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Abstract

Deciding on web service equivalence in process-aware
service compositions is a crucial challenge throughout the
composition life cycle. Restricting such decisions to (activ-
ity) label equivalence constitutes a simplification for many
practical applications: if two web services have equivalent
labels, does this necessarily mean they are equivalent as
well? In many scenarios other factors play an important
role. Examples include context information (e.g., input and
output messages) and information on the position of web
services within compositions. In this paper, we introduce
the composition life cycle and discuss specific requirements
for web service equivalence along its different phases. We
define adequate equivalence notions for design, execution,
analysis, and evolution of service compositions. Main fo-
cus is put on attribute and position equivalence. Altogether
this paper is a first step towards a new understanding and
treatment of equivalence notions in service compositions.

1. Introduction

The challenge of finding and checking adequate notions
for semantic equivalence is an important research subject in
many areas. In federated databases or data warehouses, for
example, data from heterogeneous sources need to be inte-
grated within one schema. Among other problems, schema
integration has to deal with synonyms and homonyms [14];
i.e., equivalent attribute labels describing different data, or
attributes with different labels but describing the same data.
The capability of the integration process to handle such
cases is crucial for its success.

Similar problems emerge when designing distributed
processes as can be found in inter-organizational partner
settings. As example consider a collaboration between part-
ners from the US, India and Germany, which shall be im-
plemented as web service choreography. At least, we need
to translate web service labels between the service com-
positions of the partners. Still, such language-related as-
pects can be easily handled using ontologies (e.g., based

on OWL-S [12]) since it can be taken for granted that ser-
vice labels confirm and bestaetigen (German term
for confirm) are homonyms. However, in many applications
such knowledge is not at hand. One important use case
is the mining of (completed) executions of service com-
positions; i.e., techniques to derive composition schemas
from execution logs [27]. Since there is no a-priori knowl-
edge on such logs, basically, it cannot be taken for granted
that web services with equivalent label are equivalent them-
selves. Regarding our example, service confirm might
have a different ”meaning” depending on whether it is per-
formed by a manager or a secretary. Obviously, we also
need to consider information about the context of a service
execution when defining equivalence notions for web ser-
vices.

Another use case is the evolution of service composi-
tions. Here, a composition schema is structurally changed
by adding, deleting or moving web service executions. The
ability to adequately support such changes has become cru-
cial since a turbulent market and a constantly changing envi-
ronment force any enterprise to quickly and correctly adapt
their running business processes and service compositions,
respectively. In this context, a composition runtime en-
vironment must enable both ad-hoc changes of single in-
stances of a composition schema (e.g., to react on excep-
tions) and changes of a composition schema itself. The lat-
ter may have to be propagated to already running instances
of a composition schema and become necessary, for exam-
ple, when new regulations come into effect or the compo-
sition schema is redesigned. If changes are concurrently
applied at composition schema and composition instance
level, however, it becomes crucial to carefully decide on
the equivalence of the affected web services. If, for exam-
ple, two web services with equivalent label are inserted at
both schema and instance level, we have to decide on their
actual equivalence in order to avoid duplicate insertions at
the instance level afterwards [19].

From the above examples we can conclude that different
notions of equivalence are needed for comparing the ser-
vices within compositions; this concerns all phases of the
composition life cycle, i.e., design, execution, analysis, and



evolution. First, we summarize the service composition life
cycle. Along it we discuss different requirements for web
service equivalence notions. Based on these requirements
we provide notions for label equivalence, attribute equiva-
lence, and position equivalence, which significantly extend
the existing restricted view on unique labels. We further
show that these equivalence notions are extensible for the
particular needs of other use cases.

Section 2 presents the composition life cycle. In Sec-
tion 3 label equivalence is defined and discussed along the
design and execution phase of a service composition. At-
tribute equivalence is introduced in Section 4 followed by
position equivalence in Section 5. Section 6 discusses re-
lated work and Section 7 concludes with a summary.

2. Web service composition life cycle

Web service composition based on languages like BPEL
or BPMN enable process-aware orchestration of web ser-
vices [2, 24, 13]. The basic idea behind this is illustrated by
Fig. 1. At composition level, two activities are connected
in a sequence: first activity A invokes web service S and
then activity B invokes web service T . The basic challenge
addressed in this paper is how to decide at both composition
and web service level when two activities and services re-
spectively (e.g., S and T ) can be considered as being equal.
This section sketches the life cycle of web service compo-
sitions since the specific challenges for web service equiv-
alence within compositions can be discussed along the dif-
ferent phases of the life cycle. Further, we show that for
different life cycle phases different notions of equivalence
between services are needed and thus have to be defined.

Composition level (control flow)Composition level (control flow)

Activity A Activity B

Web Service S Web Service T 

Web service levelWeb service level

Figure 1. Web service composition

Similar to business processes, web service compositions
undergo a life cycle [31] (cf. Fig. 2). Within the design
phase the web service composition of interest is constructed
resulting in a web service composition schema. As dis-
cussed in [23], for example, the web service composition
is designed at a semantically rather high level in this phase.
A common specification language for web service compo-
sitions at design time is BPMN [10]. As example take web
service composition schemes S and S′ as depicted in Fig. 3:
S consists of three web services A, B, and C to be executed

in sequence. In addition to such simple control flow struc-
tures, BPMN supports more complex control flow patterns
(e.g., parallelism, alternative branchings, and loops). Typ-
ically, web service composition schemes capture message
flow aspects as well; in composition schema S′, for exam-
ple, web service X is sending a message d to subsequent
service Y (stored in flow variable data).

After the design of a composition, the resulting schema
is deployed to web service flow engine(s) (e.g., IBM Web-
Sphere Process Server or ADEPT2 Process Engine [3]).
Usually, this includes the translation to an executable lan-
guage such as BPEL.1 However, it is also common that an
explicit design phase is omitted and the stateful service is
directly composed within the service flow engine. After
its deployment the composition schema can be instantiated
multiple times. Each of the resulting stateful composition
instances is then executed, i.e., the underlying engine in-
vokes the right service at its activation time with the right
input messages and, if necessary, assigns it to the right users
(e.g., based on BPEL4People). When finishing the execu-
tion of a web service, its status is set to completed and the
next service(s) to be executed are determined. Finally, exe-
cution behavior of composition instances is captured in ex-
ecution traces [8].

Workflow-Design

Composition
Evolution

Composition
Design

Composition
Analysis

Composition
Execution

Ad-hoc
Modifications

Templates
Composition

Web Services

Deployment

Web Service Mining

Figure 2. Web service composition life cycle

When using adaptive flow engines like ADEPT2 [3], the
execution phase also enables ad-hoc modifications of com-
position instances (i.e., to structurally adapt the composi-
tion schema for one particular instance). Note that such
instance-specific adaptations often become relevant in real-
world scenarios [9, 28]. We refer to ad-hoc modified com-
position instances as biased instances in the following.

To ensure continuous improvement of a web service
composition during its life cycle (cf. Fig. 2), its instances
should steadily undergo a performance analysis. Similar to

1Comparable to business processes, there is a difference between lan-
guages used at design time and those specifying executable process. Ex-
isting mappings (e.g., from BPMN to BPEL [11]) are helpful here.



the analysis of executed workflows in process-aware infor-
mation systems, relevant techniques comprise performance
analysis and mining [6, 27, 1]. In the context of web ser-
vice equivalence, particularly, mining is interesting. Mining
techniques focus on deriving process structures (and service
composition schemes respectively) from execution traces
(composition mining), on checking different properties of
composition instances, and on analyzing ad-hoc changes
applied at instance level (change mining [4, 6]). With min-
ing, deviations from the original composition schema can
be detected, i.e., we can check whether or not composition
instances ”behave” as specified in the composition schema.
This information can be used to improve composition qual-
ity (e.g., by exterminating design flaws) [29] and to discover
a generic composition schema out of a collection of previ-
ously adapted composition instances [6].

In the evolution phase, the improvements discovered
in the analysis phase are applied to service composition
schema S resulting in new schema version S′ (cf. Fig. 3).
One challenge is how to deal with already running composi-
tion instances (cf. Fig. 3). In existing systems, so far, opti-
mizations can only be applied to newly started composition
instances, i.e., running instances have to finish according to
the old composition schema S. Though this is sufficient for
instances of short duration, for long-running instances it is
crucial to propagate schema changes to already running in-
stances as well [20, 18]. In other words, we need to be able
to migrate running composition instances to the new com-
positions schema version. However, such migration should
not be done in an uncontrolled manner; i.e., system robust-
ness must never be harmed. In Fig. 3, for example, mi-
grating composition instance I2 to new schema version S′

would result in an inconsistent instance state where newly
added activity Y is not correctly supplied with input mes-
sage d at runtime (e.g., leading to an erroneous service invo-
cation or to a deadlock depending on the flow engine). Thus
adequate correctness criteria for composition evolution and
subsequent instance migration are needed. We have intro-
duced a framework for the evolution of business processes
in [20, 18]. As shown in [15, 21], the concepts can be trans-
ferred to the evolution of web service compositions.

3. Composition design and execution: label
equivalence

During composition design (cf. Fig. 2) – regardless
whether a distinct design phase is taking place or the (ex-
ecutable) composition is directly constructed – equivalence
of composed web services is mostly defined based on the
label of the activities invoking them [1]. In Fig. 1, for ex-
ample, web services S and T are considered as being not
equivalent, since the labels of activities A and B are differ-
ent. The same kind of equivalence can be defined based on

X

A B C

YX

data

A X B Y C

dataChange Δ

Composition 
Schema S:

Composition Schema S’:

A B C

Composition Instances on S:

Y not correctly supplied after migration to S’

Activity States: Completed

Change Δ

A B C

I1 Change Δ

A X B Y C

data

I2

A B C

Biased Composition Instance I3 Change Δ

?

Figure 3. Evolution of composition schemas

the web service labels themselves. However, without loss
of generality, we can focus on label equivalence between
composition activities:

Definition 1 (Label equivalence) Let PS be the set of all
web service composition schemas, let A be the set of ac-
tivities based on which web service composition schemas
S ∈ PS are specified, and let W be the set of web services
which are invoked by any activity in A. Then two web ser-
vices w1, w2 ∈ W are called label equivalent if a1.l = a2.l
where a1 is the activity invoking w1 and a2 is the one invok-
ing w2 (l denotes the generic label attribute of an activity).

If two web services are label-equivalent, does this neces-
sarily mean that they are also equivalent themselves? Here
the general answer is no since label equivalence between
services does not enforce their equivalence regarding other
aspects (e.g., equivalence of input/output messages). As-
sume, for example, that activity write letter is used
twice within a composition. Assume further that one of
these activities invokes service W1 requiring input message
form and the other one invokes service W2 without any in-
put message. Though W1 and W2 are label-equivalent (cf.
Def. 1), execution context of W1 and W2 is different.

Obviously, we have to dig beyond the notion of label
equivalence. Intuitively, equivalence of services within a
composition also depends on what they are doing (e.g., what
kind of input message is processed and what kind of output
message is produced), and on how they are used within the
composition. Consider Fig. 4: Web service S is plugged
into a service composition. More precisely, S is connected
to activity A of this composition. While S provides its spe-
cific functionality (i.e., the web service context), the cor-
responding composition activity is assigned its specific ac-
tivity context. Service S is then executed within the activ-
ity context of A (e.g., specifying which actors are allowed
to process A in the given context). In the following, we
use the term ”context” to summarize the attributes linked
to a web service or composition activity, which specify the



conditions the service or activity may be executed in. Re-
garding a web service context, it is definitely necessary to
specify correct input and output messages. This requires
an adequate mapping to the associated composition activ-
ity; i.e., it must be ensured that the input message of the
underlying web service can be supplied by the input data of
the associated composition activity (i.e., out of the flow data
context), and that the output message of the web service is
correctly mapped onto output data of the associated compo-
sition activity. Thus, input and output messages are context
attributes relevant for both services and composition activi-
ties. Context attributes specifically relevant for services are
quality attributes such as quality of service or service level
agreements. Composition activities have specific context
attributes like actor assignment or duration. Intentionally,
we do not give a ”formal definition” here since we believe
that the set of context attributes for services as well as for
activities should be configurable and extensible.

Activity Context

Actor Assignment Min/Max Duration …

Input Output 

Activity A
p

Messages
p

Messages

Input 
Messages

Output 
Messages

Web Service S Web Service Quality of

ContextService

Figure 4. Plugging web service into composi-
tion activity context

Consequently, we distinguish the following three cases:

Definition 2 (Equivalence, synonyms, homonyms) Let
the assumptions be as in Def. 1. Let w1, w2 ∈ W be web
services. Then:

1. w1 and w2 are called equivalent if w1 and w2 are
label-equivalent and have equivalent semantics (for-
mally denoted by w1 ≡sem w2)

2. w1 and w2 are called synonyms if w1 and w2 are label-
equivalent, but do not have equivalent semantics; i.e.,
¬(w1 ≡sem w2)

3. w1 and w2 are called homonyms if w1 and w2 are not
label-equivalent, but have equivalent semantics; i.e.,
w1 ≡sem w2

What are the specific problems occurring in the context
of equivalent, synonymous, or homonymous web services
within compositions? As we show in the following sec-
tions, equivalent web services require a different treatment

in comparison to synonymous or homonymous ones, par-
ticularly in the context of mining and change. Thus, if we
knew exactly that two web services are equivalent, synony-
mous or homonymous, we could take the right decision on
how to react within a particular situation (e.g., when adding
two equivalent services at schema and instance level). How-
ever, in practice the exact relation between services within a
composition is not always clear. Reasons are that composi-
tions might evolve over time or have been not designed in a
rigor manner (e.g., using a controlled vocabulary). Hence it
will be crucial to provide means of how to decide on equiv-
alence of web services if no a-priori knowledge is available.
Obviously, problems might arise in connection with syn-
onyms and homonyms. In addition, we have to take care
of multiple occurrences of equivalent web services, partic-
ularly in the context of composition changes and evolution
(cf. Section 5). However, before discussing solutions for
the different phases of the composition life cycle, we finish
our considerations on the design phase of compositions.

Focusing on composition design, we can abstract from
synonyms and homonyms if an ontology [12] is used; e.g.,
in combination with a service repository (similar to activ-
ity repositories in process-aware information systems [3]).
Still, there might be equivalent services occurring multiple
times within a composition schema [5]. Note that for realis-
tic applications, the multiple usage of the same web service
from the repository might be desirable (e.g., obtaining prod-
uct information in different stages of an orchestration).

During composition execution (cf. Fig. 2) multiple
occurrences of a particular web service can be realized
based on specific composition patterns like multi instan-
tiation [26]. As described in [26, 17], multi-instantiation
adds an instance of the same (web) service multiple times
to a given composition instance. This pattern has been real-
ized, for example, in BPEL and UML. Note that when using
multi-instantiation pattern, the multiple runtime occurrence
of instances of the same activity is desired and happens in a
controlled manner. Specifically, in this case we can consider
these multiple activity instances as being equivalent accord-
ing to Def. 2 since they constitute some kind of copies of
each other. Thus there will be no side-effects caused by un-
known equivalent activities at runtime.

During the execution of a composition instance, ad-hoc
modifications might become necessary (e.g., to react on an
exceptional situation). If the ad-hoc change is conducted
based on a controlled vocabulary and repository, respec-
tively (i.e., new web services to be inserted at instance level
are chosen from the repository), the occurrence of syn-
onyms, homonyms, and equivalent web services (cf. Def.
2) can be controlled as well; i.e., it will be clear which
kind of equivalent notion holds for two web services. How-
ever, equivalent web services might be inserted leading to
their multiple occurrence within the affected composition



instance. This requires no specific action at execution time.
However, as we show in Section 5, in conjunction with
composition evolution, side-effects between web services
inserted at schema and at instance level might occur; i.e.,
another notion of equivalence between services becomes
necessary.

4. Composition analysis: attribute equivalence

We now focus on the analysis of executed composition
instances; i.e., we look at mining techniques which con-
struct the composition schema out of a given set of compo-
sition instances traces (traces for short). Informally, a trace
contains all events happening during execution of a compo-
sition instance; i.e., the start and end events of composition
activities executed in the run of the instances [27].

Which challenges do occur regarding the equivalence of
web services when applying mining techniques? Currently,
most (process) mining algorithms assume that equivalence
of web services (or process activities respectively) is consti-
tuted by their label equivalence. This assumption will hold
if the usage of a controlled vocabulary (e.g., a web service
repository) can be ensured when designing, executing and
changing compositions. However, this often constitutes a
non-valid simplification in practice. In most cases, there
is no information about whether or not a controlled vocabu-
lary has been used for the design of the composition schema
whose instances have produced the corresponding traces.

However, even if the usage of a controlled vocabulary
can be assumed, this does not solve the problem of multiple
occurrences of label-equivalent web services. Consider the
example depicted in Fig. 5a where – at first sight – web ser-
vice sign is used twice within web service composition S.
Possible traces on S are σ1 and σ2 with
• σ1 =<apply, sign, appoint, prepare, exam,

sign, inform> and
• σ2 =<apply, sign, prepare, appoint, exam,

sign, inform>.
Based on label information any mining algorithm counting
frequencies of activity (label) occurrences within the traces
would fail to detect the actual process structure. This state-
ment will be leveraged, if unique node identifiers are stored
in addition to activity labels (e.g., for traces produced in
ADEPT2 and mined by the ProM framework [4]). Reason is
that, for example, the first occurrence of activity sign be-
comes distinguishable from the second occurrence, if both
are additionally labeled as (sign,2) and (sign,6).

However, even if we use a combination of activity la-
bels and node identifiers for web services (sign,2) and
(sign,6), there is no statement on equivalence of their
execution semantics. More precisely, what is the informa-
tion we can obtain from the label and node identifier com-
bination for (sign,2) and (sign,6)? It can be con-
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Figure 5. Example (in BPMN notation)

cluded that within the underlying composition there are two
label-equivalent web services, which occur at different po-
sitions within the composition. However, there is no in-
formation on their execution semantics. Hence, it is not
clear whether (sign,2) and (sign,6) are equivalent
or homonymous. As example consider Fig. 5 and assume
that composition activities having label sign are both con-
nected with same web service. Still they can be distin-
guished by their composition activity context. Specifically,
as can be seen from the swim lane representation in Fig. 5,
actor assignments are different; i.e., first an actor with role
secretary is authorized to perform sign and later in
the composition execution, this activity may be performed
by an actor with role professor.

From the above considerations we can conclude that
equivalence of web services within a composition can be
specified on subsets of the context attributes of both, the
web services and the composition activities. Based on this,
it can be specified more precisely whether or not two web
services within a composition are actually equivalent or
used synonymously. Note that in the example depicted in
Fig. 5, we consider the equivalence or distinction of web
services within compositions based on static attribute val-
ues; i.e., values which are determined during design time.
However, there are also dynamic attribute values, which
might be used for deciding on the equivalence of web ser-
vices. One example are message or data values, which are
written during the execution time of a composition instance.
Another example is provided by so called dynamic actor as-
signments (e.g., activity Y shall be processed by the same
actor who worked on preceding activity X).

Of course, when using attribute-based equivalence, per-
formance considerations have to be taken into account as
well. Typically, it is not a big performance problem to
check for attribute equivalence in case of label-equivalent
web services when mining composition logs – their num-
ber is restricted. Theoretically, the case might occur that all
services within the traces describing the execution behav-



ior of a certain composition schema might stem from labels
which constitute homonyms. Then, for a multitude of pos-
sible traces over a complex service composition (where for
all traces all entries are to be compared to all other entries),
a performance penalty would result. However, in practical
scenarios, this case is of rather theoretical nature.

5. Composition evolution: position equivalence

To be able to discover equivalent web services within
a service composition is also important when composi-
tion schema and composition instances are changed concur-
rently; i.e., if composition schema changes (applied at type
level) shall be propagated to biased composition instances.
As example consider the evolution scenario depicted in Fig.
6. Initially, two (biased) instances are running on composi-
tion schema S. I1 has been individually biased by inserting
web service (activity) X between B and C. I2, in turn,
has been modified by inserting X between A and B. In
a practical scenario, the composition designer might notice
that composition instances again and again deviate from the
original composition schema by having added web service
(activity) X . As a consequence the designer might decide
to lift up the instance-specific changes to the composition
schema level. Such strategies can be supported by the use
of intelligent mechanisms as discussed in [28]. Assume that
S is optimized by inserting new web service (activity) X
between B and C. Then the challenge is to decide on an ad-
equate migration strategy for running instances I1, I2, etc.

a) Web service
X

Web service
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A B C

X composition S`:ΔS = < insert(S,X,B,C)>

A X
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A B X C
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2
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Activity States: Completed
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Activity States: p

Figure 6. Evolution with biased instances

In this scenario the changes of a composition schema and
a composition instance overlap as typical when instances
anticipate later schema optimizations. As can be seen from
Fig. 6, the overlap degree between instance-specific change
∆I1 and composition change ∆S is different from the one
between ∆I2 and ∆S . Specifically, ∆I1 and ∆S completely
overlap whereas ∆I2 and ∆S only partly overlap. Fig.
7 gives an overview of different overlap degrees between

instance- and composition-specific changes. – Why is it
important to distinguish between different kinds of overlap?
As can be seen from Fig. 6, the strategies for migrating I1

and I2 to modified schema version S′ are different. I1 can
be directly migrated to S′ (i.e., without further checks) and
then becomes unbiased again based on S′. In turn, for I2 an
instance-specific change has to be maintained after migrat-
ing it to S′. More details on migration strategies based on
particular degrees of overlap can be found in [19, 28].

Set of running instances on S

Unbiased instances Biased instances

Correct migration Not migratable

Operational approach: 
Comparing change operations

Purged change logs

Limitations:
Context-dependent changes

Structural approach: Comparing
process graphs („effects)

Graph isomorphism
Change region

Limitations:
Order-changing operations

(„move“)
ComplexityHybrid approach

Disjoint bias
Equivalent biased
Subsumption equivalent

bias
Partially equivalent bias

Figure 7. Possible migration strategies in the
context of composition evolution

Regarding equivalence of web services, the challenge for
composition evolution is as follows: even if we assume that
web service X inserted at instance level and web service
X inserted at composition (i.e., type) level are equivalent
according to Def. 2, this information is not sufficient to
decide on the degree of overlap between instance-specific
change and composition change. We also need to know the
particular position of the web service activities within the
respective graphs. This leads us to another notion of equiv-
alence for web services; i.e., position equivalence. In Fig.
6, for example, X is position-equivalent for S and I1.

Basically, as described in Fig. 7, we can decide on posi-
tion equivalence of web services within composition graphs
in two ways: either the composition schema (structural ap-
proach)2 or the applied changes (operational approach) are
directly compared. Since both approaches show specific
limitations (e.g., complexity of graph comparison), they
have been combined to a hybrid approach. Specifically,
the hybrid approach first compares sets of newly inserted or
deleted composition activities (structural approach) and ex-
tracts the missing information on order-changing operations
from the applied changes (operational approach). Starting
from this idea, in the following we provide an algorithm to
quickly determine the positions of newly inserted compo-
sition activities, which can be used to decide on position
equivalence (details on other change patterns can be found
in [16]).

2Here methods such as graph isomorphism can be used.



Algorithm 1 (Positions for insert operations) Let S be
a composition schema and let ∆ be a change which
transforms S into composition schema S’. Let further Nadd

∆

be the set of newly added web service activities in S′ and
Nmove

∆ be the set of moved ones. Let further CtrlE denote
the set of all control links in S and CtrlE’ the set of all
control links in S’ respectively. Then: The positions of the
insert operations applied within ∆ – PosIns(S, ∆) – can
be determined as follows:

PosIns(S, ∆) = ∅;
for all (X ∈ Nadd

∆ ) do

find {(left, X), (X, right)} ∈ CtrlE’;

while (left ∈ Nadd
∆ ∪ Nmove

∆ ) do

find (leftleft, left) ∈ CtrlE’;

left = leftleft;

od

while (right ∈ Nadd
∆ ∪ Nmove

∆ ) do

find (right, rightright) ∈ CtrlE’;

right= rightright;

od

PosIns(S, ∆) = PosIns(S, ∆) ∪{(left,X,right)};
od

Regarding Fig. 6, we obtain the following position sets:
PosIns(S, ∆S) = {(B, X, C)}, PosIns(S, ∆I1) = {(B, X,
C)}, and PosIns(S, ∆I2) = {(A, X, B)}. Based on this
and the assumption that X is equivalent in all three cases,
one can easily conclude that ∆S and ∆I1 are completely
overlapping and ∆S and ∆I2 are partly overlapping.

BX

a) Web service composition S:

b) Instances on web service composition S:

A B C

Y

Web service composition S`:

ΔS = < insert(S,X, A, B), insert(S, Y, X, B)

Activity States: Completed

ΔI1 = <insert(S, Y, A, B), 
insert(S, X, A, Y)>

Biased instance I on S:

A Y

ΔS und ΔI completely overlap

X

C

BXA Y C

Figure 8. Evolution with multiple occurrence
of equivalent web services

The algorithm for determining position equivalence be-
tween insert operations at different levels also works if
newly added web services ”use” other newly added ones
as insertion context. Consider Fig. 8: web services X and
Y are inserted at composition and instance level at same
position, but in different order; i.e., at schema level first X
is inserted followed by Y , whereas at instance level first Y
is inserted and then X . In this case, Algorithm 1 is ”look-
ing” for the first occurrence of a service which has been
already present within the composition. Within the exam-
ple, for schema as well as instance change, the positions

would be determined as PosIns(S, ∆S) = PosIns(S, ∆S)
= {(A,X,B), (A,Y,B)}. Based on this, ∆S and ∆I can be
correctly classified as completely overlapping.

In practical scenarios it might become necessary to allow
for more ”fuzzy” position equivalence notions. For exam-
ple, new web services do not always have to be inserted at
exact this or that position, but within a certain region of the
composition schema. Then the notion of position equiva-
lence can be relaxed to region equivalence.

6. Related Work

We have already referred to some related work in pre-
vious sections. Generally, the treatment of synonyms and
homonyms is important for any schema integration prob-
lem (as can be found, for example, in federated databases
or data warehouses) [14]. Obviously, there are similarities
to the equivalence of web services as described in this pa-
per. In both cases, it might be necessary to decide on equiv-
alence beyond label equivalence. However, characteristics
of data and web services with respect to equivalence are dif-
ferent; i.e., web services embrace much more information,
which might become relevant for equivalence checks, than
data: web services have an execution context, offer process
logic, and so forth. These issues are taken into consideration
when reasoning, for example, about semantic matchmaking
of web services. Describing web services semantically by
using, for example, OWL-S, these approaches apply label
and/or attribute equivalence [22]. Position equivalence, i.e.,
information on the specific position within a composition,
has not been considered so far, but can be used to enhance
information as basis for matchmaking.

In the process management area there are several ap-
proaches for deciding on composition equivalence and sim-
ilarity based on equivalence notions such as graph isomor-
phism, trace equivalence, and bi-simulation [25, 30, 7].
Specifically, it is decided whether two compositions reflect
the same process behavior, whereas in this paper, we focus
on equivalence notions between single web services. How-
ever, particularly attribute and position equivalence could
be used to support the aforementioned equivalence notion
for compositions, since most of them assume unique label-
ing of process activities.

7. Summary and Outlook

We discussed requirements for equivalence notions of
web services within compositions along the phases of the
composition life cycle. Considered equivalence notions in-
clude label equivalence, attribute equivalence, and position
equivalence. Attribute equivalence focuses on the context,
in which web services are executed. Context, in turn, refers



to the web service context itself (e.g., input messages) as
well as to activity context. The latter is determined by the
composition activity into which the web service is plugged
and its specific attributes (e.g., actor assignments). Attribute
equivalence is particularly important for composition analy-
sis (e.g., composition mining). Finally, position equivalence
refers to the position where a service is added to a composi-
tion. Respective information is useful for deciding on posi-
tion equivalence in connection with composition evolution.
The different equivalence notions refer to single phases of
the composition life cycle and are generic. Nevertheless,
the framework presented in this paper needs to be extensi-
ble; i.e., users must be able to specify their own equivalence
notions if necessary. In future work we will elaborate equiv-
alence notions in the context of composition evolution. A
first step is to introduce a more general notion of region
equivalence. Furthermore, we want to investigate which
kind of equivalence notions are necessary for more complex
evolution scenarios.
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