
Capturing Variability in Business Process Models:
The Provop Approach

Alena Hallerbach1, Thomas Bauer1, and Manfred Reichert2

1 Group Research and Advanced Engineering, Daimler AG,
Ulm, Germany

{alena.hallerbach,thomas.tb.bauer}@daimler.com
2 Institute of Databases and Information Systems, University of Ulm, Germany

manfred.reichert@uni-ulm.de

Abstract. Usually, for a particular business process different variants exist. Each
of them constitutes an adjustment of a reference process model to specific require-
ments building the process context. Contemporary process management tools do
not adequately support the modeling of such process variants. Either the variants
have to be specified as separate process models or they are expressed in terms of
conditional branches within the same process model. Both methods often lead to
redundancies making model adaptations a time consuming and error-prone task.
In this paper we discuss selected concepts of the Provop approach for modeling
and managing process variants. A particular process variant can be configured at
a high level of abstraction by applying a set of well-defined change operations to
a reference process model. In particular, this paper discusses advanced concepts
for the design and modeling of such a reference process model as well as for
the adjustments required to configure the different process variants. Altogether,
Provop provides a flexible and powerful solution for process variant management.

Key words: Process Variant, Process Configuration, Process Adaptation, Pro-
cess Reference Model, Process Design

1 Introduction

For several reasons companies are developing a growing interest in improving the effi-
ciency and quality of their internal business processes and in optimizing their interac-
tions with customers and business partners [1, 2]. During the last years we have seen an
increasing adoption of business process management (BPM) tools by enterprises as well
as emerging standards for business process specification and execution (e.g., BPMN,
WS-BPEL) in order to meet these goals. Corresponding technologies (e.g., workflow
systems, case handling tools) enable the definition, execution, and monitoring of the
operational processes of an enterprise [3]. In connection with Web service technology,
in addition, the benefits of business process management from within a single enterprise
can be transferred to cross-organizational business processes as well [4].

A business process model captures the activities an organization has to perform
to achieve a particular business goal. Thus, it implements a process type (e.g., han-
dling of a credit request or medical treatment of a patient) by describing its activities as
well as their execution constraints (i.e., control flow), resources required (e.g., humans



or computer systems), and information processed. For creating and maintaining such
business process models there exists a multitude of tools like ARIS Business Architect
[5], ADONIS [6], and WebSphere Business Modeler [7]. These tools support different
modeling techniques including UML Activity Diagrams, Business Process Modeling
Notation (BPMN), and Event-Process-Chains (EPCs).

1.1 Problem Statement

Process support is required in almost all business domains [1]. As examples consider
healthcare [2], automotive engineering [8, 9], public administration [10], and the fi-
nancial sector [11]. Characteristic process examples from the automotive industry, for
instance, include product change management [12] and product release management
[8].
When creating business process models, one of the fundamental challenges the process
designers faces is to cope with business process variability. Typically, for a particu-
lar process type, a multitude of process variants exists, each of them being valid in
a particular context; i.e., the configuration of a particular process variant depends on
concrete requirements building the process context. Regarding release management for
electric/ electronic components in a car [8], for example, we have identified more than
twenty process variants depending on the product series, involved suppliers, or consid-
ered development phases. Similar observations can be made with respect to the product
creation process in the automotive domain, for which dozens of variants exist. Thereby,
each variant is assigned to a particular product type (e.g., car, truck, or bus) with differ-
ent organizational responsibilities and strategic goals, or varying in some other aspects.

In this paper, we use the service process handling vehicle repair in a garage as
running example (cf. Fig. 1a): The process starts with the reception of a vehicle. Af-
ter a diagnosis is made, the vehicle is repaired if necessary. During its diagnosis and
repair the vehicle is maintained; e.g., oil and wiper fluid are checked and refilled if
necessary. The process ends when handing over the repaired and maintained vehicle
to the customer. Depending on the process context, different variants of this process
are required, whereas the context is described by country-specific, garage-specific, and
vehicle-specific variables. When studying this case, we have identified hundreds of pro-
cess variants, we learned that existing BPM tools do not provide sophisticated support
for modeling and maintaining such large number of process variants. In particular, ex-
isting BPM tools do neither support transparent management of process variants nor
their context-based creation.

Fig. 1b-1d exemplarily show three (simplified) variants of our vehicle repair pro-
cess: Variant 1 (cf. Fig. 1b), assumes that the damaged vehicle requires a checklist of
“Type 2” to perform the diagnosis. Therefore, activities Diagnosis and Repair are
adapted by modifying their attribute Checklist to value “Type 2”. Additionally, the
garage omits maintenance of the vehicle as this is considered as special service not of-
fered conjointly with the repair process. At the model level this is realized by skipping
activity Maintenance. As a second example consider Variant 2 (cf. Fig. 1c). Here,
due to country-specific legal regulations, a final security check is required before hand-
ing over the vehicle back to the customer. Regarding this variant, new activity Final
Check has to be added when compared to the standard process from Fig. 1a. Finally,



Variant 3 (cf. Fig. 1d) will be relevant if a checklist of “Type 2” is required for vehicle
diagnosis and repair, the garage does not link maintenance to the repair process, and
there are legal regulations requiring a final security check.

Fig. 1: Variants of a standardized vehicle repair process (simplified view)

Configuring process variants constitutes a non-trivial challenge when considering
the high variability of business processes in practice as well as the many syntactical
and semantical constraints the configured process variants have to obey depending on
the given context. One challenge is to design a basic process model that can serve
as reference for configuring a family of related process models. Another challenge is
to design, model, and structure the adjustments that may be applied to configure the
different process variants out of this basic process model.

1.2 Contribution

As motivated, variants exist for many business processes and should therefore be ade-
quately managed. In previous work we have introduced the Provop framework (PRO-
cess Variants by OPtions) and we have shown how information about the process con-
text can be utilized for enabling automated configuration of process variants [9, 13, 14].
This paper picks up the Provop framework and extends it. We present selected concepts
of the Provop approach for modeling and managing large collections of process variants
in an adequate way. In particular, we deal with the following research questions:

– How to adequately design a reference process (denoted as base process in the Provop
framework) out of which relevant process variants can be configured?



– How to pre-define the adjustments of a given base process, which may become nec-
essary to configure relevant variant models? How to organize these changes in a way
such that overall modeling and maintenance efforts can be reduced?

– How to support the evolution of a base process over time without invalidating existing
variant models or introducing errors to them?

– How to integrate Provop concepts with contemporary process modeling tools?

Section 2 discusses characteristic problems which will arise if we do not treat vari-
ants as first class objects or model them conventionally. Section 3 summarizes basic
concepts of the Provop framework. Sections 4 and 5 present sophisticated concepts
supported by Provop for modeling process variants. Section 6 introduces our poof-
of-concept implementation and Section 7 discusses related work. We conclude with
a summary and outlook in Section 8.

2 Variant Management in Existing Tools and Requirements

We first discuss issues that emerge when modeling process variants based on existing
BPM tools. Then we present requirements for modeling process variants, which we
have identified in the context of our case studies we performed in the automotive and
healthcare domains.

2.1 Conventional Variant Management

When using existing BPM tools, process variants are usually defined and maintained in
separate process models as depicted in Fig. 1. We denote this straightforward solution as
multi-model approach. It typically results in highly redundant model data as the variant
models are identical or similar for most parts. Furthermore, the process variants are not
strongly connected with each other; i.e., their process models are only loosely coupled
(e.g., based on naming conventions). In particular, the multi-model approach does not
provide any support for combining or merging existing variants to new ones [15].

When considering the large number of variants occurring in practice, the multi-
model approach leads to significant modeling and maintenance efforts. Particularly, ef-
forts for maintaining and changing process variants become high since more fundamen-
tal process changes (e.g., due to new or changed legal regulations) have to be separately
accomplished for each individual variant model. This is both time-consuming and error-
prone. As a consequence, variant models degenerate over time as optimizations are only
applied to single variants without considering relations to other ones [16]. This, in turn,
makes it a hard job for process designers to analyze, compare, and unify business pro-
cesses.

Another approach frequently applied in practice is to capture multiple variants in
one single process model using conditional branchings or labels [11, 17, 18]. We de-
note this solution as single-model approach. As example consider Fig. 2 which shows
our basic repair process together with different variants (cf. Fig. 1a-d). Each execution
path within the model then represents one particular variant. Generally, specifying all



variants in one process model results in a large model for a particular process fam-
ily, which is difficult to comprehend and expensive to maintain.1 As another drawback
“normal” branchings cannot be distinguished from the ones representing a variant se-
lection. Variants, therefore, are neither transparent nor explicitly defined. Consequently,
the underlying system is unaware of the process variants and thus cannot provide so-
phisticated support for them; e.g., creating a view of the process model representing
a particular process variant is not enabled unless the information about which process
element (e.g., acitivity) is part of which particular process variant is explicitly included
within the business process models [11].

Fig. 2: Process variants realized by means of conditional branches

In summary, neither the use of separate process models for capturing the differ-
ent variants nor the definition of these variants within one model (using conditional
branches) constitutes a viable solution in many cases.

2.2 Requirements

We have conducted several case studies in the automotive industry [8, 12], but also
in other domains like healthcare [2], to elaborate key requirements for the definition,
adaptation, and management of process variants. This strong linkage to practice is re-
quired to realize a complete and solid approach for process variant management. The
requirements we have identified are related to different aspects including the model-
ing of process variants, their linkage to process context, their execution in a workflow
management system (WfMS), and their continuous optimization in order to deal with
evolving needs; i.e., we have to elicit requirements related to the whole business process
lifecycle [9, 19, 20, 21].2 In our context, the process lifecycle consists of three major
phases, namely the design and modeling phase, the variant configuration phase, and the
execution or monitoring phase. It can be described as (feedback) loop of these phases
during which a process is continuously optimized and adapted [20, 21].

Modeling. Modeling process variants should be intuitive and raise minimal efforts for
process designers. Therefore, reuse of process (variant) models has to be supported
when creating new process variants. In particular, it should be possible to create new
1 Note that in realistic cases there may be dozens up to hundreds of variants derived from the

same reference process.
2 In this paper we focus on major requirements with respect to the modeling of process variants.



variants by inheriting properties from existing ones, but without creating redundant or
inconsistent model data. The hierarchical structure of such “variants of variants” has to
be adequately represented and should be easy to adapt.

Configuration. In order to relieve variant designers the configuration of a particular
process variant should be accomplished in an automated way. Therefore, the specific
circumstances (i.e., the process context) in which configuration takes place have to be
considered. In particular, a context-aware variant configuration procedure is required.
Thereby, one key requirement is to guarantee soundness of all configurable process
variants throughout their entire lifecycle.

Execution. To execute a particular process variant, its model has to be interpreted by a
workflow engine during runtime. In this context, it is important to maintain information
about the selected process variants in the runtime system as well. Ideally, the runtime
system should allow to dynamically switch process execution from one variant to an-
other (e.g., when the process context changes). Such dynamic variant switches are by
far not trivial when considering correctness and consistency issues as well.

Maintenance. Finally, in order to reduce both maintenance efforts and costs of change,
fundamental process changes affecting multiple process variants should be conducted
only once. Consequently, all process variants concerned by a particular change should
be adapted automatically.

3 The Provop Approach

This section summarizes basics of the Provop framework, which are necessary for un-
derstanding the following sections.

3.1 Backgrounds

Business processes are defined by a particular process type (e.g., handling a costumer
request or car repair in a garage) which is represented by a process schema. Often,
for a particular process type, several process schemes exist, which represent different
variants of this type. In this paper, we visualize a process schema as directed graph
which comprises a set of nodes representing process activities or control connectors
(e.g., AND-Split, XOR-Join), and a set of edges (i.e., control flow edges and data flow
edges). Thereby, control flow edges describe precedence relations between activities,
whereas data flow edges correspond to a read or write access of an activity to a data
object. Note that Provop has not been developed with a specific process formalism
in mind, but shall provide an overall conceptual framework for variant modeling and
management. We further assume that a process schema can be changed by applying a
sequence of (high-level) change operations (e.g., to add, delete or move activities) to it.
We define process schema change and process variants as follows:



Definition 1 (Process Change and Process Variant)
Let P denote the set of possible process schemes and C the set of possible process
changes. Let S, S′ ∈ P be two process schemes, let ∆ ∈ C be a process change, and let
σ = 〈∆1, ∆2 . . . ∆n〉 ∈ C* be a sequence of process changes. Then:

– S[∆〉S′ iff ∆ is applicable to S and S′ is the process schema resulting from the
application of ∆ to S.

– S[σ〉S′ iff ∃ S1, S2, ...Sn+1 ∈ P with S = S1, S
′ = Sn+1, and Si[∆i〉Si+1 for

i ∈ {1, ...n}. We also denote S′ as variant of S.

3.2 An Operational Approach for Variant Management

When studying process variants in practice one can observe that they are often derived
from an existing process schema; i.e., variant models are not created from scratch, but
constitute an adjustment of an existing process model (cf. Def. 1).

The single-model approach introduced in Section 2.1 is one extreme form of reusing
existing models. Here new variants are embedded in the original process model using
conditional branchings. When following a multi-model approach, in turn, process vari-
ants are created by “cloning” a process model and adjusting it to the specific context.
The latter approach is illustrated by Fig. 3: Here the original process model consists of
a sequence of five activities (cf. Fig. 3a). Based on this original model three process
variants are derived by performing variant-specific adjustments (cf. Fig. 3b+c). For ex-
ample, Variant 1 can be configured by deleting activities B and C from the original
process model and by updating attributes of activity D in this model. Variant 2, in turn,
results when adding the sequence comprising activities N1 and N2 in parallel to the
one consisting of activities B and C. Note that the latter can be realized by referring to
adjustment points X and Y when adding the new sequence. Finally, Variant 3 can be
configured by deleting activity C and by moving activity D behind activity A and before
activity B.

Fig. 3: General approach of variant modeling

Generally, a particular process model can be derived out of another one by adjusting
it accordingly, i.e. by applying a set of change operations to it [22]. Starting from this



observation, we developed the Provop approach which provides comprehensive support
for configuring variants out of a common process model. In the following we denote
the original process model out of which the different variants can be configured as base
process (cf. Def. 2).

Definition 2 (Base Process, Options, and Process Family)
Let P be the set of process models and C the set of possible process changes. Let further
each process change ∆ ∈ C be represented as parameterized change operation. Then:

– A base process S = (N,E,AP, ...) ∈ P is a process model with node set N and
edge set E. Additionally, it is associated with a set of adjustment points AP ⊆
Identifiers×N ×{pre, post}. Thereby, adjustment point ap = (id, n, pos) ∈ AP
either corresponds to the entry (pos = pre) or exit (pos = post) of node n ∈ N .
Adjustment points can be used as reference points when defining possible changes
on the base process.

– Let S = (N,E,AP, ...) ∈ P be a base process. An associated option o = (oid, σ)
then corresponds to a sequence of process changes (i.e., σ =< ∆1, ∆2 . . . ∆n >)
that may be applied to S (or to a variant derived from it). Thereby, ∆k (k = 1 . . . n)
refers to corresponding adjustment points or process elements (i.e., nodes and edges).

– Let S = (N,E,AP, ...) ∈ P be a base process and let O be the set of all op-
tions defined for it. Let further Σ = < o1, . . . , on > be a sequence of options with
{o1, . . . , on} ⊆ O and S[Σ〉S′. Then we denote S′ as process variant, which is con-
figurable out of S by applying option sequence Σ. Further, we denote the total set of
process variants that may be configured out of a base process with associated option
set as process family.

A base process can be adjusted in different ways to configure a specific process
variant. Currently, Provop supports the following change patterns (i.e., parameteriz-
able change operations): INSERT fragment, DELETE fragment, MOVE fragment, and
MODIFY attribute. While the first three patterns may be applied to a model fragment
(i.e., a connected subgraph) 3, the latter pattern can be used to modify the value of a
process element attribute. More details on the Provop change patterns are provided by
Table 3 (see Appendix). Fig. 5 gives an example of how change operations are applied
in Provop. Finally, a formal semantics of these change patterns can be found in [23].

In Provop, an activity or connector node of the base process may be associated with
adjustment points which correspond to its entry or exit respectively (cf. Fig. 3a). This,
in turn, enables designers of process-specific adaptations to refer to selected process
fragments. By the use of explicit adjustment points we can restrict the regions to which
adaptations (e.g., insertion of a fragment) may be applied when configuring the vari-
ants. As Provop change operations have been designed to change process elements like
activities and control flow edges rather than adjustment points, the latter constitute more
robust reference points within the base process when compared to activity nodes.

As the number of change operations required to configure all relevant variants might
become large, Provop allows to structure multiple change operations by grouping them
into so called options (cf. Def. 2). This will be useful, for example, if the same change
3 Note that a fragment does not necessarily need to have a single entry and single exit point.



operations are always applied in conjunction with each other when configuring certain
variants. Think of, for example, the handling of a medical examination in the radiology
unit of a hospital. While for outpatients no transport between ward and radiology room
is required, inpatients first have to be transferred from the ward to the radiology unit
and later back from the radiology unit to the ward. To capture the latter variant we need
to add two activities at different positions of the base process. This can be achieved by
first defining the two insert operations and then grouping them in one option. Generally,
a particular process variant can be configured by applying several options to the given
base process. As a special case no options may be applied, i.e. the base process itself
may constitute a process variant.

3.3 Variant Management along the Process Lifecycle

Provop covers the whole process lifecycle as illustrated by Fig. 4. In the modeling phase
a base process is defined out of which different process variants shall be configurable.
For the latter purpose, the designer has to specify a set of reusable change operations
which either explicitly refer to process elements (via element identifiers) or implicitly
to a particular process fragment (through the use of adjustment points). As example
consider Variant 1 from Fig. 3c. It can be configured out of the base process depicted
in Fig. 3a by deleting the sequence comprising activities B and C, and by modifying
attributes of activity D. The deletion of the activity sequence can be realized through
a DELETE operation which refers to the fragment between adjustment points X and
Y (cf. Fig. 3a. Finally, another design task is to group change operations into reusable
operation sequences (i.e., options) as described before.

In the configuration phase the user selects a sequence of options (and correspond-
ing operations respectively) and applies it to the base process in order to configure the
desired process variant. (Note that the operations within options are ordered as well.)
In the following we denote the set of process models that are configurable out of a base
process as process family. Typically, a particular variant of such a process family is
needed in a specific context. For example, the concrete variant of the process handling
vehicle repair in a garage is determined by the specific country, vehicle type, and garage.
To capture such context dependencies, Provop allows for the context-aware configura-
tion of business process variants [24]; i.e., the context-based selection and application
of relevant options to the base process. Following this approach variant configuration
can be accomplished automatically making use of the given process context.

In the execution phase a configured process variant model is transformed into an
executable workflow model, which is then deployed to the runtime environment of a
workflow management system. Provop provides additional flexibility during the execu-
tion of process variants. In particular, it allows users to dynamically switch execution
between different process variants during runtime. This becomes necessary, for exam-
ple, in order to adequately deal with dynamic context changes (for details we refer to
[9]).

Finally, by enabling adaptations of a given base process and its options, respec-
tively, a process family may evolve over time. By enabling corresponding changes in
an optimization phase Provop covers the whole process lifecycle.



Fig. 4: The Provop process variant lifecycle

3.4 Example

Fig. 5 gives an example of a base process with three corresponding options. Further,
the depicted base process comprises four adjustment points (with unique labels) to
which defined options may refer. For example, Option 3 refers to adjustment points
Repair Completed and Ready for Hand Over, which then serve as anchors
(i.e., reference points) for the activity to be inserted by this option.4 When applying
Options 1 and 2 together to the depicted base process, for example, we obtain Variant 1
(cf. Fig. 1b). The model of Variant 2 (cf. Fig. 1c) may be created by applying Option 3
solely. Finally, Variant 3 (cf. Fig. 1d) results when first applying Option 2 and then Op-
tion 3 to the base process from Fig. 5a. In summary, Fig. 1 shows the process family
configurable out of the base process and the corresponding options depicted in Fig. 5.

3.5 Discussion

The main advantage of the Provop approach in comparison to the previously introduced
conventional approaches is the treatment of variants as first class objects. The latter can
be considered as result of the use of explicit change operations and adjustment points
when configuring the process variants. By contrast, in conventional approaches variants
are either hidden in separate process models (multi-model approach) or are hard-wired
in the control flow logic (single-model approach).
4 If only single elements are affected by a particular change their identifier may be referred

instead. This applies to Option 1 in the given example.



Fig. 5: A base process (a) and options (b) in Provop

Another crucial advantage of the Provop approach constitutes its ability to configure
process variants based on the given process context. Finally, Provop provides a com-
prehensive approach offering solutions for all phases of the process variants lifecycle.

In Section 4 we discuss advanced issues that emerge when designing the base pro-
cess of a process family; e.g., what policy to apply for this design, how to choose ad-
justment points, or how to evolve the base process over time. Following this, Section 5
presents sophisticated issues which are relevant for the design of options. The latter
concern, for example, the granularity of options, constraints for the use of options, and
soundness of configurable process variants.

4 Designing the Base Process of a Process Family

As prerequisite for configuring the variants of a process family we need to design its
base process. The model of the designed base process then serves as reference for the
options capturing possible model adjustments.

4.1 Policies for Designing a Base Process

In order to be able to support all characteristic use cases for process variant manage-
ment and to adequately cover the broad spectrum of business processes we can find in
companies today, Provop provides different policies for designing a base process:

– Policy 1 (standard process): Using this policy, the base process corresponds to a
domain-specific standard or reference process. In the automotive domain, for ex-
ample, such a standard process exists for Engineering Change Management [12].
Usually, a standard process has to be configured (i.e., adjusted) in order to meet the
specific requirements of the given application context.

– Policy 2 (most frequently used process variant): If a particular process variant is
used more frequently than others we can choose it as base process. This, in turn, re-
duces configuration efforts in terms of the number of processes for which adaptations
become necessary. The process variants depicted in Fig. 1, for example, are weighted



considering execution frequencies. As can be seen the standard process (cf. Fig. 1a)
has lowest frequency. Opposed to this, Variant 2 has highest frequency. Therefore,
Variant 2 is chosen as base process when applying Policy 2. Note that Policy 2 does
not mean that the average number of change operations needed to configure the vari-
ants of a process family (i.e., the average edit distance between the base process and
the variants [25]) becomes minimal. However, this can be achieved when applying
Policy 3.

– Policy 3 (minimal average distance): Through the structural mining of a collection
of process variants, we can discover a (base) process model for which the average
distance to the variant models becomes minimal. In the MinAdept project we are
developing corresponding mining algorithms [26, 27, 28]. The algorithm presented
in [27], for example, has polynomial complexity, which enables scalability for large
collections of complex variant models. In [27] we have also shown that the discovered
base process is better (i.e., requires lower average number of operations to configure
the variants) than the process models we can discover through conventional process
mining algorithms (e.g., Alpha algorithms, Multi-Phase mining, or Genetic Mining
[29]). – Overall goal of Policy 3 is to learn from process adaptations and to merge
the resulting model variants into a generic process model in the best possible way.

– Policy 4 (superset of all process variants): The base process is created by merging
all known variants in one process model using conditional branches; i.e., the base
process realizes a “superset” of all relevant variants. Consequently, every element
that is part of at least one process variant belongs to the base process as well. When
configuring process variants out of the base process, therefore, only DELETE oper-
ations have to be applied; e.g., the process model depicted in Fig. 2 constitutes the
superset of all variants from Fig. 1 and may therefore be defined as base process.

– Policy 5 (intersection of all process variants): When applying this policy the base
process will only comprise those elements that are part of all known process variants;
i.e., the base process realizes an “intersection” of these variants. When configuring
process variants no DELETE operations become necessary, but elements may have to
be moved, modified or inserted. Regarding our example from Fig. 1, intersection of
the variants would contain activities Reception and Hand Over (cf. Fig. 6).

Fig. 6: Intersection of the process family

As opposed to existing approaches for variant modeling [18, 26, 30, 31], Provop
does not presume a specific policy for designing a base process of a process family and
reference process, respectively. Instead, it provides more freedom to process designers
and enables all five design policies. Note that Policies 1-5 differ in one interesting as-
pect: When using Policy 1 or 2 the respective base process is created to realize a specific
use case; i.e., the base process represents one possible process variant valid in a specific
context. Policies 3-5, in turn, are especially designed for configuring variants and thus



do not necessarily represent a semantically valid process model. Which policy is most
favorable in a given context mainly depends on the given modeling scenario and the
considered process landscape. For example, if a standard process model already exists,
Policy 1 will be recommended to the designer.

4.2 Defining Adjustment Points

When creating a base process model for a process family another challenge is to define
its adjustment points; i.e., explicit positions within the base process to which the pa-
rameters of the defined change operations may refer.5 In order to better control possible
adjustments when configuring process variants, Provop requires explicit specification
of adjustment points. We recommend designers to use “business-relevant” reference
positions within the base process. In Fig. 5, for example, adjustment point Repair
Completed corresponds to the completion of activity Repair.

4.3 Evolving a Base Process and its Options

Provop targets at full lifecycle support for process variants. Thus, the controlled evolu-
tion of a base process and its corresponding options constitutes a fundamental task to
be accomplished. When adapting a base process we have to ensure that corresponding
process variants or – more precisely – the options needed to configure them, are adapted
accordingly. In the following we exemplarily describe problems that arise when evolv-
ing a base process and we show how Provop deals with them.

Potential problems caused by the evolution of a base process. Assume that the
base process depicted in Fig. 7a shall be transformed into the one shown in Fig. 7b.
This change can be accomplished, for example, by removing activity Maintenance
and by changing the order of the adjustment points Ready for Hand Over and
Repair Completed (e.g., to correct wrong placement of these adjustments points)
(cf. Fig. 7b). Consider further Options 4 and 5 (cf. Fig. 7c), which refer to the orig-
inal base process from Fig. 7a. Option 4, modifies the duration attribute of activ-
ity Maintenance and therefore cannot be applied to the newly derived base process
from Fig. 7b. (Note that activity Maintenance no longer exists in the corresponding
process model). Option 5 (cf. Fig. 7c), in turn, inserts activity Final Check between
the two adjustment points Ready for Hand Over and Repair Completed. As
the order of these adjustment points is switched in the adapted base process, an insertion
of activity Final Check would lead to an undesired cycle; i.e., when adding activ-
ity Final Check the corresponding branch would lead to a backward jump in the
model of the new base process; after completing activity Final Check, execution of
the base process would continue (i.e., activity Hand Over would be activated), while
the backward jump would re-start execution of activity Final Check. This, in turn,
would lead to an infinite loop and thus violate soundness (cf. Section 5.4) of the process
variant.
5 Note that change operations may not only refer to adjustments points, but to process element

identifiers as well.



As a consequence, when updating a base process, applicability of all defined options
as well as soundness of resulting process variant models (i.e., the process family) have
to be guaranteed. For this purpose, Provop enables a number of checks that guarantee
soundness of each configurable process variant model (see Section 5.4).

Fig. 7: Problems caused by base process adaptations

Prohibiting problems caused by the evolution of a base process. To avoid orphaned
references after deleting elements of the base process, execution errors, and other po-
tential problems, possible sources of errors are automatically detected in the Provop
correctness checking framework (cf. Section 5.4). Furthermore, Provop provides elabo-
rated concepts to exterminate potential problems associated with the evolution of a base
process. For example, a DELETE operation can be based either on process element iden-
tifiers or on adjustment points. This, in turn, may lead to different effects when adapting
a base process: Fig. 8a shows a base process model that evolves to the one depicted in
Fig. 8b by adding activity Final Check. Here, Options 6 and 7 (cf. Fig. 8c) refer
to the original base process. Option 6 performs a DELETE operation whose definition
refers to the identifiers of single elements. When applying it to the adapted base process
from Fig. 8b the resulting process model would contain activity Final Check (cf.
Fig. 8c). Option 7, in turn, is based on adjustment points; i.e., it deletes every process el-
ement between adjustment points Start Treatment and Finish Treatment.
As activity Final Check is inserted between these adjustment points it is deleted as
well when applying Option 7 to the (already) modified base process. In fact, this would
lead to the same process model as if Option 7 had been applied to the original base
process.



When applying a DELETE operation, Provop allows users to choose between these two
behaviors by either listing element identifiers or adjustment points. Note that in con-
nection with base process evolution, the use of adjustment points constitutes a robust
solution in respect to semantical and structural correctness.

Fig. 8: Deleting elements either using their identifiers or adjustment points

4.4 Using multiple Base Processes for Configuring Variants of a Process Familiy

In certain scenarios, the variants of a particular process family may differ to a large
degree. One approach to deal with these differences is to configure the process variants
out of different base processes; i.e., each of these base processes then covers a specific
sub-class of variants of the considered process family. This minimizes the number of
change operations required for configuring process variants and also enables a better
structuring of the process landscape. One disadvantage coming with the use of multiple
base processes for a particular process family, however, are higher modeling and main-
tenance efforts. In particular, inconsistencies and errors may result if a change affects
all base processes. Hence, problems are similar to the ones which emerge when mod-
eling variants separately (cf. Section 2.1). – Provop enables the use of multiple base
processes, but will recommend process designers to only apply this approach if few
classes of related process variants, which significantly differ from each other, can be
identified.



5 Designing and Modeling the Options of a Process Family

So far, we have considered modeling issues related to the design of a base process
for a particular process family. When defining corresponding adaptation (i.e. options)
additional issues emerge. One question we have to answer is whether a conditional
branch is only variant-specific or shall be considered in all variant models (and therefore
be included in the base process). Furthermore, when grouping operations into reusable
options, granularity selection becomes an issue. Another challenge is to deal with the
many semantical and syntactical dependencies that may exist between different options.
Finally, the explicit modeling of option constraints also becomes necessary to ensure
semantical correctness of configurable process variants.

5.1 Variant-specific versus Normal Conditional Branchings

When modeling processes and their variants we have to decide which control flow al-
ternatives are variant-specific and which ones shall be common for all process variants.
For example, our vehicle repair process from Fig. 1a includes a conditional branching
to decide whether or not the vehicle shall be repaired. The corresponding decision is
required either to get approval from the vehicle owner with respect to expected costs
or to omit the repair activity. Defining this particular scenario in terms of two sepa-
rate process models (i.e., one with activity Repair and one without this activity) does
not constitute a viable solution in the given context since both alternatives are rele-
vant for all variants of our process family (cf. Fig. 1b-d). In particular, the decision
to either omit activity Repair or to perform it cannot be made before executing ac-
tivity Diagnosis. Therefore, such common decisions should be modeled as normal
conditional branchings within the base process.

5.2 Granularity of Options

As sketched in Section 3, Provop allows to combine several options to configure a spe-
cific process variant. When defining process variants, therefore, the designer has to de-
cide how to group change operations into options. Thereby aspects like reuse of options
(and change operations respectively) as well as maintainability have to be considered.

As one extreme we can design fine-grained options with only one change operation
per option. Such options can be easily combined to derive specific process variants.
The number of options, however, then increases significantly. Coarse-grained options,
in turn, group a larger number of change operations. An extreme would be to group
all change operations needed to configure a specific process variant into one option.
This, in turn, would lead to redundant definitions of those change operations relevant
for multiple variants (and consequently to partially overlapping and redundant options).

The difference between fine- and coarse-grained options can be demonstrated using
the base process and its variants from Fig. 1. Table 1 shows how the different change op-
erations can be grouped into options when either applying the fine- or coarse-granularity
approach. Note that neither fine nor coarse granularities are optimal in the given exam-
ple, as fine granularity leads to four options and coarse granularity, in turn, to high
redundancy with respect to the used change operations.



Table 1: Granularity of options

To support meaningful grouping of change operations into options, Provop defines
several guidelines. In particular, one is to avoid redundant definitions of change oper-
ations within different options. Therefore, change operations should be grouped into
one option if they are always used together; e.g., due to semantical interdependen-
cies. Thereby, the number of options is reduced without affecting reuse. Consider-
ing this guideline the change operations of our example are grouped into the options
shown in the third column of Table 1 (as well as in Fig. 5b): The adjustment for ac-
tivity Diagnosis is always applied in conjunction with a change of the Repair
activity. Therefore these two change operations can be grouped into one option. The
other change operations, in turn, are modeled in separate options. As result we obtain
three options without any redundancy.

5.3 Option Constraints

Generally, some of the options defined for a particular base process may be correlated;
i.e., there may exist semantical and structural interdependencies between them. To cap-
ture this, Provop supports different kinds of option constraints (cf. Table 2):

– Implication: If different options shall be applied conjointly to the base process (e.g.
due to semantical dependencies) the designer may explicitly define an implication
constraint between them. Implication constraints are always directed. Fig. 9 depicts
an example which visualizes a set of option constraints as partially ordered con-
straint network. Assume that the application of Option 1 always implies the use of
Option 5 in order to configure a semantically valid variant model. Therefore, we have
defined a corresponding implication constraint between these two options visualized
as directed arrow in the constraint network. Such an arrow expresses that the source
option of the arrow implies (i.e., requires) the application of its target option as well.
As implication constraints are directed the reverse conclusion (i.e., Option 5 implies
Option 1 ) is generally not true.



– Mutual Exclusion: Mutual exclusion, is helpful to describe which options must
never be used in conjunction with each other when configuring a specific process
variant. Provop visualizes the mutual exclusion constraint as bi-directed arrow be-
tween options. In our example from Fig. 9, Options 5 and 7 mutually exclude each
other and therefore must not be applied together to the base process.

– Application Order: Options always have to be applied in sequence to a correspond-
ing base process. As default Provop supports a low-level ordering mechanism based
on time-stamps of options. As users may also define non-commutative options, how-
ever, this low-level ordering is enhanced by the provision of an explicit ordering
constraint. For example, if both Option 3 and Option 6 (cf. Fig. 9) are selected for
variant configuration, Option 6 will be always applied before Option 3 to the base
process due to the defined ordering constraint. Note that such ordering constraint
rather supports the correct application of options than correct option selection.

– Hierarchy: The definition of a hierarchy constraint between options allows to com-
bine the constraint types implication and application order. If an option
is selected to configure a particular process variant and it has an ancestor in the op-
tion hierarchy (e.g., Option 6 in Fig.9 constitutes a child of Option 1), the change
operations defined in the ancestor options will be applied as well (i.e., implication
constraint). Thereby, a parental option is always applied before its child options (i.e.,
application order constraint). By introducing such hierarchy constraints, we can re-
duce the number of constraints to be defined.

– At-Most-n-Out-Of-m-Options: Each variant of the process family has been cre-
ated by applying at most n options out of m specified ones. For example, an
At-Most-2-Out-Of-3-Options constraint is defined for Options 3, 6, and 7
from Fig. 9. When configuring a process variant none, one or two of these three
options may be applied to the base process.

Table 2: Option Constraints

When defining relevant constraints for a set of options the designer usually does not
only refer to one kind of constraint, but may want to consider different constraint types.
Provop therefore enables the combined modeling of constraints as depicted in Fig. 9.
For this purpose, the user first selects relevant options (Option 1, Option 3, Option 5,



Option 6, and Option 7 in the depicted example) and then defines the constraints (of
same or different type) between them. (The constraints can be chosen from a palette
(cf. Fig. 9)). Furthermore, Provop always ensures that the defined constraint network
is consistent. For example, a mutual exclusion constraint between an option and its
parental option would be disallowed. Corresponding consistency checks can be realized
using an LTL-checker or some other model checking technique [34]. – In summary, the
explicit definition of option constraints eases the usage of options and contributes to
avoid semantical errors when configuring a particular process variant.

Fig. 9: Visualization of option constraints

5.4 Ensuring Soundness of Configurable Process Variants

As aforementioned Provop targets at variant support along the whole process lifecycle.
In particular, configured variants shall be executable in a workflow management system
(cf. Fig. 4). Therefore, structural as well as behavioral soundness have to be guaran-
teed for the variant models before deploying them to the execution environment. In the
following we sketch relevant issues emerging in this context and briefly discuss how
we ensure soundness of variant models in the Provop framework. For further details we
refer to [32, 33].

Motivation. Provop targets at correctness by construction; i.e., we want to ensure struc-
tural as well as behavioral soundness of all configurable process variants already at de-
sign time. One naive approach for accomplishing this would be to apply all possible
combinations of options (i.e., all subsets of predefined adjustments) to the given base
process and to check soundness for each of the resulting variant models. However, this
would be too expensive in practical settings. As example consider the scenario from
Fig. 5 for which three options exist. Taking into account that options are not commu-
tative in general, we would have to check for 16 different option permutations whether



or not their application to the base process results in a sound variant model. Obviously,
for more complex scenarios with dozens up to hundreds of options this is not a viable
solution approach.

Limiting the number of variant models to be checked. Obviously, one challenge
is to reduce the number of variant models for which we have to check soundness. As
discussed in Section 3, Provop provides support for the context-based configuration of
process variants. For this purpose each defined option is associated with a context rule,
which is evaluated at configuration time based on the data building the process context.
For a particular process context, exactly those options are selected and applied to the
considered base process whose context rule evaluates to true. Furthermore, as described
in Section 5.3, different kinds of constraints may exist between the selected options,
which further reduces the possible permutations of a given option set. In summary,
when utilizing information about context dependencies as well as option constraints, we
can decrease the number of possible option permutations and thus reduce the number
of (configurable) variants for which we have to check soundness.

At which level do we need to check for soundness? Assume now that we have to
check soundness for a process variant that can be configured out of an ordered set of op-
tions. One possibility for this is to start the configuration procedure with a sound model
of the base process and to enforce soundness after each applied option and change
operation respectively. Consequently, the application of a set of operations and thus a
set of options would result in a sound process model again. This rather rigid approach
necessitates precise pre- and postconditions for the different change operations and cor-
responding checking routines. Another approach is to first apply the options in the given
order to the base process and then to check soundness of the resulting process model
afterwards. Provop follows the second approach since it provides more flexibility to the
process designer (see [32, 33] for details).

Do we need to start with a sound base process model? As discussed Provop supports
different policies regarding the design of the base process of a process family. Unlike
existing approaches for process configuration, we do also not necessarily require a cor-
rect base process model as starting point for variant configuration. As example consider
Fig. 10a where Variant 1 describes a car-specific and Variant 2 a bus-specific process
variant. If we define the base process as "intersection" of these two variant models
(cf. Policy 5), we obtain the process model depicted at the left bottom of Fig. 10a. It
comprises activities CA1, CA2, and CA3, but does not contain the car- or bus-specific
activity. Interestingly, this process model is not sound since the data element read by
activity CA3 is neither written by CA1 nor by CA2. However, this missing soundness
of the base process will not be any problem if we can ensure that always one of the two
depicted variants is configured (i.e., each configurable variant model is sound). Enforc-
ing a correct base process is therefore not required in the given scenario and also not
appropriate. For example, assume that we choose the model of Variant 1 as base process
(cf. Fig. 10b). Then visibility constraints might be violated. (Note that Variant 1 would
then be visible to the process owner of Variant 2, who additionally must be able to track
the adjustments of Variant 1 in order to correctly evolve Variant 2 over time).



Fig. 10: Inconsistent base process (a) with an exemplary correctness scenario (b)

Overview of the Provop correctness checking framework. Guaranteeing soundness
of configurable process variants is accomplished in several steps in the Provop frame-
work (cf. Fig. 11). In Step 1, we identify the number of possible context descriptions
for which corresponding process variants are needed. By only considering valid context
descriptions we reduce the number of (configurable) variant models for which sound-
ness has to be checked. In Step 2, for each valid context description, the corresponding
option set (i.e., adjustments of the base process) is determined. Step 3 then checks
whether or not the calculated option sets comply with the defined option constraints
(cf. Section 5.3). If an option set is not valid an error will be reported to the designer.
Otherwise, Steps 4 and 5 apply each potential option set to the base process and check
whether or not the resulting process variant model is sound. Results of Steps 4 and 5
are logged in a report. For technical details and algorithms we refer to [32, 33].

Fig. 11: Overview of the Provop procedure for guaranteeing soundness

6 Proof-of-Concept Prototype

When developing the proof-of-concept prototype for Provop, we had to decide whether
or not to implement a new BPM tool from scratch or to enhance an existing one. On
the one hand a newly developed tool offers the flexibility to implement the presented
concepts in the best possible way, on the other hand this would come at the price of high
development costs and long development times (e.g., basic functionality of the process



modeling tool would have to be implemented from scratch). Therefore we decided to
use an existing BPM tool and to enhance it with facilities for process variant config-
uration and management. More precisely, for implementing our proof-of-concept pro-
totype, we decided to use the ARIS Business Architect[5] which belongs to the ARIS
Design Platform. ARIS Business Architect is a widespread tool that supports a variety
of modeling notations (e.g., EPCs and BPMN), and that is widely used for modeling,
analyzing and optimizing business processes.

The general limitations of commercial BPM tools with respect to variant modeling
(cf. Section 2.2) also apply to the current version of ARIS Business Architect. The tool
enables creation of new process variants by cloning (i.e., copying) an existing model
repository, together with its objects, and by modifying them afterwards. This, in turn,
results in high redundancies of model data. Though the derived variant objects still
refer to the original objects afterwards (denoted as master objects in ARIS Business
Architect), changes of the latter are not propagated to the variants. However, through
the explicit documentation of relations (between original and variant objects) some im-
provement has been achieved when compared to other BPM tools.

Another decision we had to make when implementing the Provop proof-of-concept
prototype concerns the choice of the process meta model (and modeling notation re-
spectively) for representing base processes and options as well as the variant models re-
sulting from corresponding configurations. We first started with Event-Process-Chains
(EPCs) as this notation is widely used in our company. Unfortunately, EPCs do not offer
a grouping functionality which is highly relevant in our context for grouping parame-
ters of a particular change operation as well as for grouping multiple change operations
into one option. To enable grouping in ARIS Business Architect, in principle, model
folders may be used as workaround. However, we decided to use the BPMN notation
instead since it provides different grouping mechanism as required in our approach (cf.
Fig. 12).

Fig. 12: Architecture of the Provop prototype



Fig. 12 shows the overall architecture of our proof-of-concept prototype. Here, each
option is realized as a single BPMN model. Within these models corresponding opera-
tions of an option are encapsulated in so-called “pools”, which correspond to graphical
and logical containers. The relevant parameters of a particular change operation (e.g.,
adjustment points marking a process fragment to be deleted) are specified by using
“lanes”, which constitute sub-containers of a particular pool (or another lane respec-
tively).

A particular ARIS report, which we implemented using ARIS-Script (i.e., Java-
Script extended by specific functions), realizes the transformation of a base process
to a specific process variant. More precisely, for a base process represented as BPMN
model, variant configuration can be started by selecting a set of options. Following this,
the change operations of selected options are applied to the base process resulting in a
new BPMN model, which then represents the configured process variant.

Fig. 13 provides a screen of the Provop proof-of-concept prototype. It depicts an
option comprising two operations. Operation 1 corresponds to an insertion, whereas
Operation 2 deletes a fragment located between two adjustment points (represented
as filled diamonds in Fig. 13). New objects and symbols (e.g., operation types and
adjustment points) have been designed using the ARIS Symbol Editor.

Fig. 13: Provop prototype implemented in ARIS

7 Related Work

Though the adequate support of process variants is highly relevant for practice, only
few approaches for process variant management exist.

There exists adaptive process management technology that enables dynamic pro-
cess changes during runtime; i.e., authorized users may dynamically adapt the structure
(i.e., the schema) and or state of running process instances (e.g., by adding, deleting
or moving activities) [22, 35, 36, 37]. Obviously, this runtime flexibility results in a



multitude of process variants, of which each represents one particular case (i.e., process
instance) [27, 28]. The approach described in [38] additionally provides support for the
management and retrieval of the resulting process instance variants. In particular, it be-
comes possible to store, manage, and query large collections of process variants within
a process repository. Graph-based search techniques are used in order to retrieve process
variants that are similar to a user-defined process fragment (i.e., the query is represented
as graph). Obviously, this approach requires profound knowledge about the structure of
stored process instances, an assumption which does not always hold in practice. Variant
search based on process meta data (e.g., the process context) is not considered.

An important area related to variant management is reference process modeling.
Usually, a reference process has a recommending character, covers a family of process
models, and can be customized in different ways to meet specific needs. Configurable
event process chains (C-EPCs), for example, provide support for both the specification
and the customization of reference process models [17, 39]. When modeling a refer-
ence process, EPC functions (and decision nodes) can be annotated to indicate whether
they are mandatory or optional. Such information is then considered when configuring
the C-EPCs. A similar approach is presented in [18]. Here the concepts for configuring
a reference process model (i.e., to enable, hide or block a configurable workflow ele-
ment) are transferred to workflow models. Similar to Provop, these approaches allow
to define constraints (denoted as "requirements") regarding the application of different
adjustments of the reference process (e.g., two activities either may have to be deleted
together from the reference process or none of them). As opposed to Provop, it nei-
ther is allowed to move or add model elements nor to adapt element attributes when
configuring a variant. The work presented in [40] shows how reference process models
can be configured incrementally and in a way that ensures correctness of the configured
process variants, both with respect to syntax and behavioral semantics. As opposed to
Provop, this approach always requires that the used reference process model (on which
configurations are based) is sound. Finally, [11] introduces an approach to aggregate
multiple process models (i.e., process variants) into one single model using aggregated
EPCs. For this purpose, functions and events of the aggregated EPC are annotated with
simple labels, which can then be used to identify those process elements relevant for ex-
tracting a particular process model out of the aggregated EPC. The proposed approach
focuses on ease of use and improved maintainability of multiple, highly similar process
models.

In principle, all these approaches constitute optimizations of the single model ap-
proach introduced in Section 2.1. As opposed to Provop, the suggested methods neither
allow to move or add model elements nor to adapt element attributes when configuring
a variant out of a reference or aggregated process model. Basically, the provided config-
uration support corresponds to Policy 4 where the chosen base process (i.e., reference
process) constitutes the superset of all process variants. Obviously, in this specific sce-
nario we only need to provide delete operations in order to configure a particular variant
out of a reference process model. Note that Policy 4 constitutes only one out of several
configuration policies supported by Provop; i.e., a base process can be defined in a more
flexible way when using Provop.



Different work exists on how specialization can be applied to deal with process
model variability taking advantage of the generative power of a specialization hier-
archy [30, 41]. In the context of the MIT Process Handbook [30], for example, it is
shown how specialization can be enabled for simple state diagrams and dataflow dia-
grams respectively. For both kinds of diagrams a corresponding set of transformation
rules is provided that results in process specializations when being applied to a partic-
ular model. Similarly, [41] discusses transformation rules to define specialization for
process models based on Petri Nets. Finally, [30] shows how specialization can be used
to generate a taxonomy of processes to facilitate the exploration of design alternatives
and the reuse of existing designs. Obviously, specialization and process taxonomies
also allow to capture process variants to some degree. As opposed to the discussed ap-
proaches, Provop follows an operational approach, which is independent of the under-
lying process meta model. In addition, we provide comprehensive support for context-
and constraint-based configuration of process variants.

Variants are relevant in many other domains as well, including product line engi-
neering and software engineering. For example, fundamental characteristics of software
variability have been described in [42]. In particular, software variants exist in software
architectures and software product lines [43, 44]. In many cases, feature diagrams are
used for modeling software systems with varying features. A similar approach is offered
by plus-minus-lists known from variant management in bill-of-materials. Correctness
issues, identified as highly relevant in Provop and thus considered in our concepts, are
not considered in both cases.

Another contribution stems from the PESOA project [45, 46], which provides basic
concepts for variant modeling in connection with UML. Different variability techniques
like inheritance, parameterization, and extension points are provided and can be used
when describing UML models. As opposed to PESOA, the operational approach pro-
vided by Provop enables a more powerful way for describing variance in a uniform and
easy manner; i.e., no distinction between different variability mechanisms is required.

Finally, [47] presents an approach which goes beyond control flow and extends
business process configuration to roles and objects. At this point, Provop focuses on
control and data flow, but considers process element attributes as well. Note that, for
example, the role of an user can be treated as element attribute and thus can be updated
by applying the Provop modify operation.

8 Summary and Outlook

In this paper we have introduced the Provop framework for modeling and managing
large collections of business process variants. In particular, we discussed selected is-
sues related to the modeling of a reference process model (i.e., a base process model) as
well as the adjustments becoming necessary to configure this reference process to dif-
ferent process variants in an effective and manageable way. We have shown that Provop
does not presume a particular policy for designing such a reference process model, but
supports different policies in this context. The same applies with respect to the defi-
nition of options and model adjustments respectively. Thus, users have a high degree
of flexibility when designing the ingredients for configuring the variants of a process



family. This, in turn, allows us to apply the Provop framework in different context and
to a large spectrum of processes from different application domains. Furthermore, we
have investigated advanced issues which are relevant for process variant management
in practice. These include the controlled evolution of a process family, the context- and
constraint-based configuration of process variants, and the correctness of configurable
variant models. Finally, the provision of a proof-of-concept prototype that demonstrates
basic Provop concepts adds to the completeness of our work.

One of the challenges on which we will have to work in more detail concerns the
flexible execution of variants; i.e., to allow for the dynamic reconfiguration of process
variants at runtime. Challenging issues in this context are to guarantee soundness of
dynamically reconfigured process models, to ensure compliance with semantical con-
straints, and to accomplish such dynamic switches between variants in a way compre-
hensible to users. Finally, we will conduct additional case studies in industry in order
to validate Provop concepts based on the realized prototype. In particular, we are going
to apply the Provop approach to document the multitude of process variants that can be
found in computer-aided engineering in the automotive domain.

References

1. Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the effectiveness of process-oriented in-
formation systems: Problem analysis, critical success factors and implications. IEEE Trans-
actions on Systems, Man, and Cybernetics (Part C) 38 (2008) 280–291

2. Lenz, R., Reichert, M.: IT Support for Healthcare Processes - Premises, Challenges, Per-
spectives. Data and Knowledge Engineering 61 (2007) 39–58

3. Mutschler, B., Weber, B., Reichert, M.: Workflow management versus case handling: Results
from a controlled software experiment. In: Proc. of the 23rd Annual ACM Symposium
on Applied Computing (SAC’08), Special Track on Coordination Models, Languages and
Architectures, ACM Press (2008) 82–89

4. Rinderle-Ma, S., Reichert, M., Jurisch, M.: Equivalence of web services in process-aware
service compositions. In: Proc. of the 7th IEEE Conference on Web Services (ICWS’09),
IEEE Computer Society Press (2009)

5. IDS Scheer AG: ARIS Platform Method 7.1. (2008) www.ids-scheer.com.
6. BOC: The Business Process Management Tool ADONIS. (2007) (in German).
7. IBM: IBM WebSphere Business Modeller, Version 6.1. (2007)
8. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT Support for Release Management

Processes in the Automotive Industry. In: Proc. of the 4th Int. Conf. on Business Process
Management (BPM’06). (2006) 368–377

9. Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process lifecycle.
In: Proc. of the 10th Int. Conf. on Enterprise Information Systems (ICEIS’08). (2008) 154–
161

10. Becker, J., Lis, L., Pfeiffer, D., Räckers, M.: A process modeling language for the public
sector - the picture approach. Wybrane Problemy Elektronicznej Gospodarki (2007) 271–
281

11. Reijers, H.A., Mans, R.S., van der Toorn, R.A.: Improved model management with aggre-
gated business process models. Data Knowledge and Engineering 68 (2009) 221–243

12. VDA Recommendation 4965 T1: Engineering Change Management (ECM) - Part 1: Engi-
neering Change Request (ECR) Version 1.1 (2005)



13. Hallerbach, A., Bauer, T., Reichert, M.: Issues in modeling process variants with Provop.
In: Proc. of the 4th Int. Workshop on Business Process Design (BPD’08), Workshop held in
conjunction with Business Process Management (BPM’08) conference. LNBIP 17, Springer
(2009) 54–65

14. Hallerbach, A., Bauer, T., Reichert, M.: Configuration and management of process variants.
In Rosemann, M., Brocke, J.V., eds.: Handbook on Business Process Management, Springer-
Verlag (2009) (forthcoming).

15. Wahler, K., Küster, J.M.: Predicting coupling of object-centric business process implemen-
tations. In: Proc. of the 6th Int. Conf. on Business Process Management (BPM’08). LNCS
5240, Springer (2008) 148–163

16. Weber, B., Reichert, M.: Refactoring process models in large process repositories. In: Proc.
of the 20th Int. Conf. on Advanced Information Systems Engineering (CAiSE’08). LNCS
5074 (2008) 124–139

17. Rosemann, M., van der Aalst, W.: A Configurable Reference Modeling Language. Informa-
tion Systems 32 (2007) 1–23

18. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., la Rosa, M.: Configurable Work-
flow Models. In: Int. Journal of Cooperative Information Systems. (2007)

19. Hallerbach, A., Bauer, T., Reichert, M.: Anforderungen an die Modellierung und Ausführung
von Prozessvarianten. Datenbank Spektrum 24 (2008) 48–58 (in German).

20. Weber, B., Reichert, M., Rinderle, S., Wild, W.: Towards a framework for the agile min-
ing of business processes. In: Proc. of the 1st Int. Workshop on Business Process Intelli-
gence (BPI’05) in conjunction with Business Process Management (BPM’05). LNCS 3812,
Springer (2006) 191–202

21. Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing integrated life cycle support in
process-aware information systems. Int. Journal of Cooperative Information Systems (IJCIS)
18 (2009) 115–165

22. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features - en-
hancing flexibility in process-aware information systems. Data and Knowledge Engineering
66 (2008) 438–466

23. Rinderle-Ma, S., Reichert, M., Weber, B.: On the formal semantics of change patterns in
process-aware information systems. In: Proc. of the 27th Int. Conf. on Conceptual Modeling
(ER’08). LNCS 5231, Springer (2008) 279–293

24. Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of process variants.
In: Proc. of the 3rd Int. Workshop on Technologies for Context-Aware Business Process
Management (TCoB’08). (2008) 31–40

25. Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based on high-
level change operations. In: Proc. of the 27th Int. Conf. on Conceptual Modeling (ER’08).
LNCS 5231, Springer (2008) 248–264

26. Li, C., Reichert, M., Wombacher, A.: Mining process variants: Goals and issues. In: Proc.
of the 5th IEEE Conf. on Services Computing (SCC 2008), IEEE Computer Society Press
(2008)

27. Li, C., Reichert, M., Wombacher, A.: Discovering reference process models by mining pro-
cess variants. In: Proc. of the 6th Int. Conf. on Web Services (ICWS’08), IEEE Computer
Society Press (2008) 45–53

28. Li, C., Reichert, M., Wombacher, A.: What are the problem makers: Ranking activities
according to their relevance for process changes. In: Proc. of the 7th Int. Conf. on Web
Services (ICWS’09), IEEE Computer Society Press (2009)

29. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.J.M.M.: Workflow mining: A survey of issues and approaches. Data and Knowledge
Engineering 47 (2003) 237 – 267



30. Wyner, G., Lee, J.: Defining specialization for process models. In Malone, T., Crowston,
K., Herman, G., eds.: Organizing Business Knowledge - The MIT Process Handbook., MIT
Press (2003) 131–174

31. Rosa, M.L., Dumas, M., ter Hofstede, A.H.M.: Modelling business process variability. Tech-
nical Report 13358, QUT ePrints Technical Report (2008)

32. Hallerbach, A., Bauer, T., Reichert, M.: Guaranteeing soundness of configurable process
variants in Provop. In: 11th IEEE Conf. on Commerce and Enterprise Computing (CEC’09)
(accepted for Publication).

33. Hallerbach, A., Bauer, T., Reichert, M.: Correct Configuration of Process Variants in Provop.
Technical Report UIB-2009-03, Uni Ulm (2008)

34. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to Users.
PhD thesis, Technical University of Eindhoven (2008)

35. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management with
ADEPT2. In: Proc. of the Int. Conf. on Data Engineering (ICDE’05), IEEE Computer Soci-
ety Press (2005) 1113–1114

36. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in workflow
systems – a survey. Data and Knowledge Engineering 50 (2004) 9–34

37. Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity - dynamic process lifecycle support:
A survey on dynamic changes in process-aware information systems. Computer Science -
Research and Development 23 (2009)

38. Lu, R., Sadiq, S.: Managing process variants as an information resource. LNCS 4102.
Springer (2006) 426–431

39. Rosa, M.L., Lux, J., Seidel, S., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-driven
Configuration of Reference Process Models. In: Proc. of the 19th Int. Conf. on Advanced
Information Systems Engineering (CAiSE’07). LNCS 4495, Springer (2007)

40. van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M., Rosa, M.L.,
Mendling, J.: Correctness-preserving configuration of business process models. In: Proc. of
the 11th Int. Conf. on Fundamental Approaches to Software Engineering (FASE’08). LNCS
4961, Springer (2008) 46–61

41. van der Aalst, W.M.P., Basten, T.: Inheritance of workflows: an approach to tackling prob-
lems related to change. Theoretical Computer Science 270 (2002) 125–203

42. Bachmann, F., Bass, L.: Managing Variability in Software Architectures. In: Proc. of 2001
Symp. on Software Reusability, New York, ACM Press (2001) 126–132

43. Becker, M., Geyer, L., Gilbert, A., Becker, K.: Comprehensive Variability Modeling to Fa-
cilitate Efficient Variability Treatment. In: Proc. of the 4th Int. Workshop on Product Family
Engineering (PFE’01). (2001)

44. Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product Family to
Customers. Software and System Modeling 2 (2003) 15–36

45. Bayer, J., Buhl, W., Giese, C., Lehner, T., Ocampo, A., Puhlmann, F., Richter, E., Schnieders,
A., Weiland, J., Weske, M.: PESOA - Process Family Engineering - Modeling Variant-rich
Processes. Technical Report 18/2005, Hasso-Plattner-Institut, Potsdam (2005)

46. Puhlmann, F., Schnieders, A., Weiland, J., Weske, M.: PESOA - Variability Mechanisms for
Process Models. Technical Report 17/2005, Hasso-Plattner-Institut, Potsdam (2005)

47. la Rosa, M., Dumas, M., ter Hofstede, A.H.M., Mendling, J., Gottschalk, F.: Beyond control-
flow: Extending business process configuration to roles and objects. In: Proc. of the 27th Int.
Conf. on Conceptual Modeling (ER’08). LNCS 5231, Springer (2008) 199–215



9 Appendix

9.1 Change Operations supported by Provop

Table 3 gives an overview of the change operations currently provided by Provop. For
each operation we use a particular symbol as notation.

Table 3: Overview of the Provop change operations


