
May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems
Vol. 00, No. 00, February 2009, 1–30

RESEARCH ARTICLE

Comprehensive Life Cycle Support for Access Rules in
Information Systems: The CEOSIS Project

Stefanie Rinderle-Ma and Manfred Reichert
Institute of Databases and Information Systems, Ulm University, Ulm, Germany

{stefanie.rinderle, manfred.reichert}@uni-ulm.de
(Received 00 Month 200x; final version received 00 Month 200x)

The definition and management of access rules (e.g., to control access to busi-
ness documents and business functions) is a fundamental task in any enterprise
information system (EIS). While there exists considerable work on how to spec-
ify and represent access rules, only little research has been spent on access rule
changes. Examples include the evolution of organizational models with need
for subsequent adaptation of related access rules as well as direct access rule
modifications (e.g., to state a previously defined rule more precisely). This pa-
per presents a comprehensive change framework for the controlled evolution
of role-based access rules in EIS. First, we consider changes of organizational
models and elaborate how they affect existing access rules. Second, we define
change operations which enable direct adaptations of access rules. In the latter
context, we define the formal semantics of access rule changes based on opera-
tor trees. Particularly, this enables their unambiguous application; i.e., we can
precisely determine which effects are caused by respective rule changes. This is
important, for example, to be able to efficiently and correctly adapt user work-
lists in process-aware information systems. Altogether this paper contributes
to comprehensive life cycle support for access rules in (adaptive) EIS.

Keywords: Enterprise Information System, Change, Access Control, Access Rule Lifecycle

1. Introduction

A fundamental aspect in the design of any enterprise information system (EIS) concerns
access control, i.e., granting certain rights to specific users (e.g., the right to access a
certain business document for a restricted group of users). There exists a multitude of
models for defining access control mechanisms; e.g., GRANT / REVOKE statements in
Database Management Systems or Role Based Access Control (RBAC) in process-aware
information systems (PAIS). Usually such models comprise a set of access rules which
are defined based on an organizational model capturing organizational entities as well as
their relationships. Access rules then control which rights shall be granted to which users.
In the context of PAIS, for example, access rules specify which tasks shall be offered as
work items to which users in their worklists during the execution of a particular process

ISSN: 1751-7575 print/ISSN 1751-7583 online
c© 2009 Taylor & Francis
DOI: 10.1080/1751757YYxxxxxxxx
http://www.informaworld.com

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

2 Taylor & Francis and I.T. Consultant

instance.

1.1. Problem statement

Due to changes of organizational structures or evolving security policies, access rules have
to be frequently adapted. This, in turn, must be effectively handled by the EIS in order
to be able to cope with these organizational or policy changes in a quick, flexible, and
secure way. So far, only little research has been spent on the evolution of access rules and
the resulting effects on the underlying EIS. In particular, access rules might be subject
to the following kinds of changes:

• Organizational Change: Access rule adaptations often become necessary when changing
an organization and its organizational model respectively. For instance, assume that
access control within a PAIS (i.e., the assignment of work items to user worklists) is
based on the simple access rules depicted in Fig. 1. Assume further that these rules are
based on organizational model OM. To streamline the organization, units LoanM and
LoanH are merged into organizational unit LoanH’, and role Clerk is deleted from OM
resulting in organizational model OM’. Obviously, access rule AR1 is not affected by
this organizational change, whereas access rules AR2 and AR3 now refer to entities no
longer being present in OM’. If the affected access rules were not adapted this would
threaten robustness or security constraints of the PAIS. Worst case, for access rules
which cannot be resolved properly, the associated task is offered to unauthorized users
(e.g., process administrators, actors of preceding tasks, and so forth).

b) Access control within
process-aware information system:

For task1: AR1 (Role = Secr.)

For task2: AR2 (Role = Clerk)

For task3: AR3 (OrgUnit = LoanM OR OrgUnit = LoanH)

MERGE

OrgUnit=
Bank

OrgUnit=
LoanD

OrgUnit=
InvestD

OrgUnit=
LoanS

OrgUnit=
LoanM

OrgUnit=
LoanH

Role=
Clerk

Role=
Secr.

ACTORS

a) Organizational
Model OM:

Δ

OrgUnit=
Bank

OrgUnit=
LoanD

OrgUnit=
InvestD

OrgUnit=
LoanS

OrgUnit=
LoanH‘

Role=
Secr.

ACTORS

Organizational
Model OM‘:

not affected by Δ

affected by Δ

affected by Δ

DELETE

task1 task2 task3

AR1 AR2 AR3

Figure 1. Organizational changes affecting access rules

• Direct Access Rule Changes: Generally, it must be also possible to directly adapt access
rules within EIS (cf. Fig. 2). This will become necessary, for example, if access rules
are not specified precisely enough. Either the access rule covers a too broad range of
users (i.e., only a subset of the users qualifying for the access rules actually work on the
associated work items) or it is too narrow (e.g., the related task is always delegated to
substitutes). In both cases, the specified access rules do not reflect the real situation.
As a consequence, task assignment is handled outside the system and thus might be
not properly documented. Furthermore, manual task assignment or adaptation can be
complex, time-consuming and error-prone.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 3

1) Access Rule
Acquisition

2) Access Rule
Definition

3) Access Rule
Deployment

4) Access Rule
Evaluation

Direct Changes of
Access Rules

Organizational
Changes

Access Rule Mining

Figure 2. Access rule life cycle

1.2. Contribution

In this paper we present our CEOSIS1 framework for evolving access rules within EIS
in a controlled and secure way. We first consider changes of organizational models and
evaluate how they affect existing access rules. Then we cope with issues related to direct
changes of access rules. As discussed in Section 1.1 both scenarios are highly relevant in
practice and should therefore be adequately supported by an EIS.

There are two basic requirements for changes of access rules in EIS. First of all, they
must be conducted in a correct way; i.e., they must not violate any structural constraints
set out by the formalism for access rule specification. To fulfill this requirement we
base the definition of access rule changes on an operator tree representation and equip
respective operators with formal pre- and post-conditions which ensure their correct
application. Second, the formal semantics of access rule changes must be specified. Only
this guarantees their unambigous application and supports the precise analysis of change
effects. To achieve this, we base the semantics of access rule changes on the effects they
have on associated valid actor sets; i.e., the set of actors who qualify for the particular
access rule. This also enables, for example, analysis of access rule change effects on user
worklists in PAIS.

Note that this paper significantly extends the work we presented in Rinderle-Ma and
Reichert (2008). Besides giving more technical details and additional examples, we com-
plement our results on the change of access rules by a comprehensive discussion on the
controlled evolution of organizational models and their effects on access rules. Completely
new conceptual results are provided with respect to the support of high-level change op-
erations on access rules. Here, the interesting conclusion is that based on additional
knowledge from the associated organizational model the semantics of such high-level
operations can be determined without recalculating valid actor sets from scratch.

The remainder of this paper is organized as follows: Section 2 provides fundamentals
on organizational models and corresponding access rules. Based on this, Section 3 deals
with changes of organizational models and discusses how they might affect related access
rules. Following this, we deal with direct access rule changes in EIS. Section 4 provides
well-defined change operations for this and Section 5 defines their formal semantics. We
extend this work in Section 6 by showing how to exploit organizational knowledge for
enabling high-level access rule changes. Section 7 discusses our approach and Section 8
deals with related work. We close with a summary and outlook in Section 9.

1CEOSIS: Controlled Evolution of Organizational Structures in Information Systems

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

4 Taylor & Francis and I.T. Consultant

2. Organizational models and access rules

In this section we provide information needed for the formal underpinning of our work.

2.1. Organizational models

An organizational meta model defines entity and relation types based on which con-
crete organizational structures can be modeled; i.e., the meta model can be seen as the
schema which can be instantiated multiple times by concrete organizational models. The
organizational meta model OMM used in this paper is based on the Role Based Access
Control Model (RBAC) as described in Ferraiolo et al. (2003). Basically, it consists of
entity types OrganizationalUnit, Actor, and Role (cf. Fig. 3). Concrete organizational
units (e.g., clinic) can be hierarchically related to each other based on relation type
is subordinated. Similarly, concrete roles can be specialized by introducing correspond-
ing sub roles (relation type specializes). Thereby, a sub role inherits all abilities of its
superior role, but may have additional ones. Finally, actors may have roles (relation type
has) and belong to organizational units (relation type belongs to).

specializesis subordinated specializes

hasbelongs to

is_subordinated

(0,n) (0,1) (0,1) (0,n)

OrganizationalUnit Actor Role

hasbelongs_to(,) (,)

(0,n) (0,1) (0,n) (0,n)

(0,1) (0,n)

Figure 3. Organizational meta model (in ER notation)

We use this well-established, but rather simple organizational meta model OMM in
this paper in order to focus on core issues related to access rule changes. However, subse-
quent considerations can be transferred to more complex organizational meta models as
well; e.g., capturing entities such as abilities or substitution relations (see Rinderle and
Reichert (2007) for examples).

Based on OMM, concrete organizational models can be defined; i.e., a concrete or-
ganizational model OM constitutes an instance of OMM (cf. Def. 2.1). Consider the
example shown in Fig. 4. The depicted organizational model OM comprises the three
organizational units (OU) CallCenter, Accounting and Marketing, which are hierar-
chically subordinated to organizational unit WebBank. Role CAgent, in turn, is specialized
by roles CAgent p and CAgent b. Finally, actors are assigned to roles and belong to one
organizational unit (e.g., actor Black has role Secretary and belongs to organizational
unit Accounting).

Definition 2.1: Organizational model. An organizational model is a tuple OM =
(Actors, Roles, OrgUnits, has, belongs to, is subordinated, specializes), where:

• Actors corresponds to the set of actors; i.e., the people performing activities or access-
ing data objects,

• Roles corresponds to the set of organizational roles,
• OrgUnits corresponds to the set of organizational units,
• has ⊆ Roles × Actors captures the relations linking actors to roles,

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 5

OU=WebBank
Organizational Model OM:

is_subordinated is_subordinated

is subordinated

OU=CallCenter OU=Accounting OU=Marketing

is_subordinated

belongs_tobelongs_to belongs_to belongs_to

Miller Little

Bern

Black Green

Sharp

MossJones

Clark

Smith

Red

Lowe

g _g _ g _ g _

Bern SharpClark

Myers

Red

has has hashas has has has has

R=JuniorAccR=CAgent_p R=CAgent_b R=SeniorAcc

has has hashas has has has has

specializes specializes specializes specializes specializes

R=Supervisor R=CAgent R=Accountant R=AnalystR=Secretary

Figure 4. Organizational model for online banking scenario

• belongs to ⊆ OrgUnits × Actors captures the relations linking actors to organizational
units,

• is subordinated ⊆ OrgUnits × OrgUnits defines the organizational hierarchy, and
• specializes ⊆ Roles × Roles defines the role hierarchy.

Furthermore, two notions on relations are needed in the following:

- R(x) := {y ∈ X | (x,y) ∈ R} for any relation R ∈ {has, belongs to, specializes, is subordinated}
- R∗ is the transitive closure of R

Consider Fig. 4. An example for generic relation R(x) is given by has(Secretary) =
{Black, Moss} (with R = ’has’). The semantics of the two relations is subordinated
and specializes can be informally defined as follows: All actors belonging to an orga-
nizational unit also belong to its superordinated organizational units; e.g., actors Smith,
Sharp and Moss, who all belong to organizational unit Marketing, also belong to superor-
dinated organizational unit WebBank (cf. Fig. 4). Furthermore, if an actor has a particular
role she will possess all superior roles as well; e.g., actor Jones has role SeniorAcc and
therefore also posesses role Accountant.

2.2. Access rules

We provide a notion for access rules and specify their formal semantics. We need this
information later in order to be able to reason about access rule changes.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

6 Taylor & Francis and I.T. Consultant

Definition 2.2: Elementary access rule. Let OM = (Actors, ...) be an organiza-
tional model (cf. Def. 2.1). An elementary access rule EAR on OM is defined as follows:

EAR ≡ (EAR0 ←− τ∗)1 |
(EAR1 ←− Role = r) |
(EAR2 ←− OrgUnit = o) |
(EAR3 ←− Role+ = r) |
(EAR4 ←− OrgUnit+ = o).

The set of all entities qualifying for an elementary access rule EAR on OM can be defined
as follows:

QualEntities(OM, EAR) =

r : EAR = EAR1
o : EAR = EAR2
specializes∗(r) : EAR = EAR3
is subordinated∗(o) : EAR = EAR4
∅ : otherwise

Formal semantics of elementary access rule EAR is defined over the set of valid actors
qualifying for EAR based on OM. We denote this set as VAS(OM, EAR) ⊆ Actors with

• VAS(OM, EAR0) = ∅
• VAS(OM, EAR1) = has(r), i.e., the set of actors having role r.
• VAS(OM, EAR2) = belongs to(o), i.e., the set of actors belonging to unit o.
• VAS(OM, EAR3) = has(specializes∗(r)); i.e., the set of actors having role r or a more

specialized one.
• VAS(OM, EAR4) = has(is subordinated∗(o)); i.e., the set of actors belonging to orga-

nizational unit o or a subordinated one.

Fig. 5 gives an example for the use of access rules in a PAIS. It shows a simple business
process model representing a direct marketing measurement in an online banking sce-
nario. For each process activity, its associated access rule specifies which actors qualify
for carrying out this activity based on organizational model OM (cf. Fig. 4). First of all,
a flyer on a new product is sent to private customers by the secretary of the marketing
unit. Then, these customers are contacted by a call agent who is specialized on private
customers. If a customer shows interest, an appointment for another consulting will be
made by the secretary of the accounting unit. This consulting is subsequently done by
a senior or junior accountant. Finally, the outcome of the marketing measurement is
evaluated by an analyst.

Specifically, Fig. 5 shows two elementary access rules AR2 and AR5 and the associated
valid actor sets based on organizational model OM. Taking elementary access rules as
basis, the general notion of access rule can be formally defined (see below). Here, ele-
mentary access rules may be combined by logical operators AND, OR, and NOT. Note
that we restrict the complexity of access rules by using negation only in the context of
elementary access rules. However, this constitutes no restriction regarding the expres-
siveness of access rules since any negation contained within an access rule AR can be
always pushed to the elementary access rules contained within AR.

Definition 2.3: Access rule. Let OM be an organizational model. An access rule AR
is defined as concatenation of other access rules by using logical operators AND, OR,
and NOT. Formally:

1τ∗ denotes an empty term.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 7

a) Process Schema S:
AR3 (R=Secretary

AND OU=Accounting)
AR4 (R=SeniorAcc

OR R=JuniorAcc)

d

appoint consult
interested

send_
Flyer

call analyzeX X
not_interested

AR1 (R=Secretary
AND OU=Marketing)

AR2 (R=CAgent_p) AR5 (R=Analyst)

b) Valid Actor Sets:
• VAS(OM AR1) = {Moss}

Activity
VAS(OM, AR1) {Moss}

• VAS(OM, AR2) = {Little, Bern}
• VAS(OM, AR3) = {Black}
• VAS(OM, AR4} = {Jones, Red, Green}

X XOR-Split/Join

Access RuleVAS(OM, AR4} {Jones, Red, Green}
• VAS(OM, AR5} = {Smith, Sharp}

Access Rule

Figure 5. Direct marketing process (in BPMN notation)

AR ≡ EAR | NEAR | CAR | DAR
where

• EAR constitutes an elementary access rule (cf. Def. 2.2),
• NEAR ←− (NOT (EAR)) where EAR is an elementary access rule,
• CAR ←− (AR1 AND AR2) where AR1 and AR2 are access rules, and
• DAR ←− (AR1 OR AR2) where AR1 and AR2 are access rules.

Formal semantics of elementary access rule EAR has been already given in Def. 2.2, the
one of NEAR, CAR and DAR can be defined as follows:

• VAS(OM,NEAR) = Actors \ VAS(OM,AR) corresponds to the set of actors not qual-
ifying for access rule AR,

• VAS(OM,CAR) = VAS(OM,AR1) ∩ VAS(OM,AR2) corresponds to the set of actors
qualifying for access rules AR1 and AR2,

• VAS(OM,DAR) = VAS(OM,AR1) ∪ VAS(OM,AR2) corresponds to the set of actors
qualifying for access rules AR1 or AR2

AROM denotes the set of all access rules over OM.

Fig. 5 depicts non-elementary access rules AR1, AR3, and AR4. Regarding AR1, for exam-
ple, valid actor set VAS(OM, AR1) corresponds to intersection of VAS(OM, R=Secretary)
= {Black,Moss} and VAS(OM, OU=Marketing) = {Smith,Sharp,Moss}.

3. Organizational changes and their effects on access rules

In this section we present a framework for modifying organizational models while con-
trolling the effects on access rules at the same time.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

8 Taylor & Francis and I.T. Consultant

3.1. On changing organizational models

Assume that our online bank has to streamline its organization due to a financial crisis (cf.
Fig. 4 and Fig. 5). Necessary actions are depicted in Fig. 6. Due to the reorganization,
there is no longer a distinction between call agents serving private customers and those
dealing with business customers; i.e., these two roles are now merged into role CAgent.
Furthermore, only one secretary for the whole WebBank remains; i.e., one secretary is laid
off and role Secretary is reassigned to organizational unit WebBank. The challenge now
is to realize these changes for the given organizational model, which is implemented and
used by one or more EIS.

OU=WebBank
Organizational Model OM:

is_subordinated is_subordinated

OU=CallCenter OU=Accounting OU=Marketing

is_subordinated

b l b l b l

belongs_to

Miller Little Black Green MossJones SmithLowe

belongs_to belongs_to belongs_to

Bern SharpClark

Myers

Red

R=JuniorAccR=CAgent_p R=CAgent_b R=SeniorAcc

has has hashas has has has has

specializes specializes specializes specializes specializes

R=Supervisor R=CAgent R=Accountant R=AnalystR=Secretary

specializes specializes specializes specializes specializes

Organizational Change Δ =
(DeleteRelation(OM, (Secretary, Moss)), DeleteRelation(OM, Marketing, Moss)),

DeleteRelation(OM, (CAgent, CAgent b),DeleteRelation(OM, (CAgent, CAgent_b),
ReAssignRelation(OM, (Accounting, Black), Black, WebBank) ,

DeleteRelation(OM, (CAgent, CAgent_p)), DeleteEntity(OM, Moss),
DeleteEntity(OM, CAgent), JoinEntities(OM, CAgent_p, CAgent_b, CAgent))

Figure 6. Changes after streamlining the organization

In order to be able to express all relevant kinds of changes of an organizational model
OM , CEOSIS provides a complete set of basic change operations1 with well defined
semantics; e.g., for creating or deleting organizational entities as well as the relations be-
tween them. For each change operation there are formal pre- and postconditions, which
enables preservation of the correctness properties of organizational model OM when ap-
plying the operation(s) to it (assuming that OM was a correct model before). In addition
to these basic change operations, CEOSIS provides common high-level operations in or-
der to facilitate change definition and to capture more semantics about model changes.
As example of such a high-level operation consider the join of two entities (e.g., a fusion
of two organizational units as depicted in Fig. 6). Table 1 depicts selected basic as well
as high-level operations for changing organizational models in CEOSIS.

At the bottom of Fig. 6 the change operations needed to realize the desired streamlin-
ing actions (i.e., adaptations of the given organizational model of our running example)

1Completeness means that a given organizational model OM can be applied to an arbitrary other organizational
model OM ′ using the given set of change operations.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 9

Table 1. Selection of change operations on organizational models (Rinderle and Reichert (2007))

Let Entities:=Actors ∪ Roles ∪ OrgUnits and
Relations:= {(e1, e2)|e1, e2 ∈ Entities ∧ (e1, e2) ∈ {has, belongs to, is subordinated, specializes}}
CreateEntity:OM× Identifier 7→ OM with CreateEntitiy(OM, eId) = OM’

Preconditions: • eId 6∈ Entities
Postconditions: • Entities’ = Entities ∪ {eId}

• Relations’ = Relations
DeleteEntity: OM× E 7→ OM with DeleteEntity(OM, e) = OM’

Preconditions: • e ∈ Entities
• 6 ∃ rel = (e1, e2) ∈ Relations with e1 = e ∨ e2 = e

Postconditions: • Entities’ = Entities \ {e}
• Relations’ = Relations

CreateRelation: OM× E × E 7→ OM with CreateRelation(OM, e1, e2) = OM’)
Preconditions: • e1, e2 ∈ Entities

• (e1, e2) 6∈ Relations
• e2 6∈ R∗(e1) with R ∈ {specializes, is subordinated}

Postconditions: • Entities’ = Entities
• Relations’ = Relations ∪ {(e1, e2)}

DeleteRelation: OM×RE 7→ OM with DeleteRelation(OM, relation) = OM’
Preconditions: • relation ∈ Relations
Postconditions: • Entities’ = Entities

• Relations’ = Relations \ {relation}
ReAssignRelaton: OM×RE × E × E 7→ OM with ReAssignRelation(OM, r, e, eNew) = OM’

Preconditions: • r = (e1, e2) ∈ Relations
• e = e1 ∨ e = e2 (w.l.o.g., we assume e = e1 in the following)
• eNew ∈ Entities
• e ∈ Actors =⇒ e2 6∈ Actors
• e ∈ Roles =⇒ e2 6∈ OrgUnits
• e ∈ OrgUnits =⇒ e2 6∈ Roles
• e2 6∈ R∗(e1) with R ∈ {specializes, is subordinated}

Postconditions: • Relations’ = Relations ∪ {(e, eNew)} \ {(e1, e2)}
Postconditions: • Entities’ = Entities

JoinEntities: OM× E × E × Identifiers 7→ OM with JoinEntities(OM, e1, e2, nId) = OM’
Preconditions: • e1, e2 ∈ Entities

• nId 6∈ Entities
• e1, e2 6∈ Actors

Postconditions: • CreateEntity(OM, eNew) := eNew
• ∀ (e, e1) ∈ Relations: ReassignRelation(OM, (e, e1), e1, eNew)
• ∀ (e, e2) ∈ Relations: ReassignRelation(OM, (e, e2), e2, eNew)
• ∀ (e1, e) ∈ Relations: ReassignRelation(OM, (e1, e), e1, eNew)
• ∀ (e, e2) ∈ Relations: ReassignRelation(OM, (e, e1), e2, eNew)
• DeleteEntity(OM, e1)
• DeleteEntity(OM, e2)

are depicted. For instance, there is one operation which reassigns actor Black from orga-
nizational unit Accounting to organizational unit WebBank. Merging the organizational
roles CAgent p and CAgent b, in turn, is accomplished by first deleting superordinated
role CAgent and subsequently joining roles CAgent p and CAgent b into new role CAgent.
(There exist other options to realize this merger which are omitted here.) Fig. 7 depicts
the organizational model OM ′ that results after implementing the desired reorganization.

3.2. Effects on access rules

Using the change operations presented in Table 1, we are able to modify organizational
models while preserving certain model properties. However, this does not guarantee any
control of possible side-effects of such model changes on, for example, access rules. Con-
sider again our process example in Fig. 8. After changing the underlying organizational
model, for example, access rule AR2 cannot be resolved anymore. Reason is that role
CAgent p, to which access rule AR2 refers, is no longer present in OM’. We denote this
problem as dangling reference. Another problem is present for access rules AR1 and AR3.
Even though they do not contain dangling references (and thus are resolvable over OM’),
their valid actor sets become empty on OM’. This might raise severe problems when
access rules are resolved and the corresponding tasks shall be assigned to the work-

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

10 Taylor & Francis and I.T. Consultant

OU=WebBank
Organizational Model OM‘:

is_subordinated is_subordinated

OU=CallCenter OU=Accounting OU=Marketing

is_subordinated

b l b l

belongs_to

Miller Little Black GreenJones SmithLowe

belongs_to belongs_to

Bern SharpClark

Myers

Red

R=JuniorAccR=SeniorAcc

has has hashas has has has

specializes specializes specializes

R=Supervisor R=CAgent R=Accountant R=Analyst

specializes specializes specializes

R=Secretary

Figure 7. Modified organizational model

a) Process Schema S:
AR3 (R=Secretary

AND OU=Accounting)
AR4 (R=SeniorAcc

OR R=JuniorAcc)

d

appoint consult
interested

send_
Flyer

call analyzeX X
not_interested

AR1 (R=Secretary
AND OU=Marketing)

AR2 (R=CAgent_p) AR5 (R=Analyst)

b) Valid Actor Sets:
• VAS(OM‘ AR1) = ∅

Dangling Reference

InconsistencyVAS(OM , AR1) = ∅
• VAS(OM‘, AR3) = ∅

y

Figure 8. Effects on direct marketing process

lists of qualifying actors.1 If the valid actor set of an access rule becomes empty for a
process activity, either the process will be blocked at this point or the PAIS will assign
the corresponding work item to other, potentially non-authorized users (e.g., the system
administrator). Particularly in the context of sensitive data such false task assignments
constitute a severe security threat.

Consequently, the challenge is to control the side-effects of organizational changes on
access rules. Specifically, access rules have to be checked for dangling references and
empty valid actor sets. In the following we give formal notions for both problems. Based
on these notions, we provide a criterion which allows us to decide whether or not an
access rule AR is valid with respect to a given organizational model OM . We call an
access rule valid on OM if the following two conditions hold:

1In Process-Aware Information Systems, generally, actors access activities via their worklists.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 11

(1) AR does not contain dangling references, i.e., it does not refer to entities not present
in OM . Formally:

DanglingRef(OM, AR) =
{

FALSE if ∀ EAR ∈ AR : QualEntities(OM, EAR) 6= ∅
TRUE otherwise

where the notion EAR ∈ AR expresses that elementary access rule EAR is contained
within access rule AR.

(2) AR is resolvable, i.e., the set of valid actors VAS(OM , AR) does not become empty.
We consider this second constraint as an important property of any access control compo-
nent in order to ensure that objects remain accessible or tasks remain doable. Formally:

Resolv(OM,AR) =
{

TRUE if V AS(OM,AR) 6= ∅
FALSE otherwise

Definition 3.1: Valid access rule. Let OM = (Entities, Relations) be an organiza-
tional model and let AR be an access rule on OM. Then: AR is valid regarding OM if and
only if there are no dangling references within the elementary access rules contained in
AR and AR is resolvable over the set Entities. Formally:

Valid(OM, AR) = TRUE :⇐⇒ (DanglingRef(OM, AR) = FALSE ∧ Resolv(OM, AR) = TRUE)

3.3. Adapting access rules after organizational changes

Determining potential problems in connection with organizational changes (e.g., empty
valid actor sets) is a first important step. Another one is to cope with identified problems
in an adequate and efficient way. CEOSIS offers a number of sophisticated adaptation
policies in this context. In the following, we exemplarily provide one of these policies,
which enables adaptations of access rules when applying the high-level change operation
JoinEntities (cf. Table 1) to an organizational model. Note that adaptation policies
are applied in a semi-automatic manner; i.e., the system only recommends adaptations
of the access rules affected by an organizational change, but the final decision has to be
made by the user.

Adaptation Policy (Avoiding dangling references). Let OM = (Entities, Rela-
tions) be an organizational model and let AR be a valid access rule on OM. Let further
∆op = JoinEntities(OM, ...) be a high-level change operation which transforms OM
into another organizational model OM’. Then: When applying adaptation rule δAR (see
below) to AR this rule can be transformed into an access rule AR’ on OM ′ which does
not contain dangling references and which is semantically ”close” to AR. For ∆op the
corresponding adaptation rule δAR turns out as follows:

∆op = JoinEntities(OM, e1, e2, newEnt) =⇒
δAR: ∀ EAR ∈ AR with EAR refers to ei (i = 1,2): substitute ei by newEnt

Consider again access rule AR2 in Fig. 8, which contains a dangling reference to CAgent p
based on OM’. This situation has occured after joining CAgent p and CAgent b. Thus,
when applying the above adaptation policy, the reference to CAgent p is substituted by
a reference to the newly introduced entity CAgent. Fig. 9 depicts the result.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

12 Taylor & Francis and I.T. Consultant

Process Schema S‘:
AR3‘ R=Secretary

AR4 (R=SeniorAcc
OR R=JuniorAcc)

d

appoint consult
interested

send_
Flyer

call analyzeX X
not_interested

AR1‘ R=Secretary AR2‘ (R=CAgent) AR5 (R=Analyst)

VAS(OM‘, AR1‘) = {Black}
VAS(OM‘, AR3‘) = {Black}()

Figure 9. Adapted direct marketing process

Even if the problem of dangling references is satisfactorily solved we still might be con-
fronted with non-resolvable access rules when changing an organizational model. This,
in turn, could cause runtime errors or at least runtime delays (e.g., if activities cannot
be processed immediately due to the absence of qualifying actors). Worst case severe
security problems can result (e.g., in case a manual activity without qualifying actors is
offered to the system or process administrator as in some commercial workflow systems).

Let OM be an organizational model which is transformed into another organizational
model OM ′ by change ∆. Furthermore, let AR be an access rule on OM . First of all,
we illustrate, at an abstract level, how the valid actor set of an access rule AR based
on OM may change when migrating this rule to the new model version OM ′. Fig. 10
depicts possible relations between the valid actor set of AR on OM (i.e., VAS(OM,AR))
and the valid actor set of AR on OM ′ (i.e., VAS(OM’,AR)): In Fig. 10a the migration of
AR from OM to OM ′ does not influence the valid actor set; i.e., the set of valid actors
remains the same. Consequently, AR is still resolvable over OM ′ in this case, and does
not require any adaptation of worklists or lists of qualified actors afterwards. Fig. 10b
depicts the scenario in which the valid actor set is expanded when migrating AR to OM ′.
In practice this might require, for example, an update of user worklists by additionally
inserting the associated work items into the worklists of newly qualified actors from the
difference set VAS(OM’, AR) \ VAS(OM, AR). By contrast, the valid actor set could be
also reduced due to a model change as depicted in Fig. 10c. Consequently, for all actors no
longer qualified for accessing the associated object or task (i.e., VAS(OM, AR) \ VAS(OM’,
AR)) the associated access privileges have to be adapted accordingly. Note that for the
scenario depicted in Fig. 10c, the valid actor set of AR on OM ′ might become empty; AR
then would no longer resolvable on OM ′.

Another scenario is depicted in Fig. 10d. Here, neither VAS(OM,AR) is a subset of
VAS(OM’,AR) nor vice versa. Generally, we can further distinguish between sub-cases d1
and d2. For sub-case d1 there still exist actors contained in both valid actor sets, i.e.,
intersection of VAS(OM,AR) and VAS(OM’,AR) is non-empty. For such a case, we first have
to withdraw the privileges associated with AR for all actors contained in VAS(OM,AR) \
VAS(OM’,AR). Second, we have to newly assign these privileges to the actors contained
in VAS(OM’,AR) \ VAS(OM,AR). Finally, if VAS(OM,AR) and VAS(OM’,AR) are disjoint as
in the context of sub-case d2 the privileges associated with AR have to be removed for
all actors from VAS(OM,AR) and be added for those belonging to VAS(OM’,AR).

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 13

OM OM’

a) VAS(OM,AR) = VAS(OM’,AR) b) VAS(OM,AR) ⊂ VAS(OM’AR) c) VAS(OM,AR) ⊃ VAS(OM’,AR)

d) (VAS(OM’,AR) ⊄ VAS(OM,AR)) ∧ (VAS(OM,AR) ⊄ VAS(OM’,AR))

d1) VAS(OM’,AR) ∩ VAS(OM,AR) ≠ ∅ d2) VAS(OM’,AR) ∩ VAS(OM,AR) = ∅

VAS(OM,AR): VAS(OM’,AR):

Figure 10. Changing organizational models and migrating access rules

Knowing which of this cases applies in a given change scenario is helpful in order to
conduct the necessary adaptations of qualified actor lists or work lists when migrating an
access rule to the changed organizational model. For this, Rinderle and Reichert (2007)
provided a comprehensive framework for basic as well as high-level change operations on
organizational models. Regarding our online banking scenario (cf. Fig. 9), users would
be supported by making them aware of possibly empty valid actor sets for AR1 and AR3
on the new organizational model. Adequate transformations could be as shown in Fig. 9.

4. Direct access rule changes

The adaptation of access rules in conjunction with changes of organizational models
constitutes only one use case. As discussed in Section 1 it must be also possible to
directly change access rules. Consider the scenario depicted in Fig. 11. As additional
streamlining action, is has been decided to let the consultancy only be done by senior
accountants in order to save time. Furthermore, actor Lowe is now supposed to assist the
analyst since it has turned out that Lowe has practical experiences with data mining.
Both considerations are reflected in changed access rules AR4 and AR5 (cf. Fig. 11).

In order to be able to apply direct access rule changes within the EIS, first of all, we
have to define respective operations (e.g., for deleting AND-terms within an access rule).
The formal semantics of these change operations is presented in Section 5. It is based on
the valid actor sets of the access rules before and after the changes.

4.1. An operator-tree-based representation for access rules

In order to precisely define access rule changes, it is necessary to base their definition
on a representation other than the intuitive one presented in Definition 2.3. Using the
notion given in Definition 2.3 it would be difficult to express at which substructure level
of nested access rule structures, a new AND-term shall be added. Thus we have to find
a representation which enables convenient access to any substructure level of an access
rule. For an access rule AR, a suitable representation for this is provided by operator tree
OPAR = (O,L). Here O denotes the set of all operator nodes and L denotes the set of
all elementary access rules AR is built of. OPAR can be determined similarly to building
the operator-tree for a complex expression or SQL-statement. An example of an access

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

14 Taylor & Francis and I.T. Consultant

Process Schema S‘:
AR3‘ R=Secretary AR4‘ (R=SeniorAcc)

Process Schema S :

appoint consult

send_
Flyer

call

pp

analyzeX X

interested

i dFlyer not_interested

AR1‘ R=Secretary AR2‘ (R=CAgent)
AR5 (R=Analyst OR

A=„Lowe“)

b) Access rule change Δ =
(deleteTerm(OPAR4, (R=JuniorAcc)), addTerm(OPAR5, (A=„Lowe“), OR)

c) Valid Actor Sets:
• VAS(OM‘, AR4‘) = {Jones, Red}
• VAS(OM‘, AR5‘) = {Smith, Sharp, Lowe}

Figure 11. Changing access rules AR4 and AR5

rule with corresponding operator-tree is depicted in Fig. 12. Generally, an operator tree
does not necessarily need to be balanced.

AR (((R=Secretary) OR (R=Accountant)) AND
(NOT(O U it C llC t)))

AND

(NOT(OrgUnit =CallCenter)))

OPAR O

OR NOT

OPAR O

L
R=Secretary R=Accountant OU=CallCenter

L

Figure 12. Access rule and operator tree

OPAR = (O,L) has the following characteristics.

• OPAR is a binary tree.
• O corresponds to the set of non-leaf nodes (including the tree root) and L corresponds

to leaf nodes.
• The tree has to be traversed in Inorder to build the associated access rule term.
• NOT is only used as direct predecessor node of a leaf (remember that NOT can be

only used in the context of elementary access rules in CEOSIS, cf. Definition 2.3).

How to build the operator tree for a given access rule is shown in the next section.

4.2. Basic access rule changes

We introduce a complete set of basic change operations on access rules1 and on their
operator-tree representation respectively. Before, we define basic notions on operator

1Complete means that any access rule AR ∈ AROM can be transformed into any other access rule AR’ ∈ AROM

by applying a sequence of change operations <op1, . . . , opn>.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 15

trees:

Definition 4.1: Functions on op trees. Let AR ∈ AROM be an access rule and let
OPAR be its operator tree. Then:

• The empty tree τ consists of one void node; i.e., it reflects empty access rule EAR0 ←− τ∗.
• Let OPOM denote the set of all operator trees for access rules over an organizational model

OM. Let further N denote the total set of nodes belonging to any operator tree from OPOM .
Then:
• pred: OPOM × N 7→ N with pred(OPAR, n) = p determines direct predecessor node p of

node n in OPAR

• root: OPOM 7→ N determines the root node of operator tree OPAR.
• Merge: OPOM × OPOM × {AND,OR,VOID1}7→ OPOM

Merge(S,T,op=[AND|OR|V OID]) = S’ merges two operator trees S and T using op, where
T = OPEAR with EAR being an elementary access rule. Root of S’ is op, left child tree is S,
right child tree is OPEAR

• Substitute: OPOM × OPOM × OPOM 7→ OPOM

Substitute(T,S,S’) = T’ substitutes sub tree S in T by sub tree S’ resulting in T’ (cf. Fig. 13,
Step 1).

• Optimize: OPAR 7→ OPAR

Optimize(T) = T’ works as follows: If operator tree T contains empty tree τ then T can be
optimized by merging τ and its sibling tree S resulting in optimized tree T’. More precisely: Let
O be the predecessor of τ and S. Then O, τ , and S can be merged to S (cf. Fig. 13, Step 2).

CEOSIS provides a set of basic change operations that allow for adding, deleting, and
negating terms within operator trees. We claim that these change operations can only be
applied to correct access rules resulting in correct access rules again (i.e., access rules be-
longing to AROM). Structural correctness is preserved by formal pre- and postconditions
defined for each change operation. In the context of our ADEPT2 process management
technology (Rinderle et al. (2004a,b)), for example, we additionally ensure compliance
with the underlying organizational model OM by forbidding access rule changes which
refer to entities not being present in OM .

Definition 4.2: Basic change operations on access rules. Let AR ∈ AROM be
an access rule with operator tree OPAR. Let further EAR be an elementary access rule with
operator tree OPEAR. Assume that AR is transformed into another access rule AR’ ∈ AROM

(represented by OPAR′) by applying change op ∈ {addTerm, deleteTerm, negateTerm} with

• addTerm(OPAR, S, [AND|OR|V OID],EAR) = OPAR′

Precond.: S is sub-tree of OPAR

Postcond.: OPAR′ = Optimize(Substitute(OPAR,S,Merge(S,OPEAR)))
• deleteTerm(OPAR,S) = OPAR′

Precond.: S is sub-tree of OPAR and S does not contain the root node (the root node is deleted
by tree merging if a direct sub tree of the root node is deleted)
Postcond.: OPAR′ = Optimize(Substitute(OPAR,S,τ))

• negateTerm(OPAR,S) = OPAR′

Precond.: S is leaf node; i.e., S = OPEAR and pred(OPAR,EAR) 6= NOT (the second condition
is necessary to achieve operator trees where NOT is only used in connection with leaf nodes
according to the definition of access rules.).
Postcond.: OPAR′ = Substitute(OPAR,S,OPNOT (EAR))

Figure 13 depicts an example for applying the delete operation. First, the sub tree
reflecting elementary access rule EAR ← R=Secretary (cf. Figure 12) is substituted by
empty tree τ . Then the optimization function is run on the resulting tree which eliminates

1VOID represents the empty operator.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

16 Taylor & Francis and I.T. Consultant

τ by lifting up remaining elementary access rule EAR’ ← R=SeniorAcc to the next level
within the operator tree.

a) AR4 (R=SeniorAcc OR R=JuniorAcc) AR4‘ (R=SeniorAcc)⎯→⎯Δ

a1) a2) a3)OR OR

b) AR5 (R=Analyst) AR5‘ ((R=SeniorAcc) AND (A=„Lowe“))⎯→⎯Δ

R=SeniorAcc R=JuniorAcc R=SeniorAcc τ R=SeniorAcc

b) AR5 (R Analyst) AR5 ((R SeniorAcc) AND (A „Lowe))→
b1) b2) AND

R=Analyst A=„Lowe“R=Analyst

Figure 13. Delete operation with subsequent optimization

Generally, a sequence of basic change operations <op1, . . . , opn> can be used to built
up the operator tree for an access rule starting with the empty tree. Consider access rule
AR as given in Fig. 12. Starting from empty tree τ , the following basic change operations
build OPAR:

op1: OP1 = addTerm(τ , τ , VOID, R=Secretary)
op2: OP2 = addTerm(OP 1, OP1, OR, R=Accountant)
op3: OP3 = addTerm(OP 2, OP2, AND, OU=CallCenter)
op4: OPAR = negateTerm(OP 3, OPOU=CallCenter)

Formal semantics of these change operations is presented in Section 5.

4.3. High-level access rule changes

For more sophisticated user support CEOSIS additionally provides high-level change
operations. Their definition is based on the elementary change operations introduced in
Definition 4.2. As example consider high-level change substituteAccessRules(OPAR,
S ,T). Here sub tree S of operator tree OPAR is substituted by another sub tree T. At
access rule level this means to substitute a part of the access rule by another access rule. In
Fig. 14, for example, sub tree S (representing the elementary access rule R=Accountant)
is substituted by sub tree T (representing the elementary access rule R=SeniorAcc).

Basically, the substitution of access rules can be realized by applying operation
deleteTerm(OPAR,S) first, followed by a sequence of addTerm operations. They build
up T within OPAR by inserting the elementary access rules out of which T consists (cf.
Fig. 14). The pre- and postconditions of high-level change operations can then be derived
by aggregating the pre- and postconditions of the constituting basic change operations.
One important benefit regarding the ease-of-use of high-level change operations is that all
”details” of applying the basic change operations are encapsulated within the high-level
operation. For example, if we want to be able to add the new terms in the right way
afterwards, it will become necessary to ”memorize” some operator nodes before deleting
the terms to be substituted. In Fig. 14, for example, it has to be memorized that S was
connected to OPR=Secretary by an OR-operator. Without memorizing this information
explicitly, it will be lost after deleting S as it can bee seen from OP intermediate

AR .

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 17

AND
OPAR

AND
OPAR

intermediate

OR NOT

R S t R A t t OU C llC t

S

NOTR=Secretary

OU C llC tR=Secretary R=Accountant OU=CallCenter OU=CallCenter

ANDAND

OR NOT

OPAR‘

R=Secretary R=SeniorAcc OU=CallCenter

T

Applied change operation:

op = substituteAccessRule(OPAR, R=Accountant, R=SeniorAcc) =

(deleteTerm(OPAR, S),

addTerm(OPAR
intermediate, OPR Secretary, OR, T))add e (O AR , OPR=Secretary, O ,))

with S = OPR=Accountant and T = OPR=SeniorAcc

Figure 14. Example for substituting access rules

Another high-level change operation is swapAccessRules(OPAR, S ,T) which swaps
sub trees S and T within OP. An example is depicted in Figure 15. Again
swapAccessRules(OPAR, S ,T) can be expressed by basic change operations; i.e.:

swapAccessRules(OPAR, S ,T) =
(deleteTerm(OPAR, S), deleteTerm(OPAR′, T),
addTerm(OPdelete

AR , OPdelete
AR , AND, T),

addTerm(OP intermediate
AR , OP intermediate

AR , AND, S))

AND
OPAR OPAR

delete

OR

R S t R A t t OU A ti

AND

AND

T

OU A ti

deleteTerm(OPAR, S),
deleteTerm(OPAR, T)

NOT

R=Secretary R=Accountant OU=Accounting

R=SeniorAcc

AND OU=Accounting

OU=CallCenter
'

S

AND

AND

OPAR‘

OR OU=Accounting

AND

NOT R=SeniorAcc

AND

R=Secretary R=AccountantOU=CallCenter
'

S T

Applied change operation:

op = swapAccessRules(OPAR, S, T)

Figure 15. Example for swapping operator trees

Again it has to be memorized which operator nodes were used to fix the sub trees to
be swapped within the operator tree (in Fig. 15, for example, S and T are fixed by an

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

18 Taylor & Francis and I.T. Consultant

AND-operator). The semantics of high-level change operations is discussed in Section 6.

5. Semantics of access rule changes

Formal semantics of access rule changes can be expressed based on the effects the changes
have on valid actor sets (cf. Section 2.2). In particular, we are interested in statements
such as ”valid actor set of access rule AR is reduced, expanded, or not affected by the
change”. Note that for the following considerations on change semantics we assume direct
access rule changes; i.e., the underlying organizational model has not been modified.

Definition 5.1: Reduction / expansion of actor sets. Let AR ∈ AROM be an
access rule (over organizational model OM) and let ∆AR be a change which transforms
AR into another access rule AR’ ∈ AROM . Then: the effect of ∆AR on AR is called

• reduction iff VAS(OM,AR’) ⊂ VAS(OM,AR)
• expansion iff VAS(OM,AR’) ⊃ VAS(OM,AR)
• zero effect iff VAS(OM,AR’) = VAS (OM,AR)

5.1. Root level and substructure level changes

For elementary access rules the analysis of change effects is easy to accomplish. For ex-
ample, let EAR ←− (R=Secretary) and EAR’ ←− (R=Accountant) be two elementary
access rules with operator trees OPEAR and OPEAR′ respectively. Let further change
op = addTerm(OPEAR, OPEAR, AND, EAR’) = AR transform EAR into AR. Then the
effect on the actor set of EAR is a reduction, more precisely, the actor sets of AR can be
determined as intersection of the actor sets of EAR and EAR’.

Things will become more complicated if the access rules to be changed are
more complex. Consider, for example, access rule AR in Fig. 12 and ele-
mentary rule EAR’ ←− (OU=Accounting). If we apply change operation opa =
addTerm(OPAR,OPAR,AND,EAR’) (cf. Figure 16b) the effect can be determined as
intersection of the actor sets of AR and EAR’ again. However, when applying change
operation opb = addTerm(OPAR, OPNOT (OrgUnit=′administration′), AND, EAR’) (cf.
Fig. 16c), effects on the valid actors sets of AR cannot be determined straightforward.
Note that opa operates at the root level of AR (the formal meaning is described in the
following), whereas opb operates at a substructure level of AR. The notions of root level
and substructure level changes of access rules are presented in Definition 5.2.

Definition 5.2: Root vs. substructure level changes. Let OPAR be the operator
tree representation of access rule AR ∈ AROM and let op be a basic change operation
which transforms AR into another access rule AR’ ∈ AROM . Then we denote op as

• root level change if either a new root is added to operator tree OPAR or the root of
OPAR is deleted (e.g., by tree merging after applying the delete operation). This holds
for
- op = addTerm(OPAR,OPAR,[AND|OR|V OID],EAR)
- op = deleteTerm(OPAR,S) with pred(root(S)) = root(OPAR)
- op = negateTerm(OPEAR, OPEAR) with EAR being an elementary access rule

• substructure level change otherwise

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 19

AND

a) OPAR

OR NOT

R=Secretary R=Accountant OU=CallCenter

Sub tree S

R Secretary R Accountant OU CallCenter

ANDb) op = addTerm(OPAR, OPAR, AND,
OU A ti)

AND OU=Accounting

OU=Accounting)

OR NOT

R=Secretary R=Accountant OU=CallCenterR Secretary R Accountant OU CallCenter

c) op = addTerm(OPAR,
OPNOT(OU=CallCenter),AND,

Role=’therapy)

AND

py)
OR

NOTR=Secretary R=Accountant OU=Accounting

AND

OU=CallCenter
'

Figure 16. Access rule changes

The root level change depicted in Fig. 16b shows that operator tree OPAR grows
when adding a new root node, whereas the substructure level change (cf. Fig. 16c) is
conducted by substituting sub tree S = OPNOT (OrgUnit=′administration′) by the sub tree
S’ = OP(NOT (OrgUnit=′administration′))AND(Role=′therapist′). As can be seen new root AND
has been added to S.

5.2. Basic access rule changes

The basic idea of our approach for determining the effects of access rule changes on
valid actor sets (in terms of reduction, expansion, or zero effect) is as follows: First,
it must be checked how root level changes affect valid actor sets of respective access
rules. Second, for substructure level changes the following observation can be made: A
substructure level change is a root change regarding the affected sub tree (cf. Fig. 18);
i.e., we can determine effect e ∈ {reduction, expansion, or zero effect} on the affected
sub tree. Effect e can then be ”propagated” upwards to the root of the new operator
tree. Then, a fundamental question is, for example, whether a reduction on the affected
sub tree remains a reduction when being propagated to the root level.

Thus, for determining the effects of basic access rule changes on valid actor sets a first
step is to present the effects of root level changes on operator trees.

Proposition 5.3: Effects of root level changes. Consider the following elements:

• OPAR: Operator tree of access rule AR over organizational model OM with S and
T being sub trees of OPAR with pred(OPAR,root(S)) = pred(OPAR,root(T)) =
root(OPAR). S corresponds to access rule ARS and T to access rule ART

• EAR: Elementary access rule with operator tree OPEAR

• op: root level change which transforms AR into another access rule AR’ with operator
tree OPAR′

Then: The effect (i.e., formal semantics) of operation op on OPAR can be determined
according to the following table (see Fig. 17 for a graphical illustration):

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

20 Taylor & Francis and I.T. Consultant

op: addTerm(OPAR,OPAR,[AND|OR],EAR) = OPAR′

• op: addTerm(OPAR, OPAR, AND, EAR) = OPAR′ :
VAS(OM,AR’) = VAS(OM,AR) ∩ VAS(OM, EAR)
=⇒ Reduction
• op: addTerm(OPAR, OPAR, OR, EAR) = OPAR′ :
VAS(OM,AR’) = VAS(OM,AR) ∪ VAS(OM,EAR)
=⇒ Expansion

op: deleteTerm(OPAR,S) = OPAR′

• root(OPAR) = AND:
VAS(OM,AR) = VAS(OM,ART) ∩ VAS(OM,ARS)
⊆ VAS(OM,ART) = VAS(OM,AR’)
=⇒ Expansion
• root(OPAR) = OR:
VAS(OM,AR) = VAS(OM,T) ∪ VAS(OM,S)
⊇ VAS(OM,T) = VAS(OM,AR’)
=⇒ Reduction

op: negateTerm(OPEAR, OPEAR) = OPAR′ :
VAS(OM,AR’) = Actors \ VAS(OM,EAR)
=⇒ effect cannot be determined in terms of
expansion, reduction, or zero effect

Figure 17 illustrates the different cases covered by Proposition 5.3.

OPAR’: AND

EAR

1a) OPAR: OPAR’: AND

EAR

1b) OPAR:

2a) OPAR: AND

T S

OPAR’:

T

2b) OPAR: OR

T S

OPAR’:

T

OPAR’: NOT

EAR

3) OPAR:

EAR

addTerm addTerm

deleteTerm deleteTerm

negateTerm Illustration of Proposition 1

Figure 17. Effects of root level changes

So far, we have only considered root level changes. For substructure level changes,
we first determine the (minimal) sub tree which is affected by the respective change
(affected sub tree). The effects of the substructure change on the affected sub tree can be
determined using Proposition 5.3 for root level changes and are reflected by the resulting
sub tree (cf. Proposition 5.4). According to Proposition 5.3, it is not possible to derive
the effects of negation in terms of reduction, expansion, or zero effect. When applying
a negation operation, however, at least we know that VAS(OM,AR) and VAS(OM,AR’)
are disjoint, which can be used to describe the semantics of the negation operation. To
provide the semantics of substructure level changes, the effects on the affected sub tree are
propagated to the root. In this paper, we show how this can be done for effects reduction,
expansion, and zero effect. Obviously, for other effects (such as disjoint) other techniques
have to be applied in order to analyze the effects of substructure level changes. Thus, in
the following, we focus on operations addTerm and deleteTerm and leave negateTerm to
future publications.

Proposition 5.4: Effects of substructure level changes. Let OPAR be the operator
tree of access rule AR over organizational model OM. Let further op be a change operation
which transforms AR into another access rule AR’ with operator tree OPAR′. Then: The
affected and resulting sub trees of op on OPAR can be determined as follows (cf. Fig. 18):

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 21

(1) op: addTerm(OPAR,S,[AND|OR|V OID],EAR) = OPAR′ =⇒
• affected sub tree of op on OPAR is S
• resulting sub tree of op on OPAR is S’ with root(S’) = pred(OPAR′,root(S))
having sub trees S and OPEAR

(2) op: deleteTerm(OPAR, S) = OPAR′ =⇒
• affected sub tree of op on OPAR is S’ with root(S’) = pred(OPAR,root(S))
• resulting sub tree of op on OPAR is T with T being a sibling tree of S based on
S’ in OPAR

1) op: addTerm(OPAR, S, [AND|OR|VOID], EAR) = OPAR’

OPAR: OPAR’:

EAR
Affected sub tree

Resulting sub tree S’

2) op = deleteTerm(OPAR, S)

OPAR:
Affected sub tree S’

Resulting sub tree

OPAR’:

S

S

S
T

T

Figure 18. Affected and resulting sub trees

To determine overall effect of a substructure level change on access rule AR, the effect
on the affected sub tree has to be pushed towards the root node of the operator tree of
AR’. Pushing means that we climb up the tree over the different operators and check the
impact on the effects. We start with pushing the effect over the predecessor node of the
root of the affected sub tree (one step push) and extend this to a multi step push towards
the root afterwards. To specify the one step push we introduce notion embracing tree of
the affected sub tree. An example for an embracing tree is shown in Fig. 19.

Definition 5.5: Embracing tree. Let OPAR be an operator tree and let S be a sub
tree of OPAR. Then we denote T as the embracing tree of S in OPAR iff
• T is sub tree of OPAR or T = OPAR

• root(T) = pred(OPAR,root(S))

Based on Definition 5.5, the one step push can be formalized.

Proposition 5.6: One step push. Let OPAR be the operator tree of access rule AR
over organizational model OM. Let further op be a change operating at substructure level
with affected sub tree S. Assume that the effect of op on S corresponds to e ∈ {Reduction,
Expansion, Zero effect}. Then: One step push of e towards root(OPAR) means to lift up
e over root(T) where T denotes the embracing tree of S’; i.e., we analyze how e is affected
by lifting it over the next operator node on the way to the root. The effect of the one step
push remains e; i.e., e is not affected by a one step push.

For example, if the effect on the affected sub tree is a reduction, intuitively the effect
remains a reduction if we ”climb over” an OR node. The effects of a one step push over
an AND node is illustrated by Fig. 19. Valid actor set of affected sub tree S is reduced
according to Proposition 5.3; i.e., VAS(OM,S’) ⊆ VAS(OM,S). Lifting this effect over the
root node of the embracing sub tree T’, which is an AND node, keeps the effect of
reduction.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

22 Taylor & Francis and I.T. Consultant

AND
a) OPAR Embracing Tree T of S in OPAR

OR AND VAS(OM,T)={Black, Jones,
Red, Green}

OU=CallCenter

NOTR=Secretary R=Accountant OU=Accounting

S
VAS(OM,S)={Black, Jones, Red,
Green Smith Moss Sharp} OU=CallCenter

'
Green, Smith, Moss, Sharp}

op = addTerm(OPAR, S, AND, R=SeniorAcc) ,

AND
One step push over root node of
embracing sub tree T‘ of S‘

VAS(OM,T‘)={Black, Jones, Red}
OR

R=Secretary R=Accountant OU=Accounting

AND ´ Reduction

AND

NOT
VAS(OM,S‘)={Black, Jones, Red}

Reduction R=SeniorAcc

OU=CallCenter
'

Resulting sub tree S‘ of
op onOPAR

Figure 19. Effects of one step push (example)

Finally, it has to be analyzed how a multiple step push towards the root affects the
effects of substructure level changes. As stated in Proposition 5.6, a one step push does
not affect them. A multi step push can be seen as a one step push which is applied
several times. Each time the initial effect of the substructure level change remains the
same. Thus, overall, the multi step push does not affect the effect of the substructure level
change. This means that the semantics of a substructure level change can be determined
as easily as for a root level change. Thus, for any complex access rule and any basic
change operation, the effect can be determined quickly. This is essential, for example,
when adapting user worklists in PAIS as discussed in Section 7.

Proposition 5.7: Multi step push Let OPAR be the operator tree of access rule AR
over organizational model OM. Let further op be a substructure level change operation
with affected sub tree S and resulting sub tree S’. Assume that the effect of op on S is e
∈ {Reduction, Expansion,Zero effect}. Then: Multi step pushing e towards root(OPAR)
means to lift up e over all nodes on the path to root(OPAR) starting from root(T) where
T denotes the embracing tree of S’. The effect of a multi step push towards the root
remains e; i.e., e is not affected by the multi step push.

6. Exploiting organizational knowledge for high-level access rule
changes

As discussed in Section 4.3, a high-level access rule change ∆ can be understood as
an ordered sequence of basic access rule changes op1, . . . , opn. Thus, it can be tried to
aggregate the effects of op1, . . . , opn in order to determine semantics of ∆. However,
such aggregation might be impossible; e.g., in case the effect of opi is a reduction and
the effect of opj is an expansion (i 6= j). In this case, the actor sets being valid be-
fore and after the high-level change have to be re-calculated and explicitly compared.
Generally, re-calculation could be used for determining the effects of basic change op-
erations as well. However, as we discuss in Section 7, in many applications it is ben-
eficiary to have a ”quick check” on the effects of access rule changes. For example, if

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 23

we know that a change has effect expansion or zero effect, we can delay the adapta-
tion of user worklists in PAIS until the system is offline. Contrary, it can be expen-
sive to always recalculate the new valid actor sets immediately. However, since high-
level change operations consist of the consecutive application of basic change opera-
tions, their effects cannot be determined as easy as for basic operations. As example
consider change substituteAccessRules(OPAR, S, T) = deleteTerm(OPAR, S),
addTerm(OP intermediate

AR , OPR=Secretary, OR, T) as depicted in Fig. 14. According to
Proposition 5.3, for the deleteTerm operation we obtain a reduction effect, whereas for
the addTerm operations an expansion results. Thus the overall effect cannot be deter-
mined.

However, for this scenario, one can think about some optimizations regarding high-level
access rule changes. For high-level change substituteAccessRules(OP AR,S,T), for
example, additional information from the underlying organizational model can be used
to determine the effects on the valid actor sets of the changed access rules. Assume, for
example, that for access rule AR← Role=’R1’, we substitute role R1 by role R2 resulting
in AR’← Role=’R2’. Then, if we know from the underlying organizational model that R2
is a sub role of R1, it can be concluded that the effect on the valid actor set of AR is either
zero effect or reduction. Reason is that the same set of actors or less actors are assigned
to a sub role when compared to the superior one. Vice versa, if a role is substituted by a
superior one within an access rule, the effect on the valid actor set will be zero effect or
expansion. One big advantage of determing the effects of access rule changes as described
above is the following: If access rules are changed, the effects on the valid actor sets have
to be propagated to user worklists at some point in time. This point in time can be chosen
depending on the particular change effect. If, for example, the valid actor set is reduced,
this poses a potential security threat on the system. Either work items might be offered
to users who are no longer qualified or, if the valid actor set becomes empty, no actor will
be qualified anymore. Hence, user worklists should be adapted immediately. Contrary,
if the valid actor set is expanded, the only consequence might be that work items are
not offered to all qualified users. Since this poses no security threat on the PAIS, the
propagation of the access rule change to user worklists may be delayed; e.g., done offline
when no user is working on the PAIS. Finally, in case of zero effect no action is required
at all. Same considerations hold for the hierarchial relations between organizational units.
Proposition 6.1 summarizes these considerations:

Proposition 6.1: Valid Actor Set Relations for Specialization and Subordi-
nation Let OM = (Actors, Roles, OrgUnits, has, belongs to, is subordinated, specializes)
be an organizational model. Let further r1, r2 ∈ Roles be two roles and o1, o2 ∈ OrgUnits
be to organizational units. Then:

r1 ∈ specializes∗(r2) =⇒ VAS(OM, R=r1) ⊆ VAS(OM, R=r2)
o1 ∈ is subordinated∗(o2) =⇒ VAS(OM, OU=o1) ⊆ VAS(OM, OU=o2)

For the scenario depicted in Fig. 14, for example, we know from OM that
SeniorAcc is a sub role of role Accountant. Thus, according to Propostion 6.1 VAS(OM,
R=SeniorAcc) ⊆ VAS(OM, R=Accountant) holds. Consequently, the overall effect of the
substituteAccessRule(...) operation can be determined as reduction (or zero effect).
Obviously that holds true since:
VAS(OM’,AR) = {Black,Jones,Red,Green} ⊇ VAS(OM’,AR’) = {Black,Jones,Red}.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

24 Taylor & Francis and I.T. Consultant

7. Discussion

In order to elaborate the requirements for a generic component enabling full life cycle
support in respect to organizational entities as well as access rules we conducted an in-
depth analysis of organizational structures and their evolution in several case studies.
Corresponding results have been reported in (Konyen (1996), Konyen et al. (1996a,b),
Reichert et al. (2004), Wiedemuth-Catrinescu (2002)). Besides an in-depth analysis of
healthcare processes and relevant access control requirements during these case studies,
we identified typical organizational patterns in the medical environment (including or-
ganizational relations and complex substitution as well as delegation rules) as well as
frequently occurring organizational changes. Examples of characteristic changes we iden-
tified over a period of two years include, for example, the relinking of organizational units
and actors within the organizational chart, the definition of completely new organiza-
tional units, the merging of existing departments, or the outsourcing of organizational
units. The latter took place, for example, when a certain medical lab services were out-
sourced to an external lab. All these observations from our case study have confirmed
the high practical need for better supporting the evolution of organizational models at
the IT level. In addition, we made similar observations in the context of our projects in
other industry including the automotive domain and the financial sector. Finally, from
discussions with an IT service center from the University Hospital in Ulm we know that
it takes about 10% of the IT staff’s working time to implement access control policies and
to cope with evolving organizational structures at the IT level. Reason is that most of
the access control mechanisms in existing systems are hard-coded within the application
programs. Thus, adaptations of organizational structures result in high efforts for code
adaptations or – even more – inconsistencies and security holes.

Altogether our case studies have proven that any approach enabling the quick and
correct adaptation of organizational models, including the control of their effects on
running information systems, is crucial in practice. Our findings are supported by other
studies. One example is the study on the dynamics of rules in an organization conducted
by Stanford University (see March et al. (2000)).

In summary, contributions and benefits of the CEOSIS approach are as follows:

• Explicit Representation of Organizational Models. In CEOSIS the representation of
organizational structures is separated from the code of the application systems. This
enables quick and correct adaptation of organizational models. Furthermore, due to the
explicit definition of organizational models, the communication with domain experts
and operating departments is facilitated.

• Model Quality and Consistency. The central management of organizational structures
leads to a decrease of model inconsistencies and thus reduced maintenance costs.

• Expressive Organizational Meta Model. The meta model chosen in CEOSIS enables
coverage of organizational structures (according to the analyzed use cases) being rel-
evant in practice. In order to capture additional kinds of organizational entities, we
have extended the organizational meta model as presented in this paper in several
respects. Berroth (2005) and Reichert et al. (2004) describe these extensions in detail.

• Explicit Management of Access Rules. In CEOSIS organizational models as well as
access rules can be explicitely modeled and maintained. Particularly, the references
between access rules and the underlying organizational model can be specified and
thus monitored and controlled by the information system. This means that potential
conflicts in the course of organizational changes (e.g., orphaned or dangling references)

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 25

can be resolved based on an adequate user assistance as well as intelligent adaptation
strategies.

• Exploiting the Semantics of Organizational Changes: In order to find intelligent adap-
tation strategies to overcome possible conflicts in connection with organizational
changes, the CEOSIS approach exploits the maximum available information. Particu-
lary, by analyzing the semantics of the applied changes (at organizational model as well
as access rule level) provides the basis for adequate adaptation strategies. This leads
to a new quality of determining and handling the effects of organizational changes.
As a consequence, conflict detection and resolution is significantly quicker and more
effective in CEOSIS than manual adaptation of hard-coded organizational structures
within application software.

• Support of Access Rule Changes: To our best knowledge, CEOSIS is the first for-
mally rigorous approach to not only support organizational changes, but also direct
adaptations of access rules as well. The latter often become necessary in practice as
consequence of imprecise analysis or mistakes when modeling the access rules (e.g.,
a specific role is defined to narrow and thus does not reflect the real situation). The
CEOSIS approach enables the specification of such access rule changes and the precise
analysis of their effects.

In summary, CEOSIS enables the representation of organizational structures as well
as organizational changes that occur frequently in practice. This is based on a formal
underpinning. Specifically, organizational changes including modification of organiza-
tional models and access rules are formally defined. Furthermore their formal semantics
is provided. In addition, the set of offered change operations is complete1; i.e., any or-
ganizational model OM can be transformed to any other organizational model OM ′ by
applying a set of change operations to OM as offered by CEOSIS. As proof sketch we
assume that by applying respective delete operations OM can be first transformed into
the empty organizational model OMempty, which can then be transformed into OM ′ by
applying create entity/relation operations afterwards. The same holds for access rule
operations. However, note that CEOSIS additionally supports several high-level change
operations in order to enable changes as a high level of abstraction as well; i.e., the offered
set of change operations is not minimal.

The modeling of organizational entities and relations as well as of access rules has
been implemented within the AristaFlow System process management system, which
supports an even more expressive organizational meta model as introduced in this paper
(see Reichert et al. (2009), Berroth (2005)). Currently, the described functionality of
organizational evolution is prototypically realized.

8. Related work

Issues related to change management and life cycle management have been addressed
in many disciplines including software engineering (see Kramer and Magee (1990)), rule
maintenance (see March et al. (2000)), and business process management (see Rinderle
et al. (2004b)). Similarities to the CEOSIS approach can be observed, for example, in
the context of business rule maintenance (see Herbst and Myrach (1996), Herbst (1997)).
Business rules typically reference application data (e.g., the age of a patient in a medical
setting) and thus, if the rule or the referenced data is changed, orphaned references might

1but not minimal due to the definition of high-level change operations based on basic change operations

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

26 Taylor & Francis and I.T. Consultant

result. Existing solutions apply repository technology to deal with such problems (see
Herbst and Myrach (1996)). However, in addition to maintaining the references of rules,
CEOSIS exploits the semantics of the applied change operations on organizational struc-
tures in order to proactively propose strategies to deal with such orphaned references.
Furthermore, when evolving organizational structures other fundamental problems such
as empty actor sets of non-resolvable worklists can occur which require new strategies to
handle them properly.

The provision of an adequate access control framework is indispensable for any EIS. In
the literature numerous approaches have been presented dealing with challenging issues
related to access control (e.g., Klarmann (2001a), Bertino (1998), zur Muehlen (2004),
Weber et al. (2005)). These approaches range from traditional privilege management
techniques such as Access Control Lists (ACLs) and Capability Lists (CPs) (Bishop
(2002), Miller et al. (2003)) to Role-Based Access Control (RBAC). ACLs and CLs con-
stitute a certain partitioning of the complete privilege matrix. In an EIS, for each subject
S (e.g., a user) and each object O (e.g., a document) the privilege matrix maintains an
entry on the privileges of S on O. ACLs maintain a list of authorized users for each ob-
ject. CLs, in turn, manage a set of capabilities for each user for accessing certain objects.
ACLs and CLs are well suited for privilege management in more static systems, i.e.,
systems for which users and objects remain quite stable over time. However, as many
examples show, the set of users as well as the set of objects are frequently subject to
change in EIS (Ferraiolo and Kuhn (1992)). ACLs and CLs are not well suited for such
flexible systems due to the enormous reorganization effort after changes.

Thus, many approaches use RBAC for defining and managing user access privileges
(Bertino (1998), Ferraiolo and Kuhn (1992), Ferraiolo et al. (2003), NIST (2004)) in EIS;
e.g., to control the access to business documents and database objects, or to resolve the
set of actors that qualify for a newly activated task in a workflow system (Botha and
Eloff (2001), Bertino et al. (1999), Wainer et al. (2003), zur Muehlen (2004), Pfeiffer
(2005), Weber et al. (2005)).

Usually, corresponding models provide core RBAC features as well as role hierarchies.
Regarding workflow-based applications, in addition, dynamic constraints (e.g., separation
of duties) were extensively investigated in the past (Bertino et al. (1999), Wainer et al.
(2003), Kuhn (1997)). Practical issues related to RBAC (e.g., NIST’s proposed RBAC
standard, integration of RBAC with enterprise IT infrastructures, RBAC in commercial
products) are summarized in Ferraiolo and Kuhn (1992).

In the workflow literature several proposals have been made aiming at adaptive process
management (e.g., van der Aalst (2001), Rinderle et al. (2004a), Joeris and Herzog (1998),
Weske (1999), Sadiq et al. (2000), Fent et al. (2002), Kochut et al. (2003), Edmond and
ter Hofstede (2000)). The ADEPT technology, for example, enables controlled changes at
the process type as well as the process instance level (for details see Reichert and Dadam
(1998), Rinderle et al. (2004b)). Thereby, correctness and consistency constraints of a
workflow are preserved when dynamically changing its structure, its state, or its at-
tributes during runtime. In Weber et al. (2005) an extension to RBAC is proposed in
order to accomplish such process changes is a safe way; i.e. to restrict changes to se-
lected user groups or processes if required. Though all these approaches stress the need
for adaptive information systems and define notions of correctness (for an overview see
Rinderle et al. (2004a)), so far, focus has been on process changes. Hence the CEOSIS
approach for the evolution of organizational structures is complementary to these ap-
proaches and therefore constitutes an important step towards a comprehensive support
for adaptive information systems.

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

Enterprise Information Systems 27

There are only few approaches (Klarmann (2001b,a), Domingos et al. (2003)) which
address the problem of organizational change and its handling in EIS. In Klarmann
(2001b,a) eight categories of structural changes on organizational models are identified.
Examples include the splitting of organizational units, the creation of new organizational
entities, and the reassignment of an actor to a new organizational unit. In principle, all
these cases can be captured by our change framework as well. As opposed to Klarmann
(2001a), however, we additionally follow a rigorou formal approach in order to be able to
derive the effects of organizational changes on related access rules as well. Corresponding
issues are factored out in Klarmann (2001a). In Rinderle and Reichert (2005, 2007) we
have ourselves introduced a first approach for evolving organizational models and for
propagating corresponding changes to access rules. However, this previous work did not
consider direct changes of access rules; i.e., changes which are independent of whether or
not the underlying organizational model has been adapted.

The approach introduced in Domingos et al. (2003) deals with the evolution of access
rules in workflow systems. However, only very simple scenarios are described without any
formal foundation. Furthermore, the compact definition of access rules is aggravated by
the lack of adequate abstraction mechanisms (e.g., hierarchical structures). Issues related
to the modeling of organizational structures have been considered by different groups
(Jablonski et al. (2001), zur Muehlen (2004), Berroth (2005)). Most of them suggest a
particular meta model for capturing organizational entities and the relationships between
them. Model changes and the adaptation of access rules, however, have not been studied
by these approaches in sufficient detail. Particularly, no formal considerations exist and
no proof-of-concept prototypes have been provided.

Ly et al. (2005) introduced access rule mining as first approach for the (semi-)automatic
discovery of access rule optimizations (cf. Fig. 2). This work has been extended by
Rinderle-Ma and van der Aalst (2007). Using special mining techniques, it can be de-
tected whether and – if yes – how users deviate from pre-specified access rules within
daily business life; e.g., in case a task within a PAIS is always passed to a substitute. As
another example consider a scenario where two users A and B qualify for a particular
task, but always user A selects the corresponding work item. In both cases, the associated
access rules should be optimized by directly adapting them.

In van der Aalst and Jablonski (2000) important issues related to changes of processes
and organizational structures are discussed. In this work the authors also motivate the
need for the controlled change of organizational models. In particular, they discuss dif-
ferent kinds of adaptations that have to be supported by respective components (e.g.,
to extend, reduce, replace, and re-link model elements). However, no concrete solution
approach is provided (like, for example, formal change operators with well–defined se-
mantics or mechanisms for adapting access rules after model changes).

9. Summary and outlook

In this paper, we have introduced an approach for managing the life cycle of access
rules. First, we have shown how changes of an organizational model may affect related
access rules. Second, we have presented issues emerging in the context of direct access
rule changes (e.g., due to optimizations or access rule mining). In order to be able to
directly change access rules, a complete set of change operations has been presented.
Furthermore, we have precisely defined the formal semantics of these change operations
in order to avoid any ambiguity when applying them. Finally, the correct definition of

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

28 REFERENCES

change operations required the introduction of a tree-based representation of access rules
with associated tree operations.

In future work, we will elaborate the effects of access rule changes (direct or due
to organizational changes) on user worklists in process-aware information systems. For
this we plan to build up cost models to measure the efficiency of different adaptation
strategies. Furthermore, we will dig deeper into the area of access rule mining.

References

Berroth, M., Design of a Component for Organizational Models. Master’s thesis, Univer-
sity of Ulm, Computer Science Faculty (in German), 2005. .

Bertino, E., 1998. Data Security. Data & Knowledge Engineering, 25 (1–2), 199–216.
Bertino, E., Ferrari, E., and Alturi, V., 1999. The Specification and Enforcement of Au-

thorization Constraints in WFMS. ACM Transactions on Information and System
Security, 2 (1), 65–104.

Bishop, M., 2002. Computer Security. Addison-Wesley Professional.
Botha, R. and Eloff, J., 2001. A Framework for Access Control in Workflow Systems.

Information Management and Computer Security, 9 (3), 126–133.
Domingos, D., Rito-Silva, A., and Veiga, P., 2003. Authorization and Access Control

in Adaptive Workflows. In: Europ. Symposium on Research in Computer Science
(ESORICS’03), Gjovik, Norway, 23–28.

Edmond, D. and ter Hofstede, A., 2000. A Reflective Infrastructure for Workflow Adapt-
ability. Data and Knowledge Engineering, 34 (3), 271–304.

Fent, A., Reiter, H., and Freitag, B., 2002. Design for Change: Evolving Workflow Spec-
ifications in ULTRAflow. In: Int’l Conference on Advanced Information Systems
Engineering, May., 516–534.

Ferraiolo, D.F., Chandramouli, R., and Kuhn, D.R., 2003. Role-Based Access Control.
Artech House, Incorporated.

Ferraiolo, D. and Kuhn, D., 1992. Role Based Access Control. In: National Computer
Security Conference.

Herbst, H., 1997. Business Rule-oriented Conceptual Modeling. Springer.
Herbst, H. and Myrach, T., 1996. A Repository System for Business Rules. In: IFIP

TC2-Working Conf on Data Semantics.
Jablonski, S., Schlundt, M., and Wedekind, H., 2001. A generic component for the

computer–based use of organizational models (in German). Informatik Forschung
und Entwicklung, 16, 23–34.

Joeris, G. and Herzog, O., 1998. Managing Evolving Workflow Specifications. In: Int’l
Conference on Cooperative Information Systems, August., New York City, 310–321.

Klarmann, J., 2001a. A Comprehensive Support for Changes in Organizational Models
of Workflow Management Systems. In: Int’l Conference on Inf Systems Modeling,
375–387.

Klarmann, J., 2001b. Using Conceptual Graphs for Organization Modeling in Workflow
Management Systems. In: Conference Professionelles Wissensmanagement, 19–23.

Kochut, K., et al., 2003. IntelliGEN: A Distributed Workflow System for Discovering
Protein-Protein Interactions. Distributed and Parallel Databases, 13 (1), 43–72.

Konyen, I., Organizational structures and business processes in hospitals. Master’s thesis,
University of Ulm, Computer Science Faculty (in German), 1996. .

Konyen, I., et al., Process Design for an In-patient Chemotherapy. , 1996a. , Internal

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

REFERENCES 29

Computer Science Report DBIS-5, Ulm University (in German).
Konyen, I., et al., A Process Design for the Area of Minimal-Invasive Surgery. , 1996b. ,

Internal Computer Science Report DBIS-14, Ulm University (in German).
Kramer, J. and Magee, J., 1990. The Evolving Philosophers Problem: Dynamic Change

Management. IEEE Transactions on Software Engineering, 16 (11), 1293–1306.
Kuhn, D., 1997. Mutual exclusion of roles as a means of implementing separation of duty

in role-based access control systems. In: Proc. 2nd ACM Workshop on Role-based
Access Control, 23–30.

Ly, L., et al., 2005. Mining Staff Assignment Rules from Event-Based Data. In: Proc.
BPM’05 Workshops, Workshop on Business Process Intellingence, 177–190.

March, J., et al., 2000. The dynamics of rules. Stanford University Press.
Miller, M., Yee, K., and Shapiro, J., Capability Myths Demolished. , 2003. , Technical

report, Combex, Inc.
NIST, 2004. Proposed Standard for Role-Based Access Control.

http://csrc.nist.gov/rbac/rbacSTDACM.pdf.
Pfeiffer, V., A Framework for evaluating access control concepts in workflow management

systems. Master’s thesis, University of Ulm, Computer Science Faculty (in German),
2005. .

Reichert, M. and Dadam, P., 1998. ADEPTflex - Supporting Dynamic Changes of Work-
flows Without Losing Control. Journal of Intelligent Information Systems, 10 (2),
93–129.

Reichert, M., et al., 2009. Architecural Principles and Components of Adaptive Process
Management Technology.. In: PRIMIUM - Process Innovation for Enterprise Soft-
ware., 81–97.

Reichert, M., Wiedemuth-Catrinescu, U., and Rinderle, S., 2004. Evolution of Access
Control in Information Systems. In: Conf Electronical Business Processes (in Ger-
man), Klagenfurt, 100–114.

Rinderle, S. and Reichert, M., 2005. On the Controlled Evolution of Access Rules in
Cooperative Information Systems. In: Cooperative Information Systems, LNCS 3760,
238–255.

Rinderle, S. and Reichert, M., 2007. A Formal Framework for Adaptive Access Control
Models. Journal on Data Semantics, (IX), 82–112.

Rinderle, S., Reichert, M., and Dadam, P., 2004a. Correctness Criteria for Dynamic
Changes in Workflow Systems – A Survey. Data and Knowledge Engineering, 50
(1), 9–34.

Rinderle, S., Reichert, M., and Dadam, P., 2004b. Flexible Support Of Team Processes
By Adaptive Workflow Systems. Distributed and Parallel Databases, 16 (1), 91–116.

Rinderle-Ma, S. and Reichert, M., 2008. Managing the Life Cycle of Access Rules in
CEOSIS. In: 12th IEEE International Enterprise Computing Conference, 257–266.

Rinderle-Ma, S. and van der Aalst, W., Life-cycle support for staff assignment rules in
information systems. , 2007. , Technical report WP-213, Beta Research School for
Operations Management and Logistics, TU Eindhoven.

Sadiq, S., Marjanovic, O., and Orlowska, M., 2000. Managing Change and Time in Dy-
namic Workflow Processes. Int’l Journal on Cooperative Information Systems, 9
(1&2), 93–116.

van der Aalst, W., 2001. Exterminating the Dynamic Change Bug: A Concrete Approach
to Support Worfklow Change. Information Systems Frontiers, 3 (3), 297–317.

van der Aalst, W. and Jablonski, S., 2000. Dealing with Workflow Change: Identification
of Issues an Solutions. Int’l Journal of Comp. Systems, Science and Engineering, 15

May 15, 2009 14:16 Enterprise Information Systems RiRe09˙TEIS

30 REFERENCES

(5), 267–276.
Wainer, J., Barthelmess, P., and Kumar, A., 2003. W–RBAC – A Workflow Security

Model Incorporating Controlled Overriding of Constraints. International Journal of
Collaborative Information Systems, 12 (4), 455–485.

Weber, B., et al., 2005. Balancing Flexibility and Security in Adaptive Process Manage-
ment Systems. In: Int’l Conference on Cooperative Information Systems, November.,
Agia Napa, Cyprus.

Weske, M., 1999. Adaptive Workflows based on Flexible Assignment of Workflow
Schemes and Workflow Instances. In: Proc. GI-Workshop Enterprise-wide and
Cross-enterprise Workflow-Management (Informatik’99), October., Paderborn, 42–
48.

Wiedemuth-Catrinescu, U., Evolution of Organizational Models in Workflow Manage-
ment Systems. Master’s thesis, University of Ulm, Computer Science Faculty (in
German), 2002. .

zur Muehlen, M., 2004. Organizational Management in Workflow Applications – Issues
and Perspectives. Inf. Tech. and Management, 5 (3-4), 271–291.

