Enabling Poka-Yoke Workflows with the
AristaFlow BPM Suite

Manfred Reichert!, Peter Dadam', Stefanie Rinderle-Ma', Andreas Lanz',
Riidiger Pryss!, Michael Predeschly!, Jens Kolb!, Linh Thao Ly,
Martin Jurisch?, Ulrich Kreher?, and Kevin Goeser?

"nstitute of Databases and Information Systems, University of Ulm, Germany
2 AristaFlow GmbH, Ulm, Germany

Abstract. This tool presentation gives insights into the AristaFlow
BPM Suite — a next generation process management technology that has
originated from our research activities in the ADEPT project. We show
how AristaFlow ensures ease of use for process implementers, application
developers, and end users. Our overall vision is to realize robust and flex-
ible process support without encountering bad surprises during runtime.
We denote such error-safe process executions as Poka-Yoke Workflows.

1 Introduction

During the last decade we have developed the ADEPT process management
technology [1]. Due to the high interest of companies in ADEPT, in 2008, we
founded a spin-off to transfer ADEPT into an industrial-strength product version
called AristaFlow BPM Suite [2]. One of our basic goals is to enable robust and
flexible process-aware information systems (PAIS). In particular, we want to
ensure error-safe process execution even at the presence of exceptions or dynamic
process changes. We denote such error-safe processes as Poka-Yoke Workflows.

In our tool demo we focus on a fundamental pillar of Poka-Yoke Workflows:
ease of use. Ease of use does not only have to be ensured for end users (i.e.,
process participants), but should be provided to process implementers and ap-
plication developers as well. In order to enable Poka-Yoke Workflows we had
to develop a technology which supports “correctness by construction” during
process composition and which guarantees correctness in the context of dynamic
process changes. This was probably the most influential challenge for our research
activities. It also had significant impact on the development of the AristaFlow
BPM Suite. In particular, we hide the inherent complexity of process-orientation
(especially in conjunction with flexibility) as far as possible from system ad-
ministrators and application programmers; i.e, we perform all complex things
“beneath the surface” in the process management system.

2 Ease of Use Aspects

In the following we describe ease of use aspects in relation to three user groups:
process implementers, application developers and end users. Our tool demon-
stration gives detailed insights into these different aspects.

2.1 Ease of use for process implementers

For implementing Poka-Yoke Workflows, we pursue the idea of process com-
position in a “plug & play” style supported by correctness checks. The latter
contribute to exclude errors during process execution. As prerequisite, for ex-
ample, implicit data flow dependencies among application services, which are
relevant for their execution order, have to be made known to the process en-
gine. AristaFlow provides an intuitive graphical editor and composition tool to
process implementers (cf. Fig. 1), and it applies a correctness by construction
principle by providing at any time only those operations to the user which allow
to transform a structurally sound process schema into another one; i.e., change
operations are enabled or disabled according to which region in the process graph
is marked for applying an operation. Deficiencies not prohibited by this approach
(e.g., concerning data flow) are checked on-the-fly and are reported continuously
in the problem window of the Process Template Editor.

plate Editor

e
asic Modeling ~] | RunTempiate

I

= aF... [Elac B3 Fer.. | Z B||Fo -ordering]
& 4
Working on revision 2 (latest)
Man _Identfier
Name_+ 4
E @ Actty Repository
© de.aristafiow.cb.5QL
g de.aristafiow.exe. BE [Change Operations 23 |~ &
P © Pove nodes 2
O i 1 SelectNodes tomav
© d
B o @ Movelisdes
8 ~ Data Manipulation
@ i 1 DnsertDataenent
)
&
12 (@
1
1
®
e
a. &
‘
E | 3|1}
T propestes £ | [Problems | T check Report iew | =] TempeteManageriien ¥ = O[22 outine £ | # Data Eement vew|
—— z

Basics Node Basics o =

Roting e orodwrom]

Desaption: ‘

Staff Assignment: [

Fig. 1. AristaFlow Process Template Editor

Generally, we should not require from process implementers that they have
detailed knowledge about the internals of the application functions they can as-
sign to process activities. However, this should not be achieved by undermining
the correctness by construction principle of Poka-Yoke Workflows. In AristaFlow,
all kinds of executables, that may be associated with process activities, are first
registered in the Activity Repository as activity templates. An activity template
provides all information to the Process Template Editor; e.g., about mandatory
and optional input/output parameters or data dependencies to other activity
templates. The process implementer just drags and drops an activity template
from the Activity Repository Browser window of the Process Template Editor
(cf. Fig. 2) onto the desired location in the process graph. Depending on the in-

tended purpose of usage, an activity template can be rather specific or generic.
When using a specific template everything can be fixed; e.g., input/output pa-
rameters and all settings. In this case, the only remaining task for the process
implementer is to check whether the proposed mapping of parameters to pro-
cess data elements is correct. When using a specific database activity template,
for example, input/output parameters, details of the used database, connection
parameters, and the fully specified SQL statement are fixed. A more generic
Activity Template, in turn, may leave open the SQL statement or the number
and types of input/output parameters.

®4aristaFlow Process Template Editor

Eie Wiew Window Help

Ifi- &
‘e Navigator | CJ Activiey Repasitory Browser £ | [Process Repository Browser | - O || $o- Example-3 (Source: Example-3.template) 52 =0
& 7
Full Herarchy *~_Standard Browser | Simple Erowser | Activity Types | Identifiers |
[a1) Demo Clinical Example A
=l+[;)) Demo Customer Example
i) executeForms
89 executeStatementsSQL (DerbyServer - DemaDB-01)
) executeStatementsSQL (DerbyServer - DemoDB-01-sngl)
: e No
D Customer: does ustio exist?
Customer: insert new customer
8 Customer: read complete table
5§ Customer: read tuple with Custhio
5 gerera
T3 order: <reate Table
) executeStatements3QlL (Oradle LitSysfAristaFion)
@ FieTools
@ Generics
EJ-GiJ Defauk Configuration
B calexe o
) Generated Form
) Script
) User Form
8 %OR Predicate
-1 xpath
2 g, Mail =l
Properties 2
Activity Template 1D; 3e6628f3-befS-4af&-90fb-bIcIBactacs? -
Companent config 10: cd27dk
Descrption: Uses MAX(Custiio)-+1 to determine the riext free
Cuskho in the Customer table
Name: Customer: determine free Custho
Operation ID: Fa417d28-chas-44be-Bd34-30a22F 774901 -

] Properties [& Problems 53 | 5 TemplateManagertiew = HSE Outine 52 } = Data Element mewl

|

Fig. 2. Activity Repository Browser window in the Process Template Editor

2.2 Ease of use for application developers

A developer who wants to provide a new application function must implement a
corresponding activity template and add it to the Activity Repository. It then be-
comes available in the AristaFlow Process Template Editor for process modeling
(cf. Fig. 2). To simplify implementation of activity templates, we support several
levels of abstraction. At the lowest one we provide an Execution Environment
for each kind of supported basic operation (e.g., SQL statements, web services,
EXE files, BeanShell scripts, basic file operations, and system-generated forms).
However, implementation of an execution environment requires some knowledge
about internals and, therefore, is typically not the task of an ordinary application
developer, but is performed by system implementers.

An execution environment defines the set of methods needed to interact with
the runtime system as well as to implement the operations and facilities that
shall be provided by the activity template. An activity template for database

access, for example, may allow the user to specify connection details. In general,
AristaFlow needs information about the runtime behavior of the activities; e.g.,
whether they may be aborted, suspended, or undone. The developer of an ac-
tivity template has to implement interface methods that inform the AristaFlow
runtime environment which of these facilities are supported. For the latter case
he must also provide the implementation of this functionality. The task of im-
plementing a new activity template is simple if it can be based on a generic
activity template. In this case, implementation can be reduced to putting the
appropriate entries into the set of forms representing the activity template.

2.3 Ease of use for end users

Enabling ease of use for end users is mainly the task of application developers.
They decide how “manual” process activities interact with the end user. They
also decide whether the standard workflow client is used or whether a dedicated
one shall be provided. An important prerequisite for realizing adapted user in-
terfaces is to provide the appropriate methods to the application developer; e.g.,
to enable him to realize end user interactions in the context of ad-hoc changes.
To implement clients with such capabilities, the application developer can make
use of system functions available at the AristaFlow API.

Fig. 3 and Fig. 4 illustrate how an ad hoc change may foster Poka-Yoke
Workflows. Assume that a process instance wants to issue a request for a book
quote using Amazon’s web service facilities, but then fails in doing so. The user
detects that his process is in trouble and calls the system administrator. The
latter then invokes the AristaFlow Process Monitor to take a look at this pro-
cess instance (cf. Fig. 3). Analyzing the execution log of the failed activity he
detects that its execution failed because the connection to Amazon could not
be established. Let us assume that he considers this as temporary problem and
offers the user to reset the activity so that it can be repeated once again. Be-
ing a friendly guy, he takes a short look at the process instance and its data
dependencies, and sees that the result of this and the subsequent activity is
only needed when executing the “Choose offer” activity. Therefore, he offers the
user to move these two activities after activity “CheckSpecialOffers”; i.e., the
user can continue to work on this process instance before the PAIS tries to re-
connect to Amazon. To accomplish this change he would switch to the Instance
Change Perspective of the Process Monitor which provides the same set of change
operations as the Process Template Editor. In fact, it is the Process Template
Editor, but it is aware that a process instance has been loaded and, therefore, all
instance-related state information is taken additionally into account when en-
abling/disabling change operations and applying correctness checks. The system
administrator would now mark the nodes “Get Amazon offer” and “Get Amazon
price” as source area and the nodes “CheckSpecial Offer” and “Choose offer” as
target area, and then perform operation Move nodes. The resulting process is
depicted in Fig. 4. Another option would be to move node “RetrieveSnailOffer”
(where we are waiting for an E-Mail response) after “CheckSpecialOffer” as well.
Then “CheckSpecialOffer” would become immediately executable.

0 1208 ™ @+---0
Lo refresh ot 5omDec 07 18:07:20 CET 2008

ey sirest

g aaue Requested product ey rams
DT ava:lang.biect s

Srainaiseler offer
uDT: Mal
«.

Requested quanity
i

mazogfrice (Js

B

W=

Ba B@iE

L« | _>I;‘

181X

5[5 nstonce cha.. (@ onkorno

(E a2 7 O (Fo-*wodfyng SeligEse-estended (07.12.06 16:04) 53 = 0|(@ pastteven 22 = O

s [chongeopertions 2|
prosslction

|

Pl brar
= & actioty |

Properties &

K] >
= properees 2 L2 Probiens |
Basics Node Basics |

St Assgnments [Agent()

Fig. 4. Process Monitor: Instance Change Perspective

3 Conclusions

Due to its “correctness by construction” principle and its ability to quickly com-
pose robustly executable and adaptable processes, AristaFlow is suited to enable
Poka-Yoke (= error-safe) Workflows. Currently, we apply AristaFlow in different
industrial context with very positive feedback on its components and features.

References

1. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware informa-
tion systems. LNCS Transactions on Petri Nets and Other Models of Concurrency
(ToPNoC) 2 (2009) 115-135

2. Dadam, P., Reichert, M.: The ADEPT project: A decade of research and develop-
ment for robust and flexible process support - challenges and achievements. Com-
puter Science - Research and Development 22 (2009) 81-97

