
Modeling Business Process Variability

A search for innovative solutions to business process variability
modeling problems

Mark Vervuurt
October 2007

2

Modeling Business Process Variability

A search for innovative solutions to business process variability
modeling problems

Doctoral Thesis
Mark Vervuurt
Enschede, October 2007

Graduation committee
Dr. Manfred Reichert (first supervisor)
Dr. Ir. Bedir Tekinerdogan
Ir. Ingo Wassink

Chair
Information Systems

Department
Electrical Engineering, Mathematics and Computer Science

University
University of Twente

Management summary
This thesis is written at the University of Twente for the Information Systems
department from the 1st of April 2007 to the 1st of November 2007. It presents all
the research findings on business process variability modeling. The main goal of this
research project is to analyze inherent problems of business process variability and
solve them simply, innovatively and effectively.

To achieve this goal, process variability is defined by analyzing scientific literature,
its main problems identified and is illustrated using a healthcare running example:
process variability is classified into process variability within the domain space and
over time. These two forms of process variability respectively lead to process
variability modeling and process model evolution problems. After defining the main
problems inherent to process variability, the focus of this research project is defined:
solving process variability modeling problems.

First current business process modeling languages are evaluated to assess the
effectiveness of their respective modeling concepts when modeling process
variability, using a newly created set of evaluation criteria and the healthcare
running example. The following business process modeling languages are evaluated:
Event driven process chains (EPC), the Business Process Modeling Notation (BPMN)
and Configurable EPC (C-EPC).

Business process variability modeling and Software product line engineering have
similar problems. Therefore the variability modeling concepts developed by software
product line engineering are analyzed. Feature diagrams and software configuration
management are the main variability management concepts provided by software
product line engineering. To apply these variability management concepts to model
process variability meant combining them with existing business modeling
languages. Riebisch feature diagrams are combined with C-EPC to form Feature-EPC.
Applying software configuration management, meant merging Change Oriented
Versioning with basic EPC to create COV-EPC, and merging the Proteus Configuration
Language with basic EPC to design PCL-EPC. Finally these newly created business
process modeling languages are also evaluated using the newly designed evaluation
criteria and the healthcare running example.

EPC or BPMN are not suited to model business process variability within the domain
space. C-EPC provide explicit means to model business process variability, however
the process models tend to get big very fast. Furthermore the syntax, the contextual
constraints and the semantics of the configuration requirements and guidelines used
to configure the C-EPC process models are unclear. Feature-EPC improve C-EPC with
domain modeling capability and clearly defined configuration rules: their syntax,
contextual constraints and semantics have been clearly defined using a context free
grammar in Backus-Naur form. Furthermore, consistent combinations of features and
configuration rules are ensured using respectively constraints and a conflict
resolution algorithm. However, Feature-EPC and C-EPC suffer from the same
weakness: large configurable process models. In COV-EPC and PCL-EPC the problem
of large configurable process models is solved. COV-EPC ensures consistent
combinations of options and configuration rules using respectively validities and a
conflict resolution algorithm. PCL-EPC guarantees consistent combinations of
process fragments by means of a PCL specification.

4

Acknowledgements
I want to thank kindly my three supervisors for their time and effort: Manfred
Reichert, Bedir Tekinerdogan and Ingo Wassink. The master thesis that was written
by Noordhuizen provided valuable inspiration on how to write and structure this
thesis. I would like to thank Maarten Fokkinga for helping me improve my formal set
notations. I would also like to thank Riham Abdel Kader for providing useful
comments on my first research proposal. I would like to thank Rogier Henrikez and
my brother Sean Vervuurt for helping me improve the readability of this thesis.
Finally I would like to thank my family and friends for their unconditional support!

5

 Table of contents

TABLE OF FIGURES .. 8

LIST OF ABBREVIATIONS ... 10

CHAPTER 1 INTRODUCTION ... 11

1.1 CONTEXT INFORMATION ... 11
1.2 PROBLEM FOCUS .. 11
1.3 RESEARCH OBJECTIVE... 11
1.3.1 MAIN RESEARCH QUESTION ... 11
1.3.2 SUB-RESEARCH QUESTIONS.. 11
1.4 RESEARCH APPROACH ... 12
1.5 THESIS OVERVIEW.. 12

CHAPTER 2 INTRODUCTION TO BUSINESS PROCESS MODELING 13

2.1 INTRODUCTION... 13
2.2 BUSINESS PROCESS MODELING ... 13
2.3 BUSINESS PROCESS MODELING LANGUAGES... 13
2.3.1 BASIC EVENT DRIVEN PROCESS CHAINS... 13
2.3.2 EXTENDED EVENT DRIVEN PROCESS CHAINS .. 14
2.3.3 CONFIGURABLE EVENT DRIVEN PROCESS CHAINS .. 15
2.3.4 BUSINESS PROCESS MODELING NOTATION .. 16
2.4 CONCLUSION... 17

CHAPTER 3 UNDERSTANDING PROBLEMS AND CHALLENGES OF BUSINESS
PROCESS VARIABILITY ... 18

3.1 INTRODUCTION... 18
3.2 BUSINESS PROCESS VARIABILITY DESCRIPTION AND DEFINITION.. 18
3.3 THE ORIGIN OF BUSINESS PROCESS VARIABILITY .. 20
3.3.1 THE ORIGIN OF BUSINESS PROCESS VARIABILITY OVER TIME... 20
3.3.2 THE ORIGIN OF BUSINESS PROCESS VARIABILITY WITHIN THE DOMAIN SPACE 20
3.4 HEALTHCARE RUNNING EXAMPLE ... 23
3.4.1 BUSINESS PROCESS VARIABILITY WITHIN THE DOMAIN SPACE .. 23
3.4.2 BUSINESS PROCESS VARIABILITY OVER TIME.. 29
3.5 IDENTIFYING MAIN PROBLEMS OF PROCESS VARIABILITY.. 30
3.5.1 BUSINESS PROCESS VARIABILITY MODELING ISSUES.. 32
3.5.2 PROCESS MODEL EVOLUTION ISSUES... 35
3.6 THE REWARDS FOR SOLVING BUSINESS PROCESS VARIABILITY PROBLEMS 37
3.7 PROBLEM FOCUS .. 37
3.8 CONCLUSION... 38

6

CHAPTER 4 BUSINESS PROCESS VARIABILITY MODELING EVALUATION 39

4.1 INTRODUCTION... 39
4.2 BUSINESS PROCESS VARIABILITY MODELING EVALUATION CRITERIA 39
4.2.1 LISTING AND DESCRIPTION OF EVALUATION CRITERIA .. 39
4.2.2 SUMMARY OF EVALUATION CRITERIA ... 41
4.3 SELECTION AND EVALUATION OF CURRENT BUSINESS PROCESS MODELING LANGUAGES.. 41
4.3.1 BUSINESS PROCESS VARIABILITY MODELING EVALUATION OF EXTENDED EVENT DRIVEN
PROCESS CHAINS (E-EPC) ... 42
4.3.2 BUSINESS PROCESS VARIABILITY MODELING EVALUATION OF BUSINESS PROCESS
MODELING NOTATION (BPMN).. 49
4.3.3 BUSINESS PROCESS VARIABILITY MODELING EVALUATION OF CONFIGURABLE EVENT
DRIVEN PROCESS CHAINS (C-EPC).. 57
4.4 CONCLUSION... 64

CHAPTER 5 FINDING ALTERNATIVE SOLUTIONS TO BUSINESS PROCESS
VARIABILITY MODELING PROBLEMS .. 65

5.1 INTRODUCTION... 65
5.2 SOFTWARE AND PROCESS VARIABILITY .. 65
5.3 SOFTWARE PRODUCT LINES .. 66
5.4 FEATURE DIAGRAMS .. 67
5.4.1 DOMAIN ENGINEERING AND MODELING .. 67
5.4.2 VARIATION POINTS AND DEPENDENCIES ... 67
5.4.3 FEATURE DIAGRAMS... 68
5.4.4 FEATURE DIAGRAM SELECTION ... 70
5.5 SOFTWARE CONFIGURATION MANAGEMENT .. 70
5.5.1 SCM DISCIPLINES ... 70
5.5.2 SCM TAXONOMY.. 72
5.5.3 SCM SYSTEM SELECTION... 78
5.6 CONCLUSION... 81

CHAPTER 6 DESIGNING INNOVATIVE SOLUTIONS TO BUSINESS PROCESS
VARIABILITY MODELING PROBLEMS .. 82

6.1 INTRODUCTION... 82
6.2 COMBINING RIEBISCH’S FEATURE DIAGRAMS WITH C-EPC.. 82
6.2.1 ABSTRACT META MODEL.. 82
6.2.2 RELATED WORK .. 83
6.2.3 SELECTING A BUSINESS PROCESS MODELING LANGUAGE... 83
6.2.4 DOMAIN MODELING USING RIEBISCH’S FEATURE DIAGRAMS .. 83
6.2.5 FEATURE-EPC... 85
6.2.6 CONFIGURATION RULES ... 85
6.2.7 CONCRETE META MODEL.. 88
6.2.8 BUSINESS PROCESS VARIABILITY MODELING EVALUATION ... 89
6.3 MODELING PROCESS VARIABILITY USING CHANGE ORIENTED VERSIONING...................... 100
6.3.1 CHANGE ORIENTED VERSIONING.. 100
6.3.2 COV CONCEPTS .. 100

7

6.3.3 APPLYING COV TO MODEL BUSINESS PROCESS VARIABILITY.. 102
6.3.4 BUSINESS PROCESS VARIABILITY MODELING EVALUATION ... 109
6.4 MODELING PROCESS VARIABILITY USING THE PROTEUS CONFIGURATION LANGUAGE .. 118
6.4.1 PROTEUS CONFIGURATION LANGUAGE.. 118
6.4.2 APPLYING PCL TO MODEL PROCESS VARIABILITY ... 120
6.4.3 BUSINESS PROCESS VARIABILITY MODELING EVALUATION ... 126
6.5 CONCLUSION... 129

CHAPTER 7 SOFTWARE PROTOTYPES .. 130

7.1 INTRODUCTION... 130
7.2 FEATURE-EPC SOFTWARE PROTOTYPE .. 130
7.2.1 DESCRIPTION... 130
7.2.2 DESIGNING FEATURE DIAGRAMS USING XFEATURE... 130
7.2.3 CREATING EPC PROCESS MODELS USING EPC TOOLS ... 131
7.2.4 TRANSFORMING EPC INTO C-EPC PROCESS MODELS.. 131
7.2.5 GENERATING AND APPLYING CONFIGURATION RULES ... 132
7.2.6 LIMITATIONS AND IMPROVEMENTS ... 134
7.3 PCL-EPC SOFTWARE DEMO... 137
7.3.1 DESCRIPTION AND APPLICATION SCENARIO.. 137
7.3.2 LIMITATIONS AND IMPROVEMENTS ... 139
7.4 COV-EPC SOFTWARE DEMO.. 139
7.5 CONCLUSION... 139

CHAPTER 8 CONCLUSION, EVALUATION AND FUTURE WORK................................. 140

8.1 RECOMMENDATIONS AND FUTURE RESEARCH ... 142

CHAPTER 9 REFERENCES ... 144

CHAPTER 10 APPENDICES .. 150

10.1 APPENDIX 1: GLOSSARY OF TERMS.. 150
10.2 APPENDIX 2: CONTEXT FREE GRAMMAR OF FEATURE-EPC CONFIGURATION RULES.... 152
10.3 APPENDIX 3: CONTEXT FREE GRAMMAR OF COV-EPC AMBITION RULES....................... 156

8

Table of figures
Figure 1: EPC basic modeling concepts ___ 14
Figure 2: E-EPC modeling concepts (partially [3]).__ 14
Figure 3: Example diagnosis process modeled using E-EPC ___________________________________ 14
Figure 4: Configurable nodes [5] __ 15
Figure 5: Configurable attributes [5] ___ 15
Figure 6: Example diagnosis process modeled using C-EPC ___________________________________ 16
Figure 7: BPMN basic modeling concepts [6] __ 16
Figure 8: Additional modeling concepts used to model the healthcare running example ______________ 17
Figure 9: Simple diagnosis process modeled using BPMN _____________________________________ 17
Figure 10: Process variability illustrated using a feature diagram_______________________________ 20
Figure 11: Hospital cleaning process variant #1 __ 22
Figure 12: Hospital cleaning process variant #2 __ 22
Figure 13: Colored variants of the original car ___ 22
Figure 14: Simplified production process model a blue painted car ______________________________ 23
Figure 15: Simplified production process model a green painted car _____________________________ 23
Figure 16: Simplified production process model a red painted car_______________________________ 23
Figure 17: Example healthcare organizational process with patient without disabilities [24] __________ 25
Figure 18: Example healthcare organizational process with blind patient _________________________ 26
Figure 19: Example healthcare organizational process with paralyzed patient _____________________ 27
Figure 20: Figure 17, Figure 18 and Figure 19 modeled into one big process model_________________ 28
Figure 21: Example healthcare organizational process with improved (digital) reporting _____________ 29
Figure 22: Process variability problems illustrated using a feature diagram _______________________ 32
Figure 23: summary of process modeling issues ___ 33
Figure 24: Summary of storage issues __ 34
Figure 25: Summary of correctness issues ___ 34
Figure 26: Summary of version management issues __ 35
Figure 27: Summary of change management issues __ 36
Figure 28: Patient without disabilities needs radiology _______________________________________ 44
Figure 29: Blind patient needs radiology __ 45
Figure 30: Paralyzed patient needs radiology___ 46
Figure 31: BPMN one process model (alternative 1) ___ 50
Figure 32: BPMN one process model (alternative 2) ___ 51
Figure 33: Radiology process with patient without disabilities__________________________________ 52
Figure 34: Radiology process with blind patient___ 53
Figure 35: Radiology process with paralyzed patient ___ 54
Figure 36: C-EPC configuration guideline example [5] _______________________________________ 57
Figure 37: Healthcare running example modeled using C-EPC without configuration guidelines and
requirements __ 58
Figure 38: Invalid semantic process configuration of healthcare running example __________________ 59
Figure 39: Healthcare running example modeled using C-EPC with only configurable nodes and
configuration requirements ___ 60
Figure 40: Healthcare running example modeled using configurable nodes and configuration requirements
__ 61

Figure 41: Software and process variability __ 65
Figure 42: SPLE variability management __ 66
Figure 43: FeatureRSEB feature diagram and notation legend _________________________________ 68
Figure 44: Bosch's feature diagram and notation legend ______________________________________ 69
Figure 45: Riebisch's feature diagram and notation legend ____________________________________ 69
Figure 46:Czarnecki's feature diagram and notation legend____________________________________ 69
Figure 47: SCM Taxonomy [80, 81] __ 73
Figure 48: SCM taxonomical subset [80, 81] ___ 78
Figure 49: Domain modeling and process model configuration _________________________________ 82
Figure 50: Abstract meta model of the combination of feature diagram with BPMLs_________________ 82

9

Figure 51: Modeling domain space variability using Riebisch’s feature diagrams___________________ 84
Figure 52: Modeling domain space and process variability using Riebisch‘s feature diagrams _________ 84
Figure 53: Modeling process variability using Riebisch’s feature diagrams________________________ 84
Figure 54: Illustration of Feature-EPC__ 85
Figure 55: Concrete meta model of Feature-EPC__ 88
Figure 56: Modeling the healthcare running example using Feature-EPC _________________________ 90
Figure 57: Feature-EPC configuration for a blind patient _____________________________________ 93
Figure 58: Feature-EPC configuration for a paralyzed patient _________________________________ 94
Figure 59: Feature-EPC configuration for a patient without disabilities __________________________ 95
Figure 60: Feature-EPC configuration for a blind and paralyzed patient _________________________ 96
Figure 61: COV-EPC base process model annotated with variability markings ____________________ 107
Figure 62: COV-EPC base process model annotated with improved Add rectangle (before) __________ 107
Figure 63: COV-EPC base process model annotated with improved Add rectangle (after) ___________ 107
Figure 64: COV-EPC base process model annotated with variability markings and process fragments__ 107
Figure 65: COV-EPC meta model___ 108
Figure 66: COV-EPC base process model with variability markings ____________________________ 109
Figure 67: COV-EPC process model configuration with option “Blind patient” ___________________ 110
Figure 68: COV-EPC process model configuration with option “Paralyzed patient” _______________ 111
Figure 69: COV-EPC process model configuration with options "Blind patient" and "Paralyzed Patient"
___ 112

Figure 70: PCL-EPC legend___ 121
Figure 71: PCL-EPC meta model ___ 121
Figure 72: PCL-EPC base process model___ 122
Figure 73: Blind_patient process model component ___ 123
Figure 74: paralyzed_patient process model component _____________________________________ 123
Figure 75: patient_without_disability process model component _______________________________ 123
Figure 76: schedule_ambulance process model component ___________________________________ 123
Figure 77: escort process model component ___ 124
Figure 78: escort_assist process model component ___ 124
Figure 79: medical_exam process model component __ 124
Figure 80: escort_entrance process model component _______________________________________ 124
Figure 81: escort_ambulance process model component _____________________________________ 124
Figure 82: XFeature model of the healthcare running example ________________________________ 130
Figure 83: Simplified EPC process model of healthcare running example created using EPC Tools ____ 131
Figure 84: Using AddConfig to transform EPC into C-EPC___________________________________ 132
Figure 85: Configuration rules of feature Paralyzed __ 132
Figure 86: Configuration rules of feature Blind __ 132
Figure 87: Configuration rules of feature Without disability __________________________________ 133
Figure 88: Print and visualize configuration rules __ 133
Figure 89: Generating and applying configuration rules using Feature-EPC _____________________ 133
Figure 90: Deletion of configurable function (case first) _____________________________________ 134
Figure 91: Deletion of configurable function (case last)______________________________________ 134
Figure 92: Deletion of configurable function (case enclosed)__________________________________ 134
Figure 93: configurable function followed by logical operator (case simple) ______________________ 135
Figure 94: configurable function followed by logical operator (case complex) ____________________ 135
Figure 95: configurable logical operator (case simple) ______________________________________ 136
Figure 96: configurable logical operator (case complex) _____________________________________ 136
Figure 97: simple conflict resolution __ 137
Figure 98: PCL-EPC demo__ 138
Figure 99: PCL-EPC MedExamConfig process model of blind patient (EPC-Tools) ________________ 138
Figure 100: illustration of a configurable function __ 154
Figure 101: illustration of a configurable XOR connector ____________________________________ 154
Figure 102: illustration of a configurable OR connector _____________________________________ 155

10

List of Abbreviations
BPM Business process management
BPML Business process modeling language
BPMN Business process modeling notation
C-EPC Configurable event driven process chains
COV Change oriented versioning
COV-EPC Change oriented versioning event driven process chains
E-EPC Extended event driven process chains
EPC Event driven process chains
EPOS Expert system for programming and system development
Feature-EPC Feature event driven process chains
MIL Module interconnection language
PCL Proteus configuration language
PCL-EPC Proteus configuration language event driven process chains
SCM Software configuration management
SEI Software engineering institute
SPL Software product line
SPLE Software product line engineering

11

Chapter 1 Introduction

1.1 Context information
Business process variability and software variability occur both within the domain
space and over time. Business process variability is the source of many challenging
problems. Current non-configurable business process modeling languages provide
limited means to model business process variability within the domain space. Current
configurable business process modeling languages are more suitable for the task but
also have their weaknesses. To discover new solutions to the problems caused by
business process variability, variability modeling concepts borrowed from software
product line engineering (SPLE) shall be applied in business process variability
modeling.

1.2 Problem focus
Business process variability problems can be reduced to the following two problems
(Chapter 2):

• Business process variability modeling (domain space)
• Process model evolution (over time)

The focus throughout this research project shall be on business process variability
modeling. Modeling simply and effectively business process variability needs to be
achieved before process model evolution.

1.3 Research objective
The research objective is to model business process variability within the domain
space using a business process modeling language and variability management
concepts borrowed from software product line engineering like feature diagrams and
software configuration management.

1.3.1 Main research question

How can business process variability within the domain space be modeled using
existing business process modeling languages and variability management concepts
borrowed from software product lines like feature diagrams and software
configuration management?

1.3.2 Sub-research questions

1. What are major problems and challenges posed by business process
variability?

a. What is business process variability? When does it occur and why?
b. What are challenges and problems caused by business process

variability?
c. Why is it interesting to solve the problems caused by business process

variability?

2. What are current solutions to business process variability modeling problems?
What are their strengths and limitations?

3. Are similar problems posed by business process variability modeling
encountered in software product line engineering?

4. What solutions are offered by software product line engineering to the
problems?

12

5. Can these solutions be applied or adapted to solve business process variability
modeling problems? What are the strengths and limitations of the chosen
approaches?

1.4 Research approach
A desk research strategy is used in this research project. Based on an extensive
literature research and self-reflection, different theoretical concepts are combined to
achieve the research objective and answer the research questions.

1.5 Thesis overview
Chapter 2 describes basic notions of business process modeling.

Chapter 3 provides the answer to the research question #1. Business process
variability is defined. The origin of business process variability and the problems it
causes are also described. A healthcare running example is introduced to illustrate
the basic notions of business process variability. Furthermore it is discussed why
these problems are worth solving.

Chapter 4 gives the answer to the research question #2. Using a new set of
evaluation criteria the modeling concepts provided by current business process
modeling languages are assessed when modeling business process variability within
the domain space.

Chapter 5 answers the research questions #3 and #4. Business process variability
modeling problems are also found in software product line engineering (SPLE). SPLE
provides alternative solutions to business process variability modeling problems:
mostly feature diagrams and software configuration management (SCM).

Chapter 6 provides the answer to the research question #5. The best alternative
solutions are further explored and adapted to solve the business process variability
modeling problems. Three innovative solutions have been contributed to the field of
business process variability modeling: Feature-EPC, COV-EPC and PCL-EPC.

Chapter 7 presents prototypes of software environments for two of the three newly
created solutions: Feature-EPC and PCL-EPC.

13

Chapter 2 Introduction to business process modeling

2.1 Introduction
Basic notions of business process modeling are introduced here such as business
processes, business process management and business process modeling languages.

2.2 Business process modeling
According to Champy and Hammer [1], a business process is a “collection of
activities that takes one or more kinds of input and creates an output that is of value
to the customer”. Some concrete examples of business processes are administrative,
chemical or healthcare processes.

“Business process management (BPM) is a systematic approach to improving an
organization's business processes. BPM activities seek to make business processes
more effective, more efficient, and more capable of adapting to an ever-changing
environment [2]”.

Business process modeling can be described as the activity of representing or
mapping business processes using diagrams or modeling concepts with the goal to
describe, analyze or reengineer business processes. Business process modeling can
be done using business process modeling languages or notations such as event
driven process chains, the Business Process Modeling Notation, or Configurable EPC.

NB: in this thesis, the terms ‘process’ and ‘business process’ shall be used
alternatively to refer to the term ‘business process’ as defined by Champy and
Hammer.

2.3 Business process modeling languages
A distinction can be made between business process modeling languages (BPML) that
are non-configurable and configurable. Currently most widely accepted BPML shall be
illustrated in this subchapter. The following non-configurable BPML are illustrated
here under: basic event driven process chains (EPC), extended event driven process
chains (E-EPC) and the business process modeling notation (BPMN). Finally the
following configurable BPML is described here: configurable event driven process
chains (C-EPC).

NB: the BPML that are illustrated here (E-EPC, BPMN, C-EPC) were also selected and
evaluated in Chapter 4.

2.3.1 Basic event driven process chains

Basic EPC are a business process modeling language whose basic concepts to
describe business processes consist of: events, functions, logical operators and
dynamic connectors.

14

Figure 1: EPC basic modeling concepts

The healthcare running example described in Chapter 3 has been modeled using
basic EPC. Furthermore basic EPC have been combined with variability modeling
concepts borrowed from software configuration management in Chapter 6.

2.3.2 Extended event driven process chains

EPC were developed in 1992 in an R&D project with SAP AG at the Institute for
Information Systems of the University of Saarland in Germany [3]. EPC are part of
the ARIS Process Platform, which provides an integrated toolset for designing,
implementing, and controlling business processes [3]. In the 1990s, and following
the evolution of the ARIS toolset, the basic EPC notation has been extended with a
number of symbols corresponding to various aspects of business modeling [3]:
extended EPC (E-EPC). E-EPC allow the modeling of business processes using four
different perspectives: organization, data, control, function and output [3].

Figure 2: E-EPC modeling concepts (partially [3]).

Figure 3: Example diagnosis process modeled using E-EPC

15

2.3.3 Configurable event driven process chains

In order to improve the configurability of Enterprise systems and reference models,
C-EPC have been invented [4, 5]. C-EPC are basic EPC extended with configurable
nodes and attributes to describe the configurable nodes. Configurable nodes can be:

 ON
 OFF
 OPT (conditionally skipped)

Furthermore configurable AND operators can only be reconfigured as logical AND
operators. Configurable OR operators can be reconfigured as logical AND, OR, XOR
operators and sequences. Lastly, configurable XOR operators can be reconfigured as
logical XOR operators and sequences.

Figure 4: Configurable nodes [5]

Figure 5: Configurable attributes [5]

16

Figure 6: Example diagnosis process modeled using C-EPC

2.3.4 Business process modeling notation

BPMN was developed by the Business Process Management Institute (BPMI), which is
since February 2006 an official standard maintained by the Object Management
Group (OMG) [6]. BPMN is a very rich business process modeling notation, therefore
only the basic modeling concepts (Figure 7) and concepts used to model the
healthcare running example described in section 3.4 are illustrated (Figure 8). For a
complete and more precise description of the BPMN modeling concepts, please view
the OMG website1 [7, 8] and especially the BPMN tutorial offered by the IBM
Software Group2 [6].

Figure 7: BPMN basic modeling concepts [6]

1 http://www.bpmn.org/
2 http://www.bpmn.org/Documents/OMG%20BPMN%20Tutorial.pdf

17

Figure 8: Additional modeling concepts used to model the healthcare running
example

Figure 9: Simple diagnosis process modeled using BPMN

2.4 Conclusion
The basic notions that are needed to comprehend the content of this thesis have
been introduced here. Basic EPC have been described here because most process
models in this thesis will be illustrated using basic EPC: for example the healthcare
running example described in Chapter 3. More importantly three widely known and
accepted business process modeling languages have been introduced and illustrated
here: E-EPC, BPMN and C-EPC.

18

Chapter 3 Understanding problems and challenges of business
process variability

3.1 Introduction
Problems caused by business process variability have yet to be solved. The
healthcare running example described in section 3.4 illustrates business
process variability and its main problems. To understand these problems, it will
be important to define first the notion of process variability. Secondly the origin
of process variability will be determined. Thirdly the main problems of process
variability will be analyzed and described. Finally the rewards for solving these
problems are described as well as a problem focus.

NB: in this thesis, the terms ‘process’ and ‘business process’ shall be used
alternatively to refer to the term ‘business process’ as defined by Champy and
Hammer.

3.2 Business process variability description and definition
Pentland [9], asserts that the variability or variety of business processes can be
described along three dimensions:

• “Variety in the range of tasks performed (task variety)”
• “Variety in the order that these tasks are performed in (sequential variety)”
• “Variety in the inputs and outputs of the process (content variety)”

The concept of process variability has many variants in the literature: process
variety, process variance, process flexibility, process agility, process change,
process adaptability, process evolution, etc. After an analysis of the literature,
three main definitions of the concept of process variability have been found:

1. The concepts of “mean” and “variance” as often used to define the variability
of a process in the field of operational research [10]:

 i. The mean
“The mean of a random process is the average of all realizations of
that process.”

 ii. The variance
“Now that we have an idea about the average value or values that
a random process takes, we are often interested in seeing just how
spread out the different random values might be. To do this, we
look at the variance which is a measure of this spread.”

This type of process variability is left out of scope. Process variability shall not
be analyzed from a statistical perspective in this research project but rather
from a process modeling and change management perspective.

19

2. The concepts of process evolution, process agility, process change, and
process adaptability are fairly equal in the literature and are all related to
process changes as a result of a response to environmental changes [11-15].
These environmental changes can furthermore be classified into two
categories [16-18]: ad hoc or evolutionary changes.

 i. Ad hoc changes are rare events, exceptions, etc.

 ii. Evolutionary changes are the consequences of “reengineering
efforts”.

Using the healthcare running example (section 3.4), this type of process
variability can be illustrated using the following example: as a result of an
evolutionary change or reengineering effort the healthcare organizational
process described in Figure 20 is being improved with digital reporting as
described by Figure 21. These processes are labeled as “process revisions”.

3. Process variability can also be a consequence of variability occurring within
the application domain of the process. This is the case of manufacturing
processes where process variability is a consequence of product variety. In
manufacturing literature, the concept of process flexibility is relatively
equivalent to the chosen definition of process variability:

 i. “Process variety refers to the diversity of variations of the
manufacturing processes for producing the product variants in
the product family [19]”.

 ii. “Design changes related to product variety usually result in
frequent process variations (referred to as process variety)
[20]”.

This type of process variability also occurs in other application domains such
as the healthcare application domain. In the healthcare running example of
section 3.4, the healthcare organizational process has tree variants within the
application domain:

• The healthcare organizational process handles a patient without
disabilities (Figure 17).

• The healthcare organizational process handles a blind patient
(Figure 18).

• The healthcare organizational process handles a paralyzed patient
(Figure 19).

These processes will be labeled process variants.

The field of software engineering suggests that software can vary in time and space
[21]; business processes also vary along these two dimensions:

• Process variability over time can thus be defined as process variability as a
response to environmental changes as described in definition #2 here above.

• Process variability within the domain space can thus be defined as process
variability within the application domain space at any point in time as
described in definition #3 here above.

20

Figure 10: Process variability illustrated using a feature diagram

The focus of this chapter shall be on the analysis of the problems caused by process
variability within the application domain space and over time. Finally process
variability can occur in virtually any application domain. However what the origin is
of process variability is rather unclear.

3.3 The origin of business process variability
Business process variability occurs within the domain space and over time. The origin
of these two types of process variability shall be identified here.

3.3.1 The origin of business process variability over time

Business process variability over time or process model evolution is the result of
process changes over time, which are the result of environmental changes having an
influence on the process [22]:

“Usually, certain events such as the introduction of a new software development
technology in a development team (e.g., new testing support tools and techniques),
a new/updated process engineering technology (e.g., a new process modeling
technique), new/updated standards/guidelines for software development or process
engineering, new/updated regulatory constraints, or new/updated best practices
emerging from community experience generate issues that must be resolved by
performing changes to the software process models.”

As was said previously in section 3.2, these changes can be categorized into ad-hoc
or evolutionary changes.

NB: see section 3.2 for an illustration of evolutionary changes. Modeling ad hoc
changes or exceptions falls out of the scope of this research project.

3.3.2 The origin of business process variability within the domain space

Business process variability occurs in application domains that display some
variability themselves. The greater the variability or complexity of the environment
of a business process, the greater the variability of the process shall be. Simply said
process variability occurs when the environment or domain (events, resources,
goals, products, etc) of the process is also variable.

NB: Process models shall vary only on those aspects that are being modeled by the
process modeling language. For example, a process modeling language that does not
model events cannot vary on those points.

21

Events
According to Scheer [23], an event can be defined as: “Event characterize pinpointed
activities containing facts (what) that occur at a certain point in time (when). What
and when coincide in time events (such as 6 PM)”. Events can be “start events”,
states or triggers. The more events are to be modeled or integrated into a process
model the more variability the process will display. Especially the start and end
events have an influence on the variability of processes. The greater the set of start
and end events, the greater the variability of a process. For example, curing a
patient with cancer or a patient with diabetes shall necessitate different treatment
plans. Here we have two different start events “cure patient with cancer” and “cure
patient with diabetes” that lead to different treatment plans [24].

Organizational units
Organizational units are departments, groups, roles, etc [3]. Their variability can also
induce process variability. Different departments can achieve the same goal using
different work processes. The same reasoning holds for roles. To illustrate this type
of variability, a clinical diagnostic process is taken as an example. Although the
outcome of the diagnosis process is the same: a diagnosis. The process followed by a
medical expert to reach this diagnosis is quite personal and unique [25]:

“Every individual doctor has her own, idiosyncratic mode of diagnostic reasoning.
What is even worse is that only a few physicians are aware of how they achieve their
diagnosis. Usually a diagnosis seems to happen, just as much as a dream or a
headache does.”

The phenomenon of process variability thus also occurs here. The diagnostic process
used by a medical expert is variable. The variability is thus introduced by the
resource involved in the process: the medical expert.

NB: in this example, variability can be introduced by other resources such as the
patient, the disease of the patient, the equipment or diagnostic techniques used, etc.

Resources
According to Dumas, van der Aalst and ter Hofstede [3], “Resources include all kinds
of objects that are necessary to perform a workflow or a task”. Resources are for
example assembly lines, bricks, etc. Note that organizational units can also be
considered resources [3]. A good example to illustrate process variability caused by
resources is looking at the construction process of a building. Using concrete or
bricks leads to different construction processes. Resources can also be considered
inputs of a business process.

Goals
“Goal states describe a future required state that the process should achieve,
maintain or avoid [26]”. It is clear that different goals require different processes. A
goal requiring building a house and a goal requiring cleaning a house shall lead to
different processes. However different processes can lead to the achievement of the
same goal. For example the sequence of processes or operations that lead to a clean
hospital can be variable as demonstrated by Figure 11 and Figure 12.

22

Figure 11: Hospital cleaning process variant #1

Figure 12: Hospital cleaning process variant #2

Inputs and outputs
Process variability also occurs when a process has variable inputs and outputs such
as customized products. Inputs of a process can als be considered resources used by
a process. Production processes supporting the mass customization paradigm have
variable products as outputs. Many authors argue that process variability also
described as process flexibility is a key enabler to implement the mass customization
paradigm.

Pine, Peppers and Rogers (1995) [27] “asserted that to be successful, mass
customizers must employ a production/delivery strategy that incorporates modularity
into components and processes.”

Finally Da Silveira, Borenstein and Fogliatto assert the following [28]: “the broad,
visionary concept was first coined by Davis and promotes mass customization as the
ability to provide individually designed products and services to every customer
through high process agility, flexibility and integration.”

Here under is given a simple example to illustrate process variability. An assembly
line that supports the mass customization paradigm must be capable of producing a
car that can be slightly customized. Suppose this car has three variants:

• Blue car
• Red car
• Green car

Figure 13: Colored variants of the original car

To enable the production of the variants of all these cars, the production process
must integrate all these variations. Analyzing this simple example, the following
statements can be inferred. The assembly line of the car has to integrate into its
production process, the following processes:

• Paint car using blue paint
• Paint car using red paint
• Paint car using green paint

23

Figure 14: Simplified production process model a blue painted car

Figure 15: Simplified production process model a green painted car

Figure 16: Simplified production process model a red painted car

The more variable the environment of a business process with respects to events,
resources, goals, and products, the more variable the business process will become.
We have determined the possible causes of process variability. However process
variability introduces its shares of problems: rising costs, modeling problems, change
management problems, difficult standardization, etc.

3.4 Healthcare running example
To make things more explicit, a running example of a healthcare process is used to
illustrate important concepts related to business process variability. This example
healthcare process is borrowed from Richard Lenz and Manfred Reichert’s paper
titled “IT support for healthcare processes – premises, challenges, perspectives”
[24]: it is an example organizational process of a radiology department with order
entry and reporting. This organizational process is described in Figure 17. To
illustrate important aspects of process variability several hypothetical variants and
one revision of this process model have been constructed. A distinction is made here
between process variability within the domain space and over time.

3.4.1 Business process variability within the domain space

Business process variability can occur within the domain space. To illustrate business
process variability within the domain space, the process models described by Figure
17, Figure 18 and Figure 19 are used. The healthcare organizational process is
adapted to suit the needs of patients with specific needs: every adaptation of the
healthcare organizational process results in a unique process variant.

The organizational process model as described in Figure 17, considers the case of a
generic patient without disabilities. However, for example handling patients with
disabilities requires the adaptation of this process model. Two hypothetical process
variants of the organizational healthcare process model have been constructed:

• The healthcare organizational process handles the case of a blind patient
(Figure 18), which requires escorting the patient in and out of the radiology
department.

• The healthcare organizational process handles the case of a paralyzed patient
(Figure 19), which requires the scheduling of an ambulance, escorting the
patient and assisting the patient throughout the medical examination.

24

However modeling process variability within the domain space can be done in several
ways. The healthcare running example is modeled using three distinct process
models for each process variant:

 A patient without disabilities needs radiology
 A blind patient needs radiology
 A paralyzed patient needs radiology

The healthcare organizational process models described in Figure 17, Figure 18 and
Figure 19 can and has also been modeled using one big process model: This model is
described in Figure 20. The reason behind this modeling choice shall be explained
latter on in Chapter 4.

25

Figure 17: Example healthcare organizational process with patient without disabilities
[24]

26

Figure 18: Example healthcare organizational process with blind patient

27

Figure 19: Example healthcare organizational process with paralyzed patient

28

Figure 20: Figure 17, Figure 18 and Figure 19 modeled into one big process model

29

3.4.2 Business process variability over time

To illustrate business process variability over time, the process models described by
Figure 17 and Figure 21 shall be used. The healthcare organizational process
described in Figure 17 has been reengineered to improve its reporting process: the
resulting or improved healthcare organizational process is described in Figure 21.
These process models are called process revisions.

Figure 21: Example healthcare organizational process with improved (digital)
reporting

30

3.5 Identifying main problems of process variability
Two main sources of business process variability have been identified previously as
illustrated by Figure 10: Process variability within the application domain space and
over time. The healthcare running example (section 3.4) is used to illustrate process
variability as well as the problems that come with it. The problems caused by
process variability can be described using the example organizational and radiology
process. This radiology process has several process variants of which three are
illustrated respectively in Figure 17, Figure 18 and Figure 19. The differences
between these three radiology processes can be depicted as process variability within
the domain space. In this case, process variability is the consequence of variability
within the application domain space of the process at any fixed point in time [21]:
the radiology process is adapted to suit the needs of different patients (normal,
blind, paralyzed, etc). Modeling simply and effectively, process variability within the
application domain space is still a challenging problem. Furthermore the syntactic
and semantic correctness of the models need to be ensured [29, 30]. Finally the
storage and retrieval of all the process models must be possible.

In Figure 17 and Figure 21 is illustrated process variability over time. Reporting
radiology results has been improved and is now done digitally as illustrated in Figure
21, instead of using paper as presented in Figure 17. More importantly, this process
improvement also requires the update of the process models presented in Figure 18
and Figure 19. The propagation of the process changes (Figure 21) to the other
process models (Figure 18, Figure 19) can be done manually if few process models
need to be updated. However if a great amount or number of process models need
to be updated then semi-automatically or automatically propagating these changes
becomes necessary. Process changes over time also result in several versions of the
same process model. An overview of these changes and different versions of the
process models needs to be maintained. Managing simply and effectively variability
over time of a business process is thus another challenging problem. Nevertheless
must not be forgotten that syntactic and semantic correctness of the process models
must also be guaranteed before and after their changes [29, 30]. Finally all these
process models must be stored and be retrievable.

Simply trying to model all the process variants presented in the application domain
space into one process model is difficult and should not be attempted: the resulting
process model would be a big process model, which is hard to understand and
maintain. In Figure 20, the three radiology process models (Figure 17, Figure 18,
Figure 19) are merged into one big process model: this model is indeed harder to
comprehend, lacks precise semantics and is also harder to maintain or modify over
time.

31

Secondly, modeling all the process variants of the radiology process into separate
process models could be a better solution (Figure 17, Figure 18, Figure 19): all the
process models should then be understandable. However, maintaining a large
number of process models can become problematic because all their changes and
versions need to be tracked. Moreover when a large number of process models is
being maintained, a change over time could affect a subset of the process models.
Modifying all these models manually is then not a viable solution. Mechanisms are
thus required:

• To determine the impact of changes on the set of process models.
• To propagate these changes semi-automatically or automatically.
• To preserve the correctness of the process models after applying these

changes.

Thirdly, a promising approach to model process variability within the application
domain space can be achieved by using a reference process model from which
process variants are derived [31]. The reference process model is a generic process
model that captures the similarities or commonalities of all the process variants
within the application domain space. It remains unclear how the commonality of
process variants should be modeled and also on the basis of what criteria.
Additionally, it is also unclear how the process variants should be derived from the
reference process model. Process variants can be modeled as options, extensions,
specializations, change patterns, etc, of this common reference process model.
Current implementations of reference process models from which process variants
can be derived use configurable process models: questionnaire based reference
process models [32-34], configurable reference process models [4, 35, 36], etc.
Maintaining reference process models is not straightforward: Keeping track of
changes and different versions of the reference process model and its respective
options can be done as a whole or separately. Naturally the syntactic and semantic
correctness of the process models must be guaranteed [29, 30]. Additionally
updating a reference process model and its options over time implies the following:

• Changes only have an impact on the reference process model. This
requires the modification of the reference process model. However it is not
clear how the options are affected by the modification of the reference
process model.

• Changes only have an impact on a subset of the options. The options thus
need to be modified. However it is unclear whether the reference process
model shall need to be modified to support the changes of the affected
options. Furthermore, if the reference process model needs to be modified
how does it affect the remaining unchanged options.

• Changes have an impact on the reference process model and a subset of
the options. It is clear that both the reference process model and the
affected options must be modified. The set of modifications could result in
conflicting changes: changes that cannot occur at the same time. Finally it
is unclear whether the set of unaffected options shall also need to be
modified to acquire those changes.

Finally the reference process model and its respective options must be stored and be
easily retrievable.

32

The main problems of process variability can thus be summarized by the following
problems:

Figure 22: Process variability problems illustrated using a feature diagram

Moreover these two problems are closely related because process variability
modeling has an impact on process model evolution. Process variability modeling
should thus be done with the goal to enable the simple and effective evolution of the
process models.

3.5.1 Business process variability modeling issues

Process model configuration

In this field, research still needs to be done. One of the purposes of this research
project is to unravel how process model configuration can best be done. This purpose
shall be achieved by borrowing concepts from other relevant fields such as software
product lines and software configuration management. The purpose of process model
configuration is to automatically adapt or configure process models for specific
circumstances.

Business process modeling

The first important issue is that not all business processes can be modeled or are
easy to model. Business processes can be classified according to their degree of
structure [3]:

• Ad hoc processes
“An ad hoc process is one in which there is no a priori identifiable pattern for
moving information and routing tasks among people; for example, a product
documentation process or a process for preparing a response to a complex
tender.”

• Administrative processes
“Administrative processes, on the other hand, involve predictable processes
with relatively simple task coordination rules.”

33

• Production processes
“production processes involve repetitive and predictable tasks with more or
less complex but highly stable task coordination rules.”

Therefore the focus throughout this research project shall be on administrative or
production processes because they can be modeled and thus also their variants.

Traditional business process modeling languages fail to capture the variability of
business processes [9]:

“Traditional languages for describing business processes appear too rigid and formal
to cater for the wide variety of ways of doing things found in local government in the
UK and, unless ‘one size fits all’ solutions can be imposed by fiat, a richer language is
needed to underpin discussion on process variety and best practice”.

A solution is extending business process modeling languages with variability
management features: “Reference modeling languages must therefore be created so
that they support model-variant management [37]”. An important issue is then
choosing the right process modeling language. This process modeling language must
be extendable with variability management concepts. Additionally there are only a
few process modeling languages available that support the modeling of process
variability [4, 36]. Improved business process modeling languages are thus
necessary to model process variance [9] [37].

When modeling process variability the following issues arise: modeling all the
variations of a business process in one process model or several process models
using one or several views. The ARIS business process modeling language comprises
four views [23]: a functional, organizational, data and output view. Furthermore the
chosen process variability modeling technique must ease or at least enable the
change management, maintenance or evolution of all the variable processes.

Figure 23: summary of process modeling issues

34

Storage of process models

Important elements of storage are related to database management systems
because the storage facilities must enable not only the storage but also the proper
retrieval and classification of the process models: “A DBMS is a complex set of
software programs that controls the organization, storage and retrieval of data in a
database [38]”. Furthermore the storage facilities must guarantee the integrity and
security of the stored process models.

Figure 24: Summary of storage issues

Correctness of process models

Finally another important issue about process variability modeling is verifying and
ensuring the correctness of all the process models before and after their changes:
this requires the specification of appropriate correctness criteria [29]. Changes
leading to incorrect process models should not be accepted. However checking the
syntactical correctness of a process (deadlocks, bad input parameters, etc) is not
enough [30]. Semantic errors can still occur as illustrated by the following example:

“Assume that, due to suddenly arising headache, the drug Aspirin is administered to
patient Smith. This is achieved by inserting activity Administer Aspirin into instance I
in an ad-hoc manner by, for example, a nurse at her workplace. […]. However in this
treatment process, the drug Marcumar, which is not compatible to Aspirin, is already
administered some activities ahead (semantic conflict). Even if the process change is
syntactically correct, it is not semantically”.

Figure 25: Summary of correctness issues

35

3.5.2 Process model evolution issues

Version management of process models

Maintaining an overview of all the changes over time of a process model requires the
management of all the different versions of that process model:

• The changes must be logged.
• The different versions must be stored.

Figure 26: Summary of version management issues

Change management of process models

Assessing the impact, tracking and propagating changes must be done simply and
effectively. This essential problem description is fairly similar to the problem
description stated by Jaccheri and Conradi [39]: “Solving the problem of process
model evolution requires an answer to the following questions: which process model
fragments should be changed, how and when? And how to analyze and guide
change?”.

Process changes can be classified into two categories as was suggested in the
subchapter “Process variance description and definition (3.2)”:

• Ad hoc changes (exceptional events).
• Changes required because of the reengineering of the business process.

They must thus be handled differently.

Furthermore many authors make the distinction between process changes happening
at the instance or process type (Schema [29]) level:

Weber, Rinderle, Wild and Reichert suggest the following: “On the other hand, it
provides support for adaptive processes at both the process instance and the process
type level. Changes at the instance level may affect single process instances and be
performed in an ad-hoc manner, e.g., to deal with exceptional or unanticipated
situations. Process type changes, in turn, can be applied to adapt the PAIS to
business process changes. In this context, concurrent migration of hundreds up to
thousands of process instances to the new process schema may become necessary
[40]”.

36

Chou and Chen state the following: “Generally, process evolution research can be
roughly classified into two categories: (1) those collecting and analyzing data, and
then evolving processes according to analysis results; and (2) those supporting
process program evolution during enactment [41].”

However when modeling process variability and thereby also enabling its simple and
effective change management, making the distinction between process changes at
the instance and schema level complicates the achievement of this task
unnecessarily. It is easier to concentrate first only on modeling process variability
and afterwards its effective change management without making the distinction
between process changes at the instance or process type level. Once the research
goal has been achieved, it becomes very interesting to apply these change
management schemes at the instance and process type level.

Secure change management falls out of the scope of this research project [14]:
access control shall not be researched in this research project.

Figure 27: Summary of change management issues

Storage of process models

All the process models must be stored, retrievable and classified. Furthermore the
security and integrity of the process models must be guaranteed. This issue has
already been described previously in more detail.

NB: See process variability modeling issues for more information.

Correctness of process models

Finally changes must preserve the syntactical and semantic correctness of process
models [29, 30]. This issue has already been described previously in more detail.

NB: See process variability modeling issues for more information.

37

3.6 The rewards for solving business process variability problems
The rewards for solving process variability problems have theoretical and practical
implications. From a theoretical perspective, the reward for solving these problems is
making a meaningful contribution to the academic world and resolving an open
problem.

From a practical perspective, any industry or organization dealing with process
variability or having problems managing process variability could benefit from the
solutions to these problems:

• Improved control over the variability of a process.
• Improved process variability modeling.
• Improved automation of variable and changing processes.
• Improved process evolution.

For example, solving these problems would enable the design of mass customization
systems with flexible processes [42], which would increase product variety and
thereby greater customer satisfaction [43]: “In reality customers are often willing to
pay premium price for their unique requirements being satisfied, thus giving
companies bonus profits (Roberts and Meyer, 1991). From an economic perspective,
mass customization enables a better match between the producers’ capabilities and
customer needs”.

Furthermore, this could enable the creation and design of configurable and evolvable
reference process models or enterprise resource management systems (ERP). Some
authors have attempted their design [4, 32-36, 44].

Finally, process variability also occurs in medical guidelines or pathways. Usually
formal procedures are specified in order to modify the medical pathway, if it cannot
be followed. Being capable of modeling process variability could lead to the creation
of improved medical pathways or clinical guidelines. For example, an MRI pathway
could be improved by integrating process variants into the variance tracking record
[45]. It could also lead to the effective modeling and generation of personalized
treatment plans [24].

3.7 Problem focus
This research project is constrained by time and therefore requires narrowing its
research focus. Furthermore choosing a research focus shall help raise the depth and
the quality of the research results. As described in Figure 22, process variability
problems can be reduced to the following problems:

• Process model evolution
• Process variability modeling

However process variability modeling must be done before process model evolution.
Process model evolution cannot be implemented successfully, if there isn’t a clear
approach available to design process models for variable processes. Therefore the
focus of this research project shall be on modeling process variability first, leaving
out of scope their storage issues.

38

3.8 Conclusion
To resume this chapter, the notion of process variability has been defined. Two types
of process variability have been identified:

• Process variability within the domain space
• Process variability over time

These two types of process variability respectively lead to the following main
problems:

• Process variability modeling
• Process model evolution

The rewards for solving these problems are both theoretical and practical: enabling
the mass customization paradigm, configurable and evolvable reference process
models, personalized treatment plans, etc. The focus of this research project shall be
on process variability modeling because designing process models for variable
processes must be achieved first to enable their evolution. Current solutions to
process variability modeling have yet to be assessed to determine their strength and
weaknesses.

39

Chapter 4 Business process variability modeling evaluation

4.1 Introduction
Before crafting new solutions to the process variability modeling problems (Chapter
6), the limitations of current business process modeling languages (BPMLs) must be
known. To assess the concepts provided by current BPMLs to model process
variability a set of evaluation criteria will be needed. An overview of current available
BPML will also be provided. Event driven process chains (EPC), the Business Process
Modeling Notation (BPMN) and Configurable EPC (C-EPC) were the three BPMLs
selected and evaluated in this.

4.2 Business process variability modeling evaluation criteria
Several different evaluation frameworks have been created to evaluate business
process modeling languages [46-49]. However they are often evaluated on their
capacity to implement or model workflow patterns [50-53]. After a broad literature
analysis no framework or evaluation criteria have been found to evaluate the
suitability of business process modeling languages with the goal to model process
variability within the domain space.

Thus primarily the healthcare running example shall be used to assess the capacity
of the BPML to model process variability within the domain space. Secondly a set of
evaluation criteria shall be used to evaluate the modeling concepts provided by a
BPML when modeling process variability.

4.2.1 Listing and description of evaluation criteria

Evaluating the capability of BPMLs to model process variability within the domain is
challenging. Evaluating BPMLs with the goal to model business process variability
within the domain can be done in several ways. The meta model of the BPML could
be compared. However this is not a viable choice because the meta model very often
just consists of a UML class diagram. Comparing UML class diagrams with each other
will probably not lead to valuable insights.

The modeling concepts or language constructs provided by a BPML shall be evaluated
to determine their effectiveness when modeling process variability. A BPML must
thus be evaluated on its capacity to model or represent explicitly process variability.

As was shown in section 3.3.2, the origin of process variability within the domain
space is caused by the variability of the domain space itself. It thus logical that to
enable the simple and effective modeling of business process variability, a BPML
must have the capacity:

 To model the domain of a business process.
 To specify the impact of the variability of the domain space on the business

process model itself. Thus requiring the following:
o Business process models must thus be adaptable or configurable in

order to visualize the impact of the variable domain space (EC1, EC2,
EC4, EC5, EC7)

o Configuration rules are necessary to specify the impact of the domain
space on business process models (EC3, EC6).

o The consistency of the configuration rules as well as the correctness of
the process models must be guaranteed (EC8, EC9).

40

These requirements lead to the evaluation criteria EC1, EC2, EC3, EC4, EC5, EC6,
EC7, EC8 and EC9. Every BPML shall be evaluated in terms of strengths and
weaknesses relatively to the evaluation criteria here under:

 EC1: The possibility to mark, distinguish or visualize variable elements of a
process model.

 EC2: Variable elements of a process model must support a subset of the
change patterns specified by Weber, Rinderle And Reichert [54]:

o Adaptation patterns (AP)
 AP1: Insert process fragment
 AP2: Delete process fragment
 AP3: Move process fragment
 AP4: Replace process fragment
 AP5: Swap process fragment
 AP6: Extract sub process
 AP7: Inline sub process
 AP8: Embed process fragment in loop
 AP9: Parallelize process fragment
 AP10: Embed process fragment in conditional branch
 AP11: Add control dependency
 AP12: Remove control dependency
 AP13: Update condition

o Patterns for predefined changes (PP)
 PP1: Late selection of process fragments
 PP2: Late modeling of process fragments
 PP3: Late composition of process fragments
 PP4: Multi-Instance activity

NB: “A process fragment can either be an atomic activity, an encapsulated
sub process or a process (sub) graph”. Furthermore Weber, Rinderle and
Reichert specify that the change patterns happen at the instance or type
level. In this research project this distinction is not relevant as was explained
clearly in section 3.5.2.

 EC3: The possibility to specify conditions or configuration rules that guide the
adaptation or configuration of a process model.

 EC4: The possibility to visualize conditions or configuration rules that guide
the adaptation or configuration of the process model.

 EC5: The possibility to model and visualize how the domain affects the
configuration of the process model.

 EC6: The possibility to specify conditions or configuration rules that guide the
configuration of a process model based on the configuration of its domain
space.

 EC7: The user has the possibility to display selectively the process models of
process variants. This requires the adaptation of the process model either:

o Automatically (software tool)
o Manually

41

 EC8: Syntactic and semantic correctness of the process models must be
ensured.

 EC9: Consistent domain and process model configurations must be ensured.

4.2.2 Summary of evaluation criteria

The framework of evaluation criteria used to assess the business process modeling
languages are summarized here under:

 EC1: Mark variable elements
 EC2: Support of change patterns
 EC3: Configuration rules that adapt process model
 EC4: Visualization of configuration rules that adapt process models
 EC5: Domain visualization and process model configuration
 EC6: Domain and process configuration rules
 EC7: Selective display
 EC8: Correctness
 EC9: Consistency

4.3 Selection and evaluation of current business process modeling
languages
Evaluating all the BPMLs available to determine how good they are at modeling
process variability within the domain space is not feasible. A selection of the BPMLs
to be evaluated must thus be made. Selecting the most successful and renowned
BPMLs available for this assessment is a good first choice.

A distinction can be made between BPMLs that are non-configurable and
configurable. Dumas, van der Aalst and ter Hofstede described three main non-
configurable BPMLs in their book “Process-Aware Information Systems” [3]:

• UML Activity diagrams
• Event-driven process chains (EPC)
• Petri nets

However there are countless variants of Petri nets: Elementary Net System, workflow
nets, business procedure nets, high level Petri nets (time, data, hierarchy),
reconfigurable workflow nets (ad hoc changes), Object oriented Petri nets, Modular
process nets, Higher-Order Object net, Business Process Petri nets, etc [55, 56].
Considering the heavy timing constraints of this project and their similarity with EPC,
Petri nets shall not be evaluated in this research project. Furthermore again because
of the timing constraints, only UML activity diagrams or EPC shall be evaluated.
While UML activity diagrams are suitable for modeling business processes, EPC are
meant to model business processes. Additionally EPC are widely used and accepted
in practice: most likely it is their simplicity that lead to their successful adoption and
wide use in practice [3]. EPC shall thus be evaluated in this research project and not
UML activity diagrams.

The Business Process Modeling Notation (BPMN) is a non-configurable BPML
developed by the Business Process Management Institute and is also a viable choice
because of its newness and innovativeness. There are many other non-configurable
BPMLs available (IDEF, CISMOSA, RAD, etc), however because of timing constraints
they shall not be evaluated in this research project.

42

Main configurable BPMLs are:
• Configurable reference process models such as the Configurable Event-driven

Process Chains (C-EPC) [4, 5, 35, 57-59].
• Questionnaire-driven configuration of reference process models [32-34].

However here again because of timing constraints only one of these configurable
BPMLs shall be evaluated in this research project. The configurable reference process
models shall be evaluated in this research project.

Miscellaneous other efforts have been developed to model process variability,
however because of timing constraints they shall not be considered. A good example
is VBP developed by King and Johnson [9], they model process variability and best
practices using specialization, use cases, patterns and the unified modeling language
(UML). Finally, to solve process variability modeling problems, Jiao, Zhang and
Prasanna [31] suggest the use of generic process structures from which variants can
be derived systematically. To achieve this end, they make use of object-oriented
Petri nets, colored Petri nets and Petri nets with changeable structures.

In this research project shall thus be evaluated:
• Extended EPC one the most used and accepted BPML.
• BPMN because of their newness and innovativeness.
• C-EPC because of their configurable nature.

These three BPMLs form a good population to assess the current capability of BPMLs
to model process variability within the domain space.

4.3.1 Business process variability modeling evaluation of extended event
driven process chains (E-EPC)

The healthcare running example described in section 3.4 was already illustrated
using basic EPC. However the healthcare running example shall now be illustrated
using the extended EPC (E-EPC) notation. All the process models have been
remodeled using E-EPC, except for the process model described in Figure 20; this
was not done because it would simply result in a big and incomprehensible process
model.

E-EPC provide no explicit means to model process variability. There are only two
choices available, modeling the process variants using one big process model or
distinct and separate process models (Figure 28, Figure 29 and Figure 30) using
simple control flow patterns (split, merge, etc) [60].

It is clear that modeling these three different processes using one process model
would result in a big and difficult to comprehend model: this can be observed in
Figure 20. By modeling the three different processes into one process model, some
determinism has also been lost:

• Observing Figure 20, it is not clear when an ambulance should be scheduled
or not. In this process model, an ambulance could be scheduled for a patient
without disabilities, which is unnecessary.

• Escorting a patient to the examination room should normally only be done for
blind and paralyzed patients. However in this process model, it can be done
indiscriminately for a patient with or without disabilities.

• Escorting a patient to the radiology entrance should normally only be done in
the case of blind patients. Nevertheless, this function can be executed
indiscriminately for patients without or with disabilities

43

• Escorting a patient back the ambulance must only be done for paralyzed
patients. Nonetheless, this function can be executed for all patients in this
process model.

The reason behind the loss of determinism or accuracy in this process model is a
design choice to simplify the process model: adding more detail to this process
model would have made it even more complex and unreadable.

There is therefore only one viable choice when modeling process variability using E-
EPC: modeling the process variants using distinct and separate process models. For
each type of patient, a respective process model has been designed:

 Without disability (Figure 28)
 Blind (Figure 29)
 Paralyzed (Figure 30)

 Following this modeling choice, the process models will probably be easier to
comprehend. However, in the case of a large number of process variants, process
model evolution becomes challenging because a large number of process models
needs to be maintained. The main difference between these three process models
can be described in terms of change patterns: events, functions, outputs or
organizational units have been added, deleted or modified. Here process variability
within the domain space has been illustrated along only 1-dimension of variability:
three different patients (with disabilities, blind, paralyzed) leading to three different
process models. Considering for example a process with i inputs and o outputs, this
process varies along 2-dimensions and has a maximum of i*o process variants.

Modeling the three different healthcare processes into one process model results in
design choices that usually diminish the precision and determinism of the process
models in return for simple and understandable process models: this was illustrated
in Figure 20. Modeling the process variants using separate and distinct process
models increases the understandability, simplicity and accuracy of the process
models. However in a case of a large number of process variants, process model
evolution becomes challenging because a large number of process models need to be
evolved and maintained.

44

Figure 28: Patient without disabilities needs radiology

45

Figure 29: Blind patient needs radiology

46

Figure 30: Paralyzed patient needs radiology

47

EC1: Mark variable elements
N/A

Strengths
N/A

Weaknesses
Not being able to mark variable elements of E-EPC is a serious weakness.

EC2: Support of change patterns
N/A

Strengths
N/A

Weaknesses
Not supporting any change patterns is a serious weakness of E-EPC.

EC3: Configuration rules that adapt process model
N/A

Strengths
N/A

Weaknesses
Not supporting the specification of configuration rules that adapt the E-EPC process
models is a serious weakness.

EC4: Visualization of configuration rules that adapt process models
N/A

Strengths
N/A

Weaknesses
N/A

EC5: Domain visualization and process model configuration
Some elements of the domain (organizational unit, output, machine, etc) can be
modeled directly into the E-EPC process models. However it is not possible to specify
how these elements of the domain have an impact on the configuration of the
process model.

Strengths
Some aspects of the domain can be modeled.

Weaknesses
Using E-EPC it cannot be modeled or visualized how domain impacts the
configuration of the process model.

48

EC6: Domain and process configuration rules
N/A

Strengths
N/A

Weaknesses
No domain and process configuration rules can be specified.

EC7: Selective display
N/A

Strengths
N/A

Weaknesses
Selective display is only possible when modeling process variants using distinct and
separate process models. To view the process model of the desired process variant,
the appropriate process model needs to be selected and viewed.

EC8: Correctness
Eleven and simple design rules can be followed to model correct control flow and
avoid problematic behavior such as deadlocks [3]. E-EPC can also be extended with
formal concepts (Petri-Nets [61-64]) to ensure the syntactic or semantic correctness
of the process models [65, 66].

Strengths
EPC can be extended with formal concepts to ensure and verify the correctness of
EPC process models. Furthermore simple design rules can be followed to ensure the
correctness of process models.

Weaknesses
Only the syntactic correctness can be verified using the earlier mentioned eleven
design rules; this is time consuming, especially in the case of big process models.

EC9: Consistency
N/A

Strengths
N/A

Weaknesses
N/A

49

4.3.2 Business process variability modeling evaluation of Business Process
Modeling Notation (BPMN)

Using BPMN process variability can only be modeled using one process model or
separate and distinct process models. As shall be shown in a little later in the
evaluation, BPMN offers almost no means to model process variability.

Using BPMN, modeling the healthcare running example using one process model will
result in a big and incomprehensible process model. Thankfully by making creative
use of swimlanes and using sub-processes this big process model can be made more
comprehensible. The resulting process model is a big process model separated into
clear and distinct sub process models as illustrated by Figure 31: this modeling
choice is very similar to modeling the different cases using distinct and separate
process models. In Figure 31, are not modeled or described the sub-processes.
Another process modeling alternative available is again using swimlanes with only
one process model (Figure 32): using this modeling alternative, it becomes visually
clear what processes are generic or are specific to a case. Finally, modeling the
healthcare running example using separate and distinct process model is always a
good choice.

The healthcare running example can also be modeled using distinct and separate
process models (Figure 33, Figure 34, Figure 35). This results in more detailed
process models. Sadly this approach significantly increases maintenance overhead of
the process models, especially in the case of a great number of process variants.

50

Figure 31: BPMN one process model (alternative 1)

51

Figure 32: BPMN one process model (alternative 2)

52

Figure 33: Radiology process with patient without disabilities

53

Figure 34: Radiology process with blind patient

54

Figure 35: Radiology process with paralyzed patient

55

EC1: Mark variable elements
N/A

Strengths
N/A

Weaknesses
BPMN does not support the marking of variable elements.

EC2: Support of change patterns
N/A

Strengths
N/A

Weaknesses
BPMN does not support any change patterns.

EC3: Configuration rules that adapt process model
N/A

Strengths
N/A

Weaknesses
BPMN does not support the specification of configuration rules that adapt the process
models.

EC4: Visualization of configuration rules that adapt process models
N/A

Strengths
N/A

Weaknesses
N/A

EC5: Domain visualization and process model configuration
Some aspects of the domain can be modeled using swimlanes.

Strengths
Using swimlanes creatively, aspects of the domain space with an impact on process
variability can be modeled in BPMN.

Weaknesses
BPMN does not support the visualization of the domain and the respective process
configurations.

56

EC6: Domain and process configuration rules
N/A

Strengths
N/A

Weaknesses
BPMN does not support the specification of configuration rules that dictate how the
domain space of a business process affects the configuration of its process model.

EC7: Selective display
N/A

Strengths
N/A

Weaknesses
BPMN does not support explicitly selective display of process models. However
process variants can be modeled using separate and distinct process models. Viewing
the desired process model is equivalent to selecting the appropriate process model.

EC8: Correctness
BPMN does not provide any explicit means to verify the correctness of BPMN process
models. However Dijkman, Dumas and Ouyang claim that by formalizing and
mapping a subset of BPMN to Petri nets, the semantic correctness of these BPMN
process models can be verified [67]: at least their soundness and liveliness. Raedts,
Petkovic, Usenko, van der Werf, Groote and Somers claim that a subset of BPMN can
indeed be translated into Petri nets and analyzed using tools such as Yasper, Woflan,
Ina and Lola permitting the verification of the soundness of the BPMN process
models, the detection of deadlocks, etc [68].

Strengths
The syntactic and semantic correctness of the BPMN process models can be verified.

Weaknesses
The syntactic and semantic correctness of the process models can only be verified
using tools.

EC9: Consistency
N/A

Strengths
N/A

Weaknesses
N/A

57

4.3.3 Business process variability modeling evaluation of Configurable
event driven process chains (C-EPC)

Using C-EPC, the healthcare running example is modeled into one process model
(Figure 37, Figure 39, Figure 40). Modeling processes with C-EPC requires a
significant amount of time, thinking and creativity. When business processes are
modeled using C-EPC, two options are available:

 Modeling the healthcare running example with or without configuration
guidelines and requirements. When modeling the healthcare running example
without configuration guidelines and requirements, the resulting process
model lacks determinism because it is not clear what parts of the process
model should be hidden or blocked (Figure 37). Moreover the configurable
process model allows process configurations that should not be allowed: a
patient without disabilities does not need an ambulance (Figure 38).
Configuration requirements are thus needed to avoid undesirable process
model configurations. These configuration guidelines and requirements do
have some drawbacks, there is no clear syntax to specify them. Although
Rosemann and van der Aalst specify that the configuration requirements
should be specified using logical expressions, it is not clear if first order logic
or predicate logic should be used. Furthermore a C-EPC was illustrated with a
guideline containing the following logical expression (Figure 36):

Figure 36: C-EPC configuration guideline example [5]

The logical expression is extended here with a programming like syntax: a
conditional if statement. In the healthcare running example, the start events
guide the configuration process, they are included into the configuration
requirements using conditional if statements.

 Modeling the healthcare running example with only configurable connectors
and configuration requirements, or configurable nodes and configuration
requirements. It has been possible to model the healthcare running example
using only configurable connectors and configuration requirements (Figure
39). In Figure 40, the healthcare running example has been modeled using
configurable nodes and configuration requirements. The configuration
requirements have been used to guide the configuration process.

Modeling the healthcare running example using C-EPC leads to big, complex and
configurable process models (Figure 39, Figure 40). The instances of these
configurable process models result in process models that are similar to process
models where the healthcare running example has been modeled using separate and
distinct EPC process models (Figure 17, Figure 18, Figure 19).

58

Figure 37: Healthcare running example modeled using C-EPC without configuration
guidelines and requirements

59

Figure 38: Invalid semantic process configuration of healthcare running example

60

Figure 39: Healthcare running example modeled using C-EPC with only configurable
nodes and configuration requirements

61

Figure 40: Healthcare running example modeled using configurable nodes and
configuration requirements

62

EC1: Mark variable elements
C-EPC support the marking of variable nodes: configurable functions and connectors.
Configurable nodes are marked with bold lines.

Strengths
Marking configurable nodes with bold lines is simple and effective.

Weaknesses
Without configuration guidelines, it is unclear how and when the configurable nodes
should be configured.

EC2: Support of change patterns
Configurable functions support the delete process fragment (AP2) change pattern: a
function marked as configurable can be deleted from the process model with its
respective following events.

AND logical connectors marked as configurable are actually not configurable because
they do not support any change patterns.

XOR logical connectors marked as configurable support the delete process fragment
(AP2) change pattern: a configurable XOR can turn into a sequence by deleting
process fragments or remain an XOR.

OR logical connectors marked as configurable support the delete process fragment
(AP2) and replace process fragment (AP4) change patterns:

 A configurable OR can turn into a sequence by deleting process fragments.
 A configurable OR can be replaced by an OR, XOR or AND.

Strengths
Only two of the change patterns are supported by C-EPC simplifying their use and
configuration:

 AP2: Delete process fragment
 AP4: Replace process fragment

Weaknesses
Supporting only the AP2 and AP4 change patterns results in big configurable process
models: all the possible configurations must be added to the C-EPC process model,
because configuring is most often done by deleting some of its parts. Big
configurable process models are difficult to modify and maintain.

EC3: Configuration rules that adapt process model
C-EPC provide configuration requirements and configuration guidelines to specify
configuration rules that adapt the C-EPC process models. These are specified using
logical expressions.

Strengths
Default values and application levels can be additionally specified.

Weaknesses
The syntax of the logical expressions used to specify the configuration rules is
unclear. Furthermore the distinction between configuration requirements and
configuration guidelines is found unnecessary.

63

EC4: Visualization of configuration rules that adapt process models
The visualization of the configuration rules that adapt the C-EPC process models is
done by tags and pointing dashed arrows from these tags to the configurable nodes.

Strengths
This approach is quite simple and effective.

Weaknesses
However a configuration requirement can have an impact on a great amount of
configurable nodes, resulting in many pointing dashed arrows from this configuration
requirement to the configurable nodes: all these dashed arrows result in less
comprehensible process models. In the case of a great amount of configuration
requirements or guidelines, the C-EPC process model diagram gets clouded with tags
and additional dashed arrows.

EC5: Domain visualization and process model configuration
C-EPC does not explicitly support the visualization of the domain and its impact on
the configuration of the C-EPC process models.

Strengths
Adding domain visualization to current C-EPC process models would render these
process models incomprehensible because they would integrate too much
information.

Weaknesses
N/A

EC6: Domain and process configuration rules
Aspects of the domain that have an impact on the configuration of the C-EPC process
models can be captured by configuration guidelines or requirements. These are
specified using logical expressions.

Strengths
N/A

Weaknesses
How logical expressions can be used to specify the configuration requirements or
guidelines is unclear; nor what can be exactly specified using these logical
expressions.

EC7: Selective display
The selective display of C-EPC process models can be done by manually configuring
the C-EPC process models.

Strengths
Manually configuring the C-EPC process models leads to a better understanding of
the C-EPC process models; This could possibly lead to the discovery and correction of
errors.

Weaknesses
Manually configuring the C-EPC process models requires understanding the workings
of the C-EPC process models. This approach is time-consuming and suffers from
human mistakes.

64

EC8: Correctness
C-EPC can be represented using an XML based language such as the EPC Markup
Language (EPML). Using the EPML representation of the C-EPC, syntactic correctness
of the C-EPC can be verified using a tool [58, 69].

Strengths
The syntactic correctness of the C-EPC process models can be verified.

Weaknesses
Verifying the correctness of the C-EPC may require a tool.

EC9: Consistency
Consistent configurations of C-EPC process models can be ensured by specifying and
following consistent configuration requirements.

Strengths
N/A

Weaknesses
Checking the consistency of the configuration requirements and C-EPC process
model configurations needs to be done manually; this is furthermore time-
consuming. The syntax used to specify the logical expressions is unclear, therefore
automating this task is difficult.

4.4 Conclusion
Most importantly a useful set of evaluation criteria was crafted to assess the
modeling concepts provided by BPMLs to model process variability within the domain
space. It was found that only C-EPC provided explicit concepts to model process
variability: configurable nodes, configuration requirements and guidelines. E-EPC and
BPMN were not equipped with any explicit means to model process variability and
were therefore found unsuitable to model process variability within the domain
space.

65

Chapter 5 Finding alternative solutions to business process
variability modeling problems

5.1 Introduction
Previously has been demonstrated that business process modeling languages
(BPMLs) such as C-EPC can be used to model process variability within the domain
space. Several authors have suggested that Software Product Lines (SPL) or
Software Product families, where variability modeling has been intensively studied
could provide helpful means to model process variability within the domain space
[34]: the two main means to manage variability within SPL are feature diagrams and
software configuration management (SCM).

5.2 Software and process variability
As was discussed in Chapter 3, process variability occurs within the domain space
and over time. The same distinction can be made in the field of Software Product
Line Engineering (SPLE) where variation management handles [21]:

 Variation in time
“refers to configuration management of the product line software as it varies
over time”.

 Variation in space
“refers to managing differences among the individual products in the domain
space of a product line at any fixed point in time”.

Figure 41: Software and process variability

Considering the similarities between software variability management and process
variability management, it would be wise to try to apply these software variability
management concepts to improve process variability modeling. However the focus of
this research project is on modeling process variability within the domain space. The
variability modeling or variation management concepts provided by SPLE shall thus
only be applied and adapted to model process variability within the domain space.

66

5.3 Software product lines
According to Succi et al. [70], the most recent developments in the field of domain
analysis and engineering are captured by the software product line as designed by
the Software Engineering Institute (SEI). The SEI defines software product lines the
following way:

“A software product line (SPL) is a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a
prescribed way [71].”

Building successful software product lines implies managing the commonality and
variability of software product families. According to Noordhuizen [72], “commonality
represents the functionality uniformly occurring across all products in the family,
whereas variability represents those characteristics only occurring in some, but not
all of the products.”

The following benefits have been attributed to using software product lines [73]:
“Advantages of applying product family engineering techniques are reduced
development costs, a quicker time to market for the system variants, and typically a
higher software quality”. It is thus worthwhile to try to apply “product family
engineering techniques” in order to improve process variability modeling.

There are many software variability management paradigms available. Thankfully a
distinction can be made between, variability modeling and variability mechanisms
[74]: “variability modeling techniques model the variability that is provided by the
product family artifacts, while variability mechanisms are commonly considered as
ways to introduce or implement variability in those artifacts”. The focus of this
research project is on modeling process variability, thus variability mechanisms such
as GenVoca, Ahead, Frames, XVCL and Aspect oriented programming are thus left
out of scope [74]. Furthermore a distinction can be made between variability
modeling techniques based on features, use cases and other techniques such as
ConIPF, COVAMOF, CONSUL/Pure::variants, GEARS, Koalish, OVM, VSL, etc.

Within software product line engineering, two main paradigms have emerged to
address variability modeling [34]:

 Feature Oriented Domain Analysis (FODA)
 Software Configuration Management (SCM)

Figure 42: SPLE variability management

FODA is however only one of the many feature diagrams available. These shall be
described and analyzed shortly in subchapter 5.4.

67

5.4 Feature diagrams
A great number of feature diagrams are available to model the domain of software
product lines. Here shall be discussed how feature diagrams fit into domain
engineering and which feature diagrams can best be applied or modified to support
process variability modeling.

5.4.1 Domain engineering and modeling

Important software product lines activities, can be divided into two categories (two
life cycle model) [72]:

• Domain Engineering
“Domain engineering then is the activity of collecting, organizing, and storing
past experience in building systems or parts of systems in a particular domain
in the form of reusable assets (i.e., reusable work products), as well as
providing an adequate means for reusing these assets (i.e., retrieval,
qualification, dissemination, adaptation, and so on) when building new
systems”. Furthermore, Important activities of domain engineering are
domain analysis, design and implementation.

• Application Engineering
Application engineering is the activity concerned with building systems based
on the “results of domain engineering”.

The purpose of this research project is to solve process variability modeling problems
using variability management concepts from software product lines. An important
activity for the modeling of process variability is domain analysis. Domain analysis
comprises the following main activities:

• Select and define the domain of focus.

• Collect the relevant domain information and integrate it into a coherent
domain model: “A domain model is an explicit representation of the common
and variable properties of the systems in a domain, the semantics of the
properties and domain concepts, and the dependencies between the variable
properties”.

Domain modeling is mostly done using features models. Paul Noordhuizen identifies
feature oriented domain analysis (FODA) or feature diagrams as the main means to
model features thereby also make explicit the commonality and variability of a
software product family [72].

5.4.2 Variation points and dependencies

“Variation points are places in a design or implementation that identify the locations
at which variation occurs [75]”. They are essential elements in managing variability.
A variation point can occur at three abstraction layers within a software product
family [75]:

 Features
 Architecture
 Component implementations

“Dependencies in the context of variability are restrictions on the variant selection of
one or more variation points, and are indicated as a primary concern in software
product families [75]”.

68

There are several types of dependencies:
 Simple
 Complex

Simple dependencies are formulated in terms of “requires” and “excludes” relations.
Complex dependencies affect a great number of variation points and cannot be
stated easily formally.

5.4.3 Feature diagrams

Feature diagrams model variation points at the abstraction layer of features within
software product families. Jean-Christophe Trigaux and Patrick Heymans describe
elegantly, simply and effectively what feature diagrams are [76]:

“A feature diagram is a featural description of the individual instances of a concept. A
feature diagram constitutes a tree composed of nodes and directed edges. The tree’s
root represents the concept which is refined using mandatory, optional, alternative
(X-OR-features) and OR-features. In feature diagrams, mandatory features are
features always included in every products. Common features are defined as all
mandatory features whose direct and indirect parents are all recursively mandatory.
The common features relationship is the transitive closure of the mandatory features
relationship. Variable features are defined as all features except common features.
Variation points are features (or concepts) that have at least one direct variable
subfeature (or feature) [76].”

Jean-Christophe Trigaux and Paul Heymans provided a useful description and
comparison of feature diagrams [76]: “FODA’s notation, FORM’s notation,
FeatuRSEB’s notation, Bosch’s notation and Riebisch’s notation”. Czarnecki
furthermore made a distinction between feature diagrams with and without edge
decorations (filled, empty arcs) [77].

However only those feature diagrams useful in modeling simply and effectively
variability shall be described and illustrated here. FODA and FORM are thus left out
scope because of their respective inability to model OR variation points and
unnecessary added complexity. Furthermore feature diagrams without edge
decorations shall be left out of scope in this research project because they are
considered less precise than feature diagrams with edge decorations.

FeatureRSEB’s Notation

Figure 43: FeatureRSEB feature diagram and notation legend

69

Bosch’s Notation

Figure 44: Bosch's feature diagram and notation legend

Riebisch’s Notation

Figure 45: Riebisch's feature diagram and notation legend

Czarnecki’s Notation

Figure 46:Czarnecki's feature diagram and notation legend

70

5.4.4 Feature diagram selection

Czarnecki’s feature diagram, FeatureRSEB’s feature diagram and Bosch’s feature
diagram are relatively similar. Thus one of these three feature diagrams or Riebisch’s
feature diagram shall be further applied to improve the modeling of process
variability by combining it with an existing business process modeling language. The
simplicity and clarity of the three previously cited feature diagrams is valued more
than the additional modeling concepts provided by Riebisch’s feature diagrams.
However in Chapter 6, shall be discovered that specifying constraints between
features is necessary to ensure consistent combinations of features. Riebisch’s
feature diagrams shall thus be applied in Chapter 6 to improve the current capacity
of business process modeling languages to model process variability.

5.5 Software configuration management
There are disciplines of Software configuration management (SCM): the main two
shall be identified in this section. Furthermore, a taxonomy that can be used to
uniformly characterize SCM systems is presented here. A subset of this taxonomy
shall be used to select two SCM systems that shall be further applied to improve
process variability modeling in Chapter 6.

5.5.1 SCM disciplines

According to Estublier [78], “SCM is the control of the evolution of complex
systems”. SCM can be further classified into the following two disciplines [79, 80]:

 SCM as a management support discipline.
 SCM as a development support discipline.

SCM as a management support discipline consists of the following four activities
[79]:

 Configuration identification
“Activities comprising determination of the product structure, selection of
configuration items, documenting the configuration item's physical and
functional characteristics including interfaces and subsequent changes, and
allocating identification characters or numbers to the configuration items and
their documents.”

 Configuration control
“Activities comprising the control of changes to a configuration item after
formal establishment of its configuration documents. Control includes
evaluation, coordination, approval or disapproval, and implementation of
changes.”

 Configuration status accounting
“Formalized recording and reporting of the established configuration
documents, the status of proposed changes and the status of the
implementation of approved changes.”

 Configuration audit
“Examination to determine whether a configuration item conforms to its
configuration documents.”

71

SCM as a development support discipline consists of the following six activities [79]:

 Version control
“The possibility to store, recreate and register the historical development of
an item (document or source code) is a fundamental characteristic of a
version control system.”

 Build management
“Build management handles the problem of putting together and compile
modules in order to create a running system. The description of dependencies
and information about how to compile items is given in a system model,
which is used to derive object code and to link it together.”

 Workspace management
“Workspace management must provide functionality to create a
workspace from a selected set of files from the repository.”

 Concurrency control
“If we want to allow several developers to work on the system at the same
time, we must also provide mechanisms to synchronize their work.”

 Change management
“It includes tools and processes, which support the organization and tracking
of changes from the origin of the change to the approval of the actually
implemented source code.”

 Release management
“Release management deals with both the formal aspects of releasing to the
customer and the more informal aspects of releasing to the project.”

The focus of this research project shall be on SCM as a development support
discipline as this discipline of SCM provides means to manage software variability
and evolution.

As was explained in section 3.5, process variability modeling has three main issues:
 Process modeling
 Process model configuration
 Preserving correctness

The sub-disciplines version control and build management of SCM as a development
support discipline provide means to improve the configurability of business process
modeling languages when modeling process variability. There are many SCM
systems available and time constraints this research project: therefore only a few
SCM systems can be applied to improve process configuration management.

NB: SCM systems can probably be used to model both process variability in the
domain space and over time at the same time, as it can be done for software
entities. However this task is considered future research.

72

5.5.2 SCM taxonomy

In the literature has been suggested that the Adele configuration manager, CoSMIC
or the Proteus configuration language (PCL) could provide useful means to model
process variability [34]. However the choice was made to select SCM systems based
on the taxonomy provided by Conradi and Westfechtel (Figure 47) [80]. This
taxonomy shall be described here briefly and evaluated to determine which of its
elements are relevant when using SCM systems to improve business process
variability modeling. Only a subset of the taxonomy shall be used to select those
SCM systems that can be applied to improve process variability modeling (Figure
48).

Conradi and Westfechtel have written a comprehensive paper on the topic of
software configuration management [80]. However this paper may be outdated
because of its publication date being 1998. Thankfully, Estublier concluded that most
of the needed improvements of SCM systems were on the support flexible processes
[78]; practitioners had very few comments on the basic functionality of SCM systems
such as versioning and merging. The assumption can thus be made safely that
research in the domain of version models has not evolved that much: version models
are an important element of the taxonomy that shall be used to select proper SCM
systems that can possibly improve process variability modeling.

73

Figure 47: SCM Taxonomy [80, 81]

74

General

Environment
SCM systems can be a toolkit, language based or structure oriented. This distinction
is not relevant when applying SCM systems to improve process variability
management.

Object management
SCM systems can use a database management system or a file-based system to
manage variants and revisions of a software entity. This is not relevant when
applying SCM systems to improve process variability modeling.

NB1: “A version intended to supersede its predecessor is called a revision. Revisions
evolve along the time dimension and may be created for various reasons, such as
fixing bugs, enhancing or extending functionality, adapting to changes in base
libraries, and the like [80]”.

NB2: “Versions intended to coexist are called variants. For example, variants of data
structures may differ with respect to storage consumption, run-time efficiency, and
access operations [80]”.

Product space
The product space takes only the structure of a software product into consideration;
versioning is thus not done here.

Granularity
Process models are rather coarse-grained artifacts. Relevant finer grained elements
of a process model are sub-processes or hierarchies of sub-processes. The modeling
concepts used by a business process modeling language are not viable elements to
describe a product space composed of process models: in the case of EPC, these are
events, functions and connectors. In business process modeling, the product space
can best be described in terms of process models and sub-process models. This
taxonomical element is thus relevant when applying SCM systems to improve
process variability modeling.

Domain
The distinction between domain-independent models and domain specific models is
not relevant, in the case of business process models. As was said previously, the sole
distinction that is made is between process models and sub-process models. Internal
details and information of the process models are thus abstracted from. The
distinction between domain specific and independent process models can thus not be
made because this information is hidden within the process models. This taxonomical
element is thus not relevant when applying SCM systems to improve process
variability modeling.

Relationships
Furthermore a distinction can be made between composition and dependency
relationships:

 Composition relationships
“Composition relationships are used to organize software objects with respect
to their granularity [80].”

75

 Dependency relationships
“Dependency relationships establish directed connections between objects
that are orthogonal to composition relationships [80].”

Composition relationships are relevant to describe process models because they
state the relationships between process models and sub-process models.
Dependency relationships can be used to state relationships between process
models. This taxonomical element is thus relevant when applying SCM systems to
improve process variability modeling.

Version Space
The focus of this research is on improving process variability modeling, however
elements of versioning can still be applied to improve process variability modeling.

Structure
The version space can be represented using:

 Version graphs
They have different shapes and a limited ability to represent variants. Only a
small number of variants can be represented using branches, especially in the
case of multidimensional variations.

 Grids
A grid is an n-dimensional space whose dimensions are variant attributes.

Process variants within a domain can thus be represented using either version
graphs in the case of a small number of process variants or grids. This taxonomical
element is thus relevant when applying SCM systems to improve process variability
modeling.

Version set
A versioned item is a set V of versions.

Using extensional versioning, V is constructed by an enumeration of its members: V

= {v1, …, vn}. By applying this concept on process variability modeling, V should be
the set of process models of respective process variants occurring within a domain.

In intensional versioning, the version set is constructed using predicates: V={v|c(v)}.
“The predicate c defines the constraints that must be satisfied by all members of V”.
Furthermore, intensional versioning is best suited for the flexible and automatic
construction of consistent versions in a large version space. By applying this concept
on process variability modeling, V should also be the set of process models of
respective process variants occurring within a domain.

This taxonomical element is thus relevant when applying SCM systems to improve
process variability modeling.

Version specification
The most important distinction that can be made between SCM systems is the
version model or specification they are using [80, 82]: “A version model defines the
objects to be versioned, version identification and organization, as well as operations
for retrieving existing versions and constructing new versions”.

76

Conradi and Westfechtel make a distinction between the following two version
models:

 Version oriented models or state based versioning
“Version-oriented models describe configurations (i.e. product versions) in
terms of explicit versions of components [82]”.

 Change oriented models or change based versioning
“Change-oriented models describe configurations in terms of changes relative
to some base configuration [82]”.

These two modeling concepts can be applied to improve process variability modeling
by improving configuration modeling. This taxonomical element is thus relevant
when applying SCM systems to improve process variability modeling.

Interplay of product and version space
The interplay between product space and version space is considered future
research. The focus of this research is on improving process variability modeling and
not process variability modeling and process model evolution.

Selection order in AND/OR graphs
Applying AND/OR graphs is thus future research.

External granularity of versioning
Applying component versioning, total versioning and product versioning are
considered future research.

Fine-grained deltas
Applying embedded and directed deltas is also considered future research.

Intensional versioning
Using intensional versioning, versions (revisions, variants) are assembled by
combining finer grained software elements. However the configurator must ensure
that consistent configurations or combinations have been assembled.

Computational paradigm
The construction of versions can be achieved using mainly two different
computational paradigms:

 Using a functional framework, intensional versioning is modeled by applying a
function or a query q to a set of arguments a1 … an: a version v is designed
by evaluating the expression q(a1, …,an). This approach assumes a
deterministic version construction: the version selection is unique.

 Using a rule-based framework, intentional versioning is modeled by
evaluating a query against a deductive database. This approach is non-
deterministic because version selection may not be unique. In this case, the
configurator may resolve ambiguous choices automatically or interactively.

The construction of process models of respective process variants within a domain
can thus either be achieved using a functional or rule-based framework.

77

This taxonomical element is thus relevant when applying SCM systems to improve
process variability modeling.

Classes of configuration rules
Strictness classes dictate the evaluation order of configuration rules:

 Constraint
“A constraint is a mandatory rule that must be satisfied. Any violation of a
constraint indicates an inconsistency [80].”

 Preference
“A preference is an optional rule that is applied only when it can be satisfied
[80].”

 Default
“Finally, a default is also an optional rule, but is weaker than a preference: a
default rule is applied only when no unique selection could be performed
otherwise [80].”

Constraints are evaluated first, then preferences and finally default rules are
evaluated.

Strictness classes of configuration rules can be used to guide the construction of
process models of respective process variants within a domain. This taxonomical
element is thus relevant when applying SCM systems to improve process variability
modeling.

Configurator
Conradi and Westfechtel define elegantly what a configurator is: “A configurator is a
tool that constructs a version by evaluating a query against a versioned object base
and rule base [80]”. The version object base consists of the product and version
space, while the rule base consists of stored configuration rules. The assembled
version must comply with product and version constraints. The configurator can
achieve this compliance automatically or interactively.

A configurator can thus be used to construct process models of all respective
variants within a domain. This taxonomical element is thus relevant when applying
SCM systems to improve process variability modeling.

78

5.5.3 SCM system selection

Previously has been concluded that the following criteria can be used to select
relevant SCM systems that can be applied to improve process variability modeling
(Figure 48):

Figure 48: SCM taxonomical subset [80, 81]

Sadly time heavily constraints this research project, therefore at most two different
and orthogonal SCM systems that implement as many of the taxonomical elements
shall be chosen for the purpose of this research project. Conradi and Westfechtel
classified and analyzed twenty four SCM systems [80]. Using the research results
provided by Conradi and Westfechtel, the twenty four SCM systems shall be analyzed
using the taxonomical subset that was just obtained (Figure 48, Table 1, Table 2,
Table 3).

79

Product space
Granularity* Relationships *

Coarse Fine Composition Dependencies
1 Conditional

Compilation
+

2 SCCS + + +
3 PIE + + + +
4 RCS + + +
5 Gandalf + + + +
6 DSEE + + + +
7 Pedit/MVPE +

8 CEDAR + + +
9 ADELE I + + +
10 DAMOKLES + + + +

11 PCTE + + +
12 Shape + + + +
13 Aide de camp + + + +

14 COV + + + +

15 SIO + + +
16 Inscape + + + +
17 POEM + + +
18 CoMa + + + +
19 ClearCase + + + +

20 PCL + +

21 Voodoo + + +
22 Adele II + + + +
23 Asgard + +
24 ICE + + + +

Legend: ⊗ single valued feature, x feature value. * multi-valued feature, + feature value.

Table 1: Analyzing and classifying SCM systems using the product space taxonomical
subset [80]

80

Version space
Structure * Version set * Version specification *

Version
graph

Grid Extensional Intensional State-
based

Change-
based

1 Conditional
Compilation

+ + + +

2 SCCS + + +
3 PIE + + + +
4 RCS + + + +
5 Gandalf + + + + +
6 DSEE + + + +
7 Pedit/MVPE + + + +

8 CEDAR + + +
9 ADELE I + + + + +
10 DAMOKLES + + +

11 PCTE + + +
12 Shape + + + +
13 Aide de camp + + + +

14 COV + + + + +

15 SIO + + + +
16 Inscape + + +
17 POEM + + +
18 CoMa + + +
19 ClearCase + + + +

20 PCL + + + +

21 Voodoo + + +

22 Adele II + + + + +
23 Asgard + + + + + +
24 ICE + + + + +

Legend: ⊗ single valued feature, x feature value. * multi-valued feature, + feature value.

Table 2: Analyzing and classifying SCM systems using the version space taxonomical
subset [80]

81

Intensional versioning
Computational

paradigm ⊗
Classes of configuration rules * Configurator *

Functional Rule-
based

Constraint Preference Default Automatic Interactive

1 Cond. Comp. x +
2 SCCS
3 PIE x +
4 RCS x +
5 Gandalf x + + + +
6 DSEE x +
7 Pedit/MVPE x +
8 CEDAR
9 ADELE I x + + + + +
10 DAMOKLES
11 PCTE
12 Shape x + + +
13 Aide de camp x +
14 COV x + + + + +

15 SIO x + + +
16 Inscape
17 POEM
18 CoMa
19 ClearCase x +
20 PCL x + +

21 Voodoo
22 Adele II x + + + + +
23 Asgard x +
24 ICE x + + + +

Legend: ⊗ single valued feature, x feature value. * multi-valued feature, + feature value.

Table 3: Analyzing and classifying SCM systems using the intensional versioning
taxonomical subset [80]

In bold boxes, in Table 1, Table 2 and Table 3, are shown the two chosen SCM
systems that will be applied to improve process variability modeling: the Proteus
Configuration Language (PCL) and Change Oriented Versioning (COV). These two
systems are not perfectly orthogonal or different, and do not differ on the structure
of the version space. However, they differ on the computational paradigm, the class
of configuration rules and the version specification.

5.6 Conclusion
Variability management concepts provided by SPLE can be used and applied to
improve process variability modeling. Two main variability management paradigms
have been identified: FODA and SCM. FODA’s notation is only one of the many
available feature diagrams. There are furthermore Czarnecki’s notation, Riebisch’s
notation, Bosch’s notation and FeatureSREB’s notation. Riebisch’s feature diagrams
were chosen to be applied in Chapter 6. Additionally SCM can be classified into two
main disciplines: SCM as a management support discipline and SCM as development
support discipline. A subset of the SCM taxonomy developed by Conradi and
Westfechtel has been used to select two SCM systems that shall be further applied in
Chapter 6 to improve process variability modeling: these are PCL and COV.

82

Chapter 6 Designing innovative solutions to business process
variability modeling problems

6.1 Introduction
Some of the limitations of current businesss process modeling languages (BPMLs)
have been uncovered in Chapter 4. EPC and BPMN were found unsuitable to model
process variability while C-EPC lead to big configurable process models and were
lacking domain modeling concepts. Here C-EPC are extended with domain modeling
capacity by combining them with Riebisch feature diagrams. Moreover EPC are
combined with change oriented versioning (COV) and afterwards the Proteus
Configuration Language (PCL) to extend them with modeling concepts that can
handle process variability with the domain space.

6.2 Combining Riebisch’s feature diagrams with C-EPC
Feature diagrams are used to model the domain space of members of a family. They
can thus be used to model the domain space of process variants. The main idea will
be to apply feature diagrams as is described in Figure 49: feature diagrams shall be
used to model the variability within the domain space that have an impact on the
variability of the process model.

Figure 49: Domain modeling and process model configuration

6.2.1 Abstract meta model

Figure 50: Abstract meta model of the combination of feature diagram with BPMLs

The meta model illustrated in Figure 50 describes at an abstract level how feature
diagrams shall be combined with a BPML to enable the modeling of business process
variability. A suitable BPML will have to be chosen to combine it with Riebisch’s
feature diagrams. Furthermore configuration rules need to be specified that guide
the configuration of process models based on the configuration of feature diagrams.

83

6.2.2 Related work

Basically feature diagrams shall be used the same way questionnaires were used to
configure EPC [32-34]. Other good examples of applications of feature diagrams to
improve the configurability of process models are provided by:

 Schnieders and Puhlmann [83], where they combine feature diagrams with
BPMN, while extending BPMN with encapsulation, extension points,
parameterization, inheritance and design patterns.

 Czarnecki and Antkiewicz [84], where they combine feature diagrams with
UML.

C-EPC are already configurable and there is therefore no need to extend them with
encapsulation, extension points, parameterization, inheritance and design patterns.
The approach chosen by Czarnecki and Antkiewicz shall thus be chosen and possibly
applied to guide the integration of Riebisch’s feature diagrams with C-EPC.

6.2.3 Selecting a business process modeling language

Combining a BPML with a feature diagram requires that the configuration of the
feature diagram guide the configuration of the process model. The configurable
elements of the BPML must thus be clear.

Of the three BPMLs (BPMN, EPC, C-EPC) that have been evaluated in Chapter 4, C-
EPC are the only configurable BPML. To save time and effort, it is best to combine
Riebisch’s feature diagrams with C-EPC to improve their configurability and domain
modeling. Combining feature diagrams with BPMN has already been described in the
literature [83, 85]. Moreover combining feature diagrams with extended EPC, would
require first to define and identify those elements of the BPML that can be configured
(dynamically added, deleted, etc) in response to dynamic changes of feature model
configurations. It is thus clear that Riebisch’s feature diagrams can best be combined
with C-EPC to improve their configurability and domain modeling.

6.2.4 Domain modeling using Riebisch’s feature diagrams

In the literature, feature models or diagrams have been applied to design
configurable UML class diagrams [84]. The goal in this research project shall be to
connect feature diagrams to the configurable nodes, configurable attributes,
configuration guidelines and configuration requirements of C-EPCs.

Feature diagrams can capture several aspects of the domain of a process:
 The domain variability that has an impact on the variability of the process

(Figure 51).
 The variability of the domain and process captured into one feature model

(Figure 52).
 The process variability captured into the feature model (Figure 53).

This shall be illustrated using the healthcare running example.

84

Figure 51: Modeling domain space variability using Riebisch’s feature diagrams

Figure 52: Modeling domain space and process variability using Riebisch‘s feature
diagrams

Figure 53: Modeling process variability using Riebisch’s feature diagrams

The more elements are modeled or incorporated into feature diagrams, the more
complicated becomes the integration task between the feature diagrams and the C-
EPC process model. It is therefore advised to choose or formulate modeling
guidelines that do not add unnecessary details or complications to the feature
diagrams.

Therefore modeling only variable aspects of the domain of a process that cause
process variability (Figure 51) is probably the best feature modeling choice.
Capturing variable aspects of the process in the feature diagram should be avoided
(Figure 52, Figure 53): this should be left hidden and captured in configuration rules.
Capturing the variability of a process using a feature diagram does not state the

85

cause of the variability (Figure 53). It requires from the user to know when an
ambulance or escort should be scheduled, while this should be the purpose of the
business process management system (BPMS).

6.2.5 Feature-EPC

The integration of Riebisch’s feature diagrams with C-EPC results in Feature-EPC
(Figure 54). Riebisch’s feature diagram configuration shall drive the configuration of
the C-EPC process model. To enable this, configuration rules are needed to specify
how chosen features lead to C-EPC process model adaptation.

Figure 54: Illustration of Feature-EPC

6.2.6 Configuration rules

The impact of chosen features on the configuration of the C-EPC process models
must be captured simply and effectively in configuration rules (Figure 54). Czarnecki
and Antkiewicz advocate the use of Xpath expressions to specify the configuration
rules in the form of constraints [84]. Rosemann and van der Aalst advocate the use
of more graphical notations like dependency constraints [4]. The UML object
constraint language 2.0 (OCL) can be used to specify configuration rules: a subset of
OCL is used in Riebisch’s feature diagrams to specify dependencies and constraints
between pairs of features [76, 86]. Z and formal notation sets were also explored to
specify the configuration rules. Finally a context free grammar in Backus-Naur Form
has been used to specify the configuration rules.

86

Using modular configuration rules
Using a context free grammar in Backus-Naur form permits the explicit specification
of the syntax, contextual constraints and semantics of the configuration rules [87]
(section 10.2). The objective here is to specify modular, reusable and easy to
implement configuration rules.

Strictly configurable nodes are the logical operators XOR and OR, as well as
configurable functions. For every configurable node, configuration rules shall be
specified, this should permit the automatic generation or the programming of
configuration rules. The specification of complete configuration rules is then done by
assigning features to these configuration rules.

To make the configuration rules modular, they have been defined to specify or reflect
the configuration of C-EPC process models: every C-EPC process model shall come
with its respective set of configuration rules. To have an exact and precise
specification of the rules these have been specified using Backus-Naur Form (BNF).

NB: See section 10.2 Appendix 2, for a complete specification of the configuration
rules in BNF [87].

Configurable functions
(ID, NumericPriority): {features} (Name, ID, ON)
(ID, NumericPriority): {features} (Name, ID, OFF)

Configurable XOR
(ID, NumericPriority): {features} (xor, ID, XOR, {})
(ID, NumericPriority): {features} (xor, ID, SEQ, EPCSequence)

Configurable OR
(ID, NumericPriority): {features} (or, ID, XOR, {})
(ID, NumericPriority): {features} (or, ID, AND, {})
(ID, NumericPriority): {features} (or, ID, OR, {})
(ID, NumericPriority): {features} (or, ID, SEQ, EPCSequence)

Operator precedence
Configuration rules reconfiguring a logical operator (OR, XOR) shall be applied before
the configuration rules of configurable functions. If by chance, an OR logical operator
is reconfigured into a sequence (or, or1, SEQ, ((“surf”,F1),(“Enjoy”,E1)) and the
function “surf” happens to be configurable and turned OFF, the configuration rule
would be inapplicable.

NB: see section 7.3.2 for a better-illustrated explanation.

87

Conflict resolution
Two options are available to specify the configuration rules:

1) To specify for every consistent combination of features, explicit configuration
rules. This approach does not lead to inconsistent, conflicting or redundant
rules. However it is quite time consuming to specify explicitly all configuration
rules for all consistent combinations of features, especially in the case of a
great number of features. Furthermore this approach generates long lists of
configuration rules.

2) To specify only the necessary configuration rules. Afterwards based on the
feature configuration, select all the applicable configuration rules and apply
them. However this approach does lead to conflicting and redundant
configuration rules. To resolve these problems several conflict resolution
algorithms and strategies are available [88]. Thankfully this approach results
in the specification of less configuration rules.

Options #2 shall be applied and chosen in this research project because it results in
a more compact set of configuration rules. To resolve the situation of redundant and
conflicting configuration rules, an algorithm using a conflict resolution strategy with
numeric priorities shall be used:

1) Based on selected features, select applicable configuration rules.
a. Power set selection

2) Detect conflicts:
a. Redundant configuration rules
b. Conflicting configuration rules

3) Resolve conflicts by selecting only redundant and conflicting configuration
rules with the highest priority. If rules have the same priority, choose one
randomly.

4) Apply the new subset of configuration rules.

For every set of selected features, based on its power set the corresponding
configuration rules are selected. For example for the set of selected features {F1, F2,
F3} has the following power set: {{}, {F1}, {F2}, {F3}, {F1, F2}, {F1, F3}, {F2,
F3}, {F1, F2, F3}}. For every power set the corresponding configuration rules shall
be selected.

Configuration rules are assigned numeric priorities between 1 and 1000; the higher
this number is, the higher the priority of the corresponding configuration rule.

Furthermore redundant configuration rules can be detected because they have the
same CEPCConfigRule or right hand expression after the ‘’ symbol. Conflicting
configuration rules can be detected because they modify the same configurable
nodes differently.

88

Tacit issues
When a configurable function is set to OFF its following nodes must be deleted from
the C-EPC process model: generally this means the deletion of the following
event(s).

Furthermore when a configurable connector such as an XOR or OR is configured as a
sequence. Only the nodes of the selected sequence remain; all nodes of other
possible sequences must be deleted from the C-EPC process model.

One of the limitations of the conflict resolution algorithm is that it cannot resolve the
issue of conflicting configuration rules caused by human mistakes. This case arises
when for example several configurable connectors are modeled consecutively one
after another. When the first connector is configured as a sequence (SEQ), this may
cause the deletion of one or more of the following configurable connectors. If by
mistake one of these configurable connectors is reconfigured while it also scheduled
for deletion a conflict arises. The question then arises whether this configuration rule
should be deleted or not. In this research project, the configuration rules shall simply
be deleted.

6.2.7 Concrete meta model

Finally the integration between Bosch feature diagrams and C-EPC lead to the
following concrete meta model of Feature-EPC process models (Figure 55). Most
importantly a Feature-EPC is composed of one feature diagram, one C-EPC process
model and one set of configuration rules.

Figure 55: Concrete meta model of Feature-EPC

89

6.2.8 Business process variability modeling evaluation

As was described previously in Figure 54, Feature-EPC extend C-EPC with domain
modeling concepts where features drive the configuration of the C-EPC process
model. This leads to process models that are adaptable and thus well suited to model
process variability. This is illustrated using the healthcare running example. Modeling
the healthcare running example of section 3.4 using Feature-EPC leads to the
process model described in Figure 56. The healthcare running example has been
extended here with an extra case: a blind and paralyzed patient. This new case is
important to illustrate consistent combinations of features and consistent
configuration rules.

However one of the main weaknesses of this approach is that process variants are
modeled into one process model: this leads to long lists of configuration rules and
big and incomprehensible process models. Extending Feature-EPC with a software
tool can overcome some of the weaknesses of this approach: the tool only showing
process models based on the current feature configuration and thus hiding the big
process model beneath.

Furthermore the consistency of feature combinations can now explicitly be ensured
using the constraints ‘requires’ and ‘excludes’. This task would have been difficult
and some times impossible using for example Bosch feature diagrams (Figure 44).
Looking at Figure 56 here under, consistent combinations of features have been
guaranteed using the constraint ‘excludes’:

 The feature ‘Without disability’ cannot be combined with ‘Blind’ or ‘Paralyzed’,
because indeed a patient cannot be for example without disability and blind at
the same.

 The features ‘Blind’, ‘Paralyzed’ or both at the same time can be selected.

When discussing consistency issues, the problem of inconsistent configuration rules
must not be forgotten. When strictly more than one feature is selected the risk of
inconsistent configuration rules arises. This is the case of for example configuration
rules CR1, CR9 and CR24 (see here under section configuration rules). In this
research project was chosen to resolve the problem of inconsistent configuration
rules using a conflict resolution algorithm with numeric priorities.

90

Figure 56: Modeling the healthcare running example using Feature-EPC

91

Configuration rules
To guide the configuration of the feature-EPC process model specified in Figure 56,
configuration rules are necessary. The minimal amount necessary of configuration
rules were specified.

(CR1, 2): {(Blind, Fe2)} (xor, xor1, SEQ, ((Blind patient, E1), (Order preparation, Fu1)))
(CR2, 2): {(Blind, Fe2)} (Schedule Ambulance, Fu2, OFF)
(CR3, 2): {(Blind, Fe2)} (Get patient, Fu3, OFF)
(CR4, 2): {(Blind, Fe2)} (Receive patient, Fu4, ON)
(CR5, 2): {(Blind, Fe2)} (Escort patient to examination room, Fu5, ON)
(CR6, 2): {(Blind, Fe2)} (xor, xor2, SEQ, ((Patient escorted to examination room, E2), (Medical
Examination, Fu6)))
(CR7, 2): {(Blind, Fe2)} (or, or1, AND, {})
(CR8, 2): {(Blind, Fe2)} (xor, xor3, SEQ, ((or, or1), (Escort patient to radiology entrance, Fu7)))

(CR9, 3): {(Paralyzed, Fe3)} (xor, xor1, SEQ, ((Paralyzed patient, E3), (Order preparation, Fu1)))
(CR10, 3): {(Paralyzed, Fe3)} (Schedule Ambulance, Fu2, ON)
(CR11, 3): {(Paralyzed, Fe3)} (Get patient, Fu3, ON)
(CR12, 3): {(Paralyzed, Fe3)} (Receive patient, Fu4, ON)
(CR13, 3): {(Paralyzed, Fe3)} (Escort patient to examination room, Fu5, ON)
(CR14, 3): {(Paralyzed, Fe3)} (xor, xor2, SEQ, ((Patient escorted to examination room, E2), (Assist
patient through medical examination, Fu8)))
(CR15, 3): {(Paralyzed, Fe3)} (or, or1, AND, {})
(CR16, 3): {(Paralyzed, Fe3)} (xor, xor3, SEQ, ((or, or1), (Escort patient to ambulance, Fu9)))

(CR17, 1): {(Without disability, Fe3)} (xor, xor1, SEQ, ((Patient without disabilities, E4), (Order
preparation, Fu1)))
(CR18, 1): {(Without disability, Fe3)} (Schedule Ambulance, Fu2, OFF)
(CR19, 1): {(Without disability, Fe3)} (Get patient, Fu3, OFF)
(CR20, 1): {(Without disability, Fe3)} (Receive patient, Fu4, OFF)
(CR21, 1): {(Without disability, Fe3)} (Escort patient to examination room, Fu5, OFF)
(CR22, 1): {(Without disability, Fe3)} (xor, xor2, SEQ, ((Patient escorted to examination room, E2),
(Medical examination, Fu6)))
(CR23, 1): {(Without disability, Fe3)} (or, or1, SEQ, ((Documentation finished, E5), (xor, xor4)))

(CR24, 4): {(Blind, Fe2), (Paralyzed, Fe3)} (xor, xor1, SEQ, ((Blind and paralyzed patient, E5), (Order
preparation, Fu1)))

Applying the conflict resolution algorithm, the selection of the feature Blind results in
the selection of the following configuration rules: CR1, CR2, CR3, CR4, CR5, CR6,
CR7, CR8. No conflicting and redundant rules are detected. Thus all the selected
rules are applied to generate the Feature-EPC process model described in Figure 57.

Applying the conflict resolution algorithm, the selection of the feature Paralyzed
results in the selection of the following configuration rules: CR9, CR10, CR11, CR12,
CR13, CR14, CR15, CR16. No conflicting and redundant rules are detected. Thus all
the selected rules are applied to generate the Feature-EPC process model described
in Figure 58.

Applying the conflict resolution algorithm, the selection of the feature ‘Without
disability’ results in the selection of the following configuration rules: CR17, CR18,
CR19, CR20, CR21, CR22, CR23. No conflicting and redundant rules are detected.
Thus all the selected rules are applied to generate the Feature-EPC process model
described in Figure 59.

92

Applying the conflict resolution algorithm, the selection of features Blind and
Paralyzed results in the selection of the following configuration rules: CR1, CR2, CR3,
CR4, CR5, CR6, CR7, CR8, CR9, CR10, CR11, CR12, CR13, CR14, CR15, CR16, CR24.
The following rules are redundant:

 CR4 and CR12
 CR5 and CR13
 CR7 and CR15

The following rules are conflicting:
 CR1, CR9 and CR24
 CR2 and CR10
 CR3 and CR11
 CR6 and CR14
 CR8 and CR16

The configuration rules with the highest priority are the following: CR9, CR10, CR11,
CR12, CR13, CR14, CR15, CR16 and CR24. These rules applied to generate the
Feature-EPC process model described in Figure 60.

93

Figure 57: Feature-EPC configuration for a blind patient

94

Figure 58: Feature-EPC configuration for a paralyzed patient

95

Figure 59: Feature-EPC configuration for a patient without disabilities

96

Figure 60: Feature-EPC configuration for a blind and paralyzed patient

97

EC1: Mark variable elements
Feature-EPC provides the means to mark variable elements of a process model:
functions and logical connectors can be marked as configurable (Figure 54).
Configurable nodes have bold lines.

Strengths
Marking configurable nodes using bold lines is simple and effective.

Weaknesses
Without configuration rules, it is unclear how and when these nodes should be
configured.

EC2: Support of change patterns
Configurable functions support the delete process fragment (AP2) change pattern: a
function marked as configurable can be deleted from the process model with its
respective end events.

AND logical connectors marked as configurable are actually not configurable because
they do not support any change patterns.

XOR logical connectors marked as configurable support the delete process fragment
(AP2) change pattern: a configurable XOR can turn into a sequence by deleting
process fragments or remain an XOR.

OR logical connectors marked as configurable support the delete process fragment
(AP2) and replace process fragment (AP4) change patterns:

 A configurable OR can turn into a sequence by deleting process fragments.
 A configurable OR can be replaced by an OR, XOR or AND.

Strengths
C-EPC support only two of the change patterns:

 AP2: Delete process fragment
 AP4: Replace process fragment

C-EPC are hereby relatively simple to use and configure.

Weaknesses
Feature-EPC mostly supports the delete process fragment (AP2). This requires
modeling the commonality and variability of process variants into one process model
because process configuration can mainly be achieved by deleting parts of the
process model. This leads to fairly big configurable process models, which is a
weakness of this approach: big and complex process models are difficult to modify
and maintain.

98

EC3: Configuration rules that adapt process model
Feature-EPC supports the specification of process configuration rules. These were
specified using a context free grammar in Backus-Naur form. Only necessary
configuration rules are specified with the goal to reuse as much as possible existing
rules.

Strengths
These configuration rules are precise and unambiguous. The resulting list of
configuration rules is furthermore fairly compact.

Weaknesses
The maintenance of the configuration rules is problematic, because adding, deleting
or modifying them requires the update of numeric priorities. Furthermore the
configuration rules capture strictly configuration information: they do not state
explicitly how the CEPC process model should be modified when a configurable
function is set to ‘OFF’, or when a configurable XOR or OR connector is configured as
a sequence (SEQ).

EC4: Visualization of configuration rules that adapt process models
The configuration rules can be visualized using dashed arrows (see EC5).

Strengths
This approach is quite simple and effective.

Weaknesses
With many features and configurable nodes, the Feature-EPC process model gets
clouded with dashed arrows pointing from features to configurable nodes.
Furthermore the dashed arrows are unnecessary because a selected feature has an
impact on all configurable nodes of a Feature-EPC process model.

EC5: Domain visualization and process model configuration
Feature-EPC provides Riebisch’s feature notation to model the domain space of
process variants. Dashed arrows point from the features to the configurable nodes of
the feature-EPC to indicate their impact on the nodes: these are configuration rules.

NB: in Feature-EPC, features have an impact on all the nodes. The dashed arrows
are thus not necessary: they can be used to model or display critical configuration
rules or configurable elements.

Strengths
Visualizing and modeling the domain space using Riebisch’s feature diagrams is
simple and effective.

Weaknesses
The dashed arrows pointing from features to configurable nodes can over cloud the
Feature-EPC process models. Furthermore as stated above the dashed arrows are
often unnecessary.

99

EC6: Domain and process configuration rules
The configuration rules specify how the configuration of Riebisch’s feature diagram
leads to adaptations of the C-EPC process model. These configuration rules have
been specified using a context free grammar in Backus-Naur form.

Strengths
See EC3.

Weaknesses
See EC3.

EC7: Selective display
Displaying process configurations is supported manually. The process engineer must
follow the Feature-EPC process model and the configuration rules to build and
visualize the process models of desired process variants.

Strengths
Manually configuring Feature-EPC process models leads to understanding the
workings of the Feature-EPC process models; this could possibly lead to the
discovery and correction of errors.

Weaknesses
Manually configuring Feature-EPC process models requires understanding the
workings of the Feature-EPC process models; this could to inconsistent
configurations because of human mistakes. Having to configure process models
manually to display the results of desired process configurations is a weakness of
this approach because it is time consuming. A solution is automating this task using
a software tool.

EC8: Correctness
C-EPC can be represented using an XML based language such as the EPC Markup
Language (EPML). Using the EPML representation of the C-EPC, syntactic correctness
of the C-EPC can be verified using a tool [58, 69].

Strengths
The syntactic correctness of the process models can be verified.

Weaknesses
Verifying the correctness of Feature-EPC process models requires a tool.

100

EC9: Consistency
Consistent combinations of features can be ensured by using the constraints
“requires” and “excludes”. Furthermore consistent configuration rules are ensured
using a conflict resolution algorithm with numeric priorities.

Strengths
The consistency problems are resolved.

Weaknesses
Ensuring consistency needs to be done manually; this is time-consuming.
Furthermore the maintenance of the Feature-EPC process models has become
problematic: modifying the feature diagram or the C-EPC process model will require
the addition, deletion or modification of configuration rules but also the update of
their numeric priorities. However some conflicts are resolved implicitly.

6.3 Modeling process variability using change oriented versioning
6.3.1 Change oriented versioning

Change oriented versioning (COV) was born within the EPOS project as a new way of
doing versioning. Another major work of the EPOS project was the EPOS database.
This database implements COV and fulfills the function of a storage repository for
works within the EPOS project [89]. In this research project, only COV shall be
applied to model process variability; whether a database management system or
file-based system is used to implement COV is not relevant to this research. COV can
be used to model both process variability within the domain space and over time. As
was said previously the focus of this research project is on solving the problems
inherent to process variability within the domain space.

NB: EPOS stands for “Expert System for Programming and (“Og”) System
Development [89]”

6.3.2 COV concepts

A distinction can be made between two types of version models or version
specifications as was previously described in section 5.5.2 [80, 82]:

 Change oriented or change based version models
 Version oriented or state based version models

COV uses a change oriented version model: versions (variants or revisions) are
described in terms of logical changes or options instead of concrete versions. Core
concepts of COV are options, choices and ambitions. However additional and helpful
concepts are available such as visibilities and high-level version descriptions [89].

Options
“A logical change is represented by a boolean variable called an option [89]”:

 If the option has value true, then it must be included.
 If the option has value false, then it must be excluded.

The value of an option may also be left unspecified and thereby unset. The set of all
selectable options is named the version space. Options are mainly identifiable by
their name. As is specified by Conradi and Westfechtel, “each option corresponds to
a global change that can be either included or omitted when configuring a product
version [80]”.

101

Choice
A choice or version choice is a set of options with their respective Boolean value. A
choice captures the user’s intent to view a specific version of the database or
product. Options that are not explicitly specified within a choice can be implicitly
bound to the value unset or false [89].

Ambition
“A physical change to the database will be marked with an ambition [90]”. An
ambition is a set of options with their respective value bindings. “These options
indicate for which versions of the database the physical change is to apply [89].”

Visibility
“This is a logical expression over options, and is attached to every single fragment in
the database. Given the option/truth value binding of a choice, a visibility should
evaluate to either TRUE or FALSE. This value indicates whether the fragment is to be
included in the view, or not [90]”.

High-level version descriptions
High-level version descriptions are mechanisms that can result in more convenient
and consistent version selection for users.

Validities
Validities can be used to [89]:

 Assign status values (tested, delivered, etc) to versions.
 Freeze versions to prevent further changes.
 Restrict combinations of options.

Constraints
Constraints limit or restrict the combination of chosen options. Good examples of
constraints are mutual exclusion and implications [89].

A new and special symbol is introduced to express mutual exclusion [89]: ⊗.
Furthermore the concept of an option group is introduced to specify that only one
option within the group can evaluate to true. A formal description of such a
constraint is defined here under:

Mutex: O1 ⊗ O2 ⊗ O3 ⊗ O4 ⊗ O5

An implication or “dependency of one option on another means that the option
cannot be bound explicitly to either TRUE or FALSE in an ambition or choice unless
another option is bound to TRUE [89]”. The dependency (O1 depends on O2) is
formalized the following way [89]:

Dep: ∀ C : (C ⇒ O1) ∨ (C ⇒ ¬O1) ⇒ (C ⇒ O2)

A new symbol is created to indicate and formalize this type of dependency :

Dep: O1 O2

Preferences
Preferences are positive and negative weights attributed to an option: they describe
how much an option is desired by a user [89].

102

Aggregates
Aggregates permit the construction of “higher level structures”, they are simply
attached to the names of version descriptions [89].

Defaults
“These are settings attached to particular projects or tasks. These are functions of
the environment, rather than of the COV system itself [89].”

6.3.3 Applying COV to model business process variability

Originally COV is applied at the database level. Here COV shall be applied at the
process model level within the domain space of choice. Ambitions, choices and
options are considered the core concepts of COV [90]. These three concepts must
therefore be applied to model process variability. Visibilities shall thus not be applied
because implementing these will unnecessarily complicate the integration task
between COV and basic EPC. Validities and constraints will be applied to improve and
guarantee the consistency of combinations of options.

Options
To model process variability, options must be modeled as elements or attributes of
the domain, which have an impact on the variability of the business processes. Using
the healthcare running example, the following options shall be specified:

 O1: Patient without disability
 O2: Blind patient
 O3: Paralyzed patient

As was said previously options are mainly identifiable by their name. However the
situation could occur where two different options have the same name. The decision
was therefore made to identify options using their names and additionally unique
IDs.

Choice
The space of all version choices in the healthcare running example is thus
summarized by the following set: {{}, {O1}, {O2}, {O3}, {O1, O2}, {O1, O3},
{O2, O3}, {O1, O2, O3}}.

However the combination of some options are inconsistent: {{O1, O2}, {O1, O3},
{O1, O2, O3}}. A patient cannot be blind and without disability at the same time.
The same holds for a paralyzed patient and a patient without disability.

Consistent combinations of options are thus the following:{{O1}, {O2}, {O3}, {O2,
O3}}. However there is no explicit process model that has been defined for the
following combination of options {O2, O3}.

For the empty set of options {} no process model is being defined.

103

Ambition
To specify ambitions, a base process model must be used to apply changes on. This
base process model can be a reference process model [37, 44, 91], the process
model of one of the process variants within the considered domain, etc. However
specifying a base process model that captures most of the commonality of the
process model of the process variants shall lead to the specification of significantly
less ambition rules: viewing the process model of the desired process variant shall
thus be achieved by slightly modifying this base process model and thus applying
few ambition rules. If by chance the chosen base process model is significantly
different from the process model of the respective process variants: viewing the
process model of the desired process variant shall thus be done by modifying greatly
this base process model and thus applying a great number of ambition rules. Thus
creating good base process models could be achieved by merging the process model
of the respective process variants into one process model. In this research project
the process model of a patient without disability as described in the healthcare
running example shall be used as the base process model (Figure 17): this process
model is relatively similar to the process model of the other two process variants and
is thus a relatively good choice for a base process model. The choice was made to
use basic EPC to model the business processes, as shall be explained in more detail
later on in this subchapter.

Physical changes shall be applied on this base process model to construct the
process model of the desired process variant. The following physical changes can be
made to the base process model, these are actually process change patterns [54,
90]:

 Add a process fragment
 Delete a process fragment
 Update/Replace a process fragment

An ambition shall be specified here as a mapping between logical changes (options)
and physical changes (process change patterns): Option process change pattern.
Later in this subchapter ambitions will be formalized. However for now the following
ambition or configuration rules shall be used:

Ambition rule: replace
(ID, NumericPriority): {(OptionID1, …, OptionIDn)} (REP, OldNode, NewNode)
OldNode is replaced by NewNode.

Ambition rule: Add
(ID, NumericPriority): {(OptionID1, …, OptionIDn)} (ADD, {((BeginNode, ID),
(NewNode1, ID)),…, ((NewNodeN, ID), (EndNode, ID))})
Between BeginNode and EndNode are added new nodes: NewNode1,…,NewNodeN.

104

Ambition rule: Delete
(ID, NumericPriority): {(OptionID1, …, OptionIDn)} (DEL, (BeginNode, ID),
(EndNode, ID))
Everything between BeginNode and EndNode is deleted and replaced by a dynamic
connector (an arrow).

Application of ambition rules to healthcare running example
No changes need to be made to the base process when options O1 is true; implicitly
meaning that O2 and O3 are false. Only those options that are true are included into
the ambition rules, implicitly meaning that all the other ones are false.

This is not the case when option O2 or O3 is true as can be seen here under.

(A1, 2): {(O2)} (REP, (Patient without disability, E1), (Blind patient, E2))

(A2, 2): {(O2)} (ADD, {((Patient transferred, E3), (Receive patient, F1)),
((Receive patient, F1), (Patient received, E4)), ((Patient received, E4), (Escort
patient to examination room, F2)), ((Escort patient to examination room, F2),
(Patient escorted to examination room, E4)), ((Patient escorted to examination
room, E4), (Medical examination, F7))})

(A3, 2): {(O2)} (ADD, {((Documentation finished, E5), (OR, C1)), ((OR, C1),
(XOR, C2)), ((OR, C1), (Escort patient to radiology entrance, F3)), ((Escort patient
to radiology entrance, F3), (Patient escorted to radiology entrance, E6))})

(A4, 3): {(O3)} (REP, (Patient without disability, E1), (Paralyzed patient, E7))

(A5, 3): {(O3)} (ADD, {((Order accepted, E7), (Schedule ambulance, F4)),
((Schedule ambulance, F4), (Ambulance scheduled, E8)), ((Ambulance scheduled,
E8), (Get patient, F5)), ((Get patient, F5), (Patient in ambulance, E9)), ((Patient in
ambulance, E9), (Transfer patient, F6))})

(A6, 3): {(O3)} (ADD, {((Patient transferred, E3), (Receive patient, F1)),
((Receive patient, F1), (Patient received, E4)), ((Patient received, E4), (Escort
patient to examination room, F2)), ((Escort patient to examination room, F2),
(Patient escorted to examination room, E4)), ((Patient escorted to examination
room, E4), (Medical examination, F7))})

(A7, 3): {(O3)} (REP, (Medical examination, F7), (Assist patient through medical
examination, F8))

(A8, 3): {(O3)} (ADD, {((Documentation finished, E5), (OR, C1)), ((OR, C1),
(XOR, C2)), ((OR, C1), (Escort patient to ambulance, F9)), ((Escort patient to
ambulance, F9), (Patient brought to destination, E10))})

As can be noticed, ambition rules A7 and A6 conflict with each other. If ambition rule
A7 is applied before A6, A6 cannot be applied correctly as the function “Medical
examination” has been replaced by the function “Assist patient through medical
examination”. To solve these problems operator precedence is introduced:

 The ADD operator has a higher priority than DEL and REP operators.
 The REP operator has a higher priority than DEL operators.
 The DEL operator has the lowest priority of all operators.

105

If both options O2 and O3 are true, all the ambition rules A1, A2, A3, A4, A5, A6, A7
and A8 must be applied. However these rules are redundant (A2, A6) and conflicting
(A1 and A4, A3 and A8). Furthermore when both O2 and O3 are true, the following
ambition rule must be added:

(A9, 4): {(O2), (O3)} (REP, (Patient without disability, E1), (Blind and paralyzed
patient, E2))

These issues can mainly be solved following these two approaches:
1) For all consistent combinations of options, specify explicitly the corresponding

configuration rules. This approach does not lead to inconsistent configuration
rules but is however time consuming and results in long lists of configuration
rules.

2) Specify only the necessary amount of rules and resolve conflicting
configuration rules using an appropriate conflict resolution strategy. This is
the approach chosen in this research project, because it requires less time to
specify the configuration rules and the resulting lists of configuration rules are
shorter.

To resolve these issues several conflict resolution strategies are available [88].
However for the sake of simplicity and because of timing constraints numeric
priorities shall be applied to resolve the problem of redundant and conflicting
configuration rules. Every ambition or configuration rule is assigned a number
between 1 and 1000; the higher the number assigned the higher the priority.

Applying the ambition rules shall then be done using the following algorithm:
1) Determine the set of applicable rules for the selected options.
2) Detect conflicts

a. Redundant rules
b. Conflicting rules

3) Resolve conflicts
a. Redundant and conflicting rules with the highest priority are selected.
b. If rules have the same priority, choose one randomly.

4) All the selected rules are applied.

For every set of selected options, based on its power set the corresponding
configuration rules are selected. For example for the set of selected options {O1, O2,
O3} has the following power set: {{}, {O1}, {O2}, {O3}, {O1, O2}, {O1, O3},
{O2, O3}, {O1, O2, O3}}. For every power set the corresponding configuration rules
shall be selected.

Redundant ambition rules are detected because they have the same right hand
expression, this is for example the case of ambition rules A2 and A6. Conflicting
ambition rules are detected because they change the same element differently, this
for example the case of ambition rules: A1, A4, A9.

106

Thus if both options O2 and O3 are true, using the algorithm above results in the
following:

1) Ambition rules for O2 is true, O3 is true, and both O2 and O3 true are
selected: A1, A2, A3, A4, A5, A6, A7, A8, A9.

2) Rules A1, A4 and A9 conflict. Rules A8 and A3 conflict. Rules A2 and A6 are
redundant.

3) Rule A9 has a higher priority than rule A1 and A4. Rule A8 has a higher
priority than rule A3. Rule A6 has a higher priority than rule A2.

4) The following rules are thus applied: A5, A6, A7, A8, A9.

NB: see section 10.3 Appendix 3, for a complete specification of the ambition rules
using a context free grammar in Backus-Naur form [87].

Validity/Constraints
A validity is a disjunction of complete or incomplete version choices: choices or
validity terms being conjunctions of option bindings themselves [89].

To eliminate inconsistent combinations, the following validity V1 is specified:

V1 = (O1 ∧¬ O2) ∨ (O1 ∧¬ O3) ∨ (O1 ∧¬ O2 ∧¬ O3)

To avoid inconsistency of ambition rules because explicit rules have not been
specified for option combination O2 ∧ O3, the following validity V2 is specified:

V2 = (O1 ∧¬ O2) ∨ (O1 ∧¬ O3) ∨ (O1 ∧¬ O2 ∧¬ O3) ∨ (O2 ∧¬ O3) ∨ (¬O2 ∧ O3)

However using the mutual exclusion constraint, the validity V2 can be rewritten in a
more compact manner as the validity V3:

V3: O1 ⊗ O2 ⊗ O3

BPML selection
By applying COV strictly, the base process model does not need to be configurable:
C-EPC will thus not be combined with COV. However to simplify and ease the
integration process between a BPML and COV, a very simple and clear BPML shall be
chosen: basic EPC. Extended EPC and BPMN were not chosen because of the richness
and complexity of their modeling concepts.

Modeling process variability using COV-EPC
The choice was made to annotate the base process model simply with black boxes
either labeled “Replace”, “Add”, “Delete” to indicate the variable elements of the
base process model (Figure 61). This modeling notation is fairly simple and does not
significantly raise the complexity of the process models. When modeling additions
this modeling notation can be imprecise: it is not clear if the new nodes must be
added, after or in between of the selected nodes (Figure 61). To solve these
problems, black triangles are added in the corners of the “Add” black rectangle to
indicate whether new nodes are added before or after the designated node:

 In Figure 62, new nodes are added before the selected node.
 In Figure 63, new nodes are added after the selected node.

107

Figure 61: COV-EPC base process model annotated with variability markings

Figure 62: COV-EPC base process model annotated with improved Add rectangle
(before)

Figure 63: COV-EPC base process model annotated with improved Add rectangle
(after)

An alternative choice would have been to include inside of the black rectangles the
process fragments that shall be used as replacements or added to the process model
(Figure 64). However this modeling notation is unusable in case of a large number of
process fragments that can be either added to the process model or used as
replacements. Furthermore the size of the process fragments is also an issue.
Process fragments that are too big won’t fit nicely into a black rectangle.

Figure 64: COV-EPC base process model annotated with variability markings and
process fragments

108

The modeling notation described in Figure 62 and Figure 63 shall be used to model
the base process model of the healthcare running example because of its
compactness and precision.

Meta model
The COV-EPC meta model specified here under can be used to build consistent COV-
EPC process models. A choice consists of a set of options. Ambitions form the link
between options and configuration rules (process change patterns). The set of
ambition rules (options, process changes patterns) is assigned to exactly one base
process model.

Figure 65: COV-EPC meta model

109

6.3.4 Business process variability modeling evaluation

Figure 66: COV-EPC base process model with variability markings

110

Figure 67: COV-EPC process model configuration with option “Blind patient”

111

Figure 68: COV-EPC process model configuration with option “Paralyzed patient”

112

Figure 69: COV-EPC process model configuration with options "Blind patient" and
"Paralyzed Patient"

113

The options, validity/constraints, choices and ambitions shall be defined briefly and
precisely because they have already been described in detail in previously.

Options
(Patient without disability, O1)
(Blind patient, O2)
(Paralyzed patient, O3)

Validity/Constraint
Validity: (O1 ∧¬ O2) ∨ (O1 ∧¬ O3) ∨ (O1 ∧¬ O2 ∧¬ O3)

Choice
ValidChoices = {{O1}, {O2}, {O3}, {O2, O3}}.

Ambition
(A1, 2): {(O2)} (REP, (Patient without disability, E1), (Blind patient, E2))

(A2, 2): {(O2)} (ADD, {((Patient transferred, E3), (Receive patient, F1)),
((Receive patient, F1), (Patient received, E4)), ((Patient received, E4), (Escort
patient to examination room, F2)), ((Escort patient to examination room, F2),
(Patient escorted to examination room, E4)), ((Patient escorted to examination
room, E4), (Medical examination, F7))})

(A3, 2): {(O2)} (ADD, {((Documentation finished, E5), (OR, C1)), ((OR, C1),
(XOR, C2)), ((OR, C1), (Escort patient to radiology entrance, F3)), ((Escort patient
to radiology entrance, F3), (Patient escorted to radiology entrance, E6))})

(A4, 3): {(O3)} (REP, (Patient without disability, E1), (Paralyzed patient, E7))

(A5, 3): {(O3)} (ADD, {((Order accepted, E7), (Schedule ambulance, F4)),
((Schedule ambulance, F4), (Ambulance scheduled, E8)), ((Ambulance scheduled,
E8), (Get patient, F5)), ((Get patient, F5), (Patient in ambulance, E9)), ((Patient in
ambulance, E9), (Transfer patient, F6))})

(A6, 3): {(O3)} (ADD, {((Patient transferred, E3), (Receive patient, F1)),
((Receive patient, F1), (Patient received, E4)), ((Patient received, E4), (Escort
patient to examination room, F2)), ((Escort patient to examination room, F2),
(Patient escorted to examination room, E4)), ((Patient escorted to examination
room, E4), (Medical examination, F7))})

(A7, 3): {(O3)} (REP, (Medical examination, F7), (Assist patient through medical
examination, F8))

(A8, 3): {(O3)} (ADD, {((Documentation finished, E5), (OR, C1)), ((OR, C1),
(XOR, C2)), ((OR, C1), (Escort patient to ambulance, F9)), ((Escort patient to
ambulance, F9), (Patient brought to destination, E10))})

(A9, 4): {(O2, O3)} (REP, (Patient without disability, E1), (Blind and paralyzed
patient, E7))

114

When option O1 is selected, applying the conflict resolution algorithm results in the
following steps:

1. Ambition rules for O1 are selected: there are none.
2. No conflicting or redundant rules are detected.
3. No conflict resolution needs to be done.
4. No rules are applied, the resulting process model is the process model

described in Figure 66.

When option O2 is selected, applying the conflict resolution algorithm results in the
following steps:

1. Ambition rules for O2 are selected: these are A1, A2 and A3.
2. No conflicting or redundant rules are detected.
3. No conflict resolution needs to be done.
4. Rules A1, A2 and A3 are applied, the resulting process model is the process

model described in Figure 67.

When option O3 is selected, applying the conflict resolution algorithm results in the
following steps:

1. Ambition rules for O3 are selected: these are A4, A5, A6, A7 and A8.
2. No conflicting or redundant rules are detected.
3. No conflict resolution needs to be done.
4. Rules A4, A5, A6, A7 and A8 are applied, the resulting process model is the

process model described in Figure 68.

When option O2 and O3 is selected, applying the conflict resolution algorithm results
in the following steps:

1. Ambition rules for O2, O3, and both O2 and O3 are selected: A1, A2, A3, A4,
A5, A6, A7, A8, A9.

2. Rules A1, A4 and A9 conflict. Rules A8 and A3 conflict. Rules A2 and A6 are
redundant.

3. Rule A9 has a higher priority than rule A1 and A4. Rule A8 has a higher
priority than rule A3. Rule A6 has a higher priority than rule A2.

4. The following rules are thus applied: A5, A6, A7, A8, A9.

115

EC1: Mark variable elements
Black and labeled rectangles were introduced to mark variable aspects of the base
process model. There are three kinds of rectangles:

 Rectangles labeled with “Add” to denote that process fragments will be added.
 Rectangles labeled with “Delete” to denote that process fragments will be

deleted.
 Rectangles labeled with “Replace” to denote that process fragments will be

replaced. However only one event, function or connector can be replaced at
the same time.

Strengths
The strength of this modeling notation lies in its simplicity: by taking a quick look at
the base process model, its variable aspects can be identified.

Weaknesses
However the weakness of this modeling approach is that it is not clear what
fragments are added or being replaced with. It is also not clear when a process
fragment is being added, deleted or replaced. These process fragments could be
added inside of the black rectangles, however this approach is only feasible with
small process fragments (Figure 64).

EC2: Support of change patterns
COV-EPC support three change patterns:

 AP1: Insert process fragment
 AP2: Delete process fragment
 AP4: Replace process fragment

Strengths
COV-EPC supports three of the most basic change patterns. Using these three
changes patterns most of the necessary process adaptations can be implemented
simply and effectively. Furthermore the support of more change patterns such AP2
and AP4 results in smaller configurable process models.

Weaknesses
N/A

EC3: Configuration rules that adapt process model
COV-EPC provides configuration rules to adapt the basic EPC process models. These
are captured in the form of ambition rules, where options are linked to process
change patterns: Add, Delete, Replace process fragments.

Strengths
The configuration rules have been specified using a context free grammar in Backus-
Naur form: the syntax, the contextual constraints and semantics of the configuration
rules are thus clear. Furthermore they are precise and unambiguous.

Weaknesses
Specifying the configuration rules leads to long lists of configuration rules: it is thus a
time consuming task.

116

EC4: Visualization of configuration rules that adapt process models
The configuration rules can be visualized using three kinds of black rectangles
(Figure 66):

 Add
 Delete
 Replace

Strengths
It is clear by looking at the black rectangles or boxes what type of configuration rule
is being applied.

Weaknesses
The weakness of this modeling approach is that it is unclear which options result in
additions, deletions or replacements.

EC5: Domain visualization and process model configuration
Attributes of the domain space that have a direct impact on the configuration of the
basic EPC process models are captured by options. However these options are not
modeled or represented in any way.

Strengths
The resulting base process models annotated with variability markings are simpler
without a domain model.

Weaknesses
The domain space cannot be visualized and neither its impact on the configuration of
the base process model.

EC6: Domain and process configuration rules
Options capture domain space attributes that have an impact on the configuration of
the basic EPC process models. Depending on the Boolean value (true, false, unset) of
an option, different change patterns are applied to the base process model.

Strengths
See EC3.

Weaknesses
See EC3.

EC7: Selective display
Selective display can be achieved manually or automatically if a tool is built to
support COV-EPC.

Strengths
Manually reconfiguring the base process model to visualize a desired process variant
leads to understanding the internal workings of COV-EPC.

Weaknesses
Manually reconfiguring the base process model to visualize a desired process variant
requires understanding the internal workings of COV-EPC. This is approach is also
quite time consuming.

117

EC8: Correctness
Ensuring the correctness of process models after deletion, addition or replacement of
process fragments is not done in COV-EPC. Eleven and simple design rules can be
followed to model correct control flow and avoid problematic behavior such as
deadlocks when using basic EPC [3]. EPC can also be extended with formal concepts
(Petri-Nets [61-64]) to ensure the syntactic or semantic correctness of the process
models [65, 66].

Strengths
As was said in the evaluation of E-EPC (section 4.3.1), eleven design rules can be
used to verify the syntactic correctness of basic EPC process models.

Weaknesses
Ensuring the syntactic correctness of the EPC process models needs to be done
manually; this is a time-consuming activity. This weakness can be turned into a
strength by implementing a tool that validates the correctness of the basic EPC
process models by formalizing them using Petri-nets (section 4.3.1).

EC9: Consistency
Using validities and constraints, consistent combinations of options are ensured in
COV-EPC. The consistency of configuration rules is guaranteed by using a conflict
resolution algorithm with numeric priorities.

Strengths
COV-EPC ensures consistent combinations of options by specifying
validities/constraints. Furthermore the consistency of configuration rules is also
ensured.

Weaknesses
Assigning numeric priorities to configuration rules must be done manually, although
conflict resolution can be done automatically. The maintenance of the configuration
rules has also become cumbersome because numeric priorities have to be updated
when rules are added, deleted or modified.

118

6.4 Modeling process variability using the Proteus Configuration
Language
6.4.1 Proteus configuration language

The Proteus configuration language (PCL) is a configuration language inspired by
module interconnection languages (MILs) [92]. MILs can be used to specify
“architectural, programming language independent, perspective on software design
[92]”. Good examples of MILs are MIL75, INTERCOL, NuMIL, SySL, etc.

Sommerville and Dean say that PCL was built with the goal to build an ideal
configuration language with the following requirements [92]:

 Integrated systems modeling
“The language must be able to model all of the entities and dependencies
which make up a system [92].”

 Multiple structural views
“The language must allow different structural views of an entity and system to
be constructed [92].”

 Variability expression
“The language must include facilities to represent different versions of a
system and to show clearly how one version differs from another [92].”

 Object-oriented modeling
“The language must be able to model object-oriented systems [92].”

 User tailorability
“The language must allow multi-dimensional, extensible entity classification
and user-defined relations [92].”

Furthermore Sommerville and Dean state that PCL was furthermore designed with
the goal to support the following types of system variability [92]:

 Structural variability
“The designs of different versions may have different architectures [92].”

 Implementation variability
“The implementation of system components may vary depending on non-
functional requirements such as performance and differences in
implementation platform [92].”

 Installation variability
“The run-time configuration of the system may vary depending on the
execution platform where it is installed [92].”

119

PCL provides the following basic concepts or entity types to support the evolution of
software systems, hardware systems, documents and their relationships [93]:

 Family entities
“Used to define the architecture of hardware, software or documentation
components in a system. Family entities may incorporate variability and
therefore a single family entity can represent a set of versions of a
component [93].”

 Version descriptor entities
“Used to define the specific attributes of a single version of a system [93].”

 Tool entities
“Used to define tools which may be used to build a system whose modelled in
PCL. Tool descriptions include a description of the tool inputs and outputs and
the command syntax required to execute these tools [93].”

 Classification definitions
“Used to define classification terms which may be associated with a family
entity. All classifications are derived from basic classifications including
hardware, software and document [93].”

 Relation definitions
“Used to define relations which may exist between family entities, family
entities and version descriptor entities or family entities and tool entities in a
system description. The relationships derived from these relations are
established within entity descriptions as described below [93].”

 Attribute type definitions
“Used to define attribute types as an enumerated set of identifiers [93].”

An entity description is sectioned and consists of a sequence of named slots (Table
4):

Entity type Sections
family classification, attributes, interface, parts,

physical, relationships
version description attributes, parts
tool inputs, outputs, attributes, scripts
relation domain, range
class physical, tool
attribute type enumeration

Table 4: PCL entity types and sections [94]

120

As suggested by Tryggeseth, Gulla and Conradi family entities form the core concept
of PCL [94]: structures of logical components are specified by sets of family entities.
Furthermore “attributes are used to characterize a family and its potential variability
[95]”. The following types of attributes are available:

 “Information attributes state properties common to all members of the family
[95]”.

 “Variability control attributes indicate possible variability among the members
of a family [95]”.

6.4.2 Applying PCL to model process variability

PCL describes different versions (variants, revisions) in terms of logical components
[94]: a component can be a part of another component, or can have
subcomponents, etc. These logical components are afterwards mapped onto physical
components, which can be files of source code, documents, modules, etc.

Using PCL, process variability must be modeled using process model components.
The whole PCL tool shall not be applied here but only the Proteus Configuration
Language’s ability to model process variability within the domain space shall be
evaluated here.

BPML Selection
A business process modeling language needs to be chosen and combined with PCL.
To simplify and smooth the integration between PCL and the BPML, the chosen BPML
needs to be simple and extensible: basic EPC shall thus be chosen (Figure 1). BPMN,
C-EPC and E-EPC being too complex to be integrated with PCL.

PCL-EPC
By combining basic EPC with PCL, EPC process models must be constructed out of
process model components. Capturing the commonalities of process variants within a
domain space into one base process model and the differences using distinct process
model components is a viable strategy to reduce the number of components that
have to be maintained. The base process model could furthermore be constructed by
merging the process model of the respective process variants into one process
model. The goal is to enable the construction of the process models of the respective
process variants within a domain with a minimal amount of components.

This requires the extension of EPC with late selection of process fragments, late
modeling of process fragments or late composition of process fragments [54]:
concretely basic EPC will be extended with placeholders that can be replaced with an
element of a set of pre-existing process fragments (Figure 70). An EPC base process
model extended with placeholders shall capture the commonalities of the process
variants within the domain space. Placeholders mark the differences between process
variants within a domain space. Using PCL, these placeholders are deterministically
replaced by the appropriate basic EPC process fragments. The integration of PCL with
EPC is named PCL-EPC: its meta model is described in Figure 71. Every PCL-EPC is
composed of one PCL specification, one base process model and several process
model components.

121

Figure 70: PCL-EPC legend

Figure 71: PCL-EPC meta model

Illustration of PCL-EPC using the healthcare running example
The healthcare running example shall thus be modeled using a combination of EPC
and PCL: PCL-EPC. The base process model has been modeled in Figure 72, while the
other process model components have been modeled in Figure 73, Figure 74, Figure
75, Figure 76, Figure 77, Figure 78, Figure 79, Figure 80 and Figure 81. Finally the
PCL has been used to specify configuration rules.

122

Figure 72: PCL-EPC base process model

123

family RadiologyBaseProcModel
physical

proc_model ⇒ “radiology_base_proc_model.pclepc”
end

end

Figure 73: Blind_patient process model component

family Blind_patient
physical

proc_model ⇒ “blind_patient.pclepc”
end

end

Figure 74: paralyzed_patient process model component

family Paralyzed_patient
physical

proc_model ⇒ “paralyzed_patient.pclepc”
end

end

Figure 75: patient_without_disability process model component

family Patient_without_disability
physical

proc_model ⇒ “patient_without_disability.pclepc”
end

end

Figure 76: schedule_ambulance process model component

family Schedule_ambulance
physical

proc_model ⇒ “schedule_ambulance.pclepc”
end

end

124

Figure 77: escort process model component

family Escort
physical

proc_model ⇒ “escort.pclepc”
end

end

Figure 78: escort_assist process model component

family Escort_assist
physical

proc_model ⇒ “escort-assist.pclepc”
end

end

Figure 79: medical_exam process model component

family Medical_exam
physical

proc_model ⇒ “medical_exam.pclepc”
end

end

Figure 80: escort_entrance process model component

family Escort_entrance
physical

proc_model ⇒ “escort_entrance.pclepc”
end

end

Figure 81: escort_ambulance process model component

125

family Escort_ambulance
physical

proc_model ⇒ “escort_ambulance.pclepc”
end

end

family None
end

attribute_type Patient_type
enumeration Blind, Paralyzed, Without_disability end

end

family Healthcare_Radiology_Processes
attributes

Name: string = “PCL-EPC healthcare running example”;
Patient: Patient_type;

end

parts
BasePM ⇒ RadiologyBaseProcModel

Config1 ⇒ if Patient = Blind then
(Blind_Patient)

 elsif Patient = Paralyzed then
(Paralyzed_patient)

 elsif Patient = Without_disability then
(Patient_without_disability)

 endif

Config2 ⇒ if Patient = Paralyzed then
(Schedule_ambulance) else (None)

 endif

Config3 ⇒ if Patient = Blind then
(Escort)

 elsif Patient = Paralyzed then
(Escort_assist)

 else (Medical_exam)
 endif

Config4 ⇒ if Patient = Blind then
(Escort_entrance)

 elsif Patient = Paralyzed then
(Escort_ambulance)

 else (None)
 endif

end
end

126

Process model instances of the PCL-EPC specification are the same as the basic EPC
process models specified in the healthcare running example (Figure 17, Figure 18,
Figure 19).

In the family Healthcare_Radiology_Processes, the slots config2 and config4 can be
replaced by None. The family None is completely empty. Replacing the placeholders
config2 and config4 by None in the base process model (Figure 72) would result in
the deletion of the placeholder and replacing their preceding and outgoing arrows
into one single arrow.

Using PCL, consistent combinations of process fragments are explicitly specified. A
process model cannot be constructed for a patient that is without disability and blind
at the same time. The current PCL specification does not allow the construction of a
process model for a patient that is blind and paralyzed at the same. However would
this combination be allowed, explicit PCL rules would have to be specified as well as
new process fragments.

When PCL-EPC is used to model the healthcare running example some issues arise.
Should the use of placeholders be restricted to the modeling of base process models
only or all the process model components? Only the core concepts of PCL have been
used to model process variability, object oriented inheritance could prove itself
helpful when modeling process variability. However Sommerville and Dean assess
the limitations of inheritance when modeling variability [93]:

“The inheritance facility is, of course, an alternative construct for modelling
variability. It is possible to define generic components at the base of an inheritance
hierarchy and to extend these in different variations. However, variability may be
controlled by multiple attribute values (e.g. if a and b and c..). This complex
conditional variability is very difficult to express using inheritance [93].”
6.4.3 Business process variability modeling evaluation

EC1: Mark variable elements
PCL-EPC is extended with placeholders that can be replaced by an element of a set of
process fragments or process model components.

Strengths
The chosen modeling approach is really simple and quite easy to use. It results in
small and configurable process models.

Weaknesses
Placeholders do not indicate or show the process model components they can be
replaced with. Extending PCL-EPC with a tool would make it possible to view the
process model components the placeholders can be replaced with by double clicking
on them. A domain model with a great number of process variants can result in a
base process model with a great number of placeholders.

127

EC2: Support of change patterns
PCL-EPC support the following change patterns:

 AP4: Replace process fragment
 PP1: Late selection of process fragments
 PP2: Late modeling of process fragments
 PP3: Late composition of process fragments

Strengths
PCL-EPC supports only a few of the change patterns, making PCL-EPC quite simple
and easy to use.

Weaknesses
Supporting only these change patterns requires the maintenance of quite some
process model components.

EC3: Configuration rules that adapt process model
The configuration rules that help construct the process model of the desired process
variant within the domain space are specified using PCL.

Strengths
Family entities provide powerful concepts to handle process variability: variability
and commonality of process variants is modeled using logical components, which are
respectively mapped onto process model components and a base process model.

Weaknesses
The PCL syntax can sometimes be unclear. Furthermore specifying the configuration
rules using PCL has resulted in a long list of Proteus configuration rules considering
the small size of the healthcare running example.

EC4: Visualization of configuration rules that adapt process models
PCL-EPC does not support the visualization of PCL within the PCL-EPC process
models.

Strengths
This results in process models that are quite simple and easy to understand.

Weaknesses
N/A

EC5: Domain visualization and process model configuration
PCL-EPC does not support the visualization of the domain and its impact on the
configuration of the PCL-EPC process model.

Strengths
This results in simple and comprehensible process models.

Weaknesses
PCL-EPC should at least support the visualization of the configuration of the domain.

128

EC6: Domain and process configuration rules
The impact of the domain space on the configuration of the PCL-EPC process models
can be specified using PCL.

Strengths
The variability control attributes provided by family entities to model the dimensions
of the domain space that have an impact on the configuration of the PCL-EPC
process models can be applied simply and effectively. Furthermore the values of
slots can be specified using conditional if-statements.

Weaknesses
See EC3.

EC7: Selective display
The current implementation of PCL-EPC supports only manual selective display of the
process model of the desired process variant.

Strengths
This leads to understanding the internal workings of PCL-EPC and possibly the
detection and correction of errors.

Weaknesses
This requires understanding the internal workings of PCL-EPC. This could also result
in inconsistent process models: process models generated out of an inconsistent
combination of process model components because of human mistakes.

EC8: Correctness
PCL-EPC does not explicitly support the verification of the syntactic or semantic
correctness of the EPC process models. Eleven and simple design rules can be
followed to model correct control flow and avoid problematic behavior such as
deadlocks [3]. EPC can also be extended with formal concepts (Petri-Nets [61-64])
to ensure the syntactic or semantic correctness of the process models [65, 66].

Strengths
It is extensible with formal concepts to verify and guarantee the syntactic
correctness of the generated EPC process models.

Weaknesses
Only the syntactic correctness can be verified using the above mentioned eleven
design rules; this is furthermore time consuming.

EC9: Consistency
By specifying strict Proteus configuration rules and applying them strictly, consistent
combinations of process model components can be ensured.

Strengths
By automating the combination of process model components using the Proteus
configuration language, consistent combinations can be guaranteed.

Weaknesses
Combining process model components by following the Proteus configuration rules is
done manually, and there is therefore room for human mistakes.

129

6.5 Conclusion
Riebisch’s feature diagrams have been combined with C-EPC successfully to design
Feature-EPC. The feature diagram functions as a domain model of which its
configuration leads to C-EPC process model adaptations. Feature-EPC improves C-
EPC with domain modeling capability and clearly defined configuration rules.
However the problem of big configurable C-EPC models has not been solved.
Thankfully the problem of big configurable process models was solved by merging
basic EPC with respectively COV and PCL.

COV-EPC models process variability in terms of changes made to a base process
model. COV-EPC extend EPC with configuration rules, variability markings, the
support of the insert, delete and replace change pattern. The main drawback of COV-
EPC is most likely the extensive list of configuration rules that have to be specified
and maintained.

PCL-EPC models process variability in terms of family entities composed mostly out
of logical and physical components. PCL-EPC extends EPC with configuration rules,
placeholders and the support of the late modeling, late composition or late selection
change pattern. The main weakness of PCL-EPC is the maintenance of the PCL
specification and the process model components.

130

Chapter 7 Software prototypes

7.1 Introduction
To illustrate the newly designed business process modeling languages (BPMLs),
software prototypes were built. A full fledge software demonstration was designed
for Feature-EPC, while only a small software demonstration was built for PCL-EPC
because of timing constraints.

7.2 Feature-EPC software prototype
7.2.1 Description

This software prototype is a prototype of an environment that can assist the business
process modeler in automatically configuring C-EPC process models based on the
configuration of feature models.

The prototype of the software environment consists of the Eclipse IDE3, two Eclipse
plug-ins XFeature4, EPC Tools5 and two self-programmed Java classes addConfig and
FeatureEPC. The eclipse IDE contains and integrates the whole software
environment.

The prototype of the software environment works in several stages. Its workings
shall be illustrated using the healthcare running example. However a simplified
version of the healthcare running example is used in this software prototype.

7.2.2 Designing feature diagrams using XFeature

First a feature diagram of the domain in question is designed using the eclipse plug-
in XFeature. In section 6.2.4 has already been explained that only those features
having an impact on the business processes should be included into the feature
model. The feature diagram of the simplified healthcare running example is
illustrated in Figure 82.

Figure 82: XFeature model of the healthcare running example

3 http://www.eclipse.org/
4 http://www.pnp-software.com/XFeature/
5 http://wwwcs.uni-paderborn.de/cs/kindler/research/EPCTools/

131

The red and blue ball floating above the features “Without disability”, “Paralyzed”
and “Blind” are attributes. The program XFeature cannot determine explicitly when a
feature is being selected. Therefore an Integer attribute was added:

 When this Integer has value “1”, the feature is selected.
 When this Integer has value “0”, the feature is not selected.

XFeature saves the XFeature diagram in XML format, easing the analysis and
modification of the XFeature XML files.

7.2.3 Creating EPC process models using EPC Tools

Using EPC Tools, a non-configurable EPC process model can be created of a variable
business process. A non-configurable EPC process model was thus created for the
simplified healthcare running example.

Figure 83: Simplified EPC process model of healthcare running example created
using EPC Tools

7.2.4 Transforming EPC into C-EPC process models

Using the java class AddConfig the EPML representation of the EPC process models is
annotated with extra information. The attribute “config” is added to the elements
“function”, “xor” and “or” to state their configurable nature:

 If the value of attribute config is set to “YES”, the function, the XOR or OR
logical operator is configurable.

 If the value of attribute config is set to “NO”, the function, the XOR or OR
logical operator is not configurable.

Setting the value of “config” is done using the simple user interface provided by the
Java program Addconfig.

132

Figure 84: Using AddConfig to transform EPC into C-EPC

As can be seen in Figure 84, function #2, function #8 and xor #6 were selected to
be configurable. This is achieved by pressing the button “Apply configuration!”. Once
the button is pressed an intermediate EPML file is generated, which has been
annotated with the new attribute “config”.

7.2.5 Generating and applying configuration rules

Using the java class FeatureEPC, configuration rules are automatically generated
based on the C-EPC process model: for each configurable node are generated its
respective configuration rules. The configuration rules are then linked to each
feature, step by step and manually by the business process modeler through the
user interface.

First the configuration rules for the feature “Paralyzed” are chosen and afterwards
the button “Save configuration rules!” is pressed. For each feature the appropriate
configuration rules must be chosen and saved.

Figure 85: Configuration rules of feature Paralyzed

In order to specify the configuration rules for the feature “Blind”, the button “next” is
pressed. The configuration rules for the feature “Blind” are specified and saved the
same way as the feature paralyzed.

Figure 86: Configuration rules of feature Blind

Again by pressing the button “next”, the configuration rules for the next feature can
be specified; in this case the feature “Without disability”.

133

Figure 87: Configuration rules of feature Without disability

When for all features the right configuration rules have been specified, these can be
listed and visualized by pressing the button “Print Total Config”.

Figure 88: Print and visualize configuration rules

Once all the rules have been linked appropriately to features, by pressing the button
“Apply Configuration!”, based on the selected features of the XFeature diagram,
configuration rules are selected and applied. This results in the automatic
configuration of the C-EPC process model. When the feature blind is selected, the
following EPC process model is generated automatically (Figure 89).

Figure 89: Generating and applying configuration rules using Feature-EPC

134

7.2.6 Limitations and improvements

The software environment that was built is a prototype and therefore has its
limitations. The software prototype shows its limitations when the configuration rules
are applied and when several features have been selected at once.

A configurable function can either be turned “ON” or “OFF”. When a configurable
function is turned “OFF”, the EPC process model needs to be modified in the
following way:

1. When the configurable function is followed by an event; the function, its
following event and the arc that connects the two nodes must be deleted.
However the location of the configurable function also plays an important role
in the deletion task:

a. When the configurable function marks the start of a process model
then an additional arc must be deleted: the arc following the event
that follows the configurable function.

Figure 90: Deletion of configurable function (case first)

b. When the configurable function marks the end of a process model then
an additional arc must be deleted: the ingoing arc that points to the
configurable function.

Figure 91: Deletion of configurable function (case last)

c. When the configurable function is enclosed by several nodes, two
additional arcs must be deleted: the arc following the event that
follows the configurable function and the ingoing arc that points to the
configurable function.

Figure 92: Deletion of configurable function (case enclosed)

135

2. When the configurable function is followed by a logical operator (XOR, OR,
AND) things become more complicated.

a. In the situation described by Figure 93, everything including the
configurable function and what follows it must be deleted.

Figure 93: configurable function followed by logical operator (case simple)

b. In the situation described by Figure 94, only the configurable function,
and what is between the two logical operators, including the two
logical operators must be deleted.

Figure 94: configurable function followed by logical operator (case complex)

136

A configurable logical operator (XOR, OR) can be reconfigured into a sequence; quite
some complications can then arise.

3. In Figure 95, the assumption is made that sequences of nodes are
interconnected by one single logical configurable operator. The application of
the configuration rule (or,1,SEQ,((3,3),(13,13)) implies the following (Figure
95):

a. The deletion of node 6 and everything that precedes node 6.
b. The deletion of nodes 7 and everything that follows node 7.
c. The deletion of nodes 10 and everything that follows node 10.
d. The deletion of all arcs connected to the deleted nodes.
e. The deletion of the logical operator itself.
f. Drawing a new arc between 3 and 13.

Figure 95: configurable logical operator (case simple)

4. In Figure 96, the situation becomes more complicated: sequences of nodes
are interconnected by several logical operators, of which some are
configurable. Analyzing the process model is thus needed to determine which
sequences of nodes may be deleted.

Figure 96: configurable logical operator (case complex)

137

5. Operator precedence was also introduced into the prototype by ordering the
configuration rules and applying first the configuration rules involving logical
operators (XOR, OR) and afterwards configurable functions. Observing and
analyzing Figure 97, applying the following configuration rules shall lead to a
conflict:

CR1: (9,9,”OFF”)
CR2: (or,1,SEQ,((2,2),(9,9))

Configuration rule CR2 must be applied before CR1 to avoid a conflict. If CR1
is applied before CR2, the function with name “9” shall be turned OFF with the
following consequence: configuration rule CR2 is now inapplicable because
function “9” has been deleted from the process model.

Figure 97: simple conflict resolution

6. The nesting of configuration rules was not introduced into the prototype.
These are rules of the following kind:
(xor, ID, SEQ, XORRule)
(xor, ID, SEQ, ORRule)
(or, ID, SEQ, EPCSequence)
(or, ID, SEQ, XORRule)
(or, ID, SEQ, ORRule)

7. However if several features are selected with common and different rules, the
prototype shall function as long as there are no conflicts between the
configuration rules: the prototype of the software environment does not
implement any conflict resolution algorithm.

Only the features 1a, 1b, 1c, 3, 5 and partially 7 have been implemented in the
prototype. The software prototype has yet to be improved with the implementation
of Feature 2, 4, 6 and partially 7.

7.3 PCL-EPC software demo
7.3.1 Description and application scenario

This software prototype has been constructed using the Eclipse IDE, Java classes and
the eclipse plug-in EPC Tools. A simplified version of the healthcare running example
shall be used to illustrate PCL-EPC.

This software prototype is quite simple. As described in Figure 98, all the user needs
to do is type in either the values “Blind”, “Paralyzed” or “Without disability”. This will
automatically construct the resulting EPC process model by integrating the base
process model with the correct process model components. The resulting process
model is afterwards saved in the EPML file MedExamConfig. This file can be opened
and viewed using the Eclipse plug-in EPC Tools (Figure 99).

138

Figure 98: PCL-EPC demo

Figure 99: PCL-EPC MedExamConfig process model of blind patient (EPC-Tools)

139

7.3.2 Limitations and improvements

This prototype is not configurable. A change to the PCL specification or EPC process
models requires the manual update of the software code, which is quite
cumbersome.

This PCL-EPC software prototype can be improved by specifying a simple context free
grammar for the PCL. Analyzing the grammar of the PCL specification and by passing
the value of relevant attributes through a simple GUI would enable the automatic
generation of the process model of the desired process variant.

7.4 COV-EPC software demo
No software demonstration was built for the newly designed business process
modeling language COV-EPC.

7.5 Conclusion
With these software prototypes has been demonstrated that PCL-EPC and Feature-
EPC are mature enough to be used when modeling business process variability within
the domain space.

140

Chapter 8 Conclusion, evaluation and future work
Business process variability has been characterized by business process variability
within the domain space and over time (Figure 10). Business process variability
within the domain space leads mainly to business process variability modeling
problems, while business process variability over time leads to process model
evolution problems (Figure 22). In this research project, the focus is on analyzing
and solving process variability modeling problems. Crafting a set of evaluation
criteria (section 4.2), current and newly created business process modeling
languages are evaluated on the modeling concepts they provided to model process
variability (Table 5).

EPC provide specific modeling concepts to model goals, resources, outputs, and
organizational units whereas C-EPC, Feature-EPC, COV-EPC, PCL-EPC and BPMN
don’t. Using EPC, process variability can only be modeled using one or separate
process models. In case of a large number of process variants within the domain
space, the best solution is modeling all the process variants using distinct and
separate process models. However this modeling choice comes with process model
evolution problems (Figure 22).

BPMN provides swimlanes that can be used to model and visualize quite effectively
resources, organizational units, etc. Using BPMN, process variability can only be
modeled using one or separate process models. BPMN and EPC have the same
weaknesses when it comes to modeling process variability. In case of a large number
of process variants, the best solution is also modeling all the process variants using
separate and distinct process models. As was said previously this approach
introduces process model evolution problems.

C-EPC comes with configurable nodes and attributes. Functions and connectors are
configurable. Furthermore, C-EPC provides configuration guidelines and requirements
to direct the configuration of the process models whereas EPC and BPMN don’t; these
are specified using logical expressions of which the syntax is found unclear. Moreover
C-EPC only support the delete and replace process fragments change patterns; this
leads to big configurable C-EPC process models because their configuration is mainly
done by deleting parts of the process model.

The field of software product line engineering (SPLE) has in common with business
process variability that they suffer from the same type of variability: variability
within the domain space and variability over time (Figure 41). Software product line
engineering has come up with its own solutions to manage software variability:
feature diagrams and software configuration management (SCM) (Figure 42). The
goal was to extend or combine current business process modeling languages, with
feature diagrams and variability management concepts borrowed from software
configuration management systems, to provide them with useful concepts to model
process variability. This lead to the creation of three new business process modeling
languages: Feature-EPC, COV-EPC and PCL-EPC.

Feature-EPC improves and extends C-EPC on several points. The logical expressions
used to specify the configuration rules have been replaced by modular configuration
rules specified using a context free grammar in Backus-Naur form: they are precise
and unambiguous. Furthermore C-EPC have been extended with domain modeling
capacity by integrating C-EPC with Riebisch’s feature diagrams. The configuration of

141

the Riebisch feature diagram guides the configuration of the C-EPC process models
using configuration rules. Using the constraints “requires” and “excludes” provided
by Riebisch feature diagrams, consistent combinations of features can be ensured.
Furthermore consistent combinations of configuration rules are guaranteed by
applying a conflict resolution algorithm using numeric priorities. However Feature-
EPC and C-EPC still have one weakness in common, the support of only the delete
and replace process fragments change patterns; this has as a consequence big
configurable process models that are hard to modify and maintain.

In COV-EPC, process variants within a domain space are specified in terms of
changes made to a base process model. The core concepts of COV-EPC are options,
choices and ambitions. Options are logical changes that capture aspects of the
domain space that cause process variability. A choice is a set of selected options.
Specifying validities or constraints upon these options ensures consistent
combinations of options. Ambition rules map option combinations to changes made
to the base process model using either insert, delete or replace process fragments;
this leads to small configurable base process models. Furthermore the ambition rules
have been specified using a context free grammar in Backus-Naur form: they are
thus precise and unambiguous. Thankfully applying a conflict resolution algorithm
using numeric priorities also ensures consistent combinations of ambition rules here.
However the main weakness of this approach is the large number of ambition rules
necessary to specify the process models of the respective process variants within the
domain space and thus their maintenance.

In PCL-EPC, process variants are mainly specified in terms of families of logical
components and process model components. EPC have been extended with
placeholders that can be replaced by an element of a set of process model
components. An EPC process model extended with placeholders fulfills the function of
a base process model that captures the commonality of process variants within the
domain space. Thus the change pattern late selection, late modeling or late
composition of process fragments has been implemented here; this leads to small
and simple configurable base process models. The variability of the process variants
within the domain space is captured in separate process model components. The
placeholders of the EPC base process model can selectively be replaced by one of
these process model components to construct the process model of the desired
process variant. This process is guided by rules specified using the Proteus
configuration Language of which the syntax can sometimes be unclear to the
untrained eye. A main drawback of this approach is the maintenance of the large
amount of Proteus configuration rules and process model components.

142

Current business process
modeling languages

New business process
modeling languages

Evaluation
Criteria

EPC BPMN C-EPC Feature-
EPC

COV-
EPC

PCL-EPC

EC1 n/a n/a +/- +/- +/- +/-
EC2 n/a n/a +/- +/- + +/-
EC3 n/a n/a - +/- +/- +/-
EC4 n/a n/a +/- +/- + +
EC5 - +/- +/- +/- +/- +/-
EC6 n/a n/a - + +/- +/-
EC7 - - +/- +/- +/- +/-
EC8 +/- +/- +/- +/- +/- +/-
EC9 n/a n/a - + + +
Legend: very good(++), good(+), Just good enough(+/-), bad(-), very bad(--),
(n/a) not available
Table 5: Total process variability modeling evaluation summary

EPC and BPMN do not provide any explicit means to model process variability. The
advice is therefore not to use them when trying to model business process
variability, or use them exceptionally in the case of very few process variants. When
modeling business process variability, the advice is to choose Feature-EPC, PCL-EPC
or COV-EPC over C-EPC because they come with domain modeling capability, concise
configuration rules and conflict resolution algorithms. Finally when having to model
business process variability, the advice would be to choose Feature-EPC over PCL-
EPC and COV-EPC because of their visual character and that despite their main
drawback of larger configurable process models. Using Feature-EPC, the domain of
the business process is visualized using a feature diagram, and upon selection of
features the business process is reconfigured to comply with the configuration of the
domain. PCL-EPC and COV-EPC are also capable of doing this but do not support the
visualization of the domain. Moreover interesting future research would be to
combine feature diagrams with EPC base process models extended with placeholders
supporting mainly the change pattern late selection, late modeling or late
composition of process fragments: this would lead to the creation of an innovative
business process modeling language with domain visualization and compact
configurable process models.

8.1 Recommendations and future research
Future research includes mainly the following three points:

 The complete formalization of the newly created business process modeling
languages.

 The extension of the newly created business process modeling languages with
complete software environments.

 Solving the process model evolution problems (Figure 22) of the newly
created business process modeling languages.

Future work includes the complete formalization of the newly created business
process modeling languages, Feature-EPC, COV-EPC and PCL-EPC, the same way
previously created business process modeling languages have been formalized [4,
33, 35].

143

The three newly created business process modeling languages should be extended
with complete software environments. This software environment should permit:

 The creation, deletion and modification of process models.
 The automatic conflict resolution of redundant and conflicting configuration

rules.
 The verification of the syntactic correctness of the process models.
 The automatic construction of base process models by merging the process

model of respective process variants into one process model.

Finally and most importantly is resolving the process model evolution problems of
Feature-EPC, COV-EPC and PCL-EPC. New research questions arise: how can the
newly created business process modeling languages be used to model both business
process variability within the domain space and over time? How can the configuration
rules be maintained simply and effectively? SCM was originally applied to model and
handle software variability within the domain space and over time. It is highly
probable that variability modeling concepts borrowed from SCM can be applied to
model and handle process variability within the domain space and over time. In this
research project, SCM variability modeling concepts have been combined with
current business process modeling language to only model business process
variability within the domain space. Future research thus involves the application of
SCM variability modeling concepts to model and handle both business process
variability within the domain space and over time. Using for example COV-EPC,
options would not only be used to model attributes of the domain space but also
incremental changes, improvements, etc. The same line of thought can be applied
when using PCL-EPC, process models of process variants and process revisions can
be constructed using PCL specifications and process fragments.

144

Chapter 9 References
1. H.A. Reijers, Design and Control of Workflow Processes: Business Process

Management for the Service Industry. Lecture Notes in Computer Science.
Vol. 2617. 2003: Springer.

2. CIO Definitions. business process management. 16-01-2006 [cited 13-08-
2007]; Available from:
http://searchcio.techtarget.com/sDefinition/0,290660,sid19_gci1088464,00.h
tml.

3. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede, Process-Aware
Information Systems Bridging People and Software Through Process
Technology. 2005: Wiley Interscience.

4. M. Rosemann and W.M.P. van der Aalst, A configurable reference modeling
language. Information systems, 2007. 32(1): p. 1-23.

5. A. Dreiling, M. Rosemann, W.M.P. van der Aalst, W. Sadiq, and S. Khan.
Model-Driven Process Configuration of Enterprise Systems. in
Wirtschaftsinformatik: eEconomy, eGovernment, eSociety, 7. Internationale
Tagung Wirtschaftsinformatik 2005, Bamberg, 23.2.2005 - 25.2.2005:
Physica-Verlag.

6. S.A. White, Introduction to BPMN. 2006, IBM Software Group.
7. OMG, Business Process Modeling Notation (BPMN) Specification - Final

Adopted Specification dtc/06-02-01. 2006.
8. Object Management Group/Business Process Management Initiative. Business

Process Modeling Notation (BPMN) Information. 09-07-2007 [cited 28-08-
2007]; Available from: http://www.bpmn.org/.

9. S.F. King and O.A. Johnson, VBP: An approach to modelling process variety
and best practice. Information and Software Technology, 2006. 48(11): p.
1104-1114.

10. M. Haag. Random Processes: Mean and Variance. 05-04-2005 [cited 31-05-
2007]; Available from: http://cnx.org/content/m10656/latest/.

11. S.-C. Chou and J.-Y.J. Chen, Process evolution support in concurrent software
process language environment. Information and Software Technology, 1999.
41(8): p. 507-524.

12. B. Burmeister, H.-P. Steiert, T. Bauer, and H. Baumgärtel. Agile Processes
Through Goal- and Context-Oriented Business Process Modeling. in Business
Process Management Workshops. 2006: Springer.

13. M. Aoyama. Agile Software Process model. in COMPSAC. 1997: IEEE
Computer Society.

14. B. Weber, M. Reichert, W. Wild, and S. Rinderle. Balancing Flexibility and
Security in Adaptive Process Management Systems. in OTM Conferences (1):
CoopIS, DOA, and ODBASE, OTM Confederated International Conferences
CoopIS, DOA, and ODBASE 2005, Agia Napa, Cyprus, October 31 - November
4, 2005, Proceedings, Part I. 2005: Springer.

15. M. Soto and J. Münch. Process Model Difference Analysis for Supporting
Process Evolution. in EuroSPI. 2006: Springer.

16. W.M.P. van der Aalst. Generic Workflow Models: How to Handle Dynamic
Change and Capture Management Information? in CoopIS. 1999: IEEE
Computer Society.

17. W.M.P. van der Aalst, Flexible workflow management systems: an approach
based on generic process models. Lecture Notes in Computer Science, 1999.
1677: p. 186-195.

145

18. W.M.P. van der Aalst and T. Basten, Inheritance of workflows: an approach to
tackling problems related to change. Theoretical Computer Science, 2002.
270(1-2): p. 125-203.

19. M. Zhang and M.M. Tseng, A Product and Process Modeling Based Approach to
Study Cost Implications of Product Variety in Mass Customization. Engineering
Management, IEEE Transactions on, 2007. 54(1): p. 130-144.

20. J. Jiao and M.M. Tseng, Customizability analysis in design for mass
customization. Computer-Aided Design 2004. 36(8): p. 745-757.

21. C.W. Krueger. Variation Management for Software Production Lines. in SPLC.
2002: Springer.

22. A. Ocampo and J. Münch. Process Evolution Supported by Rationale: An
Empirical Investigation of Process Changes. in SPW/ProSim. 2006: Springer.

23. A.-W. Scheer, ARIS - Business process modeling. Second, Completely Revised
and Enlarged Edition. 1999: Springer-Verlag Berlin - Heidelberg.

24. R. Lenz and M. Reichert, IT support for healthcare processes - premises,
challenges, perspectives. Data Knowl. Eng., 2007. 62(1): p. 39-58.

25. K. Sadegh-Zadeh, Fundamentals of clinical methodology - 4. Diagnosis.
Artificial Intelligence in Medecine, 2000. 20(3): p. 227-241.

26. A. Sutcliffe, The domain theory: patterns for knowledge reuse and software
reuse. 2002, Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc.,
Publishers.

27. R. Duray, P.T. Ward, G.W. Milligan, and W.L. Berry, Approaches to mass
customization: configurations and empirical validation. Journal of Operations
Management, 2000. 18(6): p. 605-625.

28. G. Da Silveira, D. Borenstein, and F.S. Fogliatto, Mass customization:
Literature review and research directions, in International Journal of
Production Economics. 2001, Elsevier. p. 1-13.

29. S. Rinderle, M. Reichert, and P. Dadam, Correctness criteria for dynamic
changes in workflow systems - a survey. Data Knowl. Eng., 2004. 50(1): p.
9-34.

30. L.T. Ly, S. Rinderle, and P. Dadam, Semantic Correctness in Adaptive Process
Management Systems. Lecture Notes in Computer Science, 2006. 4102: p.
193-208.

31. J. Jiao, L. Zhang, and K. Prasanna, Process Variety Modeling for Process
Configuration in Mass Customization: An Approach Based on Object-Oriented
Petri Nets with Changeable Structures. International Journal of Flexible
Manufacturing Systems, 2004. 16(4): p. 335-361.

32. M. La Rosa, F. Gottschalk, M. Dumas, and W.M.P.v.d. Aalst. Domain-driven
Reference Process Model Configuration. in Proceedings of the BPM 2007
Workshops (to appear). 2007.

33. M. La Rosa, J. Lux, S. Seidel, M. Dumas, and A.H.M.t. Hofstede,
Questionnaire-driven Configuration of Reference Process Models. Lecture
Notes in Computer Science, 2007. 4495: p. 424-438.

34. M. La Rosa, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede,
Variability Modeling for Questionnaire-based System Configuration, in QUT
ePrints. 2007, Queensland University of Technology.

35. F. Gottschalk, W.M.P.v.d. Aalst, M.H. Jansen-Vullers, and M.L. Rosa,
Configurable Workflow Models. 2007, Eindhoven University of Technology:
The Netherlands.

36. W.M.P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and M.H.
Jansen-Vullers. Configurable Process Models as a Basis for Reference
Modeling. in Business Process Management Workshops. 2005.

146

37. O. Thomas. Understanding the Term Reference Model in Information Systems
Research: History, Literature Analysis and Explanation. in Business Process
Management Workshops. 2005.

38. Wikipedia. Database Management System. 11 July 2007 [cited 12 July
2007]; Available from:
http://en.wikipedia.org/wiki/Database_management_system.

39. M.L. Jaccheri and R. Conradi, Techniques for process model evolution in
EPOS. IEEE Trans. Software Eng., 1993. 19(12): p. 1145-1156.

40. B. Weber, S. Rinderle, W. Wild, and M. Reichert. CCBR-Driven Business
Process Evolution. in ICCBR. 2005: Springer.

41. S.-C. Chou and J.J.-Y. Chen, Process program change control in a process
environment. Softw., Pract. Exper., 2000. 30(3): p. 175-197.

42. P. Zipkin, The limits of mass customization. MIT Sloan Management Review,
2001. 42(3): p. p81-p88.

43. J. Jiao, Q. Ma, and M.M. Tseng, Towards high value-added products and
services: mass customization and beyond. Technovation 2003. 23(10): p.
809-821.

44. A. Wasser, M. Lincoln, and R. Karni, ERP Reference Process Models: From
Generic to Specific, in Business Process Management Workshops. 2006,
Springer. p. 45-54.

45. Royal Children's Hospital Melbourne Australia. MRI GA Clinical Path: MR 960.
September 2005 [cited 14 June 2007]; Available from:
http://www.rch.org.au/emplibrary/rch_clinpath/MRIpath.pdf

46. B. Cahill, D. Carrington, B. Song, and P. Strooper, An Industry-Based
Evaluation of Process Modeling Techniques, in Software Process
Improvement. 2006. p. 111-122.

47. B.-J. Hommes and V. van Reijswoud. Assessing the Quality of Business
Process Modelling Techniques. in Proceedings of the 33rd Hawaii International
Conference on System Sciences-Volume 1. 2000: IEEE Computer Society.

48. R.F. Paige, J.S. Ostroff, and P.J. Brooke, Principles for modeling language
design. Information & Software Technology, 2000. 42(10): p. 665-675.

49. E. Söderström, B. Andersson, P. Johannesson, E. Perjons, and B. Wangler,
Towards a Framework for Comparing Process Modelling Languages, in
Advanced Information Systems Engineering: 14th International Conference,
CAiSE 2002 Toronto, Canada, May 27-31, 2002. Proceedings. 2002. p. 600.

50. Workflow Patterns Initiative. Workflow Patterns. 2007 [cited 17 July 2007];
Available from: http://www.workflowpatterns.com/index.php.

51. S.A. White, Process Modeling Notations and Workflow Patterns. BPTrends,
2004(March).

52. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and P. Wohed. On the
Suitability of UML 2.0 Activity Diagrams for Business Process Modelling. in
APCCM. 2006: Australian Computer Society.

53. M. Dumas and A.H.M. ter Hofstede, UML Activity Diagrams as a Workflow
Specification Language. Lecture Notes in Computer Science, 2001. 2185: p.
76-90.

54. B. Weber, S. Rinderle, and M. Reichert, Change Patterns and Change Support
Features in Process-Aware Information Systems. Lecture Notes in Computer
Science, 2007. 4495: p. 574-588.

55. W.M.P. van der Aalst, The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers, 1998. 8(1): p. 21-66.

56. K. Salimifard and M. Wright, Petri net-based modeling of workflow systems:
An overview. European Journal of Operational Research, 2001. 134(3): p.
664-676.

147

57. J. Mendling, J. Recker, M. Rosemann, and W.M.P. van der Aalst. Generating
Correct EPCs from Configured C-EPCs. in SAC 2006: ACM.

58. J. Recker, M. Rosemann, W.M.P.v.d. Aalst, and J. Mendling. On the Syntax of
Reference Model Configuration - Transforming the C-EPC into Lawful EPC
models. in Business Process Management Workshops. 2005.

59. J. Recker, J. Mendling, W.M.P. van der Aalst, and M. Rosemann. Model-Driven
Enterprise Systems Configuration. in CAiSE 2006: Springer.

60. Workflow Patterns Initiative. Workflow Patterns. 2007 [cited 20-08-2007];
Available from:
http://www.workflowpatterns.com/patterns/control/index.php.

61. J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. in CAiSE
2001: Springer.

62. K. van Hee, O. Oanea, and N. Sidorova, Colored Petri Nets to Verify Extended
Event-Driven Process Chains. Lecture Notes in Computer Science, 2005.
3760: p. 183-201.

63. P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of
Event-Driven Process Chains. in ICATPN. 1998: Springer.

64. B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeerk. Verification of
EPCs: Using Reduction Rules and Petri Nets. in CAiSE 2005: Springer.

65. N. Cuntz and E. Kindler. On the Semantics of EPCs: Efficient Calculation and
Simulation in Business Process Management. 2005: Springer.

66. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. in Business Process Management: Second International Conference,
BPM 2004, Potsdam, Germany, June 17-18, 2004. Proceedings. 2004:
Springer.

67. R.M. Dijkman, M. Dumas, and C. Ouyang, Formal Semantics and Analysis of
BPMN Process Models using Petri Nets, in QUT ePrints. 2007, Queensland
University of Technology.

68. I. Raedts, M. Petkovic, Y.S. Usenko, J.M. van der Werf, J.F. Groote, and L.
Somers. Transformation of BPMN models for Behaviour Analysis. in 5th
International Workshop on Modeling, Simulation, Verification and Validation of
Enterprise Information Systems. 2007. Funchal, Madeira - Portugal.

69. J. Mendling, J. Recker, M. Rosemann, and W.M.P. van der Aalst. Towards the
Interchange of Configurable EPCs: An XML-based Approach for Reference
Model Configuration. in Enterprise Modelling and Information Systems
Architectures. 2005. Klagenfurt, Austria: GI.

70. G. Succi, W. Pedrycz, J. Yip, and I. Kaytazov. Intelligent Design of Product
Lines in Holmes. in Canadian Conference on Electrical and Computer
Engineering 2001.

71. Software Engineering Institute Carnegie Mellon. Software Product Lines.
2007 [cited 26-06-07]; Available from:
http://www.sei.cmu.edu/productlines/.

72. P. Noordhuizen, Analyzing Aspects in Production: Plans for Software Product
Lines, in Electrical Engineering, Mathematics and Computer Science. 2006,
University of Twente: Enschede. p. 176.

73. A. Schnieders and M. Weske, Activity Diagram Based Process Family
Architecture for Enterprise Application Families, in Enterprise Interoperability:
New Challenges and Approaches. 2007, Springer-Verlag: London. p. 67-76.

74. M. Sinnema and D. Sybren, Classifying variability modeling techniques.
Information & Software Technology, 2007. 49(7): p. 717-739.

75. M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COVAMOF: A Framework for
Modeling Variability in Software Product Families. in SPLC. 2004: Springer.

148

76. J.-C. Trigaux and P. Heymans, Modeling variability requirements in Software
Product Lines: a comparative survey, in Technical report. 2003, Computer
Science Institute, University of Namur.

77. K. Czarnecki, Generative Programming: Principles and Techniques of Software
Engineering Based on Automated Configuration and Fragment-Based
Component Models. 1998, Technische Universtität Ilmenau: Ilmenau.

78. J. Estublier. Software Configuration Management: A Roadmap. in ICSE -
Future of Software Engineering 2000. Limerick Ireland.

79. U. Asklund, L. Bendix, and T. Ekman. Software Configuration Management
Practices for eXtreme Programming Teams. in 11th Nordic Workshop on
Programming and Software Development Tools and Techniques (NWPER)
2004. Turku, Finland.

80. R. Conradi and B. Westfechtel, Version models for Software Configuration
Management. ACM Computing Surveys, 1998. 30(2): p. 232-282.

81. R. Conradi and B. Westfechtel, Towards a Uniform Version Model for Software
Configuration Management. ACM Comput. Surv., 1997. 30(2): p. 232-282.

82. R. Conradi and B. Westfechtel. Configuring Versioned Software Products. in
SCM. 1996: Springer.

83. A. Schnieders and F. Puhlmann. Variability Mechanisms in E-Business Process
Families. in BIS. 2006: GI.

84. K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template
Approach Based on Superimposed Variants. in GPCE. 2005: Springer.

85. F. Puhlmann, A. Schnieders, J. Weiland, and M. Weske, Variability
Mechanisms for Proces Models, in PESOA-Report No. 17/2005. 2005,
DaimlerChrysler Research and Technology, Hasso-Plattner-Institut.

86. M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow. Extending Feature
Diagrams with UML Multiplicities. in 6th Conference on Integrated Design &
Process Technology 2002. Pasadena, California, USA.

87. D.F. Brown and D.A. Watt, Programming Language Processors in Java -
Compilers and Interpreters. 2000: Prentice Hall.

88. E.N. Hanson and J. Widom, An Overview of Production Rules in Database
Systems. The Knowledge Engineering Review, 1993. 8(2): p. 121-143.

89. B.P. Munch, Versioning in a Software Engineering Database -The Change
Oriented Way. 1993: Trondheim, Norway.

90. B.P. Munch, J.-O. larsen, B. Gulla, R. Conradi, and E.-A. Karlsson. Uniform
Versioning: The Change-Oriented Model. in Proceedings of the 4th
International Workshop on Software Configuration Management (Preprint).
1993. Baltimore, Maryland.

91. J.M. Küster, J. Koehler, and K. Ryndina. Improving Business Process Models
with Reference Models in Business-Driven Development. in Business Process
Management Workshops. 2006: Springer.

92. I. Sommerville and G. Dean, PCL: A configuration language for modelling
evolving system architectures, in SE/8/1994. 1994, Software Engineering
Research Group, Computing Department, Lancaster University.

93. I. Sommerville and G. Dean, PCL: a language for modelling evolving system
architectures. Software Engineering Journal, 1996. 11(2): p. 111-121.

94. E. Tryggeseth, B. Gulla, and R. Conradi, Modelling systems with variability
using the PROTEUS configuration language, in Selected papers from the ICSE
SCM-4 and SCM-5 Workshops, on Software Configuration Management. 1995,
Springer-Verlag

95. B. Gulla and J. Gorman, Experiences with the use of a configuration language,
in Software Configuration Management. 1996. p. 198-219.

149

96. The Stationary Office. Glossary of terms. 2000 [cited 31-05-2007]; Available
from: http://www.tso.co.uk/demo/itil2/cd/content/ss/ss_apdx_a_02.htm

97. D. Müller, M. Reichert, and J. Herbst. Flexibility of Data-Driven Process
Structures. in Business Process Management Workshops. 2006: Springer.

150

Chapter 10 Appendices

10.1 Appendix 1: Glossary of terms

Business process

A collection of activities that takes one or more kinds of input and creates an output
that is of value to the customer (Hammer and Champy, 1993) [1].

Business process management

Business process management (BPM) is the design and control of business processes
(Leymann and Altenhuber, 1994) [1].

Business process modeling
Business process modeling is the activity of representing or mapping business
processes using a business process modeling language with the goal to describe,
analyze or reengineer business processes.

Business process modeling language
A business process modeling language is a notation that can be used to map or
represent business processes.

Business process redesign

Fundamental rethinking and radical redesign of business processes to achieve
dramatic improvements in critical measures of performance, such as cost, quality,
service, and speed (Hammer and champy, 1993) [1].

Business process variability
Business process variability occurs within the domain space and over time. It leads
to variable business processes.

Change management

Process of controlling Changes to the infrastructure or any aspect of services, in a
controlled manner, enabling approved Changes with minimum disruption [96].

Feature diagram
A feature diagram is a featural description of the individual instances of a concept. A
feature diagram constitutes a tree composed of nodes and directed edges. The tree’s
root represents the concept which is refined using mandatory, optional, alternative
(X-OR-features) and OR-features (Trigaux, Heymans) [76].

Process
Read definition of “Business process”.

Process variant
A process variant is a business process created to comply with the configuration of
its domain.

Process revision
A process revision is a business process created by an evolutionary change of
another business process.

151

Reference process model

Every reference model is a model which can be consulted for the development of
other models (Hars) [37].

Software configuration management
Software configuration management (SCM) is the portion of software project
management concerned with identifying, organizing and controlling changes to the
components of a software project [97].

Software product lines
A software product line (SPL) is a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a
prescribed way [71].

Software product line engineering
Read definition of “Software product lines”.

152

10.2 Appendix 2: Context free grammar of Feature-EPC configuration
rules
Using a context free grammar in Backus-Naur form permits the explicit specification
of the syntax, contextual constraints and semantics of the configuration rules [87].
The objective here is to specify modular, reusable and easy to implement
configuration rules.

Strictly configurable nodes are the connectors XOR and OR, and configurable
functions. For every configurable node, configuration rules shall be specified, this
should permit the automatic generation or the programming of configuration rules.
The specification of complete configuration rules shall then be done by assigning
features to these configuration rules.

To make the configuration rules modular, they have been defined to specify or reflect
the configuration of CEPC process models: every CEPC process model shall come
with its respective set of configuration rules. To have an exact and precise
specification of the rules these have been specified using Backus-Naur Form (BNF).

Syntax

Terminal Symbols
: , ; { } () xor or XOR OR SEQ AND

Non terminal Symbols
FEPCConfiguration ConfigurationRule
CEPCConfigRule ConfFunctionRule
XORRule ORRule
Feature Features
FeatureSet EPCSequence
Event Function
Connector Config
Status Name
ID Letter
Digit

Start Symbol
The start symbol is FEPCConfiguration.

Production rules
FEPCConfiguration ::= ConfigurationRule FEPCConfiguration | ConfigurationRule
ConfigurationRule ::= (ID, NumericPriority): FeatureSet CEPCConfigRule
CEPCConfigRule ::= ConfFunctionRule | XORRule | ORRule

Feature ::= (Name, ID)
Features ::= Feature, FeatureList | Feature
FeatureSet ::= {Features}

ConfFunctionRule ::= (Name, ID, Status)

153

XORRule ::= (xor, ID, XOR, {})
| (xor, ID, SEQ, EPCSequence)
| (xor, ID, SEQ, XORRule)
| (xor, ID, SEQ, ORRule)

ORRule ::= (or, ID, OR, {})
| (or, ID, AND, {})
| (or, ID, XOR, {})
| (or, ID, SEQ, EPCSequence)
| (or, ID, SEQ, XORRule)
| (or, ID, SEQ, ORRule)

EPCSequence::= (Event, Function)
| (Function, Event)
| (Connector, Event)
| (Connector, Function)
| (Event, Connector)
| (Function, Connector)
| (Connector, Connector)

Event ::= (Name, ID)
Function ::= (Name, ID)
Connector ::= (xor, ID) | (or, ID) | (and, ID)

Status ::= ON | OFF

NumericPriority ::= Digit NumericPriority | Digit
Name ::= Letter | Letter Name | Name Digit
ID ::= Letter | Letter ID | ID Digit

Letter ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v |
w | x | y | z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Contextual constraints
There are two types of scope:

 The scope of a single configuration rule: local scope
 The scope of all configuration rules: global scope.

Every ID must be unique and has a global scope.

Every function, event and connector must be an existing node of the configurable
EPC process model.

Every feature must be an existing feature of the Riebisch feature diagram.

A NumericPriority is an integer number between 1 and 1000.

154

Semantics

There are three types of configuration rules:
 Configuration rules that configure functions.
 Configuration rules that configure XOR connectors.
 Configuration rules that configure OR connectors.

(CR2, 2): {(Blind, Fe2)} (Schedule Ambulance, Fu2, OFF)
The configuration rule here above configures a function and has the following
meaning (Figure 100):

 It has the ID ‘CR2’.
 It has the numeric priority ‘2’.
 The feature set is composed of a single feature with name ‘Blind’ and ID ‘Fe2’
 It configures the function with the name ‘Schedule ambulance; and with ID

‘Fu2’ to ‘OFF’.
A configurable function can also be configured to ‘ON’.

Figure 100: illustration of a configurable function

 (CR6, 2): {(Blind, Fe2)} (xor, xor2, SEQ, ((Patient escorted to examination room,
E2), (Medical Examination, Fu6)))
The configuration rule here above configures an XOR connector and has the following
meaning (Figure 101):

 It has the ID ‘CR6’.
 It has the numeric priority ‘2’.
 The feature set is composed of a single feature with name ‘Blind’ and ID ‘Fe2’.
 It configures connector ‘xor’ with ID ‘xor2’ as a sequence. This causes the

deletion of the xor connector and its replacement with the sequence event
‘Patient escorted to examination room’ and function ‘Medical examination’.

An XOR connector can also be configured as an XOR connector.

Figure 101: illustration of a configurable XOR connector

155

(CR7, 2): {(Blind, Fe2)} (or, or1, AND, {})
The configuration rule here above configures an OR connector and has the following
meaning (Figure 102):

 It has the ID ‘CR2’.
 It has the numeric priority ‘2’.
 The feature set is composed of a single feature with name ‘Blind’ and ID ‘Fe2’
 It configures connector ‘or’ with ID ‘or1’ as an ‘AND’ connector.

An OR connector can also be configured as an XOR, OR and sequence (SEQ).

Figure 102: illustration of a configurable OR connector

156

10.3 Appendix 3: Context free grammar of COV-EPC ambition rules
To specify the configuration rules precisely, a context free grammar in Backus-Naur
form shall be used [87]. The syntax, the contextual constraints, the semantics and a
motivation of current ambition rules have been specified here.

Syntax

Terminal Symbols
() , : { } xor and or REP DEL ADD

Non terminal Symbols
Ambition AmbitionRule
AddRule DelRule
RepRule Choice
Options Option
EPCFragment EPCSequence
Node Event
Function Connector
NumericPiority Name
ID Letter
Digit Rule

Start Symbol
Ambition is the start symbol.

Production rules
Ambition ::= AmbitionRule Ambition | AmbitionRule

AmbitionRule ::= (ID, NumericPriority): Choice Rule

Rule ::= AddRule | DelRule | RepRule
AddRule ::= (ADD, {EPCFragment})
DelRule ::= (DEL, Node, Node)
RepRule ::= (REP, Node, Node)

Choice ::= {Options}
Options ::= OptionID, Options | OptionID
Option ::= (Name, OptionID)
OptionID ::= ID

EPCFragment ::= EPCSequence, EPCFragment | EPCSequence
EPCSequence::= (Event, Function)

| (Function, Event)
| (Connector, Event)
| (Connector, Function)
| (Event, Connector)
| (Function, Connector)
| (Connector, Connector)

Node ::= Event | Function | Connector

157

Event ::= (Name, ID)
Function ::= (Name, ID)
Connector ::= (xor, ID) | (or, ID) | (and, ID)

NumericPriority ::= Digit NumericPriority | Digit
Name ::= Letter | Letter Name | Name Digit
ID ::= Letter | Letter ID | ID Digit

Letter ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v |
w | x | y | z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Contextual constraints
There are two types of scope:

 the scope of a single AmbitionRule: local scope.
 the scope of an Ambition: global scope.

IDs have global scope and are unique.

Further important contextual constraints need to be defined on the AddRule:
 The EPCFragment must consist of at least two EPCSequence.
 The first node of the first EPCSequence needs to be an existing node of the

EPC base process model.
 The last node of the last EPCSequence needs to be an existing node of the

EPC base process model.

The following contextual constraints need to be defined on the DelRule:
 The two nodes ‘Node’ need to be existing nodes of the EPC base process

model.

The following contextual constraints need to be defined on the RepRule:
 The first node ‘Node’ needs to be an existing node of the EPC base process

model.

A choice must consist of a set of existing options (optionIDs).

A NumericPriority is an integer number between 1 and 1000.

Semantics

Most importantly the following rule has the following meaning:
AmbitionRule ::= (ID, NumericPriority): Choice Rule
For the following ‘Choice’ or set of selected options apply the corresponding ‘Rule’.

There are three types of rules:
 AddRule ::= (ADD, {EPCFragment})
 DelRule ::= (DEL, Node, Node)
 RepRule ::= (REP, Node, Node)

AddRule has the following meaning: add the new nodes between the first node of the
first EPCSequence and the last node of the last EPCSequence to the EPC base
process model (see syntax).

158

DelRule has the following meaning: delete all the nodes between the two nodes
‘Node’ from the EPC base process model.

RepRule has the following meaning: replace the first node ‘Node’ with the second
node ‘Node in the EPC base process model.

Motivation
The syntax, contextual constraints and semantics of the configuration rules were
specified to minimize the amount of configuration rules that need to be specified.

It is indeed thus better to have the following AddRule::= (ADD, {EPCFragment})
where several nodes can be added at the same time than an AddRule ::= (ADD,
Node, Node) where only a single node can be added at the same time. The second
AddRule would require the specification of more configuration rules when trying to
add several elements to the base process model. The same reasoning holds for the
DelRule.

However the same reasoning does not hold for the RepRule. The new RepRule would
then look like the following rule:

RepRule ::= (REP, Node, Node) | (REP, {EPCFragment}, {EPCFragment})

The usefulness of the AddRule is then questionable as the subrule
(REP, {EPCFragment}, {EPCFragment}) can be used to add new rules. Furthermore
unnecessary complexity is introduced by two different sub-RepRules.

