
Towards Object-aware Process Management
Systems: Issues, Challenges, Benefits

Vera Künzle1 and Manfred Reichert1

Institute of Databases and Information Systems, Ulm University, Germany
{vera.kuenzle,manfred.reichert}@uni-ulm.de

Abstract. Contemporary workflow management systems (WfMS) offer
promising perspectives in respect to comprehensive lifecycle support of
business processes. However, there still exist numerous business applica-
tions with hard-coded process logic. Respective application software is
both complex to design and costly to maintain. One major reason for the
absence of workflow technology in these applications is the fact that many
processes are data-driven; i.e., progress of process instances depends on
value changes of data objects. Thus business processes and business data
cannot be treated independently from each other, and business process
models have to be compliant with the underlying data structure. This pa-
per presents characteristic properties of data-oriented business software,
which we gathered in several case studies, and it elaborates to what de-
gree existing WfMS are able to provide the needed object-awareness. We
show that the activity-centered paradigm of existing WfMS is too inflex-
ible in this context, and we discuss major requirements needed to enable
object-awareness in processes management systems.

Key words: Workflow Management, Object-aware Process Manage-
ment Systems, Data-driven Process Execution

1 Introduction

Nowadays, specific application software (e.g., ERP, CRM, and SCM systems)
exists for almost every business division. Typically, respective software enables
access to business data and offers a variety of business functions to its users. In
addition, it often provides an integrated view on the business processes. Though
such tight integration of process, function and data is needed in many domains,
current application software still suffers from one big drawback; i.e., the hard-
coding of the process and business logic within the application. Thus, even simple
process changes require costly code adaptations and high efforts for testing. Ex-
isting application software typically provides simple configuration facilities; i.e.,
based on some settings one can configure a particular process variant. Prob-
lems emerging in this context are the lack of transparency of the configurable
processes and the mutual dependencies that exist between the different con-
figuration settings. In addition, like the overall process logic the settings are
often (redundantly) scattered over the whole application code, which therefore

2 Vera Künzle and Manfred Reichert

becomes complex and difficult to maintain over time. This results in long devel-
opment cycles and high maintenance costs (e.g., when introducing new features).

In principle, workflow management systems (WfMS) offer promising perspec-
tives to cope with these challenges. Basically, a WfMS provides generic functions
for modeling and executing processes independent from a specific application.
Contemporary WfMS, however, are not broadly used for realizing data- and
process-oriented application software, particularly if a close integration of the
process and the data perspective is needed. In the latter case the processes are
typically data-driven; i.e., the progress of single process instances does not di-
rectly depend on the execution of activities, but on changes of attribute values of
data objects. Thus business processes and data cannot be treated independently
from each other, and business process models need to be compliant with the
underlying data structure; i.e. with the life cycles of the used data objects.

In this paper we demonstrate why the activity-centered paradigm of existing
WfMS is inadequate for supporting data-oriented processes. For this purpose,
we elaborate important properties of existing application software and show to
what degree they can be covered by existing WfMS. Based on the identified
shortcomings, we define major requirements for a generic system component
enablingdata-oriented processes with integrated view on both business processes
and business data. To clearly distinguish this approach from existing WfMS we
denote it as Object-aware Process Management System in the following.

Section 2 summarizes characteristics of contemporary WfMS and introduces
an example of a data-oriented process. We use this running example throughout
the paper to illustrate different issues relevant for the support of data-oriented
processes. In Section 3 we describe five key challenges for realizing an Object-
aware Process Management System. We check to what degree contemporary
WfMS cover the properties of data-oriented applications. Based on the problems
identified in this context we derive the requirements for Object-aware Process
Management Systems. Section 4 describes related work. The paper concludes
with an outlook on our future research in Section 5.

2 Backgrounds and Illustrating Example

This section describes basic workflow terminology and introduces an illustrating
example. Based on this information we discuss the deficiencies of contemporary
WfMS in the following sections.

Existing WfMS. In existing WfMS, a process definition consists of a set of
activities and their control flow [1]. The latter sets out the order and constraints
for executing the activities. It can be defined based on a number of workflow
patterns which, for example, allow to express sequential, alternative and parallel
routing as well as loop backs [2]. Each activity, in turn, represents a particular
task and is linked to a specific function of an application service. To be able to
assign human tasks to the respective actors, in addition, actor expressions (e.g.,
user roles) need to be defined for the corresponding activities. At runtime, for
each business case an instance of the corresponding process definition is created

Object-aware Process Management Systems 3

and executed according to the defined control flow. A particular activity may be
only enabled if all activities preceding in the control flow are completed or cannot
be executed anymore (except loop backs). When an interactive activity becomes
enabled, corresponding work items are added to the work lists of responsible
users. Finally, when a work item is selected by a user, the WfMS launches the
associated application service.

Example of a data-oriented process. We consider the (simplified) process
of a job application as it can be found in the area of human resource manage-
ment. Using an online form on the Internet, interested candidates may apply for
a vacancy. The overall goal of the process then is to decide which applicant shall
get the offered job. A personnel officer may request internal reviews for each job
applicant. Corresponding review forms have to be filled out by employees from
functional divisions until a certain deadline. Usually, they evaluate the applica-
tion(s), make a proposal on how to proceed (e.g., whether or not a particular
candidate shall be invited for an interview), and submit their recommendation to
the personnel officer. Based on the provided reviews the personnel officer makes
his decision on the application(s) or he initiates further steps like an interview
or another review. In general, different reviews may be requested and submitted
respectively at different points in time. In any case, the personnel officer should
be able to sign already submitted reviews at any point in time.

3 Findings, Problems, Requirements

In several case studies we have evaluated the properties of data- and process-
oriented application software. This section summarizes basic findings from these
studies and illustrates them along our running example. We then reveal char-
acteristic problems that occur when using existing workflow technology for im-
plementing the identified properties. This leads us to a number of fundamental
requirements to be met by object-aware process management systems.

3.1 Challenge 1: Integration of Data

Findings. Usually, application systems manage data in terms of different object
types represented by a set of attributes. At runtime, for each object type several
object instances exist, which differ in the values of their attributes. Each object
type has at least one attribute representing its object ID. Using this attribute any
object instance can be uniquely identified. Relationships between object types
are described using attributes as well. At runtime, object IDs of other object
instances are then assigned to these attributes. Generally, an object instance
may be referenced by multiple other object instances of a particular object type.

Business Data is represented by a variable number of object instances of
different object types which are related to each other.

Fig. 1a depicts the data structure for our running example. For each applica-
tion multiple reviews can be requested (cf. Fig. 1b). Thereby the precise number

4 Vera Künzle and Manfred Reichert

of related object instances varies from case to case; i.e., the number of requested
reviews may differ from application to application, and it may also change dur-
ing runtime (e.g., if for an application some reviews are requested or completed
later than others).

In data- and process-oriented applications, available information can be ac-
cessed by authorized users at any point in time regardless of the process status.

From a user perspective, the instances of a particular object type correspond
to rows in a table. Table columns, in turn, relate to selected attributes of the
object type or – more precisely – to attribute values of the object instances.
Attributes representing object relationships are resolved; i.e., their values are
substituted by (meaningful) attribute values of the related object instances. Ad-
ditional information on object instances (e.g., attributes not displayed by default
within the table or detailed information about referenced object instances) can
be viewed on-demand. Using this data- or object-centric view, besides working
on mandatory process activities , authorized users may optionally edit attribute
values of single object instances at arbitrary points in time (optional activities).

job offer

employee

application

review

1
n

1
n 1n

objecttypes objectinstances

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes

job offer

employee

application

review

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes

a) build time b) run time

job offer

employee

application

review

1
n

1
n 1n

objecttypes objectinstances

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes

job offer

employee

application

review

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes

build time run time run time

view
review

ID-review

What data?

processinstance
c

a
b
c

ba

Fig. 1. Data structure and access to context information

Problems. Existing WfMS are unable to provide such object-centric views.
Most of them only cover simple data elements, which store values of selected
object attributes, while the object instances themselves are stored in external
databases. More precisely, only the data needed for control flow routing and for
supplying input parameters of activities are maintained within the WfMS (i.e.,
so-called workflow relevant data), while other application data is unknown to it.
Obviously, this missing link between application data and business process pro-
hibits an integrated access to them; i.e., access to detailed business information
is only possible when executing an activity and its related application function
respectively. Fig. 1c shows a process activity for perusing a particular review.
Which review shall be displayed can be controlled by the WfMS by handing over
its objectID to the invoked activity. However, the WfMS cannot control which
attributes of the review object or of related objects (e.g., the application) can
be accessed. Missing or incomplete context information, however, often leads to
inefficient work and erroneous results [3].

Object-aware Process Management Systems 5

In principle, optional activities, enabling access to application data at arbi-
trary points in time, could be emulated in WfMS by explicitly modeling them
at different positions in the control flow. However, this would lead to spaghetti-
like process models with high number of redundant activities, which are difficult
to comprehend for users. Besides this, users would not be able to distinguish
optional activities from mandatory ones. Fig. 2 illustrates this problem along
our running example. Here, optional activity edit data is embedded multiple
times in the process definition in order to be able to access application data
if required. Note that without such an explicit integration of optional activi-
ties, needed changes of application data would have to be accomplished directly
within the applications system. When bypassing either the WfMS or appl. sys-
tem, however, inconsistencies with respect to attributes, redundantly maintained
in both systems, might occur. Worst case, this can result in runtime errors or
faulty process executions.

compare
skills

init
interview

init
reviews

evaluate
recommendation decision

reject

accept

edit
data

edit
data

edit
data

edit
data

edit
data

edit
data

edit
data

edit
data

build time
processtype

application

mandatory activity
optional activity

compare
skills

init
interview

init
reviews

evaluate
recommendation decision

reject

accept

edit
data

edit
data

edit
data

edit
data

edit
data

edit
data

edit
data

edit
data

build time
processtype

application

mandatory activity
optional activity

compare
skills

init
interview

init
reviews

evaluate
recommendation decision

reject

accept

edit
data

edit
data

edit
data

edit
data

edit
data

edit
data

edit
data

edit
data

build time
processtype

application

mandatory activity
optional activity

Fig. 2. Mandatory and optional activities in contemporary WfMS

Requirements. Object-aware process management systems need to be
tightly integrated with application data. In particular, these data should be
manageable and accessible based on complex objects rather than on atomic data
elements. Another challenge is to cope with the varying and dynamic number
of object instances to be handled at runtime. Thereby, the different relations
between the object instances have to be considered as well. Finally, regardless
of process status, it should be possible to access object information at any time.

3.2 Challenge 2: Choosing granularities for processes and activities

Findings. For different object types separate process definitions exist [4]. The
creation of a process instance is directly coupled with the creation of an object
instance; i.e., for each object instance exactly one process instance exists.

Fig. 3 illustrates the mapping between object and process types as well as
between object and process instances. The object type of a job application has
its own process type. At runtime, there are several instances of a job application
object. Correspondingly, for each of them a separate process instance is created.

Regarding the process type associated with a particular object type, each ac-
tivity refers to one or more attributes of the object type. There is one action per
attribute to read or write its value. Each activity consists of at least one action.

When executing a particular process instance related subordinate processes
may be triggered. Results collected during their execution are relevant for the

6 Vera Künzle and Manfred Reichert

execution of the superordinate process instance as well. In this context the cre-
ation of a subordinate process instance is also coupled with the creation of a
corresponding object instance. The latter has to refer to the object instance of
the superordinate process instance. Consequently, the number of subordinate
process instances depends on the number of object instances which reference the
object instance associated with the superordinate process instance.

The relations between process types correspond to the relations between object
types within the overall data structure [4].

Fig. 3 illustrates the analogy between data structure and process structure.
For each job application an arbitrary number of reviews may be requested, and
for each review object one process instance is running. The latter constitutes a
subordinate process of the process instance related to the job application.

build time run time

processtypes processinstances

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

job offer

employee

application

review

1
n

1
n 1n

objecttypes objectinstances

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes

job offer

employee

application

review

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

build time run time

processtypes processinstances

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

job offer

employee

application

review

1 n

1 n 1n

objecttypes objectinstances

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes

job offer

employee

application

review

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

build time run time

processtypes processinstances

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

application

objecttypes objectinstances

application

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

build time run time

processtypes processinstances

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

job offer

employee

application

review

1 n

1 n 1n

objecttypes objectinstances
job offer

employee

application

review

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

build time run time

processtypes processinstances

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

job offer

employee

application

review

1 n

1
n 1n

objecttypes objectinstances
job offer

employee

application

review

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

build time run time

processtypes processinstances

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

application

objecttypes objectinstances

application

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

Fig. 3. Analogy between data and process structure

Problems. Granularity issues are not adequately addressed in existing
WfMS; i.e., processes, sub-processes and activities may be modeled at arbitrary
level of granularity. Neither a uniform methodology nor practical guidelines ex-
ist for process modeling [5], often resulting in inconsistent or non-comparable
models. Furthermore, when modeling and executing processes in WfMS, there
exists no direct support for considering the underlying data structure; i.e., the
objects and their relations. In particular, two drawbacks can be observed: First,
the creation of (sub) process instances cannot be coupled with the creation of ob-
ject instances. Second, in many WfMS the number of sub process instances has
to be fixed already at build time [6]. Note that WfMS enabling multi-instance
patterns constitute an exception in the latter respect [2].

Requirements. The modeling of processes and data constitute two sides of
the same coin and therefore should correspond to each other [5]. Thereby, we have
to distinguish between object level and (data) structure level: First, a process
type should always be modeled with respect to a specific object type; process
activities then may directly relate to attributes of this object type. Second,
at the structure level, process relations should correspond to the ones between
the corresponding data objects. Finally, instantiation of processes needs to be
coupled with the creation of related object instances.

Object-aware Process Management Systems 7

3.3 Challenge 3: Data-based Modeling

Findings. The progress of a process instance correlates with the attribute values
of the associated object instance. Corresponding to this, the steps of a process are
less defined on basis of black-box activities, but more on explicit data conditions.

Fig. 4 shows an instance of a review object together with the related pro-
cess instance. For each process step, pre-conditions on the attribute values of
the object instance as well as the attribute values changed within this step are
depicted. In particular, the process is defined by setting goals described in terms
of conditions on object attribute values. Regarding our example from Fig. 4,
these data conditions are related to the attributes of the review object. This way,
process state and object state sync at any point in time. Mandatory activities
can be identified by analyzing the data conditions. More precisely, they comprise
those actions changing object attributes in a way such that the conditions for
executing subsequent activities become fulfilled [3]. For each process step at least
one mandatory activity exists.

run time
processinstance

delivery date
is null

delivery date
> today

recommendation
is not null

submit
= true

finish
= true

review
objectinstance

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes
3
2
1

false
false

3
2
1
09/12/08

false
false

3
2
1
09/12/08
init interv.

false
false

3
2
1
09/12/08
init interv.

true
false

3
2
1
09/12/08
init interv.

true
true

 time time

set deliv. view appli.
propose rec.

view appli.

submit
propose rec.

finish

run time
processinstance

delivery date is
null

delivery date >
today

recommendation is
not null

submit
= true

finish
= true

review
objectinstance

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes
3
2
1

false
false

3
2
1
09/12/08

false
false

3
2
1
09/12/08
init interv.

false
false

3
2
1
09/12/08
init interv.

true
false

3
2
1
09/12/08
init interv.

true
true

 time time

set deliv. view appli.
propose rec.

view appli.

submit
propose rec.

finish

a

b

preconditions

Fig. 4. Progress within data and data-based modeling

Problems. In existing WfMS, process designers have to explicitly define the
activities to be carried out as well as their order constraints. In particular, no
support exists for verifying whether or not the (semantic) goals of a process
can be achieved [7, 8, 9]. Some approaches define pre- and post-conditions for
certain activities in relation to application data. If the pre-conditions of such an
activity cannot be met during runtime, however, process execution is blocked. In
this context, it is no longer sufficient to only postulate certain attribute values
for executing a particular activity. It then must be also possible, to dynamically
react on current attribute values.

Requirements. In object-aware process management systems, the modeling
of a process type should not be based on the activities to be carried out. Instead,
process steps should be defined in terms of data conditions. The latter, in turn,
should relate to the attributes belonging to the corresponding object type.

3.4 Challenge 4: Synchronizing Process Instances

Findings. A subordinate process is always instantiated during the execution
of another process instance [6]. Like for the superordinate process instance, a

8 Vera Künzle and Manfred Reichert

corresponding object instance is then created. In particular, this object instance
references the one related to the superordinate process instance. Finally, the
pre-condition of the process step, in which the subordinate process instance is
created, corresponds to a data condition on the superordinate object instance.

The creation of a particular object instance depends on the progress of the
process instance related to the superordinate object instance.

Fig. 5a illustrates this relationship. A new review object cannot be created
before the skills of the applicant have been compared with the job profile.

run time

processinstances

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

processinstances

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

asynchronous

asynchronous

asynchronous

run time

1new instance
2 aggregation 3 dependence

processinstances

compare
skills

init
interview

init
review

evaluate
rec. decision

reject

accept

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

asynchronous

asynchronous

asynchronous

run time

1

new instance
aggregation

dependence

a
b c

Fig. 5. Synchronizing process instances

During the execution of a superordinate process instance, information from its
subordinate process instances may be used for decissions within the superordinate
process instance.

To accomplish such evaluation, data of multiple subordinate object instances
may be required [6]; i.e., we need to aggregate the values of particular attributes
of subordinate object instances. Which subordinate object instances shall be
taken into account may depend on the execution progress of their corresponding
process instances. Fig. 5b illustrates this along our running example. Within the
parental process instance handling a particular job application, the requested
reviews (i.e., results from different subordinate processes) are jointly evaluated.
Thereby, only submitted reviews are considered.

The executions of different process instances may be mutually dependent [4,
6]. Respective dependencies may exist between instances of the same process type
as well as between instances of different process type.

Considering this, the data conditions for executing process steps are even
more complex in existing application software than described above; i.e., these
data conditions may be not only based on the attributes of the corresponding
object type, but also on the attributes of related object types. For example, a
review may only be marked as completed after a decision on the job application
has been made (cf. Fig. 5c).

Problems. In existing WfMS, process instances are executed in isolation to
each other [6]. Neither dependencies between instances of different process types
nor dependencies between instances of the same process type can be defined at a
reasonable semantical level. Often, the modeling of subordinate processes serves
as a workaround. However, in existing WfMS the execution of subordinate pro-
cess instances is tightly synchronized with their superordinate process instance;

Object-aware Process Management Systems 9

i.e., the latter is blocked until the sub process instances are completed. Thus,
neither aggregated activities nor more complex synchronization dependencies as
described above can be adequately handled in WfMS [6].

Requirements. Generally, it should be possible to execute both instances
of the same and instances of different process types in a loosely coupled manner,
i.e., asynchronously to each other. However, due to data dependencies at object
instance level, we need to be able to synchronize their execution at certain points.
Furthermore, to a superordinate process instance several subordinate process
instances should be assignable in accordance with the relationships between
corresponding object instances as well as their cardinalities.

3.5 Challenge 5: Flexibility

Findings. As described, there are optional as well as mandatory activities. The
former are used to gather object information at any point in time regardless
from the progress of the corresponding process instance. Opposed to this, the
latter are mandatory and comprise actions that change the values of the object
attributes used within the data conditions of one or multiple process steps.

The activation of an activity does not directly depend on the completion of
other activities; i.e., it may be executed as soon as its data condition is satisfied.
An activity can be also executed repeatedly as long as its data condition is met.
Depending on how the data conditions of the different activities look like, a more
or less asynchronous execution becomes possible (cf. Fig. 6).

run time
delivery date is

null
delivery date >

today
recommendation

is not null submit = true finish = true
 time time

set delivery date view application
propose recommendation

submit finish

view review
edit review

run time
delivery date is

null
delivery date >

today
recommendation

is not null submit = true finish = true
 time time

set delivery date view application
propose recommendation

submit finish

view review
edit review

Fig. 6. Asynchronous and overlapping execution of activities

Generally, activities consist of one or more atomic actions for reading or
writing the different attributes of an object instance. Which object attributes
can be actually modified in a given context depends on the progress of the related
process instance. For example, Fig. 7 shows the different actions available within
the (optional) activity for entering the data of a review object. As can be seen,
the concrete set of selectable actions depends on the conditions actually met by
the object instance; i.e., (optional) activities dynamically adapt their behavior
to the progress of the corresponding process instance (denoted as horizontal
dynamic granularity). Interestingly, the attribute changes required to fulfill the
data condition of a particular process step can be also realized when executing
an optional activity. Since this can be done asynchronously at arbitrary point
in time, high process flexibility can be achieved. Furthermore, for a particular
activity optional and mandatory actions can be differentiated. Fig. 7 shows the
mandatory actions for a review. Note that these actions may differ from step
to step. As opposed to optional activities, mandatory ones only include those
actions necessary for the fulfillment of the data conditions of subsequent steps.

10 Vera Künzle and Manfred Reichert

Mandatory activities belonging to different instances of the same process type
may be executed together.

Required data is only entered once by the user; i.e., users may group a number
of activities for which they want to provide the same input data (denoted as
vertical dynamic granularity). Fig. 8 illustrates this for activity finish.

build time
processtype
delivery date

is null
delivery date

> today
recommend.

is not null
submit
= true

finish
= true

review
objecttype

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes
read
read
read
write

read
read
read
read
write
write
write

read
read
read
read
write
write
write
write

read
read
read
read
read
read
read
read
write

read
read
read
read
read
read
read
read
read

build time
processtype
delivery date

is null
delivery date

> today
recommend.

is not null
submit
= true

finish
= true

review
objecttype

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes
read
read
read
write

read
read
read
read
write
write
write

read
read
read
read
write
write
write
write

read
read
read
read
read
read
read
read
write

read
read
read
read
read
read
read
read
read

build time
processtype
delivery date

is null
delivery date

> today
recommend.

is not null
submit
= true

finish
= true

review
objecttype

ID-review
ID-application
ID-employee
delivery date
recommendation
grading
comment
submit
finish

attributes
read
read
read
write

read
read
read
read
write
write
write

read
read
read
read
write
write
write
write

read
read
read
read
read
read
read
read
write

read
read
read
read
read
read
read
read
read

Fig. 7. Granularity of activities with optional and mandatory actions

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

run time time time

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

set
delivery

view
appli.

propose
rec. submit evaluate

rec. finish

finish

Fig. 8. Grouping of activities

Problems. Due to the activity-driven execution of process instances in ex-
isting WfMS, an activity can usually be activated only once (except loop backs).
Furthermore, activity execution must take place in a precisely defined context.
However, such rigid behavior is not always adequate. Sometimes an activity needs
to be repeated spontaneously; or it has to be executed in advance, or first be
stopped and then be caught up at a later point in time [3]. Conventional WfMS
do not allow for this kind of flexibility. Furthermore, users are typically involved
in the execution of multiple instances of a particular process type. Thus, their
worklist usually contains many activities of same type. However, each of them
needs to be processed separately in WfMS, which does not always comply with
common work practice. In summary, the isolated execution of process instances
in existing WfMS is too inflexible [10].

Requirements. Data-driven process execution is needed; i.e., process exe-
cution should be not guided by activities, but rather be based on the state of
the processed object instances. Thereby, a much more flexible execution behav-
ior and optional activities can be realized. Furthermore, it should be possible
to make the selectable actions within an activity execution dependable on the
state of the process instances. Finally, it should be possible to work on several
activities with same type, but belonging to different process instances, in one go.

The above discussions have revealed the limitations of current WfMS. Only

Object-aware Process Management Systems 11

being able to cope with atomic or stateless data elements is by far not sufficient.
Instead, tight process and data integration is needed. This integration can based
on objects, object attributes and object relations. Therefore, these three levels
need to be reflected in process definitions as well; i.e., activities should be related
to object attributes and process modeling should be based on objects. The hi-
erarchical relations between processes and other process interdependencies then
depend on object relations; i.e., on references between objects. In summary, we
need comprehensive support for the data-based modeling and data-driven exe-
cution of business processes.

4 Related Work

The described challenges have been partially addressed by existing work. How-
ever, a comprehensive solution for object-aware process management is still miss-
ing. Fig. 9 summarizes what challenges have been addressed by which approach.

atomic elements / attributes

objects

relations between data

flexible quantity

access beyond activities

activity

process

databased modelling

synchronisation

horizontal dynamic granul.

vertical dynamic granularity

data-driven execution

in
te

gr
at

io
n

of
 d

at
a

gr
an

u-
la

rit
y

fle
xi

bi
lit

y

A
rt

ifa
ct

 C
en

tr
ic

 M
od

el
lin

g
IB

M
 R

es
ea

rc
h

U
S

A

B
at

ch
 a

ct
iv

iti
es

U
ni

ve
rs

ity
 o

f Q
ue

en
sl

an
d

C
as

e
H

an
dl

in
g

U
ni

ve
rs

ity
 o

f E
in

dh
ov

en
H

as
so

 P
la

ttn
er

 In
st

itu
te

 P
ot

sd
am

D
at

a
D

riv
en

 C
oo

rd
in

at
io

n
U

ni
ve

rs
ity

 o
f T

w
en

te
 /

U
lm

Pr
oc

le
ts

U
ni

ve
rs

ity
 o

f E
in

dh
ov

en
,

C
ol

or
ad

o,
 C

am
pi

na
s

Pr
od

uc
tio

n
B

as
ed

 S
up

po
rt

U
ni

ve
rs

ity
 o

f E
in

dh
ov

en

X X X X X

X X O

X X X

O

X

X X X

O X O X

O X O X

X X

X

X

X O X

atomic elements / attributes

objects

relations between data

flexible quantity

access beyond activities

activity

process

databased modelling

synchronisation

horizontal dynamic granul.

vertical dynamic granularity

data-driven execution

in
te

gr
at

io
n

of
 d

at
a

gr
an

u-
la

rit
y

fle
xi

bi
lit

y

A
rt

ifa
ct

 C
en

tr
ic

 M
od

el
lin

g
IB

M
 R

es
ea

rc
h

U
S

A

B
at

ch
 a

ct
iv

iti
es

U
ni

ve
rs

ity
 o

f Q
ue

en
sl

an
d

C
as

e
H

an
dl

in
g

U
ni

ve
rs

ity
 o

f E
in

dh
ov

en
H

as
so

 P
la

ttn
er

 In
st

itu
te

 P
ot

sd
am

D
at

a
D

riv
en

 C
oo

rd
in

at
io

n
U

ni
ve

rs
ity

 o
f T

w
en

te
 /

U
lm

Pr
oc

le
ts

U
ni

ve
rs

ity
 o

f E
in

dh
ov

en
,

C
ol

or
ad

o,
 C

am
pi

na
s

Pr
od

uc
tio

n
B

as
ed

 S
up

po
rt

U
ni

ve
rs

ity
 o

f E
in

dh
ov

en

X X X X X

X X O

X X X

O

X

X X X

O X O X

O X O X

X X

X

X

X O X

Fig. 9. Overview of related work

Challenge 1: Integration of Data
Concepts for better integration of
processes and data are suggested
in Artifact-Centric Modeling [11],
Production-Based Workflow Support
[5, 12], Data-Driven Process Coordina-
tion (Corepro) [4], and Case Handling
[3]. [12] establishes relations between
atomic data elements, but neither sup-
ports complex objects nor varying
numbers of data elements. Corepro, in
turn, allows to model objects and ob-
ject relations [4, 13]; object definition
does not consider attributes and car-
dinalities of object relations. In [11],
so-called artifacts have to be identified
first. Like objects, artifacts consist of
different attributes which can be also
used to define relations between them.
Unlike objects, they are not defined
at type level and therefore cannot be
instantiated multiple times. In all ap-

proaches, access to data is only possible in the context of an activity execution,
i.e. at a certain point during process execution. Only Case Handling [3] allows ac-
cess to data outside the scope of activities, but does not provide explicit support
for complex objects and data structures.

Challenge 2: Choice of Granularity for Activities and Processes.
Objects and object relations constitute guidelines for choosing the granularity
for processes, sub-processes and activities. Process definitions are based on ob-

12 Vera Künzle and Manfred Reichert

jects and activities are used to modify the values of corresponding attributes.
Furthermore, a process structure should be in accordance with the data struc-
ture. Granularity issues are addressed by the previously mentioned approaches
and by Proclets [6]. However, none of them enables complete process definition
with references to attributes, objects and object relations. In [11] activities are
modeled based on one ore more artifacts, but without deriving the granularity of
processes automatically. Proclets [6] are lightweight processes, which communi-
cate with each other via messages. The granularity of a process is not explicitly
defined. By considering the quantity of process instances, an implicit analogy
between processes and objects can be drawn. Corepro [4] explicitly coordinates
individual processes based on the underlying data structure. The granularity of
processes and activities can be chosen freely. [5, 12] consider both the granular-
ity of activities and the one of processes. Activities always relate to one or more
atomic data elements. The structure of the process corresponds to the relation-
ships between the data elements. Sub-processes do not exist. In [3] activities are
described in terms of atomic data elements as well. Due to their indirect encapsu-
lation, a process is defined based on an individual ”case”. However, relationships
are not considered.

Challenge 3: Data-based modeling. Though [11] does not allow for data-
based modeling, activities are defined with references to the identified artifacts.
In Corepro, process coordination is realized in accordance with the objects and
their relations. Objects are defined in terms of states and transitions between
them. Furthermore, processes assigned to different objects can be related to each
other based on external transitions. The most advanced approaches in relation
to data-based modeling are provided by [3] and [5, 12]. Data-based modeling of
activities in terms of atomic data elements is possible. However, for each process
step still an activity has to be explicitly defined.

Challenge 4: Synchronization. In [6], processes are synchronized based on
messages. Thereby, a variable number of process instances is considered. How-
ever, their synchronization is not explicitly based on the data structure. The
most powerful approach in the given context is provided by the data-driven co-
ordination of processes in Corepro [4]. Process synchronization is in accordance
with the related data structure. Thereby, a variable number of instances can be
created. The creation of new object instances at runtime is possible, but requires
an ad-hoc change of the related data structure [13].

Challenge 5: Flexibility. Case Handling [3] enables horizontal dynamic
granularity. A data element can be read and written within several activities.
These data elements can either be free, mandatory or optional. A data ele-
ment which is mandatory for an activity can be optional for preceding ones.
[10] enables vertical dynamic granularity of activities; same activities of differ-
ent process instances can be grouped and executed together. [3, 12] enable the
data-driven execution of processes based on current values of the data elements.
In Corepro [4] processes themselves are still activity-driven, whereas process
synchronization follows a data-driven approach.

Object-aware Process Management Systems 13

5 Outlook

Our overall vision is to develop a framework for object-aware process manage-
ment; i.e., a generic component for enabling data-driven processes as well as an
integrated view on process and data. On the one hand we want to provide simi-
lar features as can be found in some hard-coded, data-oriented applications. On
the other hand we want to benefit from the advantages known from workflow
technology. However, a tight integration of data and process is only one of the
challenges to be tackled. Other ones arise from the involvement of users and the
handling of access privileges; e.g., depending on object data. In future papers we
will provide detailed insights into the different components of an object-aware
process management system as well as their complex interdependencies.

References

1. Aalst, W., Hee, K.: Workflow-Management - Models, Methods and Systems. MIT
Press, Cambridge, MA, USA (2004)

2. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Distr.
& Parallel Databases 14 (2003) 5–51

3. Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for business
process support. DKE 53(2) (2005) 129–162

4. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of
large process structures. In: Proc. CoopIS’07. LNCS 4803 (2007)

5. Reijers, H., Liman, S., Aalst, W.: Product-based workflow design. Management
Information Systems 20(1) (2003) 229–262

6. Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Workflow modeling using proclets.
In: Proc. CoopIS’00. (2000) 198–209

7. Ryndina, K., Küster, J., Gall, H.: Consistency of business process models and
object life cycles. In: Proc. MoDELS’06. (2006) 80–90

8. Redding, G., Dumas, M., Hofstede, A., Iordachescu, A.: Transforming object-
oriented models to process-oriented models. In: Proc. BPM’07 Workshops. LNCS
4928 (2007) 132–143

9. Gerede, C., Su, J.: Specification and verification of artifact behaviors in business
process models. In: Proc. ICSOC’07. (2007) 181–192

10. Sadiq, S., Orlowska, M., Sadiq, W., Schulz, K.: When workflows will not deliver:
The case of contradicting work practice. In: Proc. BIS’05. (2005)

11. Liu, R., Bhattacharya, K., Wu, F.: Modeling business contexture and behavior
using business artifacts. In: Proc. CAiSE’07. (2007) 324–39

12. Vanderfeesten, I., Reijers, H., Aalst, W.: Product-based workflow support: Dy-
namic workflow execution. In: Proc. CAiSE’08. LNCS 5074 (2008) 571–574

13. Müller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and
dynamic adaptation of data-driven process structures. In: Proc. CAiSE’08. LNCS
5074 (2008) 48–63

