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Abstract

Recently, a new generation of adaptive process man-
agement technology has emerged, which enables dynamic
changes of composite services and process models respec-
tively. This, in turn, results in a large number of process
variants derived from the same process model, but differing
in structure due to the applied changes. Since such pro-
cess variants are expensive to maintain, the process model
should be evolved accordingly. In this context, we need
to know which activities have been more often involved in
process adaptations than others, such that we can focus
on them when reconfiguring the process model. This pa-
per provides two approaches for ranking activities accord-
ing to their involvement in process adaptations. The first
one allows to precisely rank the activities, but is expensive
to perform since the algorithm is at NP level. We there-
fore provide as alternative an approximation ranking algo-
rithm which computes in polynomial time. The performance
of the approximation algorithm is evaluated and compared
through a simulation of 3600 process models. Statistical
significance tests indicate that the performance of the ap-
proximation ranking algorithm does not depend on the size
of process models, i.e., our algorithm can scale up.

1 Introduction

In today’s dynamic business world, success of an enter-
prise increasingly depends on its ability to react to changes
in its environment in a quick, flexible and cost-effective
way. Along this trend a variety of process and service sup-
port paradigms as well as corresponding specification lan-
guages (e.g., WS-BPEL, WS-CDL) have emerged. In addi-
tion, there exist different approaches for adaptive processes
and services respectively [11, 13]. Generally, adaptations
of composite services and processes are not only needed for
configuration purposes at buildtime, but also become nec-
essary during runtime to deal with exceptional situations

and changing needs; i.e., for single instances of compos-
ite services and processes respectively, it must be possible
to dynamically adapt their structure (e.g. to insert, delete or
move activities during runtime).

In response to this need adaptive process management
technology has emerged [18]. It allows to adapt and config-
ure process models at different levels. This, in turn, results
in large collections of process model variants (process vari-
ants for short), which are created from the same process
model, but slightly differ from each other in their structure.

In most approaches supporting structural adaptations of
process models, the resulting process variants have to be
maintained separately. Then even simple changes often re-
quire manual re-editing of a large number of variants. Over
time this leads to divergence of the process variant models,
which aggravates maintenance significantly. Fig. 1 gives an
illustrating example. Out of reference model S, five process
variants have been configured, which are weighted based on
the number of process instances created from them. In our
example, 30% of all instances were executed according to
variant S1, while 15% of the instances did run on S2. Gen-
erally, a large number of process variants may exist at both
the process type and process instance level [7].

As deleted or newly inserted activities can be easily iden-
tified by comparing the activity sets of the reference model
with those of its variants, this paper focuses on analyzing
structural process changes through the movement of activi-
ties (e.g., swapping the order of activities or arranging two
activities in parallel that were ordered sequentially before).
We are aiming at finding the problem makers, i.e., those
activities that are involved in process adaptations more of-
ten than others. These activities, in turn, cause most devia-
tions from the given reference model and thus lead to high-
est adaptation effort. In particular, we provide algorithms
that solely use the reference process model and a collection
of variants derived from it as input; i.e., we do not require
the presence of a change log [12]. The discovered infor-
mation is particularly useful for monitoring the deviations
from the predefined composite service (i.e., process model)
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or for redesigning it through learning from past executions.
Based on the two assumptions that: (1) process mod-

els are block-structured (like for example BPEL) and (2)
all activities in a process model have unique labels, this pa-
per deals with the following fundamental research question:
Given a reference process model S and a collection of pro-
cess variants Si configured from it, how to rank process ac-
tivities according to their involvement in structural adapta-
tions of S (i.e., the adaptations that become necessary when
configuring the process variants out of S)?

Section 2 gives background information needed for un-
derstanding this paper. We provide a precise, but expensive
ranking algorithm in Section 3 and a more efficient approx-
imation ranking algorithm in Section 4. To test the perfor-
mance of the two algorithms, Section 5 describes the setup
and the results of a simulation. Section 6 discusses related
work and Section 7 concludes with a summary and outlook.

2 Backgrounds

We first introduce basic notions needed in the following:
Process Model: LetP denote the set of all sound process

models. A particular process model S = (N,E, . . .)1 ∈ P
is defined as Well-structured Activity Net [11]. N consti-
tutes the set of process activities and E the set of control
edges (i.e., precedence relations) linking them. To limit the
scope, we assume Activity Nets to be block-structured (like
in BPEL). Examples are provided in Fig. 1.

Process change A process change is accomplished by
applying a sequence of change operations to the process
model S over time [11]. Such change operations modify the
initial process model by altering the set of activities and/or
their order relations. Thus, each application of a change op-
eration results in a new process model. We define process
change and process variants as follows:

Definition 1 (Process Change and Process Variant)
Let P denote the set of possible process models and C

1A formal definition of a Well-structured Activity Net contains more
than only node N and edge E, we have ignored others since they are not
used in our context

be the set of possible process changes. Let S, S′ ∈ P
be two process models, let ∆ ∈ C be a process change
expressed in terms of a high-level change operation, and
let σ = 〈∆1,∆2, . . . ∆n〉 ∈ C∗ be a sequence of process
changes performed on initial model S. Then:

• S[∆〉S′ iff ∆ is applicable to S and S′ is the (sound)
process model resulting from application of ∆ to S.

• S[σ〉S′ iff ∃ S1, S2, . . . Sn+1 ∈ P with S = S1, S′ =
Sn+1, and Si[∆i〉Si+1 for i ∈ {1, . . . n}. We denote
S′ as variant of S.

Examples of high-level change operations include in-
sert activity, delete activity, and move activity as imple-
mented in the ADEPT change framework [11]. While in-
sert and delete modify the set of activities in the process
model, move changes activity positions and thus the or-
der relations in a process model. For example, operation
move(S,A,B,C) shifts activity A from its current position
within process model S to the position after activity B and
before activity C. Operation delete(S,A), in turn, deletes
activity A from process model S. Issues concerning the cor-
rect use of these operations, their generalizations, and for-
mal pre-/post-conditions are described in [11]. Though the
depicted change operations are discussed in relation to our
ADEPT approach, they are generic in the sense that they
can be easily applied in connection with other process meta
models as well [18]. For example, a process change as de-
scribed in the ADEPT framework can be mapped to the con-
cept of life-cycle inheritance known from Petri Nets [17].
We refer to ADEPT since it covers by far most high-level
change patterns and change support features [18], and it of-
fers a fully implemented adaptive process engine.

Definition 2 (Distance and Bias) Let S, S′ ∈ P be two
process models. Then: Distance d(S,S′) between S and S′

corresponds to the minimal number of high-level change
operations needed to transform S into model S′; i.e.,
d(S,S′) := min{|σ| | σ ∈ C∗ ∧ S[σ〉S′}. Furthermore,
a sequence of change operations σ with S[σ〉S′ and |σ| =
d(S,S′) is denoted as a bias between S and S′. All the biases
are summarized in a set B(S,S′) = {σ ∈ C∗||σ| = dS,S′},
which we denote this set as the bias set.

The distance between two process models S and S′ is
the minimal number of high-level change operations needed
for transforming S into S′. Usually, it measures the com-
plexity of model transformations. The corresponding se-
quence of change operations is denoted as bias between
S and S′. Generally, it is possible to have more than
one minimal sequence of change operations to realize the
transformation from S into S′, i.e., given models S and
S′ their bias is not necessarily unique [17, 9]. As ex-
ample take Fig. 1. Here, the distance between model S
and variant S4 is one, since we only need to perform one
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change operation ∆1 = move(S,C,B,E) to transform S
into S4. However, it is also possible to transform S into
S4 with ∆2 = move(S,D,B,E). Therefore, we obtain
B(S,S′) = {∆1, ∆2} as bias set. In general, determining the
bias and distance between two process models has complex-
ity at NP level (see [9] for a computation method). Here,
we use high-level change operations rather than change
primitives (i.e. elementary changes like adding or remov-
ing nodes and edges) to measure distance between process
models. This guarantees soundness of process models and
provides a more meaningful measure for distance [9].

Trace: A trace t on process model S = (N, E, . . .)
denotes a valid as well as complete execution sequence
t ≡< a1, a2, . . . , ak > of activity ai ∈ N according
to the control flow set out by S. All traces S can pro-
duce are summarized in trace set TS . t(a ≺ b) is denoted
as precedence relation between activities a and b in trace
t ≡< a1, a2, . . . , ak > iff ∃i < j : ai = a ∧ aj = b.

Order Matrix One key feature of any change framework
is to maintain the structure of the unchanged parts of a pro-
cess model [11]. To incorporate this in our approach, rather
than only looking at direct predecessor-successor relation
between activities (i.e., control edges), we consider the tran-
sitive control dependencies for each activity pair; i.e., for
given process model S = (N, E, . . .) ∈ P , we examine for
every pair of activities ai, aj ∈ N , ai 6= aj their transi-
tive order relation. Logically, we determine order relations
by considering all traces the process model can produce.
Results are aggregated in an order matrix A|N |×|N |, which
considers four types of control relations (cf. Def. 3):

Definition 3 (Order matrix) Let S = (N,E, . . .) ∈ P be
a process model with N = {a1, a2, . . . , an}. Let further TS
denote the set of all traces producible on S. Then: Matrix
A|N |×|N | is called order matrix of S with Aij representing
the order relation between activities ai,aj ∈ N , i 6= j iff:

• Aij = ’1’ iff (∀t ∈ TS with ai, aj ∈ t⇒ t(ai ≺ aj))
If for all traces containing activities ai and aj , ai al-
ways appears BEFORE aj , we denote Aij as ’1’, i.e.,
ai always precedes of aj in the flow of control.

• Aij = ’0’ iff (∀t ∈ TS with ai, aj ∈ t⇒ t(aj ≺ ai))
If for all traces containing activities ai and aj , ai al-
ways appears AFTER aj , we denote Aij as a ’0’, i.e.
ai always succeeds of aj in the flow of control.

• Aij = ’*’ iff (∃t1 ∈ TS , with ai, aj ∈ t1∧ t1(ai ≺ aj))
∧ (∃t2 ∈ TS , with ai, aj ∈ t2 ∧ t2(aj ≺ ai))
If there exists at least one trace in which ai appears
before aj and another trace in which ai appears after
aj , we denote Aij as ’*’, i.e. ai and aj are contained
in different parallel branches.

• Aij = ’-’ iff ( ¬∃t ∈ TS : ai ∈ t ∧ aj ∈ t)
If there is no trace containing both activity ai and aj ,
we denote Aij as ’-’, i.e. ai and aj are contained in
different branches of a conditional branching.

Regarding our example from Fig. 1, the order matrix
for each of the process variant Si is presented on the top of
Fig. 3. Variants Si contain four kinds of control connectors:
AND-Split and AND-Join (corresponding to a flow activity
in BPEL), and XOR-Split and XOR-join (corresponding to
a switch or pick activity in BPEL). The depicted order ma-
trices represent all four described relationships. As exam-
ple consider S5. Activities B and C will never appear in the
same trace since they are contained in different branches of
an XOR block. Therefore, we assign ’-’ to matrix element
ABC for S5. If certain conditions are met, the order matrix
can uniquely represent the process model. Analyzing its or-
der matrix (cf. Def. 3) is then sufficient in order to analyze
the process model (see [9] for details).

3 Precise Activity Ranking Algorithm

In this section, we provide an approach to evaluate the
potential involvement of each activity ai in process config-
urations. We denote such involvement as change impact
CI(ai) of this activity. Based on CI(ai), we are able to
rank activities, which we denote as activity ranking list.

Since we do not presume the presence of change or exe-
cution logs respectively, the major information we can use
for our analysis are the bias sets BS,Si , which can be com-
puted by measuring the structural differences between the
reference process model and each of its variant Si (cf. Def.
2). From the bias set, we are able to compute the minimal
number of change operations needed to transform the refer-
ence model S into a particular variant Si. It, therefore, can
be considered as a purified change log for our analysis.

3.1 Computing Changed Activity Set

Let us re-consider the example from Fig. 1. By scan-
ning the reference process model S and a process variant
Si(i = 1 . . . 5), we are able to compute bias set BS,Si [9].
This bias set contains all possible sequences of change op-
erations transforming S into Si with minimal number of
change operations. However, the definition of bias set is
too strict in our context, since we are only interested in
the activities being involved in model adaptations rather
than the order in which the latter were applied. For ex-
ample, bias set B(S,S2) contains the two changes σ1, σ2

where σ1 =< ∆1,∆2 > with ∆1 = move(S,D, B, C)
and ∆2 = move(S,E, B, C) and σ2 =< ∆2, ∆1 >.
Although σ1 6= σ2, this difference is not relevant in our
context since we are only interested in the activities being
moved rather than the order of the move operations or the
position to which activities were moved.

Therefore, we keep the granularity of our bias analysis
only on the activities that were potentially re-positioned.
Regarding our example, we only want to document these ac-
tivities (i.e., {D,E}) in the context of σ1 (see above) rather
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than the change operation σ1 itself. When only looking at
the moved activities, σ1 does not differ from σ2.

Definition 4 (Changed Activity Set) We define set
Aσ representing the activities that are changed
by any change operation of bias σ, i.e., Aσ =
{ai|(aiis an activity changed by ∆i) ∧ (∆i ∈ σ)}.
We define C(S,S′) = {Aσ|σ ∈ B(S,S′)} as the Changed
Activity Set of S and S′.

According to Def. 4, an element Aσ of the Changed Ac-
tivity Set C(S,S′) corresponds to a set representing the activ-
ities being changed by bias σ. For our example from Fig.
1, the changed activity sets of the reference model S and
its variants Si are listed in Table 1. As example, consider
C(S,S2). We can either move activities D and E, or activities
C and D, or activities C and E to transform model S into S2.

3.2 Computing the Change Impact CI(aj)

We now measure the change impact CI(aj) of activity
aj by computing its involvement in each Change Activity
Set C(S,Si) of model S and its variants Si(i = 1, . . . , n).

For an activity aj ∈ Aσ ∈ C(S,Si), we can compute its
potential involvement in structural adaptations of S when
transforming it into variants Si using

|{aj∈Aσ|Aσ∈C(S,Si)}|
|C(S,Si)|

.
This formula measures for all changes transforming S into
Si (summarized by CS,Si , i.e., the denominator), to what
percentage they involve aj (i.e., the numerator). If wi mea-
sures the weight of Si, Change Impact CI(aj) measures the
potential involvement of activity aj in the configuration of
the different variants (i.e., the necessary structural adapta-
tion of the reference model).

CI(aj) =
n∑

i=1

(wi ×
|{Aσ ∈ C(S,Si) | aj ∈ Aσ}|

|C(S,Si)|
) (1)

Fig. 2 summarizes the change impact of each activity aj

as it can be derived from the configured variants Si in our
example (cf. Fig. 1). For example, activity B shows change
impact of 0.5 for configuring variant S3 and 0.5 for config-
uring variant S5. Considering the weight of each variant, we
obtain CI(B) = 0.175, which means that we need to move
B on average 0.175 times when configuring a variant out of
the given reference model. Fig. 2 also shows the ranking of
the activities based on their change impact.

The described approach is precise: all possible changes
that may have contributed to the configuration of a variant

Models Changed Activity Set
C(S,S1) {{E}}
C(S,S2) {{D,E}, {C,D}, {C,E}}
C(S,S3) {{B,D}, {B,E}, {C,D}, {C,E}}
C(S,S4) {{C}, {D}}
C(S,S5) {{B,D}, {B,E}, {C,D}, {C,E}}

Table 1. Changed activity sets C(S,Si)

are enumerated and the change impact of each activity is
computed by analyzing the reference model and its vari-
ants. However, enumerating all possible changes between
two models is a NP problem [9]. Therefore, this approach
will not scale up at the presence of a large number of vari-
ants with complex structure (i.e., models with dozens up to
hundreds of activities). Section 4 introduces an approxima-
tion algorithm to solve the problem in an efficient way.

4 Approximation Activity Ranking Algorithm

To reduce complexity when computing the change im-
pact for each activity, we introduce an approximation algo-
rithm which only requires polynomial time.

4.1 Aggregated Order Matrix

In Def. 3, we have defined the order matrix which can
uniquely represent a block-structured process model. In or-
der to analyze a given collection of process variants, we first
compute the order matrix for each of these variants (cf. Def.
3). Regarding our example from Fig. 1, we obtain five or-
der matrices (cf. Fig. 3). As the order relation between
two activities might be not the same in all order matrices,
we represent it as a distribution based on the four types of
order relations (cf. Def. 3). Regarding our example, in 65%
of all cases activity C succeeds activity B (as for variants
S1, S2, S4), in 20% of all cases C precedes B (as in S3),
and in 15% of the cases B and C are contained in different
branches of an XOR block (as in S5) (cf. Fig. 3). Therefore,
for a given collection of variants, we can define the order
relation between two activities a and b captured by these
variants as 4-dimensional vector Vab = (v0

ab, v
1
ab, v

∗
ab, v

−
ab):

each field corresponds to the frequency of the correspond-
ing relation type (’0’, ’1’, ’*’ or ’-’) as specified in Def.
3. For our example from Fig. 3, for instance, we obtain
VCB = (0.65, 0.2, 0, 0.15). Fig. 3 shows the aggregated or-
der matrix of the process variants from Fig. 1. A non-filled
value in a certain dimension means it corresponds to zero.

4.2 Approximation Algorithm

We have introduced the aggregated order matrix to re-
flect the fact that the execution orders between two activi-
ties may not be the same in different variants. When recon-
sidering the reference process model from Fig. 1, we can

ActivityVariant

Figure 2. Change impact of each activity
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see that the order relation between activities C and B is ”0”,
i.e., C succeeds B. If we built an aggregated order matrix
V ref purely based on this reference model, we would ob-
tain V ref

CB = (1, 0, 0, 0), i.e., C would then always be a suc-
cessor of B. When comparing VCB = (0.65, 0.2, 0, 0.15)
(which represents the variants) and V ref

CB (which represents
the reference model), their difference indicates that, the po-
sition of B or C might have changed when configuring ref-
erence model into the variants. Generally, we can assume
that the more an activity is involved in configuration of the
process variants, the more its order relation in the variants
differs when compared to the reference model. To quanti-
tatively measure this difference, we first introduce function
f(α, β) which expresses the closeness between two vectors
α = (x1, x2, ..., xn) and β = (y1, y2, ..., yn):

f(α, β) =
α · β

|α| × |β| =
∑n

i=1 xiyi√∑n
i=1 x2

i ×
√∑n

i=1 y2
i

(2)

f(α, β) ∈ [0, 1] computes the cosine value of the angle θ
between vectors α and β in Euclidean space. If f(α, β) = 1
holds, α and β exactly match in their directions; f(α, β) =
0 means they do not match at all. Regarding our example,
for instance, we obtain f(VCB , V ref

CB ) = 0.933. This num-
ber indicates high similarity of the order relations between
B and C in the reference model and the ones in the variants.

Therefore the change impact of a particular activity can
be measured using the following formula. To differentiate it
from Formula (1), we denote the change impact computed
by this approximation as CIa(aj).

CIa(aj) =

∑
x∈N\{aj} f2(Vajx, V ref

ajx )

|N | − 1
(3)

CIa(aj) ∈ [0, 1] corresponds to the average square mean
of the similarity (measured by Formula (2)) between ac-
tivity aj and the rest of activities. It therefore approxi-

Activity E D C B A
CIa(aj) 0.6641 0.7384 0.8678 0.9280 1.0000

Rank 1 2 3 4 5

Table 2. Approximate ranking result

mately reflects how much aj has been re-configured.2 If
CIa(aj) = 1 holds, activity aj will have exactly same or-
der relations with respect to the other activities in both the
reference model and all the variants. For this case, we can
assume that the activity has not been moved. If not, we can
assume aj has been involved in process configurations for a
certain degree. Note that our ranking is based on descend-
ing orders, i.e., the higher the change impact CIa(aj) is,
the lower the chance will be that the activity has been po-
tentially moved. Regarding our example from Fig. 1, the
ranking result of the five activities and their change impact
CIa(aj) are shown in Table 2. Clearly, activity E is moved
most frequently while activity A is the least moved one.

4.3 Algorithm Comparison

The approximation algorithm is a polynomial one, i.e.,
complexity for computing change impact CIa(aj) of activ-
ity aj is at O(n3 ×m) where n is the number of activities
per variant and m is the number of variants. Compared to
the NP level complexity of the precise ranking algorithm,
efficiency of the approximation ranking algorithm is much
better. However, we still have to validate its performance,
i.e., we must show how close it is to the real optimum (i.e.,
the ranking provided by the precise algorithm).

If we simply compare the result of the precise ranking
algorithm (cf. Fig. 2) and the approximation ranking algo-
rithm, we can easily claim that the performance of the ap-
proximation ranking algorithm is quite good, since it gener-
ates the same ranking order as the precise ranking algorithm
does. Clearly, such a simple comparison is far from being
sufficient. In the following, we will use simulation to an-
swer the following two questions:

1. How good does the approximation algorithm perform,
i.e., how close are its ranking results in comparison to
the precise ones?

2. Can the approximation ranking algorithm scale up,
i.e., does its performance depend on the size of the pro-
cess models?

2Note that this is not a precise measure since not only execution orders
of moved activities are affected, but other activities may be influenced by
a change operation as well; e.g., when configuring S into S1, we actually
only need to move activity E. However, execution orders of the remaining
activities are also changed, e.g., activities B,C and D. Reason is that move
operations can globally influence execution order while our measure only
examines the local information for every pair of activities.
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5 Simulation

In our simulations, we have identified several parame-
ters for which we want to investigate whether or not they
influence the performance of our approximation ranking al-
gorithm. Due to space limitation, this paper only discusses
one parameter, the size of a process model. We provide a
detailed analysis of the other parameters in [10].

To analyze the influence of the size of process models,
we generate process models of three different sizes:

1. Small-sized models: 10 activities per variant.
2. Medium-sized models: 20 activities per variant.
3. Large-sized models: 50 activities per variant.
Based on different scenarios, we generate 36 groups of

datasets. Each of them contains:

1. The reference model, i.e., a randomly generated
model from which we configure the process variants
(see [10] for details).

2. The process variants. We generate each variant by
configuring the reference model according to a partic-
ular scenario. For each group we generate 100 process
variants. 3

Using the reference process model and the 100 process
variants, we can rank the activities with the precise and the
approximation ranking algorithm. Table 3 shows the rank-
ing result of a scenario with 10 activities per variant. We
do the same for the 36 groups of datasets (i.e., 3636 process
models) as generated according to different scenarios. 4

5.1 Evaluation Approach

From Table 3 it becomes clear that the precise ranking
algorithm and the approximation ranking algorithm do not
always provide same results, e.g., activity I is ranked third
regarding the precise ranking result, but ranked fourth re-
garding the result of the approximation ranking. In this sub-
section, we evaluate the performance of the approximation
ranking algorithm, i.e., we measure how close approxima-
tion is to the ”real” optimum (i.e., the precise ranking).

Precision is a widely used notion for measuring the per-
formance of ranking algorithms in different domains like
data mining or information retrieval [16, 1]. In our con-
text, we know that the precise ranking algorithm provides
the ranking order we want to have, while the approximation
ranking result is the one we actually get. As the activities
are ranked differently, the subsets of the top n ranked activ-
ities are NOT necessarily same, e.g., let us compare the top
three activities as provided by the two ranking algorithms

3Note that the scenario only describes the statistical feature of the col-
lection of variants configured from the reference model, it does not control
how one particular variant is generated, i.e., the 100 variants are not the
same but only share a certain feature (e.g., same size).

4All datasets and ranking results are available at:
http://wwwhome.cs.utwente.nl/ lic/Resources.html.

(cf. Table 3). While the precise ranking list contains A, F
and I, the approximation ranking list comprises A,F and
J. The difference between the top n activities in the two
ranking list can be measured using Precision(n):
Definition 5 (Precision(n)) Let P (n) be the set containing
the top n ranked activities provided by the precise ranking
algorithm. Let further A(n) be the set containing the top n
ranked activities as provided by the approximation ranking
algorithm. We define Precision(n) as follows:

Precision(n) =
|P (n)

⋂
A(n)|

|P (n)| (4)

Precision(n) reflects how much ”useful information”
about the actual top n activities (measured by the precise
ranking algorithm) we can get when applying the approx-
imation algorithm. As example consider Table 3. When
comparing the top 3 activities of the precision ranking re-
sult with those of the approximation ranking result, we
can see that activities A and F have been correctively se-
lected, whereas this does not apply to activity I. Therefore,
precision(3) = 2/3 = 0.6667 holds. Table 3 shows all
precision values concerning the top n ranked activities. Fig.
4 additionally plots the precision values.

We can derive the curve depicted in Fig. 4 by plotting
and interpolating all precision values. Besides, we plot a
optimum line precision(n) = 1, n = 1 . . . 10 and further
mark the surface area between the two curves. The size
of this surface area then can be used to evaluate the per-
formance of the approximation ranking algorithm for the
given dataset. If the precise and approximation ranking al-
gorithms provide different ranking results, there will be a
number n′ such that precision(n′) does not equal to 1. In
this case, the precision curve deviates from the optimum
curve and creates space. Regarding our example, the sur-
face area occupies 11.2% of the value space (the rectangle
between (0,0) and (10,1) in our case). This number can be
used as indicator showing how close the approximation line
is to the real optimum line, i.e., showing how good our ap-
proximation algorithm works. The larger this area is, the
bigger the difference of the two ranking results is, and the
worse the approximation algorithm actually performs.5 Al-
together, the proposed method is used to evaluate the per-
formance of our approximation algorithm in the conducted
simulation comprising 36 groups of datasets.

5.2 Evaluation Result
5.2.1 Surface Area Distributions
We first analyze the distributions of the surface area val-
ues for different groups. A standard method is to use his-

5This evaluation method is inspired by the precision-recall curve used
in information retrieval [1] and statistics [15]. We omit ”recall” since in
our context, it always equals n/m for the top n ranked activities in a rank
list of size m. We do not correlation analysis [15] since we are interested
in the ranking order rather than the exact change impact of activities.
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Figure 4. Surface area for the precision chart

tograms [15]. A histogram shows the distribution of sur-
face areas for different intervals. The result is given in Fig.
5. The value range of the surface area is [0, 0.4] in all 36
groups, and the surface area of most groups (i.e.,10 out of 36
groups) falls into interval [0.15,0.2). When computing the
mean and standard deviation of the surface area, we obtain
as mean 0.1933 and as standard deviation 0.0871. Using
Kolmogorov-Smirnov test [15], we can see that the prob-
ability of the surface area following a Gaussian distribution
is 91.8% (see Fig. 5 for the fitting lines). We also test the
confidence interval of this surface area since it is an impor-
tant factor to measure performance of the algorithm. The
95% confidence interval is [0.1637,0.2225], which indicates
that the mean of the surface area has 95% probability falling
into the interval [0.1637,0.2225].

5.2.2 Scalability of the Ranking Algorithm
We now analyze whether the approximation ranking algo-
rithm scales up, i.e., whether its performance depends on
the size of process models. For this purpose we divide our
36 groups of datasets into 3 sub-groups: one with small-
sized models, one with medium-sized models and one with
large-sized models. We then analyze whether the surface
areas from the three groups are significantly different from
each other. If so, the size of models has significant influ-
ence on the performance of the approximation algorithm.
Consequently, we want to test the following null hypothe-
sis: ”H0: The size of process model has no influence on
the surface area.”

If the hypothesis is tested to be statistically significant
(i.e., probability larger than 5%), we accept it, i.e., the size
is assumed to have no influence on the performance of the
approximation algorithm. Comparable to most hypothesis
tests, we assume that errors are independent and follow nor-
mal distribution [15, 6]. The standard approach to this type
of problem is to examine the data using a two-way Analysis
of Variance (ANOVA) [15, 6]. Let us divide the dataset into
sub-sets Yj , j = 1 . . . m based on the size of the model.
Let yij , i = 1 . . . n be the surface area of a group in set
Yj . Since we consider three model sizes (”small-sized”,
”medium-sized” and ”large-sized”) in our example, m is 3
and n = |Yj | = 36/3 = 12. Let y be the average surface
area of all groups, let yj represent the average surface area
of the groups in Yj , and let yi be the average surface area
of three corresponding groups in each sub-set Yj . Two-way

Mean: 
19.33%

Standard div: 
8.71%

Figure 5. Histogram of surface area value

ANOVA can be computed as follows:

FA =
n

∑
j(yj−y)2

m−1∑
i,j(yij−yi−yj+y)2

(n−1)(m−1)

(5)

Probability of accepting our hypothesis H0 follows F
distribution with n− 1 and (n− 1)(m− 1) degrees of free-
dom [15]. In our example, FA is 1.3665, which indicates
that the probability of accepting H0 is 0.2758, i.e., it is sig-
nificant. This means we can accept H0 and thus the size
of process models does NOT influence the size of the sur-
face area. This, in turn, proves that the performance of our
approximation algorithm is stable; i.e., it can scale up.

6 Related work

Ranking techniques have been widely used in fields like
information retrieval [1] or data mining [16]. In informa-
tion retrieval, for example, a query results in a list of web
sites or documentations, which are ranked according to the
relevance of the searched object. In the workflow field, con-
formance checking techniques are widely used to measure
the match between the designed process model and its ac-
tual executions [14]. Such technique has also been applied
in certain process mining approaches like genetic mining
[3]; [5] additionally represents a process mining technique
by discovering a collection of process variants. However,
a prerequisite of this approach is a valid change log which
is not always available in practice. Similar techniques for
conformance checking have been applied in process mon-
itoring where people focus on handling exceptional situa-
tions and measuring fulfillment of business rules [4]. In the
web services field, service monitoring techniques are also
used to monitor the behavior of the agreed service composi-
tions. Violations of these agreement can be identified and be
punished [2]. However, most of the mentioned approaches
analyze behavior inconsistencies to measure the matching
between the designed model and real executions. This be-
havior is different than the structural change on which we
focused in this paper (see [8] for a detailed comparison).
Also, few of the above mentioned approaches are able to
provide a detailed analysis of every individual process ac-
tivity based on the observed process variants.
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Precise ranking result
Activity A F I B J D E C G H

Change impact 0.1450 0.1250 0.1100 0.1000 0.0999 0.0999 0.0900 0.0800 0.0700 0.0699
Rank 1 2 3 4 5 6 7 8 9 10

Approximation ranking result
Activity A F J I D G E B C H

Change impact 0.9787 .9792 0.9903 0.9904 0.9908 0.9911 0.991726 0.991728 0.9921 0.9923
Rank 1 2 3 4 5 6 7 8 9 10

precision(n) for top n activities
top n activity 1 2 3 4 5 6 7 8 9 10
precision(n) 1.0000 1.0000 0.6667 0.7500 0.8000 0.8333 0.8571 0.8750 1.000 1.000

Table 3. Precision table

7 Summary and Outlook

One key contribution of this paper is to provide both a
precise algorithm and an approximation algorithm to rank
the activities according to their potential involvement in
process reconfigurations. Using these techniques, we are
able to identify which activities have been configured more
often than others. Such information is valuable for identi-
fying optimization of the currently used (reference) process
model or when re-designing process models. It can also
be used in process monitoring to identify which parts of a
composite service have been adapted more often than others
during run time.

The precise ranking algorithm is precise but also time-
consuming. Therefore, we introduce the approximation
ranking algorithm, which can be computed in polynomial
time. Its performance has also been evaluated by a sim-
ulation. After analyzing about 3600 process models, we
demonstrated that the precision of the approximation rank-
ing algorithm is around 80% and the performance of the
approximation ranking algorithm can scale up. Our next
step is to make use of the suggested technique for process
variant mining [7]. Based on the ranking result, we can fo-
cus on highly ranked activities (i.e., more relevant adapta-
tions), and the trivial configurations will not be considered
when discovering a new reference model by learning from
the variants.
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