecial Offer" 
and "Choose offer" as target area and then perform the operation "Move nodes". The resulting process 
graph is illustrated in Figure 12. He could also offer to move the node "RetrieveSnailOffer" (where we are 
wating for an E-Mail response) after "CheckSpecialOffer" as well, then "CheckSpecialOffer" would be-
come immediately selectable (and thus executable). – Assume, the web service problem lasts longer and, 

Fig. 11: Process Monitor: Monitoring Perspective

In order to accomplish this change he would switch to the Instance Change Per-
spective of the Process Monitor which provides the same set of change operations as
the Process Template Editor. In fact, it is the Process Template Editor, but is aware that
a process instance has been loaded and, therefore, all instance-related state information
is taken additionally into account when enabling or disabling change operations and
when performing correctness checks. The system administrator would now mark the
two nodes “Get Amazon offer” and “Get Amazon price” as source area and the nodes
“CheckSpecial Offer” and “Choose offer” as target area, and then perform the opera-
tion Move nodes. The resulting process graph is depicted in Fig. 12. Another option
would be to move node “RetrieveSnailOffer” (where we are waiting for an E-Mail re-
sponse) after “CheckSpecialOffer” as well. Then “CheckSpecialOffer” would become
immediately selectable and thus executable.

Assume now that the web service problem lasts longer than expected and, therefore,
the user may want to call Amazon by phone to get the price that way. In this case we
would ask the system administrator to delete the two activities in trouble and to replace
them with a form-based activity (which allows to enter the price manually and thus
provides the value for the data element previously written by activity “Get Amazon
price”).
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therefore, the user may want to call Amazon by phone to get the price that way. In this case we would ask 
the system adminstrator to delete the two activities in trouble, to replace them with a form-based activity 
which allows to enter the price manually and which would provide the value for the data element which 
was previously served by the activity "Get Amazon price".  

With respect to process schema evolution, important goals were to allow the full spectrum of change op-
erations, to migrate both, not modified and individually modified process instances (as far as possible), 
and to hide (at best all) the inherent complexity of performing all the necessary checks as well as the 
required instance state adaptions as far as possible from the person in charge to perform this task. We 
invested a lot of energy into this area in order to find an comprehensive solution to the problem [Rind04, 
RRD04,RRD04b, RRD04c], but the results have justified these efforts. 

 

Figure 12: Process Monitor: Instance Change Perspective 
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a) Process schema change b) Check state of running instances 

Fig. 12: Process Monitor: Instance Change Perspective

Regarding process schema evolution important goals were to provide the full spec-
trum of change operations for updating a process schema, to be able to migrate process
instances (including those that were individually modified) to a new schema version (as
far as possible), and to hide the inherent complexity of required checks and instance
state adaptations as best as possible from the person in charge to perform this task. We
invested a lot of energy into this subject in order to find a comprehensive solution to
the problem [51–54]. For the user (i.e., the process designer or process administrator),
process schema evolution is nearly as simple as editing a process graph during ordinary
process modeling. Like in the context of instance adaptations the Process Template Ed-
itor is invoked in a special mode such that it is aware that a new schema version is
derived from an existing one. After a new schema version is derived, one can ask the
ADEPT2 system to check which instances could be migrated to the new schema ver-
sion and which not. These checks are based on well-defined compliance rules [17, 55].
Only if there is a rule which qualifies an instance as being “migratable”, it is considered
for migration, otherwise its execution continues on the old schema. For a more detailed
description we refer to [56, 17].

Fig. 13 illustrates the interaction with the ADEPT2 system in order to perform a
process schema evolution.
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c) Result of checks d) Execute instance migration 

Figure 13: Process schema evolution in ADEPT2 (user perspective) 

For the user, i. e. the process designer or process adminstrator in this case, process schema evolution is 
nearly as simple as editing a process graph during ordinary process modeling. The Process Template 
Editor is (like above) invoked in a special mode so that it is aware that a new schema version is derived 
from an existing one. After having created a new version, the system can be asked to check which in-
stances could be migrated to the new schema. These checks are performed using a set of rules. Only if a 
rule exists (and is enabled) which qualifies an instance as being "migratable", this instance is considered 
for migration, otherwise it remains executing on the old schema. Figure 13 illustrates the interaction with 
the ADEPT2 system in order to perform a process schema evolution. A more detailed description on this 
subject can be found in [RRD04, Dada08]. 

6 Status of development: From ADEPT1 via ADEPT2 to AristaFlow® BPM Suite 

In 1998 a first implementation of the ADEPT technology ("ADEPT1") became operational. ADEPT1 was 
able so serve as implementation base for process-oriented applications with manual activities, automatic 
activities, and provided also some support for temporal constraints [Grim97]. It's most interesting prop-
erty, however, was certainly the support ad-hoc deviations. ADEPT1 served as implementation platform 
for a number of internal and external projects [BBKK02, BKK04, GoGa05, Grei05, WRWR05a] which 
made use of this facility. ADEPT1 was later extended to support distributed execution [BaDa97, BaDa00, 
BRD03] as mentioned in Section 3.5. 

In 2001 we started our research work on process schema evolution which led to a first series of publica-
tions in 2003 [RRD03b, RRD03c, RRD03e]. As it would have been too much effort to modify the ADEPT1 
code base in order to integrate these concepts, a stand-alone proof of concept prototype was developed 
[RRD04].  In 2004 we received a research grant from the State of Baden-Württemberg to perform a joint 
project with University of Mannheim (Colin Atkinson, chair of Software Technology) and four industrial 
partners. The research project was named AristaFlow5 and was running until end of 2007. One goal of 
                                                      
5 see www.AristaFlow.de for details 

Fig. 13: Process schema evolution in ADEPT2 (user perspective)

6 Status of development: From ADEPT1 via ADEPT2 to
AristaFlow® BPM Suite

In 1998 with ADEPT1 a first powerful prototype of the ADEPT technology became
operational, which was then demonstrated at different events (e.g. [57–59]). It served
as implementation base for process-oriented applications with manual as well as au-
tomated activities, and also provided some support for temporal constraints. Its most
interesting feature, however, was certainly the robust support of ad-hoc deviations.
ADEPT1 served as implementation platform for numerous projects (e.g. [7, 6, 60, 21,
19]) and was later extended to support distributed execution [27, 26, 28] as well (cf.
Section 3.5).

In 2001 we intensified our research on process schema evolution which led to a
first series of publications in 2003 [59, 51, 61]. As it would have been too much effort
to modify the ADEPT1 code base in order to integrate these concepts, we developed
a standalone proof-of-concept prototype [17]. In 2004 we received a research grant to
perform a joint project with University of Mannheim and four industrial partners. The
research project was named AristaFlow and was running until end of 2007. One project
goal was to understand how the design and implementation of application functions
could be supported by tools in such a way, that all necessary information to perform
correctness checks during process modeling using plug & play (cf. Sections 3.1 and
5.1) and ad-hoc deviations can be automatically derived [62, 63]. The most important
goal was to design and implement in parts the ADEPT2 process management system,
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which comprehensively supports all the functionalities developed in the ADEPT and
AristaFlow project [64, 50].

The power of the ADEPT2 technology and the pre-versions demonstrating its capa-
bilities attracted a number of companies. However, they could not base implementations
of a real PAIS on an experimental system, especially if its maintenance and further
development beyond 2007 was not assured. Therefore, at the beginning of 2008 we
founded a spin-off (AristaFlow GmbH, Ulm) as joint venture with industrial partners
to transfer ADEPT2 into an industrial-strength product version called AristaFlow BPM
Suite, and to provide maintenance support for it. The screen shots used for illustrat-
ing ADEPT2 features in this paper have been taken from a pre-version of this product.
The product version is now available for teaching and research purposes as well as for
commercial applications. 6

7 Summary

The research performed in the ADEPT project was motivated by problems we had iden-
tified in the clinical domain. This domain can be considered as “killer application” for
PAIS, because one has to cope with conflicting goals: robustness, flexibility, and ease
of use. To motivate the technological challenges we described our findings and insights
from this domain in some detail. The most influential decision was to follow the motto:
“We do not define any problem away”. We, therefore, never asked ourselves: “Given
a certain technology - what can we do with it?”, but we asked instead: “Given these
real-world problems - which kind of technology is needed to adequately address them?”
At the beginning, ADEPT was a “high risk” research project because it was completely
unclear whether or not this goal was achievable.

The resulting ADEPT technology has brought us further than we initially expected.
Due to its “correctness by construction” principle, it allows to model, modify, and de-
ploy processes very quickly. Its capabilities for ad-hoc deviation in conjunction with
instantaneous checking of correctness does not only allow for the secure change of pro-
cess instances, but also offers a complete new degree of freedom in modeling executable
workflows. For example, one can start to execute only partially modeled processes and
complement them during runtime. As example think of a project that will run three
years. For many projects, it is probably not very attractive to model from the very be-
ginning in great detail what shall be performed in the third year. One can go even further
and, by starting with an empty process template, compose process instances on-the-fly
(and have nevertheless all the full support of the underlying process management sys-
tem). Pre-modeling all possible exceptions one can think of makes the process graph
very complex and may allow execution paths which are undesired. With the ADEPT2
technology, one could separate exception handling from normal processing and use a
knowledge-based system to modify process instances only on demand [23, 24, 65].

For both ADEPT2 and AristaFlow, much effort has been undertaken to make the
API very powerful, but also easy to use. Experiences with first applications imple-

6 The AristaFlow BPM suite is provided free of charge to universities for research and edu-
cational purposes. Please visit www.AristaFlow-Forum.de for more information on that. For
commercial usage please visit www.AristaFlow.com.
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mented on the new platform and utilizing the provided change capabilities make us con-
fident that we have achieved this goal [66, 11]. We believe that ADEPT2 and AristaFlow
show the capabilities, process technology will have to offer in future to be broadly ap-
plicable. It shows also that robustness, flexibility, and ease of use can be achieved in
conjunction with each other.
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