
Towards Management of Complex Service Compositions
- Position Paper -

Lianne Bodenstaff∗, Roel Wieringa, Andreas Wombacher
University of Twente

{l.bodenstaff,r.j.wieringa,a.wombacher}@utwente.nl

Manfred Reichert
University of Ulm

manfred.reichert@uni-ulm.de

Abstract

Many companies offer physical products combined with
on-line services. For example, product configuration, or-
dering, order tracking, and payments can be done on-line.
The service part of the total offering (the composition) is
typically composed of services offered by providers where
performance of both the composition (provided by the com-
pany) and the input services (obtained from providers) is
governed by service level agreements (SLAs). The goal of
our approach is to diagnose the performance of an on-line
service composition in terms of the performance of on-line
input services, with respect to the performance indicators
mentioned in the SLAs, and to do this in real-time.

Classical SLA monitoring techniques are batch-oriented
and are not usable in the highly dynamic environment of
Web service provision, where provider relations may change
even during service delivery. Our techniques use real-time
analysis of log files to trace and diagnose performance on-
the-fly. Current Web service monitoring techniques do not
relate a composite service to its components, as needed to
provide diagnostic information. Furthermore, current ap-
proaches do not take into account that the dependency of a
composition on its components varies for different attributes
(such as cost and response time). In this paper we propose
to extend our previous research in this area by lifting a num-
ber of simplifying assumptions to make the approach appli-
cable in real-life, and by extending our study to frequently
used SLAs in practice.

1 Introduction

Many companies offer physical products combined with
Web services. For example, companies selling servers
on-line order required components on-line from suppliers
world-wide and assemble them for just-in-time delivery.

∗This research has been supported by the Dutch Organization for Sci-
entific Research (NWO) under contract number 612.063.409

Services from both providers and company are offered ac-
cording to some Service Level Agreement (SLA), speci-
fying the provided performance. This situation occurs in
many branches of industry besides in a Web service envi-
ronment, such as electronics companies, car manufactur-
ers, and furniture companies. The problem considered in
this paper is how a service administrator can explain ser-
vice composition performance in terms of performance of
its service providers. A service administrator in this pa-
per monitors and (re)negotiates SLAs provided or used by
the company. In this position paper we describe our ap-
proach, Monitoring Complex Service Compositions (MoC-
SCo), that aims for real-time performance diagnosis to en-
able offering competitive SLAs in a highly dynamic envi-
ronment.

Quality of service (QoS) research in supply chains is
well established but rather assumes a static supply chain
in which data are collected and analyzed over a time pe-
riod [7, 19]. In e-commerce, by contrast, each supply
chain may exist for one delivery only, and providers may
be switched even during execution. We therefore need al-
gorithms that allow real-time monitoring and diagnosis of
QoS. In MoCSCo we will provide sophisticated tools and
algorithms for monitoring composition performance in real-
time and diagnosing its performance in terms of component
services obtained from third parties. This is a first step to-
wards automatic composition management.

In Section 2 we describe our current work by means of
a small example, followed by Section 3 where a motivat-
ing example is described. In Section 4 we describe the four
different research questions we aim to tackle. After this,
we give a description of the envisioned methodologies to
use for answering these questions in Sections 5, 6, 7, and 8.
Related work is discussed in Section 9 after which we con-
clude this paper with a short discussion and summary in
Section 10.



Dependency
analysis

Log
analysis

SLAs

Service composition

Dependency
trees

Logs

Performance
trees

Figure 1. Tool architecture. One dependency and performance tree for each attribute.

2 Current work

This position paper continues our current work on QoS
monitoring and diagnosis, Monitoring Dependencies for
Service Level Agreements (MoDe4SLA) [8, 11, 10], that
allows us to monitor QoS attributes and diagnose observed
performance under a number of simplifying assumptions.
Our tool architecture is shown in Figure 1.

Dependency analysis analyzes for each attribute how
performance of the composite service depends on its com-
ponent services. This dependency varies for different at-
tributes. We currently do cost and response time analysis,
and will extend this with at least availability in this project.
Log analysis uses for each attribute the dependency tree and
log of service invocations to diagnose the composition per-
formance in terms of its components. To be meaningful, we
assume for this diagnosis that the internal business process
by which the composite service (delivered to a customer)
is constructed from the component services (obtained from
providers), does not distort the composition logic of the ser-
vice.

In detail, in dependency analysis we derive for the most
common workflow patterns, and for each performance at-
tribute, how performance of the components influence the
composition performance. We use the following constructs
from the workflow pattern library [1, 2]: sequence, AND
split and join, AND split and discriminative join, OR split
and join, OR split and discriminative join, XOR split and
join, and loop.

For example, Figure 2 shows a composition tree with an
OR split and discriminative join (ORDISC) where 2 out
of 3 branches are invoked and the split succeeds with the
first responding service. Each branch indicates its invoca-
tion probability compared to its siblings, i.e., WS 1, WS 2,
and WS 3 have a chance of 0.2, 0.3, and 0.5 to be chosen,
respectively. The response time (RT) and cost dependency
trees depict the expected average impact of each service on
response time and cost of the composition (impact factor
IF), and the expected average number of contributions per
composition invocation (edge annotations with contribution
factor), respectively. Composition RT is determined by the
longest response time of a subset of services (max(subset)),
while composition costs are determined by the sum of costs

for a subset of services (sum(subset)). The algorithm deter-
mines these expected values by taking the invocation proba-
bility together with the expected average attribute value into
account. The contribution factor for an ORDISC depends
on the probability a branch is invoked per composition invo-
cation (for cost) and its probability to be the fastest respond-
ing (for RT). More specifically, the estimated composition
RT is in this case determined by determining the invoca-
tion chance for each subset of two branches (recall that two
branches out of three are invoked) based on the estimated
invocation chance for each branch. Together with the av-
erage response time for each branch, we calculate for each
subset of two branches which branch is most likely to fin-
ish first. Now, we determine the average response time for
the ORDISC based on the expected response time of each
subset of three services and the invocation chance of that
subset. Furthermore, we use this information to determine
for each service its Impact Factor (IF) which is a combina-
tion of its estimated average response time and the chance
it is the fastest responding branch when invoked. For exam-
ple, WS 3 has an expected impact of 0 concerning response
time since is expected to always be the slowest service when
invoked.

The second major part of the algorithm is the log anal-
ysis, where we analyze a log of service invocations and
construct the performance tree, in which we show four
things [11]:

• A trace of composition performance to performance of
its components;

• Realized impact factors of component services;

• Realized contribution factors and any deviations with
expected values;

• Any SLA violations of average attribute values when
they contributed to the composition;

As indicated above, in MoCSCo we will add availability
as third relevant attribute, and our case studies may reveal
additional relevant attributes. Also, in the current version of
the tool we have made a number of independence assump-
tions that need to be dropped for the tool to be applicable

2



COMP OR DISC

RT: 2 ms
Cost: € 6

Composition tree

WS 1

WS 2

WS 3

RT: 5 ms
Cost: € 4

0.2
0.3

0.5
RT: 6 ms

Cost: € 2

COMP max(subset)

RT dependency tree

WS 1

WS 2

WS 3

0.49

0.51

0

COMP total(subset)

Cost dependency tree

WS 1

WS 2

WS 3

0.49
0.67

0.84

Cost: € 7.30

RT: 3.53 ms
IF: 0.28

IF: 0.72

IF: 0

IF: 0.40

IF: 0.37

IF: 0.23

Figure 2. Composition example with re-
sponse time and cost dependency trees.

to realistic cases. This is the major task of the MoCSCo
project

3 Motivating Example

To motivate the necessity for our proposed research, we
show in this section the complexity of monitoring service
compositions while taking simplifying assumptions into ac-
count as we do in MoDe4SLA. This more complex example
is depicted in Figure 3 where the composition, Figure 3(a),
consists of an OR split with discriminative join (ORDISC)
where 3 out of 4 branches are invoked and the construct suc-
ceeds after the fastest two invoked branches succeed. Each
branch indicates the invocation chance compared to its sib-
lings. The first branch is an AND split and join where WS
1 and WS 2 are invoked in parallel. The second branch con-
sists of a single Web service WS 3, and the third branch is
an XOR split where either WS 4 (chance is 0.4) or WS 5
(chance is 0.6) is invoked. The fourth branch consists of
WS 6. Each service has an agreed upon average response
time and cost attribute described in its SLA.

The response time dependency tree Figure 3(b) depicts
the expected average impact of each service on the response
time of the composition. For the OR split with discrimina-
tive join we calculate the estimated response time of each
branch. For each subset of three branches (recall that three
branches out of four are invoked) we calculate the invoca-

tion chance based on the estimated chance to be chosen
on the branches. With the average response time for each
branch and the chance for each subset of branches to be in-
voked, we can determine which branch will most likely be
the second to finish for each subset. Recall that the OR-
DISC construct succeeds after the second branch responds.
Now, we can determine the average response time for the
ORDISC based on the expected response time of each sub-
set of three services and the invocation chance of that sub-
set. For example, the first and second branch are not ex-
pected to ever be the second responding branch, therefore,
their expected impact is 0. On average, the third branch
with the XOR split is expected to determine the response
time in 57% of the composition invocations. Recall from
Figure 3(a) that the chance to be invoked for WS 4 and
WS 5 is 0.4 against 0.6. Therefore, on average, WS 4 con-
tributes 0.4 · 0.57 = 0.23 times to the overall response time
when the composition is invoked. The impact of WS 4, i.e.,
the average contribution to the total response time, is 0.31.
This value is calculated using the average response time of
WS 4 (6ms), the average response time of the composition
(4.46 ms), and the number of times the WS is expected to
contribute to the response time of the composition (0.23):

6
4.46 · 0.23 = 0.31.

The cost dependency tree in Figure 3(c) depicts the ex-
pected average contribution of each Web service to the com-
position cost (i.e., the impact factors). Furthermore, it de-
picts how often a service is expected to contribute to the
costs per composition invocation (i.e., the values on the
branches). For costs it holds that each invoked service has
to be paid. Therefore, the ORDISC results in the summa-
tion of costs of a subset of its outgoing branches (in this
case 3) (sum(subset)). For each subset of three branches
we calculate the invocation chance. For each branch we
determine the average invocation chance by summating the
chances of each subset where the service is contained. The
results are depicted on the outgoing branches and add up to
3 since each composition invocation invokes 3 branches that
all contribute to the cost of the composition. For the XOR
split in the third branch we calculate the invocation chance
for WS 4 and WS 5 (0.4·0.8 = 0.32, and 0.6·0.8 = 0.48, re-
spectively) and therefore contribute to the composition cost.
The expected impact factor for each service is again calcu-
lated by dividing the average cost of the service (e.g. e4 for
WS 1) with the average composition cost (e14.47) and mul-
tiplying this with the chance the service actually contributes
(0.73): 4

14.47 · 0.73 = 0.20.

For this example we can now derive that the response
time of the composition is influenced by WS 4, 5, and 6.
Furthermore, we can see that they have a comparable im-
pact. Concerning the composition cost, we can derive that
WS 4 and 5 have a comparable low impact and WS 6 con-
tributes to almost 30% of the cost. Furthermore, we see

3



that for response time WS 6 contributes in 43% of the invo-
cations and WS 4 and WS 5 23% and 34%. For the costs,
service 1, 2, 3, and 6 all contribute in 70−80%, and services
4 and 5 only 30− 50% of the invocations.

As becomes clear for this example, monitoring depen-
dencies for service compositions is not straightforward.
Therefore, more research is needed to support management
of these complex constellations.

4 Research Questions and Methodology

We pursue four questions in MoCSCo. Q1 and Q2 are
preliminary questions while Q3 and Q4 require the most
research effort:

Q1 What is the structure of SLAs?
Q2 How can we monitor composition performance as re-

quired by its SLA?
Q3 How can we diagnose performance of the composi-

tion?
Q4 How accurate and efficient is the algorithm in practice?

In Q3 we will extend the MoDe4SLA approach by con-
sidering additional real-life complexity of the compositions.
The following items are discussed:

• Ranges of attribute values

• Dependencies between attributes

• Dependencies between SLAs

• Automatic homogenization

• Dependencies between compositions

Each of these items will lead to an extension for the
current MoDe4SLA approach. The four questions are dis-
cussed in the following four sections.

5 SLA Structure

To develop a monitoring approach applicable in real-life
we need to answer the following question:

Q1 What is the structure of SLAs?

So far, we reviewed several SLA structures as used in
different SLA languages like WSLA [14] and SLAng [15],
and in specific domains like IP networks [24] and resource
management [13]. To assure applicability of our perfor-
mance analysis in real-life we will extend this review. We
will do case studies with industrial partners of other, related
projects of the Information Systems group, among others
Philips, Daimler, IBM and Cisco. In addition, we plan a

COMP

WS 1 WS 2

OR DISC

RT: 2 ms RT: 3 ms
Cost: € 4 Cost: € 3

Composition tree

AND WS 3 XOR WS 6

RT: 5 ms
Cost: € 4

RT: 4 ms
Cost: € 6

RT: 6 ms
Cost: € 2

RT: 4 ms
Cost: € 3

WS 4 WS 5

0.2
0.3 0.4

0.1

0.4 0.6

(a) Composition

COMP

WS 1 WS 2

max(subset)

IF: 0

RT dependency tree

max(total) WS 3 max(one) WS 6

WS 4 WS 5

0
0 0.57

0.43

0.23 0.34

RT: 4.46 ms

0 0

1

IF: 0

IF: 0

IF: 0.31 IF: 0.3

IF: 0.39

(b) Response time dependency tree

COMP

WS 1 WS 2

sum(subset)

IF: 0.2

Cost dependency tree

sum(total) WS 3 sum(one) WS 6

WS 4 WS 5

0.73
0.77 0.8

0.7

0.32 0.48

Cost: € 14.47

0.73 0.73

1

IF: 0.15

IF: 0.21

IF: 0.04 IF: 0.1

IF: 0.29

(c) Cost dependency tree

Figure 3. Illustrative composition example
with response time and cost dependency
trees.

4



systematic literature review to collect knowledge about QoS
attributes and their dependencies.

We will summarize the results in SLA patterns which
will be test cases in the remainder of the project. So far,
WSLA [14] has served our purpose, but if necessary, we
will extend the language.

6 Monitoring Performance

Here, we discuss how to approach the practical problem
of monitoring composition performance:

Q2 How can we monitor composition performance as re-
quired by its SLA?

To monitor performance, we need to relate service exe-
cution logs to the composition in terms of component ser-
vices. We abstract from the internal business process that
defines the composition, and follow on the dependency
logic of the composition structure. Since we assume this
logic follows constructs from the considered workflow pat-
terns, our approach is language independent concerning
composition specification.

We currently simulate logs that consist of sequences of
the form <service call, start time, stop time, cost, result>.
We relate log messages to composition structures by recon-
structing the message invocation order through their time
stamps. For real-life logs without time stamps or composi-
tions that contain nested loops (unnested loops can be han-
dled this way), a more complex approach is needed where
logs are related to the structure through annotating mes-
sages when they enter the logs [9]. In MoCSCo we will
explore the time stamp and annotation approaches by means
of simulated logs and logs obtained from case studies done
for Q1.

Note that performance monitoring is not process min-
ing [23] because we have a process structure against which
to analyze a log. Our problem is related to both performance
checking [20], and variant mining [17] because we are in-
terested in deviations from a given process. But where vari-
ant mining looks for structural variations of a process, and
conformance checking for structural deviations between a
process and its logs, we search for performance variations
of a process with the same structure.

7 Diagnose Performance

The main identified research question is on how to actu-
ally diagnose performance:

Q3 How can we diagnose performance of the composi-
tion?

As indicated, we plan to add availability as third at-
tribute, and possibly other relevant attributes revealed by
answering Q1. The major task in answering Q3 is, how-
ever, to drop a number of simplifying assumptions we made
in MoDe4SLA. We discuss these in the following subsec-
tions.

7.1 Ranges of attribute values

So far, we ignored attribute value ranges, but in real-life,
SLAs use these ranges. Consider the following examples:

Response time of service A will be 7− 9 ms with
an average of 8 ms.

Response time of service B will be 1−15 ms with
an average of 8 ms.

We currently treat these performance requirements as iden-
tical since we consider averages. For a proper diagnosis
of SLA violations, we need to reason about value ranges.
Therefore, we will incorporate variance in the impact anal-
ysis computation, where the impact of services with high
variance is greater than the impact of a stable service. We
need to experiment with various ways of doing this while
keeping complexity of dependency and diagnosis computa-
tion down. Our first subgoal therefore is:

Extension 1: Extend the computation of de-
pendency tree and impact values with variance
between services concerning a specific attribute
(e.g. response time).

7.2 Dependencies between attributes

We currently assume attributes are mutually indepen-
dent. However, in real-life SLAs inter-dependencies are
common. Consider the following SLA:

Every month, response time will be within 3 ms
at least 99% of the invocations. Costs are 3 euro
when the service responds within 2 ms while a
response time of 2 − 3 ms costs 2 euro. If less
than 99% of the invocations have response time
within 3 ms a penalty of 1000 euro is paid.

In this SLA, cost directly depends on response time. The
challenge is to represent what this means for the relative
contribution of component service performance on the com-
position cost. For example, to diagnose the cause of an
increase in composition cost, we need to show the influ-
ence of decreasing response times to the cost (i.e., costs
rise to 3 euro). To solve this, we intend to represent de-
pendencies between models by constructing links between

5



attributes. These links should be annotated with some con-
tribution function, similar to causal arrows in causal loop
diagrams [22]. Our goal is to represent causal influence be-
tween attributes as accurately as necessary for meaningful
diagnosis. For example, in the above example it may be
sufficient to represent that a decrease in response time will
cause an increase in cost. This leads to our second subgoal
in answering Q3:

Extension 2: Extend the computation of depen-
dency tree and impact values with dependencies
between attributes within one SLA, balancing
computational efficiency with diagnostic capabil-
ity.

A third elaboration to meet conditions of real-life SLAs
is the imposition of violation penalties. An example is the
above SLA, where 1000 euro have to be paid in case the
response time requirement is not met. We could add this
as additional cost, with a dependency on the performance
of other attributes. However, this would ignore the special
status of penalties. Another solution is to create separate
penalty dependency tree. We need to experiment with this
and possibly other options to find the best way to monitor
and diagnose penalties. Our third subgoal is accordingly the
following.

Extension 3: Extend the computation of depen-
dency tree and impact values with penalties for
SLA violations.

7.3 Dependencies between SLAs

When relating different SLAs of a composition and its
components, we assume these SLAs are of equal struc-
ture. However, the composition SLA may, for example,
mention response time, while some component services do
not. This complicates diagnosing composition performance
since causes for too long response times can only be traced
when all components are monitored for it. We need to ex-
periment to deal with “missing attributes” to find out which
ways give useful performance tree diagnoses. One way
might be using default or historical values, although this
may obscure performance tree diagnosis.

Another structural mismatch arises with incompatible
time frames. Here, we can impose a time ontology that
unifies the smallest time units and harmonizes the ontology
of time periods. Especially scaling down time frames will
cause challenges since averages over partial time periods
might not be representative for the total SLA time frame.
Therefore, we need to decide on a trade off between onto-
logical correctness and computational tractability. Our next
subgoal is therefore the following:

Extension 4: Extend the computation of depen-
dency tree and impact values so that they can han-
dle mismatches in, for example, attributes or time
frames for dependencies between SLAs.

7.4 Automatic homogenization

In practice, compositions may comprise hundreds of ser-
vices so that manual mismatch handling is not feasible. Ul-
timately, our solution should therefore be fully automatic,
while maintaining accountability, i.e. service administra-
tors should be able to check which SLAs were incompati-
ble, why, what is done about it, and what the effects are on
diagnosis.

Extension 5: Automatically homogenize SLAs in
a composition in an accountable manner.

7.5 Dependencies between compositions

Another class of dependencies arises due to the fact that
many services come in sets, such as services for gold, silver
and platinum members, each with different but structurally
similar SLAs. The representation problem is similar to
specifying software product families, and might be solved
using techniques from that field. The diagnosis problem is
new, however, because it requires relating performance di-
agnosis of sets of related services.

Another kind of dependency stems from reuse of com-
position results. For example, a company providing
on-demand news by querying several databases of other
providers, might reuse results when same or similar invo-
cation is done in a different service composition. Reuse
causes reduced invocation costs. In real-time monitoring,
it is not possible to determine which reuse cases will oc-
cur, which makes representing invocation costs accurately
impossible. Consequently, relating different compositions
using the same data will be an ongoing process, causing
updates in cost models, falsifying historic dependency anal-
ysis. Our sixth subgoal is therefore the following:

Extension 6: Extend the computation of depen-
dency tree and impact values with dependencies
between compositions.

8 Accuracy and Efficiency of the Algorithm

We will validate our solutions of Q3 on simulations with
SLAs taken from the results of Q1. However, we intend
to do two more case studies, unrelated to the requirements
elicitation from Q1: one to test accuracy and one to test effi-
ciency. For this purpose, our tool will automatically derive
dependency models for a given composition. Furthermore,

6



it will analyze logs and calculate performance trees for the
service administrator.

Q4 How accurate and efficient is the algorithm in practice?

We define accuracy as the extent to which our depen-
dency trees represent contribution of components perfor-
mance to composition performance. We claim our construc-
tion of dependency trees is accurate [11] under following
assumptions:

• Internal business processes implement the service
composition structure so that it does not distort the
logic of composition trees, and

• Internal business process executions do not deviate
from internal business process specifications.

Both assumptions may be violated in practice and we will
test our approach for this. For our approach to be useful it
is sufficient that a significant number of business processes
in practice satisfy the above assumptions.

In addition, we want to test whether our tool scales up
to conditions of practice. We will therefore use it with a
composite service of one of our industrial partners to val-
idate feasibility of the setting, and to test constructing de-
pendency and performance trees in real-time. The service
administrator should judge (1) impact factors to be valid,
and (2) diagnosis to hold useful diagnostic information. For
this, our tool will provide graphical feedback models for
the user, depicting all identified dependencies. These mod-
els should be intuitive to the user and hide the complexity
of our approach. Currently, we consider using abstractions
from details to hide complexity while users can zoom into
services for more detailed information.

Here, we define efficiency as the ability to support ser-
vice administrators in managing services better by using
our tool with cost they judge to be acceptable. We will esti-
mate this by a survey of perceived usability and usefulness
as done for the current version of our tool [8]. In that sur-
vey 34 experts from both academia and industry answered
49 questions in an interactive session on the use of our cur-
rent approach. The participants were asked to manage ser-
vice compositions with and without the help of MoDe4SLA
models.

9 Related work

Operations researchers study supply chain management
techniques [25]. Such research ensures purchasing goods
and services at the right time and price for just-in-time de-
livery [27], and purchasing goods and services at the right
level of quality [7]. The major difference with our research
is that we allow for greater dynamics of service composi-
tion, so that a provider can change during execution of the

service composition. In traditional supply chain manage-
ment, quality is measured over batches of products and over
longer periods of time with a decision point at the end on
whether or not to change provider.

Real-time systems design and analysis also studies the
composition of systems from components with known QoS
guarantees [16]. The design and analysis algorithms devel-
oped in this research areas are widely used for Web service
research, but here too runtime dynamics of service compo-
sitions with respect to changing providers, services, or com-
positions, and necessity for direct, instance-based, monitor-
ing of QoS, needed for our goals, are not covered. For ex-
ample, in service selection research, QoS of a composition
is related to that of its components while composing an op-
timal composite service at design time [26]. While in this
project, we monitor the composition and relate its perfor-
mance to that of its components at runtime.

There are various approaches to monitor Web services.
Casati et al. [21] aim at automated SLA monitoring, Pistore
et al. [4] enable run-time monitoring while separating busi-
ness logic from monitoring functionality. The smart moni-
toring approach by Baresi et al. [5] implements the monitor
functionality itself as a service. Further work of Baresi et
al. [6] presents an approach to dynamically monitor BPEL
processes by adding monitoring rules. None of these ap-
proaches relate the performance of a composition to the
performance of its components, which is the goal of this
project. Mahbub and Spanoudakis [18] do relate the com-
position to its components but do so to identify specified
requirement violations without considering their causes, as
we do.

Dependency trees are used to do a root cause analysis
of SLA violations [3, 12]. These trees are not constructed
automatically, as we do, and they represent IT system ar-
chitectures, rather than service compositions, as our trees
do.

10 Discussion and Summary

Performance of service compositions has been studied
from a specification and design point of view, but not from
a monitoring and optimization point of view. With this po-
sition paper we do not only provide more insight in the
structure of Web-SLAs but also in SLAs in general, and in
the way they are related to the logical decomposition of a
service composition. In particular our requirement to auto-
matically build dependency trees, as well as automatically
and on-the-fly diagnosis leads to identifying the underlying
structure of SLAs. This research will pave the way for auto-
matic management of service compositions in, for example,
outsourcing, data and process integration, and value-added
services.

7



Our approach to monitoring complex service composi-
tions is to answer four relevant questions:

• What is the structure of SLAs?

• How can we monitor composition performance as re-
quired by its SLA?

• How can we diagnose performance of the composi-
tion?

• How accurate and efficient is the algorithm in practice?

Q3 is answered by taking a real-life setting into account.
The resulting approach is tested in Q4 for accuracy and effi-
ciency, providing the necessary validation of the approach.

References

[1] Workflow patterns. http://www.
workflowpatterns.com.

[2] W. v. d. Aalst, A. t. Hofstede, B. Kiepuszewski, and A. Bar-
ros. Workflow patterns. Distributed and Parallel Databases,
14(3):5–51, July 2003.

[3] M. Agarwal, K. Appleby, M. Gupta, G. Kar, A. Neogi, and
A. Sailer. Problem determination using dependency graphs
and run-time behavior models. In International Workshop
on Distributed Systems: Operations and Management, vol-
ume 3278, pages 171–182. Springer, 2004.

[4] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-
time monitoring of instances and classes of web service
compositions. In IEEE International Conference on Web
Services, pages 63–71, 2006.

[5] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for
composed services. In International Conference on Service
Oriented Computing, pages 193–202, New York, NY, USA,
2004.

[6] L. Baresi and S. Guinea. Towards dynamic monitoring of
WS-BPEL processes. In International Conference on Ser-
vice Oriented Computing, volume 3826, pages 269–282.
Springer-Verlag, 2005.

[7] B. Beamon and T. Ware. A process quality model for the
analysis, improvement and control of supply chain systems.
International Journal of Physical Distribution & Logistics
Management, 28, 1998.

[8] L. Bodenstaff, A. Wombacher, M. Jaeger, M. Reichert,
and R. Wieringa. Monitoring service compositions in
MoDe4SLA: Design of validation. In International Con-
ference on Enterprise Information Systems 2009, 2009.

[9] L. Bodenstaff, A. Wombacher, and M. Reichert. On formal
consistency between value and coordination models. Tech-
nical Report TR-CTIT-07-91, University of Twente, 2007.
http://eprints.eemcs.utwente.nl/11954/.

[10] L. Bodenstaff, A. Wombacher, M. Reichert, and M. Jaeger.
Monitoring dependencies for SLAs: The MoDe4SLA ap-
proach. In IEEE International Conference on Services Com-
puting, pages 21–29, 2008.

[11] L. Bodenstaff, A. Wombacher, M. Reichert, and M. Jaeger.
Analyzing impact factors on composite services. In IEEE
International Conference on Services Computing, 2009.

[12] D. Caswell and S. Ramanathan. Using service models for
management of internet services. IEEE Journal on Selected
Areas in Communications, 18(5):686–701, 2000.

[13] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and
S. Tuecke. Snap: A protocol for negotiating service level
agreements and coordinating resource management in dis-
tributed systems. In JSSPP ’02: Revised Papers from the
8th International Workshop on Job Scheduling Strategies
for Parallel Processing, pages 153–183, London, UK, 2002.
Springer-Verlag.

[14] A. Keller and H. Ludwig. The WSLA framework: Spec-
ifying and monitoring service level agreements for web
services. Journal of Network and Systems Management,
11(1):57–81, 2003.

[15] D. Lamanna, J. Skene, and W. Emmerich. Slang: A lan-
guage for defining service level agreements. In Proceedings
of the 9th IEEE Workshop on Future Trends in Distributed
Computing Systems-FTDCS, pages 100–106, 2003.

[16] P. Laplante. Real-Time Systems Design and Analysis: An
Engineer’s Handbook. IEEE Press, Piscataway, NJ, USA,
1992.

[17] C. Li, M. Reichert, and A. Wombacher. Discovering refer-
ence process models by mining process variants. In Proc.
6th International Conference on Web Services (ICWS’08),
2008.

[18] K. Mahbub and G. Spanoudakis. Run-time monitoring of
requirements for systems composed of web-services: Initial
implementation and evaluation experience. In IEEE Interna-
tional Conference on Web Services, pages 257–265, 2005.

[19] M. Naim, P. Childerhouse, S. Disney, and D. Towill. A sup-
ply chain diagnostic methodology: determining the vector of
change. Computers & Industrial Engineering, 43(1-2):135
– 157, 2002.

[20] A. Rozinat and W. van der Aalst. Conformance checking of
processes based on monitoring real behavior. Information
Systems, 33(1):64–95, 2008.

[21] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and
F. Casati. Automated SLA monitoring for web services. In
International Workshop on Distributed Systems: Operations
and Management, pages 28–41, 2002.

[22] J. Sterman. Business Dynamics: Systems Thinking and Mod-
eling for a Complex World. McGraw-Hill, 2000.

[23] B. van Dongen, A. de Medeiros, H. Verbeek, A. Weijters,
and W. van der Aalst. The ProM framework: A new era
in process mining tool support. Applications and Theory of
Petri Nets, 3536:444–454, 2005.

[24] D. Verma. Service level agreements on ip networks. Pro-
ceedings of the IEEE, 92(9):1382–1388, 2004.

[25] T. Vollmann. Manufacturing Planning and Control for Sup-
ply Chain Management. Irwin/McGraw Hill, 2005.

[26] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang. Qos-aware middleware for web services
composition. IEEE Transactions on Software Engineering,
30(5):311–327, 2004.

[27] K. Zimmer. Supply chain coordination with uncertain just-
in-time delivery. International Journal of Production Eco-
nomics, 77(1):1–15, 2002.

8


