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Abstract. This chapter deals with advanced concepts for the configuration and 
management of business process variants. Typically, for a particular business 
process, different variants exist. Each of them constitutes an adjustment of a 
master process (e.g., a reference process) to specific requirements building the 
process context. Contemporary business process management tools do not 
adequately support the modeling and management of such process variants. Either 
the variants have to be specified in separate process models or they are expressed 
in terms of conditional branches within the same process model. Both methods 
can result in high model redundancies, which make model adaptations a time-
consuming and error-prone task. In this chapter we discuss advanced concepts of 
our Provop approach, which provides a flexible and powerful solution for 
managing business process variants along their lifecycle. Such variant support will 
foster more systematic process configuration as well as process maintenance. 

Introduction 

Process support is required in almost all business domains (Mutschler et 
al. 2008). As examples consider healthcare (Lenz and Reichert 2007), au-
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tomotive engineering (Müller et al. 2006), and public administration 
(Becker et al. 2007). Characteristic process examples from the automotive 
industry, for instance, include product change management (VDA 2005), 
release management (Müller et al. 2006), and product creation (see below).  

Usually, there exists a multitude of variants of a particular process 
model, whereby each of these variants is valid in a specific scenario; i.e.,  
the configuration of a particular process variant depends on concrete re-
quirements building the process context (Hallerbach et al. 2008b). Regard-
ing release management, for example, we have identified more than twenty 
process variants depending on the considered product series, involved sup-
pliers, or development phases. Similar observations can be made with re-
spect to the product creation process in the automotive domain for which 
dozens of variants exist. Thereby, each variant is assigned to a particular 
product type (e.g., car, truck, or bus) with different organizational respon-
sibilities and strategic goals, or varying in some other aspects.  

In this paper we refer to the service process handling vehicle repair in a 
garage (cf. Figure 1 a). Basically this process works as follows: It starts 
with the reception of a vehicle. After a diagnosis is made, the vehicle is re-
paired (if necessary). During diagnosis and repair, the vehicle is main-
tained; e.g., oil and wiping water may be checked and refilled. The process 
completes when handing the repaired and maintained vehicle back to the 
customer. Depending on the process context different variants of this 
process are required, whereas the context is described by country-specific, 
garage-specific, and vehicle-type-specific variables. In our case studies we 
have identified hundreds of such variants and we have learned that existing 
process modeling tools do not provide sophisticated support for modeling 
and maintaining such large number of process variants. 

Figure 1b to Figure 1d show three simplified examples of such variants 
of a vehicle repairs process. Variant 1, as depicted in Figure 1b, assumes 
that the damaged vehicle requires a checklist of Type 2 to perform the di-
agnosis. Therefore, activity Diagnosis is adapted by modifying its attribute 
Checklist to value “Type 2”. Additionally, the garage omits maintenance of 
the vehicle as this is considered as a special service not offered conjointly 
with the repair process. At the model level this is realized by skipping ac-
tivity Maintenance. As another example consider Variant 2 as depicted in 
Figure 1c. Due to country-specific legal regulations, a final security check 
is required, before handing over the vehicle back to the customer. Regard-
ing this variant, the new activity Final Check has to be added when com-
pared to the standardized process from Figure 1a. Finally, Variant 3 will 
become relevant if a checklist of Type 2 is required for diagnosis, the ga-
rage does not link maintenance to the repair process, and there are legal 
regulations requiring a final check (cf. Figure 1d). 
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As can be seen from these simple examples, variants exist for many 
processes, and thus have to be adequately managed. This chapter presents 
selected concepts of the Provop (PROcess Variants by OPtions) approach 
for managing large collections of process variants. More precisely, Provop 
allows to configure relevant process variants out of one basic process 
model (Hallerbach et al 2008a + 2008c) and to manage them along their li-
fecycle. This chapter focuses on the technical issues which become rele-
vant in this context. Also very important, but out of the scope of this chap-
ter, are governance issues (e.g., Who selects or enforces configurations? 
What does variant management mean for process ownership?).  

The chapter is structured as follows: First, we present problems, which 
will arise if we do not treat variants as first class objects and only model 
them conventionally. Second, we describe key requirements with respect 
to process variant management. Then we introduce our Provop approach 
and selected concepts for process variant management. Finally, we discuss 
related approaches. The chapter concludes with a summary and an outlook. 

 
Figure 1: Variants of a standardized vehicle repair process (simplified view). 
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Dealing with Process Variants in Existing BPM Tools 

Solutions for managing variants in existing BPM tools can be divided into 
two approaches: the multi-model and the single-model approach. 

 
Multi-Model Approach: In existing BPM tools, process variants often 
have to be defined and kept in separate process models as shown in Figure 
1. Typically, this results in highly redundant model data as the variant 
models are identical or similar for most parts. Furthermore, the variants 
cannot be strongly related to each other; i.e., their models are only loosely 
coupled (e.g., based on naming conventions). Furthermore there is no sup-
port for (semi-) automatically combining existing variants to a new one; 
e.g., Variant 3 of our repair process (cf. Figure 1d) combines the adjust-
ments made by Variant 1 and Variant 2, and applies them to the standar-
dized process. However, it cannot be created out of the existing models of 
these two variants as there is no indication which model parts are variant-
specific and which are common for all models. 

This multi-model approach will therefore be only feasible if few va-
riants exist or the variants differ to a large degree from each other. Consi-
dering the large number of variants occurring in practice, however, the 
aforementioned drawbacks increase modeling and maintenance efforts sig-
nificantly. Particularly, the efforts for maintaining and changing process 
variants become high since more fundamental process changes have to be 
accomplished for each variant separately (e.g., due to changed or new legal 
regulations). This is both time-consuming and error-prone. As another 
consequence, over time models representing the variants more and more 
differ from each other; e.g., when optimizations are only applied to single 
variants without considering their relations to other ones (Weber and Rei-
chert 2008b). This, in turn, makes it a hard job for process designers to 
analyze, compare, and unify business processes and to implement the mul-
tiple variants within a common IT system. As conclusion, generally, mod-
eling all process variants in separate models does not constitute an ade-
quate solution for variant management. 

 
Single-Model Approach: Another approach, frequently applied in prac-
tice, is to capture multiple variants in one single model using conditional 
branchings (i.e., XOR-/OR-Splits). As example consider Figure 2, which 
shows the repair process together with different variants (cf. Figure 1 a-d). 
Each execution path in the model represents a particular variant. Thereby, 
branching conditions indicate which path belongs to which variant.  

 
Figure 2: Process Variants realized by Conditional Branches. 
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Generally, specifying all variants in one process model can result in a 
large model, which is difficult to comprehend and expensive to maintain. 
(Note that in realistic scenarios there might be dozens to up to hundreds of 
variants of a particular process type.) As another drawback, variants are 
then mixed with “normal” process logic; i.e., branchings relevant for all 
process variants cannot be distinguished from the ones representing a va-
riant selection. For example, our repair process includes a decision to only 
perform activity Repair if necessary. Therefore, on the model side, there is 
a conditional branching to either perform or skip the repair step. This bran-
ching is relevant for all discussed variants of the repair process; i.e., it is no 
variant-specific branching. However, the user cannot distinguish between 
normal and variant-specific branchings, unless there are special conven-
tions to represent variant specific conditions or other model extensions 
used to mark a branching as normal or variant-specific. In summary, nei-
ther variants are transparent nor explicitly defined in this approach. As a 
consequence the supporting IT system is unaware of the different process 
variants and only treats them as “normal” branchings within a single 
process model. 

Discussion: Neither the use of separate models for capturing process va-
riants nor their definition in one model based on conditional branchings 
constitute adequate methods. Both approaches do not treat variants as first 
class objects; i.e., the variant-specific parts of a process are maintained and 
hidden either in separate models (multi-model approach) or in control flow 
logic (single-model approach). Another drawback of these approaches is 
the lack of context-awareness. Contextual knowledge might only be inte-
grated and used in terms of process meta-data or branching conditions. As 
the process context mainly influences variant configuration, however, this 
fundamental aspect has to be considered more explicitly. 

Note that these limitations also apply to popular business process mod-
eling tools like ARIS Business Architect or WBI Modeler. ARIS Business 
Architect (IDS Scheer 2008), for example, allows to create a new process 
variant by copying the respective model directory and its objects, resulting 
in high redundancy of model data. Though the derived variant objects refer 
to the original objects (denoted as master objects in ARIS) afterwards, 
changes of the latter are not propagated to the variants. In principle, this 
corresponds to the multi-model approach as described above. However, 
through the explicit documentation of relation structures (between original 
and variant objects) some improvement is achieved. 
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Requirements 

We conducted several case studies in the automotive industry (Müller et 
al. 2006, VDA 2005), but also in other domains like healthcare (Lenz and 
Reichert 2007), to elaborate key requirements for the configuration, adap-
tation, and management of process variants. This strong linkage to practice 
was needed in order to realize a complete and solid approach for process 
variant management. The requirements we identified are related to differ-
ent aspects including the modeling of process variants, their linkage to 
process context and context-driven configuration, their execution in 
workflow management systems (WfMS), and their continuous optimiza-
tion to deal with evolving needs; i.e., we have to deal with requirements 
related to the whole process life cycle (Hallerbach et al. 2008c, Weber et 
al. 2006, Weber et al. 2009). The standard process life cycle is depicted in 
Figure 3. It consists of three phases, namely the design and modeling of 
the process, the creation of a particular process variant, and the deploy-
ment of this variant in a runtime environment. The process life cycle can 
be described as a (feedback) loop of these phases during which a process is 
continuously optimized and adapted (Weber et al. 2006, Weber et al. 
2009). The major requirements to be met are described in the following. 

Modeling. Efforts for modeling process variants should be kept as minimal 
as possible. Reuse of the variant models (or parts of them) has to be sup-
ported. In particular, it should be possible to create new variants by taking 
over properties from existing ones, but without creating redundant or in-
consistent model data. Thus, the hierarchical structure of such “variants of 
variants” has to be adequately represented and should be easy to adapt. 
 
Variant Configuration. The configuration of a process variant (i.e., its de-
rivation from a given master or base process) should be done automatically 
if possible. Therefore, the specific circumstances (i.e., the process context) 
under which this configuration takes place have to be considered. In par-
ticular, an elaborated procedure for context-aware, automated variant con-

 
Figure 3: Process Life Cycle. 
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figuration is required. At the same time consistency and correctness of the 
configured process variants have to be ensured throughout the entire pro-
cess life cycle. 

 
Execution. To execute a process variant its model has to be interpreted by 
a workflow engine. In this context it is important to keep information ab-
out the configured process variant and its relation to a master or base pro-
cess (and to other variants) in the runtime system. To deal with dynamic 
changes of the process context the runtime system should additionally al-
low to dynamically switch process execution from one variant to another if 
required (i.e., to reconfigure the corresponding process variant on-the-fly). 
Finally, if context information is only available during runtime, the specif-
ic variant will have to be determined (i.e., configured) at runtime as well. 

 
Maintenance and Optimization. To reduce maintenance efforts and cost 
of change, fundamental changes affecting multiple process variants should 
be conducted only once. As a consequence all process variants concerned 
by the respective change should be adapted automatically and correctly. 
  
There exist other requirements addressed by Provop, but not treated here. 
Examples include the consistency of configured variants, adequate visuali-
zation of the variants in all life cycle phases, and provision of intuitive user 
interfaces for variant configuration. In this chapter we focus on the main 
requirements discussed above, covering the complete process life cycle. 

The Provop Approach 

In practice, process variants are often created by cloning and adjusting 
an existing process model of a particular type according to the given con-
text. For example, regarding the three process models from Figure 1b to 
Figure 1d, we can see that they can be derived from the standardized 
process as depicted in Figure 1a by adding, removing or modifying activi-
ties. Generally, every process model can be derived out of another one by 
adjusting it accordingly, i.e. by applying a set of change operations and 
change patterns, respectively, to it (Weber et al. 2008a). Starting from this 
observation, Provop provides an operational approach for managing pro-
cess variants based on a single process model (see Figure 4a). In particular, 
process variants can be configured by applying a set of high-level change 
operations to a given process model. We denote the latter as base process. 
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In the following we provide an overview of our Provop approach and 

describe it along the different phases of the process lifecycle.  

Modeling 

In the modeling phase, first of all, a base process, from which the differ-
ent process variants can be derived through configuration, has to be de-
fined. Following this, high-level change operations, which can be applied 
to this base process, are specified (Hallerbach et al 2008a, d). 

 
Defining the Base Process: Basic to the configuration of process va-

riants is a base process, which serves as reference for the high-level change 
operations. When considering typical use cases as well as the overall 
process landscape in an enterprise, different policies for defining such base 
process are relevant. Basically, Provop supports the following ones: 

– Policy 1 (Standard Process): Here, the base process represents a do-
main-specific standard or reference process. In the automotive domain, 
for example, such reference processes exist for Engineering Change 
Management. Usually, a standard process has to be adjusted to meet 
specific requirements; i.e., it must be possible to derive variants from 
it. Provop assists designers in correctly defining the necessary adjust-
ments when configuring a process variant out of the reference process.   

– Policy 2 (Most Frequently Used Process): If one process variant is 
used more frequently than others, it can be chosen as base process. 
This reduces configuration efforts in terms of the number of processes 
for which adjustments become necessary. Provop maintains statistics 
on the use of process variants to enable Policy 2. Generally, Policy 2 

Figure 4: Variant configuration by process model adaptation 
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does not ensure that the average number of change operations needed 
to configure the variants out of the base process becomes minimal. 

– Policy 3 (Minimal Average Distance): When applying change mining 
to a collection of variants we can derive a base model such that average 
distance between this model and its variants (i.e., the number of high-
level operations needed to transform the base process into the process 
variant) becomes minimal (Li et al. 2008). Thus, configuration efforts 
can be reduced accordingly. For mining process variants, we utilize al-
gorithms we developed in the MinAdept project (Li et al. 2008a). 

– Policy 4 (Superset of all Process Variants): The base process is created 
by merging all variants into one process model using conditional 
branchings; i.e., the base process realizes a “superset” of all relevant 
variants. Consequently, every element that is part of at least one variant 
belongs to the base process as well. When deriving process variants, 
therefore, only DELETE operations have to be applied. 

– Policy 5 (Intersection of all Process Variants): The base process com-
prises only those elements that are part of all variants; i.e., the base 
process realizes a kind of “intersection” of relevant variants. Therefore, 
the base process covers the identical elements of the process variants. 
When deriving process variants no DELETE operations have to be per-
formed, but elements may have to be moved, modified or inserted. 

 
Policies 1-5 differ in one fundamental aspect: When using Policy 1 or 2 the 
respective base process serves a specific use case; i.e., it represents one 
process variant valid in a specific context. Policies 3-5, in turn, have been 
especially designed for configuring variants and thus do not necessarily re-
present a semantically valid process model. Which policy to choose mainly 
depends on the modeling scenario and the present process landscape; e.g., 
if a standard process already exists, Policy 1 will be recommended. 

 
Change Operations: A base process can be adjusted in different ways 

to configure a specific variant. Provop supports the following adaptation 
patterns: INSERT, DELETE, and MOVE process fragments, and 
MODIFY process element attributes. Thereby, fragments constitute con-
nected process subgraphs (including single activity nodes and edges re-
spectively), which not necessarily have a single entry and single exit. To 
refer to fragments and elements of the base process within such change 
operations we use adjustment points, which correspond to the entry or exit 
of an activity or connector node (e.g., split and join nodes) of the base pro-



10  

cess.1 Adjustment points are labeled with unique names. As example con-
sider “adjustment point X” in Figure 4, which corresponds to the entry of 
activity B.  

Table 1 gives an overview of the change operations currently supported 
by Provop. Each entry describes the purpose of the respective operation, its 
parameters, and the symbol representing it. The formal semantics of re-
spective change patterns is described in (Rinderle-Ma 2008). Note that 
Provop covers only a subset of the change patterns presented in (Weber et 
al. 2007, Weber et al 2008a), which have turned out to be the most relevant 
ones needed for variant configuration in practice; i.e., we were able to cap-
ture the different scenarios discussed in the introduction section based on 
these change patterns. It is also worth mentioning that Provop provides an 
extensible approach to which other change patterns may be added later.  

Table 1: Change operations (i.e. change patterns) supported by Provop 

1. INSERT-Operation 
Symbol 

 
Purpose Addition of process fragments (A process fragment consists of at least one 

process element, e.g., activity nodes or control edges). 
Parameters • Process fragment to be added with entries and exits marked by ad-

justment points 
• Target position of the process fragment within the base process, 

marked by adjustment points for entries and exits 
• Mapping between entries and exits of the added fragment to the tar-

get position within the base process (i.e., mapping of the respective 
adjustment points) 

2. DELETE-Operation 
Symbol 

 
Purpose Removal of process elements 
Parameters • Process fragment to be deleted with entries and exits marked by ad-

justment points 
• Alternatively: deleting single elements by referring to their ID 

3. MOVE-Operation 
Symbol 

 
Purpose Change execution order of activities 
Parameters • Process fragment to be moved with entries and exits marked by ad-

justment points 
• Target position of the process fragment marked by adjustment points 

4. MODIFY-Operation 
Symbol 

 
                                                           
1 If only single elements are affected by a particular change operation their process element IDs 
may be used alternatively. 
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Purpose Change attributes of process elements 
Parameters • Element ID 

• Attribute name 
• Value to be assigned 

 
Grouping Change Operations into Options: As the number of change 

operations required to configure all relevant variants might become large, 
Provop allows to structure multiple change operations by grouping them 
into so called options. This is useful, for example, if the same change op-
erations are always applied in conjunction with each other when configur-
ing certain variants. Think of, for example, the handling of a medical ex-
amination in the radiology unit of a hospital. While for ambulant patients 
no transport between ward and radiology room is required, abasic patients 
first have to be transferred from the ward to the radiology unit and later 
back to the ward. To capture the latter variant we need to add two activities 
at different positions of the respective base process. This can be achieved 
by defining the two insert operations and grouping them in one option.  

 

Constraint-based use of Options: Our case studies have revealed that 
options are often correlated in a structural or semantical manner. To cap-
ture this, Provop considers three types of relations between options, which 
can be explicitly defined by the user: dependency, mutual exclusion, and 
hierarchy. 

– Dependency: When applying different options conjointly to the base 
process (e.g., due to semantical dependencies) the user can explicitly 
define a dependency relation between them. Dependency relations are 
directed; i.e., if relation “Option 1 depends on Option 2” holds, the in-
verse relation (i.e., “Option 2 depends on Option 1”) is not true. 

– Mutual exclusion, in turn, is helpful to describe which options must 
not be used in conjunction with each other when configuring variants. 

– Hierarchy: The definition of option hierarchies allows for the inherit-
ance of change operations. If an option is selected to configure a par-
ticular variant and has an ancestor in the option hierarchy the change 
operations defined by the ancestor options will be applied as well. This 
reduces the amount of change operations defined in options and also 
structures the options landscape; i.e., maintenance is improved. 

 

When defining relations between options, generally, the designer does not 
only use one relation type, but may apply them in combination with each 
other as well. Provop allows for the combined use of multiple relations and 
ensures consistency of a set of relations applied in a given context. For ex-
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ample, contradictory relations (e.g., a mutual exclusion between an option 
and its parental option) must not be applied. Due to lack of space, we omit 
further details on how such contradicting constraints can be identified. 

The ability to define explicit relations between different options eases 
their use significantly. Additionally, Provop excludes semantical errors 
when configuring a process variant, as we will discuss in the sequel.  

Context Model: Provop allows for context-aware process configurations; 
i.e., it allows for the configuration of a process variant by applying only 
those options relevant in the given process context (Hallerbach et al 
2008b). This, in turn, necessitates a model capturing the process context. 
In Provop, such context model comprises a set of context variables. Each 
context variable represents one specific dimension of the process context, 
and is defined by a name and value range. Table 2 shows an example of 
the context model defined for the vehicle repair process from Figure 1. The 
depicted context variables do not only differ in their names and range of 
values, but also in another important aspect. While some context variables 
are defined as static, others are classified as dynamic. For example, the 
value of the context variable Workload is raised or lowered from time to 
time according to the current workload of the garage (e.g., switching from 
“medium” to “high” if many new repair orders emerge at the same time). 
Thus, this variable is of dynamic nature, as its value may change during 
process execution. The context variable Vehicle Type, in turn, is static as 
the vehicle type is set once and does not change during the repair process. 

Table 2: Context model of a vehicle repair process 

Variable name Range of Values Behaviour 
Vehicle Type Type 1, Type 2, Type 3, Type 4 static 
Maintenance Yes, No static 
Security level low, medium, high static 
Workload low, medium, high dynamic 

Variant Configuration 

In the configuration phase the base process, the options defined for it, 
and the context model are used to configure the models of the different va-
riants. More precisely, a particular variant is configured by applying a se-
quence of options and their corresponding change operations to the base 
process. We describe the steps needed for configuring a variant in Provop: 
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Step 1: Select relevant options. To configure a particular variant, usually, 
only a subset of the defined options is relevant. Therefore, as first step in 
the configuration phase, the set of relevant options has to be identified. 
One possible approach is to ask users to manually select the relevant op-
tions. However, this would require sufficient knowledge about available 
options and their effects (i.e., change operations). In particular, if users 
have to choose among a large number of options, this approach will get er-
ror-prone (e.g., relevant options might be omitted or wrong ones chosen). 

A more sophisticated approach is to select relevant options based on 
contextual knowledge. Rather than mapping already configured process 
variants to a context description, context-aware process configuration al-
lows for the combination of the concepts provided by options and context 
models. In Provop, this linkage is realized by the use of context rules. Such 
rules, can be assigned to the options and make use of the defined context 
model. Regarding a given context, all options whose context rules evaluate 
to true, are applied to the base process and therefore determine the re-
spective variant. As special case, the base process itself may serve as va-
riant (i.e., no option is applied). In Step 3 we describe in which order the 
selected options are applied to the base process.  

Figure 5 illustrates how the three variants of the repair process (cf. Fig-
ure 1) are captured in Provop: The standardized process of Figure 1a is de-
fined as the base process out of which the variants are configured. This 
base process contains several adjustment points (e.g. “Start Maintenance” 
at the entry of activity Maintenance). As mentioned, adjustment points 
may be referred to by options and their change operations. Furthermore, 
Figure 5b depicts three options: Option 1 performs a modification of activ-
ity Diagnosis. It will be applied if the type of the vehicle is of value Type 
2. Option 2, in turn, will delete the maintenance activity if no maintenance 
of the vehicle is requested. Finally, Option 3 inserts a final security check 

 
Figure 5: Example of context dependent options. 
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activity in case of high security levels. The variants of Figure 1b-d can 
now be configured by applying a subset of these options to the base pro-
cess. For example, if the context of a process variant is defined by the ex-
pression “Vehicle-Type = Type 2 AND Maintenance = No AND Security-Level = 
Low” Options 1 and 2 will be applied resulting in Variant 1 (cf. Figure 1b).  

 
Step 2: Evaluate relations between selected options. As aforementioned 
options may be related. Generally, for a sequence of options to be applied 
to the base process, compliance with explicitly defined constraints has to 
be ensured. For example, if a selected option depends on another one, not 
yet contained in the set of selected options, this set will have to be adjusted 
accordingly. Generally, this can be achieved either by adding missing op-
tions to the selection list or by removing the ones which cause the con-
straint violation. Another constraint violation will occur if the selection set 
comprises mutually excluding options. In this case one of the conflicting 
options has to be removed by the user in order to restore consistency. In 
summary, option constraints are considered to ensure semantical correct-
ness and consistency of the selected set of options at configuration time. 

 
Step 3: Determine the order in which options shall be applied. Gen-

erally, selected options have to be applied in sequence; i.e., their order has 
to be specified when configuring a variant. A naïve approach would be to 
sort these options in the order they were created; e.g., by making use of 
their creation time stamps. Obviously, this approach will only make sense 
if the options and their change operations are commutative. Otherwise, un-
intended and inconsistent variant models can result, particularly when ap-
plying options in the wrong order. Figure 6 shows an example: After ap-
plying Option 1 to the base process an intermediate model is derived with 
activity D and adjustment point Y being deleted.2 This model is now used 
as “reference model” for applying Option 2. In the present case, Option 2 
cannot be applied, as the adjustment point Y it refers to was deleted when 
applying Option 1. In order to avoid such inconsistencies, Provop allows 
defining the order in which selected options shall be applied. Furthermore, 
wrong option sequences, resulting in erroneous variant models afterwards, 
are excluded based on well-defined correctness criteria (see Step 5). Final-
                                                           
2 Note that this example indicates that we need more advanced change support considering the 
special semantics of adjustment points. Generally, the user should be able to define whether ad-
justment points may be deleted when applying certain change operations or shall be kept in the 
intermediate model. In the latter case the deleted activities and nodes respectively are replaced by 
silent activities without associated actions. Generally, silent activities and adjustment points are 
removed after application of all selected options.  
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ly, by evaluating predefined sequencing constraints a correct application 
order can be determined. 

 
Step 4: Applying options and their change operations. After selecting 
the options and determining their order, their change operations are applied 
to the base process in order to configure the model of the respective va-
riant. Generally, change operations have specific pre- and post-conditions 
which allow us to guarantee their correct application..3 As one pre-
condition, for example, process elements to which an operation refers have 
to be present in the respective model. Thus, the problem depicted in Figure 
6 would be recognized before applying the INSERT-operation of Option 2; 
i.e., Provop would disallow to apply the two options in the depicted order.  

 
Step 5: Checking consistency. The variant models resulting from the 
sketched configuration procedure are supposed to be executed in the 
process enactment phase. Therefore, consistency and correctness of the 
models have to be guaranteed. In addition to the already described con-
straint-based selection approach (cf. Step 2), Provop validates the resulting 
models by checking the consistency and correctness of data and control 
flow. Unlike other variant configuration approaches (Aalst et al 2008), 
Provop does not necessarily require a consistent and correct base process 
as starting point when configuring variants. This follows from the above 
described policies for defining the base process. Assume, for example, a 
base process being defined as intersection of its variants. If two variants 
                                                           
3 For a formal semantics of respective change patterns we refer to (Rinderle-Ma et al. 2008). 

 

Figure 6: Syntactical error after applying options in wrong order. 
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have different activities to write a data object, read by a common activity, 
the base process would only contain the reading activity and thus be incon-
sistent in terms of data flow. Of course, Provop excludes such flaws for the 
configured variant models. 

Deployment and Execution 

After the configuration phase the resulting variant model needs to be 
translated into an executable workflow model. Common tasks emerging in 
this context are to assign graphical user interfaces, to subdivide workflow 
activities into human and automated tasks, or to choose the right level of 
granularity for the workflow model. In Provop we are focusing on prob-
lems arising in the context of variant management.  

One major aspect concerns the context-aware configuration of the dif-
ferent variants. To also capture context changes during process instance 
execution, Provop supports dynamic context variables; i.e., variables 
whose values may change during process execution. When using dynamic 
context variables for defining a context rule of an option, the decision 
whether to apply the corresponding change operations or not has to be 
made at runtime. As a consequence, the respective process variant either 
cannot be completely configured when creating the process instance or it 
has to be reconfigured during runtime. To allow for the dynamic reconfi-
guration of a process instance of a variant model, Provop supports variant 
branches. Basic idea is to encapsulate the adjustments of single options 
within these variant branches. The split condition at a variant branching 
corresponds to the context rule of the option. Whenever process execution 
reaches a variant branch, the current context is evaluated. If the split condi-
tion evaluates to true the variant branch will be executed, i.e., the change 
operations will be applied to the base process. Otherwise, the variant 
branch is skipped and therefore all adjustments of the option are ignored. 
Provop ensures the constraints regarding the use of options in the context 
of such dynamic re-configurations as well. However, the handling of re-
spective correctness issues is outside the scope of this chapter. 
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Figure 7 shows an example of a variant branch definition in conjunction 
with the INSERT operation.4 If the workload of a garage is high, subcon-
tractors will be commissioned to provide maintenance activities. Thus, Op-
tion 4 will be applied adding corresponding activities Commissioning Sub-
contractor and Support Maintenance to the base process. As the context 
variable Workload is dynamic (cf. Table 2) these activities are encapsu-
lated in a variant branch (indicated by the encircled “less than” and “great-
er than” symbols). Furthermore, context rule of Option 4 is used as split 
condition. Whenever a variant branch is reached during process execution 
corresponding context rules are evaluated. If they evaluate to true (cf. Fig-
ure 8 a) the variant branch will be executed, otherwise it will be skipped 
(cf. Figure 8b). 

Maintenance and Optimization 

When evolving base processes in Provop (e.g. due to organizational op-
timization efforts) all related process variants (i.e. their models) are recon-

                                                           
4 Note, that every change operation supported by Provop requires specific considerations here. 

 

Figure 7: Dynamic configuration of process variants. 

 

Figure 8: Determine variant at runtime. 
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figured automatically. Thus, maintenance efforts can be significantly re-
duced. However, evolving and optimizing the base process may affect ex-
isting options, for example, when referred adjustment points are moved to 
a new position or are even deleted. Such problems are detected in Provop; 
e.g., by checking whether the definitions of existing options are affected 
by the adaptations of the base process model. Furthermore, solving those 
conflicts is largely automated.  

Related Work 

Though the support of process variants is highly relevant for practice, 
only few approaches for variant management exist. In particular, there is 
no comprehensive solution for the adequate modeling of a large number of 
variants based on a common master process model. 

There exist approaches which provide support for the management and 
retrieval of separately modeled process variants (i.e., optimizations of the 
multi-model approach). As example, (Lu and Sadiq 2006) allows storing, 
managing, and querying large collections of process variants within a 
process repository. Graph-based search techniques are used in order to re-
trieve process variants that are similar to a user-defined process fragment 
(i.e., the query is represented as graph). Obviously, this approach requires 
profound knowledge about the structure of stored processes, an assumption 
which does not always hold in practice. Variant search based on process 
metadata (e.g., the process context) is not considered. 

An important area related to variant management is reference process 
modeling. Usually, a reference process has recommending character, cov-
ers a family of process models, and can be customized in different ways to 
meet specific needs. Configurable event process chains (C-EPCs), for ex-
ample, provide support for both the specification and the customization of 
reference process models (Rosemann and Aalst 2007, Rosa et al. 2007). 
When modeling a reference process, EPC functions (and decision nodes) 
can be annotated to indicate whether they are mandatory or optional. Re-
spective information is considered when configuring the C-EPCs. A simi-
lar approach is presented in (Gottschalk et al. 2007). Here the concepts for 
configuring a reference process model (i.e., to enable, hide or block a con-
figurable workflow element) are transferred to workflow models. Similar 
to Provop, these approaches allow to define constraints (denoted as “re-
quirements”) regarding the application of different adjustments of the ref-
erence process (e.g., two activities either may have to be deleted together 
from the reference process or none of them).  
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In principle, respective approaches constitute optimizations of the single 
model approach introduced at the beginning of this chapter. As opposed to 
Provop, the suggested methods neither allow to move or add model ele-
ments nor to adapt element attributes when configuring a variant out of a 
reference process model. Basically, the provided configuration support 
corresponds to the one of Policy 4 where the chosen base process (i.e., ref-
erence process) constitutes the superset of all process variants. Obviously, 
in this specific scenario only delete or optional delete operations (i.e., dy-
namic delete operations in Provop) become necessary in order to configure 
a particular process variant out of a reference process model. However, 
Policy 4 is only one out of several configuration policies supported by 
Provop; i.e., a base process can be defined in a more flexible way.  

Different work exits on how specialization can be applied to deal with 
process model variability taking advantage of the generative power of a 
specialization hierarchy (Wyner et al. 2003; van der Aalst 2002). In the 
context of the MIT Process Handbook, for example, (Wyner et al. 2003) 
shows how specialization can be enabled for simple state diagrams and da-
taflow diagrams respectively. For both kinds of diagrams a corresponding 
set of transformation rules is provided that result in process specializations 
when being applied to a particular model. Similarly, (van der Aalst 2002) 
discusses transformation rules to define specialization for process models 
based on Petri Nets. Finally, (Wyner et al. 2003) shows how specialization 
can be used to generate a taxonomy of processes to facilitate the explora-
tion of design alternatives and the reuse of existing designs. Obviously, 
specialization and process taxonomies also allow to capture process va-
riants to some degree. As opposed to the discussed approaches, Provop fol-
lows an operational approach, which is independent of the underlying 
process meta model. In addition, Provop provides comprehensive support 
for the context- and constraint-based configuration of process variants.  

Variants are relevant in many other domains as well, including product 
line engineering and software engineering. For example, fundamental cha-
racteristics of software variability have been described in (Bachmann and 
Bass 2001). In particular, software variants exist in software architectures 
and software product lines (Becker et al. 2001, Halmans and Pohl 2003). 
In many cases, feature diagrams are used for modeling software systems 
with varying features. A similar approach is offered by the so-called plus-
minus-lists known from variant management in bill-of-materials. Correct-
ness issues are not considered in both cases. 

Another contribution stems from the PESOA project (Bayer et al. 2005, 
Puhlmann et al. 2005), which provides basic concepts for variant modeling 
based on UML. More precisely, different variability techniques like inhe-
ritance, parameterization, and extension points are provided and can be 
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used when describing UML models. As opposed to PESOA, the operation-
al approach enabled by Provop provides a more powerful instrument for 
describing variance in a uniform and easy manner; i.e., no distinction be-
tween different variability mechanisms is required. 

Finally, (La Rosa, 2008) presents an approach which goes beyond con-
trol flow and extends business process configuration to roles and objects.  

Summary and Outlook 

We have described the Provop approach for configuring and managing 
process variants. Provop considers the whole process life cycle and sup-
ports variants in all phases. This includes advanced techniques for model-
ing variants in a unified way and within a single process model, but with-
out resulting in too complex or large model representations. Based on 
well-defined change operations, on the ability to group change operations 
into reusable options, and on the possibility to combine options in a con-
strained way, necessary adjustments of the base process can be easily and 
consistently realized when creating and configuring a variant. 

In future research we will apply Provop in industrial context. One of the 
challenges we have to tackle concerns flexible execution of variants; i.e., 
to allow for dynamic switches between variants during runtime. Finally, a 
detailed case study based on a prototype implementing the Provop ap-
proach will be conducted. This prototype is based on the ARIS tool utiliz-
ing the programming interface provided by ARIS (IDS Scheer 2007). 
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