
Time Patterns
for Process-aware Information Systems:

A Pattern-based Analysis
Revised version

Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

1Institute of Databases and Information Systems, Ulm University, Germany
{Andreas.Lanz, Manfred.Reichert}@uni-ulm.de

2Quality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

Abstract. Formal specification and operational support of time con-
straints constitute fundamental challenges for any process-aware infor-
mation system. Although temporal constraints play an important role
in the context of long-running business processes, time support is very
limited in existing process management systems. By contrast, different
kinds of planning tools (e.g., calendar systems and project management
tools) provide more sophisticated facilities for handling task-related time
constraints, but lack an operational support for business processes. This
paper presents a set of 10 time patterns to foster the systematic design
and comparison of these different technologies in respect to the time per-
spective. These time patterns are all based on empirical evidence from
several large case studies. In order to ease use and implementation for
each time pattern we provide a precise formal semantics. In addition, we
provide an in-depth evaluation of selected process management systems,
calendar systems and project management tools based on the suggested
patterns. The presented work will not only facilitate comparison of these
different technologies in respect to their support of time constraints, but
also make evident that their integration offers promising perspectives
in respect to time support for long-running business processes. Their
widespread use will contribute to further maturation of process-aware
information systems and related evaluation schemes.

1 Introduction

Formal specification and operational support of time constraints constitute fun-
damental challenges for any enterprise information system. Although tempo-
ral constraints play an important role in the context of long-running business
processes (e.g., patient treatment, automotive engineering and flight planning)
[1, 2, 3, 4], time support is rather limited in existing process management sys-
tems [1, 5]. By contrast, different kinds of planning tools (e.g., calendar systems
and project management tools) provide more sophisticated facilities for handling
time constraints (e.g., periodic activities), but miss an operational support for

2 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

business processes. So far, there is a lack of methods for systematically assessing
and comparing the time capabilities provided by these different process sup-
port technologies (denoted as Process-Aware Information Systems (PAIS) in the
following).

To make PAIS better comparable and to facilitate the selection of appropriate
PAIS-enabling technologies, workflow patterns have been introduced [6, 7, 8, 9].
Respective patterns provide means for analyzing the expressiveness of process
modeling approaches in respect to different process perspectives. For example,
proposed workflows patterns cover control flow [6], data flow [7], resources [8],
activities [10], exceptions [11], and process change [9]. However, a framework for
systematically evaluating PAIS in respect to their ability to deal with the time
perspective is missing and is picked up by this paper. Our contributions are as
follows:

1. We suggest 10 time patterns to foster the comparison of existing PAIS with
respect to their ability to deal with time aspects. The proposed time patterns
complement existing workflow patterns and were systematically identified
by analyzing a large collection of process models in healthcare, automotive
engineering, aviation industry, and other domains.

2. In order to avoid disambiguities and to ease both use and implementation of
the time patterns, for each time pattern we define a precise formal semantics.
The description of this semantics is independent of a particular process meta
model and is based on the (temporal) execution traces producible on a time
constrained process schema.

3. We provide an in-depth evaluation of selected approaches from both industry
and academia based on the proposed time patterns. The evaluation does not
only consider process management systems, but also calendar systems and
project planning tools in which time aspects play an important role.

Our pattern-based analysis shows that these different technologies all pro-
vide support for time aspects. The presented work will not only facilitate their
comparison in respect to the support of time constraints, but also foster the
selection of appropriate time components when designing PAIS. Moreover, our
work makes evident that their integration offers promising perspectives in re-
spect to more sophisticated time support for long-running business processes,
i.e., knowing the commonalities and differences will be a first step to integrate
these technologies (e.g., process management and calendar systems).

Section 2 summarizes basic notions. Section 3 presents the research method
employed for identifying the time patterns. Section 4 describes 10 time patterns
sub-dividing them into 4 categories. In Section 5 we provide a formal semantics
for each of the 10 patterns. Section 6 summarizes the results from our evaluation
of selected approaches and tools. We present related work in Section 7 and
conclude with a summary and outlook in Section 8.

Time Patterns for Process-aware Information Systems 3

2 Basic Notions

This section describes basic concepts and notions used in this paper.
A process management system is a specific type of information system which

provides process support functions and separates process logic from application
code. For each business process to be supported, a process type represented by a
process schema has to be defined (cf. Fig. 1). In the following, a process schema
corresponds to a directed graph, which comprises a set of nodes – representing
activities and control connectors (e.g., XOR-Splits or AND-Joins) – and a set of
control edges between them. The latter specify precedence relations. We further
use the notion of activity set to refer to a subset of the activities of a process
schema. Its elements are not required to be part of a sequence block, but may
also belong, for example, to different parallel branches. During run-time process
instances are created and executed according to a predefined process schema
S. Activity instances, in turn, represent executions of single process steps of a
particular process instance. Activities which shall be executed more than once
(concurrently or sequentially) are referred to as multi-instance activities.

The patterns introduced in the following can be applied to these granularities,
i.e., process schema, activity, activity set, activity instance, and process instance.
We use the term process element as umbrella for all these concepts.

Activity Set

Activity

Process Start

AND-Split

XOR-Split XOR-Join

Multi-Instance Activity

AND-Join

Process End

Fig. 1. Core Concepts of a Process Model

3 Research Method

The overall goal of this paper is to complement existing workflow patterns (e.g.,
[6, 7, 8, 9, 10, 11]) with a set of time patterns suitable to assess how effectively
PAIS can deal with time. As motivated in the introduction, adequate modeling
and management of temporal constrains will be a key feature of future PAIS,
particularly regarding the support of long-running processes involving humans
(e.g., patient treatment [4] and product engineering [12]).

We describe the selection criteria for our time patterns, the data sources they
are based on, and the procedure we have applied for pattern identification.

Selection Criteria. We consider patterns covering temporal aspects rele-
vant for the modeling and control of processes and activities respectively. Our

4 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

focus is on a high coverage of real-world scenarios, and not on specific time
features of a PAIS like verification of time constraints [2, 5, 1, 3], escalation
management [13], or scheduling support [14, 15].

Sources of Data and Data Collection. As sources for our patterns we
consider results of comprehensive case studies we performed in different domains,
including healthcare, automotive engineering, aviation industry, and others.

One of our major data sources is a large healthcare project in which we de-
signed core processes of a Women’s Hospital [16]. Selected processes were imple-
mented using existing workflow technology. As part of this project time aspects
were elicited and documented. In total we consider 98 process models cover-
ing both administrative processes (e.g., order handling) and treatment processes
(e.g., chemotherapies and ovarian cancer surgery).

As second major data source we use process models from the automotive
industry. We consider a case study on electronic change management (ECM)
[17] and process models described in [18]. Some of the models related to ECM
have been also published by the German Association of the Automotive Indus-
try (VDA) [17]. The process models described in [18], in turn, refer to car repair
and maintenance in garages, in-house change management, and product devel-
opment. With several hundred activities the product development is the most
complex process we consider. In total this case provides 59 process models.

As third data source serves a case study we conducted with an on-demand air
service. As part of this project we analyzed and documented the flight planning
and post flight phase. As the aviation industry is highly regulated, compliance
with standards and regulations, in addition to company policies, is essential (e.g.,
minimum standards for flight time limitations, or rest time regulations). Many
of these regulations contain time constraints to be obeyed.

Our fourth data source comprises healthcare processes from a large Medical
University Hospital. We consider 60 different processes, related to diagnostic
and therapeutic procedures in the field of internal medicine (e.g., examinations
in medical units like radiology, gastroenterology, and clinical chemistry). Finally,
we have deep insight into patient scheduling systems.

Pattern Identification Procedure. To ground our patterns on a solid ba-
sis we first create a list of candidate patterns. For this purpose we conducted a
detailed literature review and rely on our experience with PAIS-enabling tech-
nologies. Next we thoroughly analyzed the above mentioned material to find
empirical evidence for our time patterns and - if necessary - extend the pat-
tern candidate list. As a pattern is defined as reusable solution to a commonly
occurring problem we require each of our time patterns to be observed at least
three times in different models of our samples. Therefore, only those patterns, for
which enough empirical evidence exists, are included in the final list of patterns,
which is presented in Section 4.

Time Patterns for Process-aware Information Systems 5

4 Time Patterns

As result of our analysis we have identified 10 different patterns which we divide
into 4 distinct categories (cf. Fig. 2a). These time patterns constitute solutions
for realizing commonly occurring time aspects in PAIS. Pattern Category I (Du-
rations and Time Lags) provides support for expressing durations of process
elements (e.g., activities) as well as time lags between events (e.g. milestones) or
activities. Pattern Category II (Restrictions of Process Execution Points) allows
specifying constraints regarding possible execution points of process elements
(e.g., activity deadline). Category III (Variability) provides support for time
based variability (e.g., control-flow varies depending on time context). Finally,
Category IV (Recurrent Process Elements) comprises patterns for supporting
recurrent process elements (e.g., periodicity and cyclic flows).

Pattern Catalogue
Category I: Durations and Time Lags

TP1: Time Lags between Activities
TP2: Durations
TP3: Time Lags between Events

Category II: Restrictions of Process Execution Points
TP4: Fixed Date Elements
TP5: Schedule Restricted Elements
TP6: Time Based Restrictions
TP7: Validity Period

Category III: Variability
TP8: Time Dependent Variability

Category IV: Recurrent Process Elements
TP9: Cyclic Elements
TP10: Periodicity

General Design Choices
A.) Parameters of a pattern may be set at different time points

a.) At build-time (i.e., during process modeling)
b.) At instantiation time (i.e., when a process instance is

instantiated)
c.) At run-time (i.e., during process execution)

B.) Time parameters can be specified in different time
granularities
a.) Basic (i.e., years, months, weeks, days, hours, minutes,

seconds)
b.) System-defined (e.g., business days)
c.) User-defined (e.g., Wednesday afternoon)

C.) Patterns can be applied to different process elements
a.) Single activity (including multi-instance activities)
b.) Activity set
c.) Process model
d.) Set of process instances

General Design Choice for Pattern Category I
D.) There are three kinds of restrictions

a.) Minimum value,
b.) Maximum value and
c.) Time interval [min … max]

Fig. 2a. Pattern Catalogue

Pattern Catalogue
Category I: Durations and Time Lags

TP1: Time Lags between Activities
TP2: Durations
TP3: Time Lags between Events

Category II: Restrictions of Process Execution Points
TP4: Fixed Date Elements
TP5: Schedule Restricted Elements
TP6: Time Based Restrictions
TP7: Validity Period

Category III: Variability
TP8: Time Dependent Variability

Category IV: Recurrent Process Elements
TP9: Cyclic Elements
TP10: Periodicity

General Design Choices
A.) Parameters of a pattern may be set at different time points

a.) At build-time (i.e., during process modeling)
b.) At instantiation time (i.e., when a process instance is

instantiated)
c.) At run-time (i.e., during process execution)

B.) Time parameters can be specified in different time
granularities
a.) Basic (i.e., years, months, weeks, days, hours, minutes,

seconds)
b.) System-defined (e.g., business days)
c.) User-defined (e.g., Wednesday afternoon)

C.) Patterns can be applied to different process elements
a.) Single activity (including multi-instance activities)
b.) Activity set
c.) Process model
d.) Set of process instances

General Design Choice for Pattern Category I
D.) There are three kinds of restrictions

a.) Minimum value,
b.) Maximum value and
c.) Time interval [min … max]

Fig. 2b. General Design Choices

Fig. 2a gives an overview of the 10 time patterns, which are described in
detail in the following. For each pattern we provide a name, synonyms, a brief
description of the addressed problem, design choices, remarks regarding its imple-
mentation including a visualization, illustrating examples from our case studies,
a reference to related patterns, and known uses of the pattern summarized in a
table (cf. Fig. 4 - Fig. 15).

In particular, design choices allow for parameterizing time patterns keeping
the number of distinct patterns manageable. Design choices not only relevant
for a particular pattern, but for several ones, are described only once. Typically,
existing approaches do not support all design choices regarding a specific pattern.
We denote the combination of design choices supported by a particular approach
as pattern variant.

Fig. 2b describes three general design choices concerning the point in time
when temporal constraints are set, the time granularities supported and the
process elements to which the respective pattern can be applied. These design
choices are valid for several or all of the 10 patterns, and can be used for pa-
rameterizing them. If not all options of a design choice are valid for a time

6 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

pattern this is described with the respective pattern. Additional design choices,
only relevant for a specific pattern or pattern category, are provided with the re-
spective description. These design choices are shortly described in the following.
The time parameters of a time pattern can be set at built-time, at instantiation
time, or at run-time (Design Choice A). This has specifically great impact on
the question whether, when and how the time constraints of a particular process
can be validated. Furthermore the time parameters of each time pattern can
have different granularities (depending on what granularities are supported by
the time reference system). Typical granularities are years, months, weeks, days,
hours, minutes and seconds, but also system-defined granularities (e.g., business
days) or user-defined ones (e.g., Wednesday afternoon) (Design Choice B). At
this point we neither consider how time granularities can be expressed nor how
they can be used when verifying the temporal constraints of a process. For both
of these questions several solutions have been proposed in literature [5, 1]. Fi-
nally, Design Choice C describes to which process elements the pattern can be
applied.

For each time pattern we provide a description using the aforementioned
schema (cf. Fig. 4 - Fig. 15).

4.1 Pattern Category I (Durations and Time Lags)

Our first category comprises three time patterns expressing durations of process
elements as well as time lags between them.

Design Choice D constitutes a general design choice valid for all patterns
from this category. It describes whether time lags are specified in terms of min-
imum/maximum values or time intervals (cf. Fig. 3).

Pattern Catalogue
Category I: Durations and Time Lags

TP1: Time Lags between Activities
TP2: Durations
TP3: Time Lags between Events

Category II: Restrictions of Process Execution Points
TP4: Fixed Date Elements
TP5: Schedule Restricted Elements
TP6: Time Based Restrictions
TP7: Validity Period

Category III: Variability
TP8: Time Dependent Variability

Category IV: Recurrent Process Elements
TP9: Cyclic Elements
TP10: Periodicity

General Design Choices
A.) Parameters of a pattern may be set at different time points

a.) At build-time (i.e., during process modeling)
b.) At instantiation time (i.e., when a process instance is

instantiated)
c.) At run-time (i.e., during process execution)

B.) Time parameters can be specified in different time
granularities
a.) Basic (i.e., years, months, weeks, days, hours, minutes,

seconds)
b.) System-defined (e.g., business days)
c.) User-defined (e.g., Wednesday afternoon)

C.) Patterns can be applied to different process elements
a.) Single activity (including multi-instance activities)
b.) Activity set
c.) Process model
d.) Set of process instances

General Design Choice for Pattern Category I
D.) There are three kinds of restrictions

a.) Minimum value,
b.) Maximum value and
c.) Time interval [min … max]

Fig. 3. General Design Choices for Category I

Pattern TP1 (Time Lags between two Activities). This pattern is de-
scribed in Fig. 4. It enables definition of different kinds of time lags between two
activities. In addition to General Design Choice D, TP1 defines one other design
choice. Design Choice E describes whether the time lags describe a start-start
relation (e.g., between the start event of two different activities), a start-end
relation, an end-start relation, or an end-end relation.

Pattern TP2 (Durations) is described in Fig. 5. It enables specification of
duration of process elements. For example, Design Choices C[a] and D[b] refer
to a variant of TP2 where a maximum duration for a single activity is described
(e.g., the assembly of a new engine must not take longer than 30 minutes).

Time Patterns for Process-aware Information Systems 7

End-End

Start-Start

End-Start

Start-Start

A B

D E

C

Time Pattern TP1: Time Lags between two Activities

Also known as Upper and Lower Bound Constraints, Inter-Task Constraints, Temporal Relations

Problem

There is a given time lag between two activities which needs to be respected. Time Lags
may not only exist between succeeding activities, but also between arbitrary ones. Time
lags are often required to comply with existing rules and regulations. The time lag may or
may not have binding character.

Design Choices

D.) Time Lags may represent all three kinds of restrictions (cf. Fig. 3)
E.) Time Lags can be realized based on four different time relations

a.) Between start of two activities (i.e., Start-Start relation)
b.) Between start of the first and completion of the second activity (i.e., Start-End)
c.) Between completion of the first and start of the second activity (i.e., End-Start)
d.) Between completion of two activities (i.e., End-End)

Solution

A time constraint is introduced between the
start and / or end event of the two activities.
Timers may be used to realize this pattern at
runtime. For example, to realize an end-start
relation, the timer starts after completing A.
If the time lag between A and B is a
minimum time lag, B may only be started after the timer has expired. Depending on
whether a time lag has binding character the activation of the activity may be delayed until
the time lag is satisfied. If the time lag is a maximum time lag B may be started as soon as
the timer is started until its expiry. In case the timer expires an exception is raised. For time
intervals both of the above cases apply.

Context The mechanism evaluating the constraint (i.e., starting the timer) needs to be able to access
the value of the time lag when it determines the impact of the constraint.

Examples

• The maximum time lag between discharge of a patient from a hospital and sending out
the discharge letter to the general practitioner of the patient should be 2 weeks (Design
Choices D[b] E[d])

• Patients must not eat at least 12 hours before a surgery takes place. The latest point in
time where the patient can have a meal is determined by the date of the surgery (Design
Choices D[a] E[c])

• A contrast medium has to be administered 2 to 3 hours before a radiological
examination. The interval in which the contrast medium should be administered depends
on the examination date (Design Choices D[c] E[a])

Related Patterns TP2 – Durations
TP3 – Time Lags between Events; TP1 can be implemented based on pattern TP3

Known uses MS Project, BPMN, Eder et al. [2], Bettini et al. [4], Combi et al. [1]

Fig. 4. TP1 - Time Lags between Activities

Pattern TP3 (Time Lags between arbitrary Events). TP3 is described
in Fig. 6. It enables specification of time lags between two discrete events. Thus,
opposed to TP1, TP3 provides more generic support for expressing arbitrary
time lags. For example, respective events can be triggers from an external source
(e.g., receiving a message, occurrence of a heart stroke) not controllable by the
PAIS. In addition, they may refer to events which are not bound to a specific
activity (e.g., event “delivery of all parts” requires several activities/processes to
complete) or to events which are triggered inside an activity (e.g., milestone of
an activity or subprocess, occurrence of exceptions, subprocess reaches a special
state, special condition occurred).

4.2 Pattern Category II (Restrictions of Process Execution Points).

This category comprises four patterns for restricting execution points (e.g., ear-
liest start or latest end time) of process elements.

8 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

Time Pattern TP2: Durations

Also known as -

Problem

A particular process element has a certain duration restriction. Durations result from both
waiting and processing times. Durations are often determined by external benchmarks (e.g.,
regulations, policies, QoS agreements). The duration may or may not have binding
character.

Design Choices C.) Durations can be applied to all four kinds of process elements (cf. Fig. 2b)
D.) Durations may represent all three kinds of restrictions (cf. Fig. 3)

Solution

A time constraint is introduced between the start and end event of the particular process
element.

Again timers can be used to provide runtime support for durations. For minimum
(maximum) durations the respective element must not complete before (after) the timer has
expired, otherwise appropriate exception handling is initiated. For intervals, the completion
event has to occur within the interval boundaries.

Context The mechanism evaluating the constraint (i.e., starting the timer) needs to be able to access
the value of the duration before the particular element is executed.

Examples

• The assembly of a new engine must not take longer than 30 minutes (task work) (Design
Choices C[a], D[b])

• Depending on its severity, ovarian cancer surgeries take 1 to 10 hours (Design Choices
C[a], D[c]).

• Maintenance issues need to be resolved within 1hr (Design Choices C[c], D[b])
• Processing 100 requests must not take longer than 1 second (Design Choices C[d], D[b])

Related Patterns TP1 – Time Lags between Activities
TP3 – Time Lags between Events – TP2 can be implemented based on TP3

Known uses MS Project, BPMN, MQ Workflow, Eder et al. [2], Bettini et al. [4], Combi et al. [1]

Process Duration

Activity Duration

Activity Set Duration

Fig. 5. TP2 - Durations

Regarding this category design choice F describes what kind of execution
point is specified by the respective constraint (e.g., earliest start or latest end
date) (cf. Fig. 7).

Pattern TP4 (Fixed Date Element). TP4 is described in Fig. 8. It provides
support for specifying a deadline. For a particular process element it can be
fixed whether it has to be started after, started before or completed before a
particular date (Design Choice F). In many cases, fixed date elements implicitly
determine latest (earliest) start (end) time of preceding (succeeding) activities
as well.

Pattern TP5 (Schedule Restricted Element). TP5 is described in Fig. 9.
It enables us to restrict the execution of a particular element by a schedule; i.e.,
a timetable (e.g., a bus schedule). The schedule itself is known at built-time,
whereas the concrete dates are specified either at instantiation or run-time. The
schedule may comprise several discrete points in time, but also one or more time
frames (Design Choice G).

Pattern TP6 (Time Based Restrictions) enables us to restrict the number
of times a particular process element can be executed within a predefined time

Time Patterns for Process-aware Information Systems 9

Time Pattern TP3: Time Lags between Arbitrary Events

Also known as -

Problem

There is a given time lag between two discrete events which needs to be respected. Events
occur, for example, when instantiating or completing a process instance, when reaching a
milestone in a process instance, or when triggering specific events inside an activity. Time
lags are often required to comply with existing rules and regulations. The time lag may or
may not have binding character.

Design Choices D.) Time Lags between Events may represent all three kinds of restrictions (cf. Fig. 3)

Solution

A time constraint is introduced between the
respective events. Again timers can be used to
realize this pattern at runtime (cf. Fig. 4).
Additionally an observer monitoring external
events and notifying the mechanism evaluating
the constraint is necessary.

Context The mechanism evaluating the constraint (i.e., starting the timer) needs to be able to access
the value of the time lag in order to determine the impact of the constraint.

Examples

• Maximum time lags in an electronic change management process between sending a
request for comments (by the partners affected by a change) and getting a response
(Event) (Design Choices D[b]).

• The time lag between delivery of all parts (milestone) and the assembly of the car’s
chassis (milestone) should be no more than 2 hours (e.g. just-in-time production) (Design
Choices D[c]).

Related Patterns TP1 – Time Lags between Activities
TP2 – Durations

Known uses Bettini et al. [4], Combi et al. [1]

Milestone Event

Activity Event

Time Lag

Fig. 6. TP3 - Time Lags between Events

General Design Choice for Pattern Category II
F.) Patterns can restrict three dates of a process element

a.) Earliest start date,
b.) Latest start date,
c.) Latest completion date

Fig. 7. General Design Choices for Category II

frame (cf. Fig. 10). Design Choice H describes to which process element the
pattern may be applied (e.g., activity instances of a single process instance or of
multiple process instances).

Pattern TP7 (Validity Period) enables us to restrict the lifetime of a process
element to a given validity period (cf. Fig. 11). Design Choice F allows specifying
the earliest / latest start (completion) date for the respective process element.

4.3 Pattern Category III (Variability).

This category comprises Pattern TP8 (Time Dependent Variability , see
Fig. 12) which allows varying control flow depending on the execution time, or
time lags between activities/events (Design Choice J). As example consider the
left diagram in Fig. 12. Depending on the time the XOR-Split is executed either
the upper or the lower path is chosen.

10 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

Monday

14:30 Mr. Schmith
14:00

15:00

Fixed-Date Activity

Time Pattern TP4: Fixed Date Elements

Also known as Deadline

Problem
A particular element has to be executed at a particular date. Fixed Date Elements often
determine the latest or earliest start / completion time of preceding / succeeding activities
as well. If the deadline is missed the activity or process may even become obsolete.

Design Choices C.) A fixed date can be applied to an activity (a.) or process instance (c.) (cf. Fig. 2b)
F.) A fixed date can restrict all three types of dates (cf. Fig. 8)

Solution

A Fixed Date is attached to the respective element.
A Fixed Date can be realized using a timer which is started,
as soon as the value of the fixed date is known and expires
at the respective date. If, for example, for a latest start date
the respective element has not been started before the timer has expired appropriate
exception handling is initiated. This could, for example, lead to the cancelation of the
respective activity. Other restriction can be handled analogously (cf. Fig. 4 for an example).

Context The value of the fixed date needs to be available prior to the respective activity becoming
available for execution.

Examples

• Assume that software is released every two weeks on Friday evening. Thus, the deadline
for changes (except bug fixes) is the day before the release date (time error might lead to
delays or have no effect) (Design Choices C[a] F[c]).

• To perform chemotherapy the physician has to inform the pharmacy about the dosage of
the cytostatic drug until 11:00. If the deadline is missed the pharmacy checks back by
phone for the exact dosage (escalation mechanism) (Design Choices C[a] F[c]).

• A patient has an appointment for an examination Monday at 10:00, but due to a full
schedule of the physician it may well be that the patient has to wait until the examination
starts (i.e., earliest possible execution point is given) (Design Choices C[a] F[b]).

Related Patterns TP5 – Schedule Restricted Elements; Fixed Date Elements are often schedule restricted
elements as well.

Known uses MS Project, BPMN, Eder et al. [2], Bettini et al. [4], Combi et al. [1]

Fig. 8. TP4 - Fixed Date Elements

4.4 Pattern Category IV (Recurrent Process Elements).

This category comprises patterns to express cyclic elements and periodicity. De-
sign Choice K is a general design choice for Category IV which describes whether
the number of cycles is determined explicitly, is calculated based on time lags
and end dates, or is depending on an exit condition (cf. Fig. 13).

Pattern TP9 (Cyclic Elements) allows specifying cyclic elements which are
performed iteratively considering time lags between cycles (cf. Fig. 14). Design
Choice L specifies whether time lags between cycles are fixed (i.e., have always
same length) or may vary from iteration to iteration. Design Choice N describes
whether the time lags describe a start-start relation (e.g., between the start event
of two different activities), a start-end relation, an end-start relation, or an end-
end relation. This pattern represents a variant / extension of pattern TP1 in
which the second activity lies in the iteration succeeding the one to which the
first activity belongs.

Pattern TP10 (Periodicity). TP10 allows specifying periodically recurring
process elements according to an explicit periodicity rule (cf. Fig. 15). In contrast
to TP9, emphasis of TP10 is on possible execution dates of the recurrent element
and not on the time lags between the iterations. Design Choice O describes
whether the periodicity rule may contain one or more dates.

Time Patterns for Process-aware Information Systems 11

Time Pattern TP5: Schedule Restricted Elements

Also known as -

Problem

The execution of a particular element (i.e., activity or process) is restricted by a schedule.
The structure of this schedule is known at process type level, while the concrete date is
determined at instance level. The schedule provides restrictions on when the respective
element can be executed. In particular, for rather restricted schedules even small delays in
process execution can become critical (if schedule restricted elements being on a critical
path are affected by the delay or the path becomes critical due to the delays). Schedules
may contain exceptions (e.g., every year except leap years).

Design Choices

C.) A fixed date can be applied to an activity (a.) or process instance (c.) (cf. Fig. 2b)
F.) A fixed date can restrict all three types of dates (cf. Fig. 8)
G.) Execution of the element can be bound to

a.) several discrete points in time (execution is only possible every full hour) or
b.) one or more time frames (e.g. execution is only possible from 09:00 to 12:00)

Solution

A schedule is attached to the respective element.
A schedule restriction can be realized using a timer which is
started when the process is started and expires when the first time
frame of the schedule is reached (a discrete point in time (Design Choice G[a]) can be seen
as a time frame with only one time point). The timer is then reset and its expiration date is
set to the end of the next time frame of the schedule. This is repeated until no more time
frames are in the schedule or the process element has been started / completed (cf. Design
Choice F). If the start / end of the respective element does not occur within a valid time
frame or there is no longer a time frame available in the schedule, appropriate exception
handling is initiated.

Context The schedule needs to be known at process type level or at least at process instantiation.

Examples

• Between Munich and Amsterdam there are flights at 6:05, 10:30, 12:25, 17:35 and 20:40
(Design Choice C[a] G[a]).

• Opening hours of the dermatological clinic are MO – FR 8:00 – 17:00 except for public
holidays. Dermatological examinations can only be scheduled within this time frame
(Design Choices C[a] G[b]).

• An information letter is sent by the leasing company to each customer within the first
two weeks of each year (Design Choices C[a] G[b])

• Comprehensive lab tests in a hospital can only be done from MO – FR 8:00 – 17:00
(Design Choices C[a] G[b])

Related Patterns

TP4 – Fixed Date Elements (often schedule restricted elements)
TP6 – Time Based Restrictions (like schedule based restrictions constrain possible
execution points for an element)
TP7 – Validity Period

Known uses MS Project, Eder et al. [2], Combi et al. [1]

Missing:

To avoid delays schedule restricted elements often become fixed date elements as soon as the execution time of
the element gets fixed.

Activity

Schedule Restricted Activity

Fig. 9. TP5 - Schedule Restricted Element

5 Formalization of Time Patterns

In this section we provide a formalization of the time patterns proposed in the
last section. First we give some general definitions of relevant notions like Cal-
ender and Time Distance.

5.1 Basic Notions

Definition 1 (Calendar). A Calendar C is an infinite set of absolute time
points without gaps (e.g. the Gregorian Calendar).
Properties:

– C is a total order; i.e., it has an ordering relation ≤C and

12 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

Time Pattern TP6: Time Based Restrictions

Also known as Some occurrences of this pattern are often referred to as “Mutual Exclusion”

Problem
Particular process elements may only be executed a limited number of times within a given
timeframe. Time Based Restrictions are often needed to express the influence of resource
restrictions (resource shortage) onto process execution.

Design Choices

H.) Time Based Restrictions can be applied to different types of process elements
a.) Instances of single activity or group of activities within same process instance
b.) Instances of single activity or group of activities within different process instances

(potentially sharing some common characteristics)
c.) Instances of a process or group of processes

I.) There are two types of restrictions which can be expressed by Time Based Restrictions
a.) Number of concurrent executions (at same time / with overlapping time frames) or
b.) Number of executions per time period

Solution

To implement this pattern a constraint expressing a particular
Time Based Restriction is associated with the process
elements affected by this restriction. Additionally, the
constraint specifies the respective time period and the
number of executions.
During runtime an observer can be used to monitor the
number of running instances per time period and to raise an
exception in case the maximum number of executions is
exceeded.

Context The number of executions needs to be accessible by the observer before any of the
respective process elements is started.

Examples

• Two invasive examinations must not be performed on same day (Design Choices I[b]).
• For USD 19.90 10 different online books can be read per month. If the book tokens are

consumed no more books can be read in the current month. At beginning of next month
the book tokens get renewed (Design Choices H[a] I[b]).

• During your stay at a wellness hotel you can select one treatment (free of charge) per day
(Design Choices H[a] I[b]).

Related Patterns
TP5 – Schedule Restricted Elements; While the execution point of a schedule restricted
element is constrained by a schedule, time based restrictions constrain the amount of
activity instances / time period.

Known uses -

At most n-Times
per Time Period

Mutual Exclusion

Fig. 10. TP6 - Time Based Restrictions

∀x, y ∈ C : x ≤C y ∨ y ≤C x

Definition 2 (Time Distance). A Time Distance describes a relative distance
between two points in time using a particular time granularity. Let D denote the
set of all Time Distances.
Properties:

– D is a partial order; i.e., it has a ordering relation ≤D
– The addition of a time point of a Calendar C and a Time Distance is given

as
+ : C × D 7→ 2C

Regarding an absolute point in time t ∈ C and a time distance like
“5workingdays” ∈ D, the precise semantics of the expression t+5workingdays
is unclear although t represents an absolute point in time (e.g., “Mon 19.10.2009
17:32.324”) and this expression can be intuitively calculated. Consequently, the
exact value or meaning of t1 +5workingdays ≤ t2 is unclear since it is generally
not known what “5 working days” or even “5 days” exactly means in the given

Time Patterns for Process-aware Information Systems 13

Time Pattern TP7: Validity Period

Also known as -

Problem

A particular process element may be only executed within a particular validity period, i.e.,
its lifetime is restricted to the validity period. The respective process element may only be
instantiated within this validity period. In general, different versions of a process element
may exist, but only one is valid at a specific point in time. Validity dates are especially
relevant in the context of process evolution to restrict the remaining lifetime of an obsolete
process implementation and to schedule rollout of the new process.

Design Choices C.) A validity period can be applied to an activity (a.) or process instance (c.) (cf. Fig. 2b)
F.) A validity period can restrict all three types of dates (cf. Fig. 8)

Solution

To realize this pattern a validity period is attached to the respective element.
Upon instantiation of the respective process element, its validity period
needs to be checked. If the element does not lie within its validity period or
the duration of the element (see Fig. 5) leads to the end event being outside of the validity
period, appropriate error handling is required.

Context The validity period needs to be known at process type level. If the validity period is bound
to an activity it may apply to several different process types.

Examples

• Starting from Jan 1st patients need to be informed about any risks before the actual
treatment takes place (Design Choice C[c] F[a]).

• From next week on the new service version should get life (Design Choice C[a] F[a]).
• Due to changed law, process A may only be used until January 1st. After this date no

new process instances can be instantiated based on A, but process B has to be used
instead (Design Choice C[c] F[b]).

Related Patterns TP5 – Schedule Restricted Elements
TP8 – Time Dependent Variability

Known uses MQ Workflow

Activity

Validity Period

Fig. 11. TP7 - Validity Period

context. It could mean, for example, that this inequation will be not fulfilled any-
more at 17:30.001 on the designated day but it could also mean, that 23:59.999
the same day or even 17:29.999 the next day are still ok. This wiggle room is
a general problem of time units or more exactly the meaning of time units in
human understanding. For example, the statement “at most one day later” (i.e.,
a maximum distance of 1 day) cannot be generally mapped to an exact distance.

Since we do not want to make any restriction regarding the meaning of ex-
pressions like t1 + d ≤ t2, we assume that in the context at hand it is always
possible to decide whether or not such expression is true. Therefore we also do
consider Design Choice B when defining execution semantics of the time pat-
terns.

Furthermore, Design Choice A has no impact on the execution semantics
proposed in this paper. The reason is that we just consider the impact the
time patterns have on temporal execution traces (i.e., the execution history of a
process instance). Thus the “incarnation” of the temporal constraints has already
taken places and the corresponding point in time has no impact on the validity
of the constraints.

We now define the notion of events as used throughout the remainder of this
paper. An event denotes the occurrence of some sort of trigger during the exe-
cution of a process instance. The start and end of each activity corresponding to
a process instance for example, constitutes such an event (cf. Fig. 16). However,
there are also external events like milestones, receipt of a message, occurrence

14 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

Time Pattern TP8: Time Dependent Variability

Also known as -

Problem Depending on time aspects the control flow may vary; e.g., different branches of a process
are executed or different sub process fragments are chosen.

Design Choices
J.) There are different time aspects which may be considered by an instance of this pattern

a.) Execution time of an activity / process instance
b.) Time lags between activities / events

Solution

Time dependent variability can be achieved in different ways. The simplest approach is to
explicitly capture the required variability in the process model through enumerating all
different options. Alternatively, techniques like late binding can be used to select
appropriate activity implementations during run-time depending on time. Both of these
implement the variability based on the time of execution (Design Choice J[a]). Finally, the
Deferred Choice Pattern may be used in combination with triggers to achieve time
dependent variability based on time lags between activities (Design Choice J[b]).

Context The mechanism that evaluates the variability needs to be able to access any required data
when determining which of the possible alternatives should be chosen.

Examples

• Samples which are collected between 18 and 20 o’clock and which are sent to the
Department of Clinical Chemistry, need to be marked as express requests in the request
form. Outside the opening hours of the clinic only emergency cases are treated (Design
Choice J[a]).

• When issuing a passport the processing usually takes 4-6 weeks. If the person needs the
passport earlier than 4 weeks an interim passport can be issued (Design Choice J[a]).

• Patients admitted in the hospital between 6pm and 8am are always assigned to the
emergency unit (for the first night); afterwards they are transferred to a normal ward
(Design Choice J[a]). Between 8am and 6pm, in turn, patients are directly admitted by
the ward.

Related Patterns TP7 – Validity Dates
Known uses BPMN

Deferred Choice

MinimumTime Lag

Time Dependent
Late Binding

Service A Service CService B

Time Dependent Variability

Mo-Sa
9:00-17:00

otherwise

Fig. 12. TP8 - Time Dependent Variability

General Design Choice for Pattern Category IV
K.) The Number of cycles is

a.) determined by a fixed / dynamic number of
iterations,

b. depends on time lag and end date or
c. depends on exit condition

Fig. 13. General Design Choices for Category IV

of a heart stroke, and so forth (cf. Fig. 16). Thus, in our context we use the the
notion of event as general term for something that happens during the execution
of a process instance.

Definition 3 (Event, Event occurrence). Let PS be the set of all process
schemes. The set of all events which may occur during the execution of process
schema S ∈ PS is denoted as ES (without loss of generality we assume unique
labeling of events in the given context).

Let C be the total set of absolute timepoints of a calendar. Then

ϕ = (e, t) ∈ ES × C

Time Patterns for Process-aware Information Systems 15

Time Lag between two
subsequent iterations

loop

Time Pattern TP9: Cyclic Elements

Also known as -

Problem A particular process element shall be performed iteratively considering time lags between
the cycles.

Design Choices

C.) A cyclic element can be applied to all four kinds of process elements (cf. Fig. 2b)
L.) Time Lag between cycles

a.) is fixed (e.g., 3 hours) or
b.) may vary

M.) There are three kinds of restrictions (see also Design Choice D)
a.) Minimum value,
b.) Maximum value and
c.) Time interval [min…max]

N.) Time Lags can be realized based on four different time relations (cf. Design Choice E)
a.) Between start of two activities (i.e., Start-Start relation)
b.) Between start of the first and completion of the second activity (i.e., Start-End)
c.) Between completion of the first and start of the second activity (i.e., End-Start)
d.) Between completion of two activities (i.e., End-End)

Solution

A special time constraint is introduced between
the start and / or end event of the two process
elements where the respective event of the
second process element lies in the succeeding
iteration of the event of the first process element.
This pattern can be realized at runtime similar to TP1 with additional attention being paid
to the iterations of the respective activities.

Context
The mechanism evaluating the constraint (i.e., starting the timer) needs to be able to access
the value of the time lag when it determines the impact of the constraint. Additionally Time
Lags may vary between iterations (cf. Design Choice L).

Examples

• Administer 50 to 75 mg in equally divided doses every 12 hrs for 5 subsequent days
(Design Choices K[a] L[a] M[c], N[c]).

• Maintenance activities for a particular aircraft have to be performed after every N flight
hours (Design Choices K[c] L[a] M[b], N[c]).

Related Patterns TP10 – Periodicity
Known uses MS Project, BPMN [?], Combi et al. [?]

 Fig. 14. TP9 - Cyclic Elements

denotes the occurrence of event e ∈ ES at time point t ∈ C,i.e., t defines the
exact point in time at which event e occurred.

Furthermore ΦS = ES ×C denotes the set of all possible event occurrences of
events e ∈ ES.

Let AS be the total set of activities (or more precisely activity labels) based
on which process schemes S ∈ PS are specified (without loss of generality we
assume unique labeling of activities in the given context). Let further eAS

denote
the start-event and eAE

the end-event of activity A ∈ AS (cf. Fig. 16). Then,
for set ES the following equation holds:

{e|e ≡ eAS
∨ e ≡ eAE

for A ∈ AS} ⊆ ES

Based on events and event occurrences we now can define the notion of
temporal execution trace (or trace for short). We assume that all events related
to the execution of a process instance are recorded in a temporal execution
trace together with a timestamp designating their time of occurrence. Formally,
temporal execution traces are defined as follows:

16 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

Time Pattern TP10: Periodicity

Also known as Recurrence, Appointment Series

Problem

A particular process element shall be performed periodically; i.e., according to a particular
periodicity rule. Periodically implies some regularity, but does not necessarily mean
equally distanced. A periodicity rule describes the reoccurrence pattern of the respective
element (e.g., every Monday at 11:30) as well as start and end points (e.g., starting from
next Monday until end of the year, 5 times). The reoccurrence patterns usually use a
reference system over the given domain (e.g., a calendar). Periodicity rules may contain
exceptions (e.g. every year except leap years)

Design Choices

C.) A Periodicity can be applied to all four kinds of process elements (cf. Fig. 2b)
O.) The periodicity rule contains

a.) only one date (e.g., Monday at 10:00) or
b.) more than one date (e.g., Monday morning and evening)

Solution

Periodicity rules can be realized by
using combinations of patterns TP1-
6, TP8 and TP9. Even for simple
periodicity rules this can lead to
complex processes where the
periodicity rule cannot easily be
recognize anymore. Therefore the
periodicity as an additional layer of
abstraction is necessary to describe
such processes in an understandable way.

Context The contexts of the participating time patterns need to be fulfilled.

Examples

• Starting with next Monday group meetings will take place every two weeks at 11:30
(Design Choices K[c], O[a]).

• Each day at 7:00 the responsible assistant physician of the Gynaecological Clinic is
informing the assistant medical director about the patients (Design Choices M[c], O[a]).

• Course ``Business Processes and Workflows'' takes place every Monday from 8:00 to
11:00 starting on Oct 6th and ending on Jan 26th. On Dec 8th, 22nd, 29th and on Jan 5th
there will be no lectures taking place (Design Choices K[b], O[a]).

• Stationary chemotherapy usually comprises 6 treatments which are performed every 14
days. At the end of one treatment cycle the date for the next chemotherapy is scheduled
(Design Choices K[a], O[a]).

• Administer Drug A on day 1 to 14 of each of the 6 treatment cycles and Drug B on the
1st and the 8th day. At the end of each treatment cycle the starting date for the next cycle
is scheduled (Design Choices K[a], O[a]).

Related Patterns TP9 – Cyclic Elements
Known uses MS Project, BPMN [?], Combi et al. [?]

28 Days (1 Treatment Cycle)

1 2 3 4 5 6 7 8 9 10 11 12 1 3 14 1 5 16 17 18 19 20 21 22 23 2 3 24 2 5 26 27 28

A A A A A A A A A A A A A A

B B

Periodic Activities
Calendar

Periodicity Rule:
Administer Drug A on Day 1-14 of the treatment cycle and Drug B on Day 1 and 8

Schedule Restricted Element

Time Based Restriction

Fixed-Date Element

Minimum/Maximum
Time Lag between iterations

Activity Duration

Time Dependent
Variability

Fig. 15. TP10 - Periodicity

Definition 4 (Temporal Execution Trace). Let PS be the set of all process
schemes and let ES be the set of all events which may occur in process schema
S ∈ PS during its execution. Let further C be the total set of absolute timepoints
of a calendar.

Let further TS denote the set of all possible temporal execution traces pro-
ducible on process schema S ∈ PS. Let ΦS be the set of all possible event oc-
currences and ϕ = (e, t) ∈ ΦS denote the occurrence of event e at time point t.

Time Patterns for Process-aware Information Systems 17

Activity Start Event

Activity End Event

e0

e2

e1 e4

e3

e5eA
1
S eA

1
E

eA
2
S eA

2
E eA

3
S eA

3
E

eA
4
S eA

4
E eA

5
S eA

5
E

Process End Event

External Event

Process Event

Process Start Event

Milestone Event

Fig. 16. Events in a Process

A particular temporal execution trace τS ∈ TS is then defined as ordered set of
event occurrences ϕi:

τS =< ϕ1, . . . , ϕn >

(with ϕi ∈ ΦS , i = 1, . . . , n, n ∈ N) where the order of ϕi = (ei, ti) in τS reflects
the temporal order in which the events ei occurred during the execution of a
process instance running on process schema S, i.e.

∀ϕk, ϕj ∈ τS : k < j ⇒ tk < tj .

Here, we assume that events in τS do not occur at exactly same point in time.

Additionally, in Table 1 we give some useful notions based on Definition 4
which facilitate formalization of the time patterns.

Let τS =< ϕ1, . . . , ϕn >∈ TS be a temporal execution trace on process
schema S. Then:

|τ | cardinality of τ

τ(i) = ϕi i-th item in temporal trace τ

ϕ ∈ τ ⇐⇒ ∃i ≤ |τ | with τ(i) = ϕ

e ∈ τ ⇐⇒ ∃t ∈ C : (e, t) = ϕ ∈ τ
ϕe = e and ϕt = t with ϕ = (e, t)

Table 1. Useful notions based on Definition 4

Furthermore, we define following functions, which returns all event occur-
rences for a particular event or process element:

Definition 5 (Trace Occurrences). occurrences(S, e, τS) is a function which
returns all occurrences ϕ = (e, ·) of event e within temporal trace τS on process
schema S. Formally:

occurrences : S × ES × TS 7→ 2ΦS

with
occurrences(S, e, τS) = {ϕ|∃t ∈ C : ϕ = (e, t) ∈ τS}

18 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

occurrences(S,A, τS, in turn, returns all occurrences of activity A within
temporal trace τS of process schema S. An occurrence of an activity is identified
by the occurrence of its start and end event, i.e. (ϕS , ϕE). Formally:

occurrences : S ×AS × TS 7→ 2ΦS×ΦS

with

occurrences(S,A, τS) = {(ϕS , ϕE)|ϕS = (eAS
, ·) and ϕE = (eAE

, ·)}

Note that Definition 5 implies that occurrences(S, e, τS) = ∅ holds, if e /∈ τS .
There are cases in which the iteration of a loop surrounding an activity

needs to be explicitly taken into account, when defining patterns semantics. For
example Time Pattern TP9 (cf. Fig. 14) requires the second activity to lie in the
iteration succeeding the one to which the first activity belongs. For the sake of
simplicity we presume nested loops here. To formally express this we define the
iteration of a loop as follows:

Definition 6 (Iteration). The iteration of a loop is defined as ordered set I =
(e0:n0, eL1

:nL1
, . . . , eLk

:nLk
) ∈ 2E×N which uniquely identifies each loop and its

current iteration counter with respect to a possibly surrounding loop. Thereby,
e0 is the start event of the respective process instance of schema S and eLi

(1 ≤ i ≤ k) is the first event of a loop; nLi
(1 ≤ i ≤ k), in turn, designates the

iteration count of an inner loop eLi with respect to an outer loop eLi−1 . Thereby
the iteration counter n0 for the process instance, i.e. the start event e0 of the
process instance, always has the value 1.

The Set of all possible iteration values for process schema S ∈ PS is given
as IS ⊂ 2E×N.

Then: iteration(S, ϕ, τS) is a function which returns the current iteration of
the innermost loop surrounding event ϕe, or (e0:1) if there is no surrounding
loop. Formally:

iteration : S × ΦS × TS 7→ IS
with

iteration(S, ϕ, τS) =

(e0:1)
if ϕe is not surrounded
by a loop

(e0:1, eL1
:nL1

, . . . , eLk
:nLk

) else

with eLi
, . . . , eLk

being the first events of all loops surrounding ϕe.

This definition implies that events not belonging to the control flow are
still part of the process instance and thus always have an iteration value of
iteration(S, ϕ, τS) = (e0:1). As example consider Figure 17. It shows a process
graph with two nested-loops. Below the process graph, a possible execution trace
is given together with the respective value of iteration(S, ϕ, τS) for each of the
events in the trace.

Again Table 2 gives some useful notions based on Definition 6 which facilitate
formalization of our time patterns.

Time Patterns for Process-aware Information Systems 19

A1 e2e0 A3

A6

A7

e4 e9 A10 e11 e13A12e5 e8

looploop

Possible trace (without timestamps) and respective iterations:

Trace (Events)︸ ︷︷ ︸
iteration(S,ϕ,τS)

⇒ e0, eA1S , eA1E ,︸ ︷︷ ︸
(e0:1)

e2, eA3S , eA3E ,︸ ︷︷ ︸
(e0:1,e2:1)

e4, e5, eA6S , eA6E , e8, e9,︸ ︷︷ ︸
(e0:1,e2:1,e4:1)

. . .

. . . , e4, e5, eA7S , eA7E , e8, e9,︸ ︷︷ ︸
(e0:1,e2:1,e4:2)

eA10S , eA10E , e11,︸ ︷︷ ︸
(e0:1,e2:1)

e2, eA3S , eA3E ,︸ ︷︷ ︸
(e0:1,e2:2)

. . .

. . . , e4, e5, eA6S , eA6E , e8, e9,︸ ︷︷ ︸
(e0:1,e2:2,e4:1)

eA10S , eA10E , e11,︸ ︷︷ ︸
(e0:1,e2:2)

eA12S , eA12E , e13︸ ︷︷ ︸
(e0:1)

(eAiS
: start event,

and eAiE
: end event

of activity Ai.)

Fig. 17. Nested Loops and Iterations

Let τS =< ϕ1, . . . , ϕn >∈ TS be a temporal execution trace on process
schema S. Then:

Iteration I occurs in trace τS , denoted as τS ` I, iff

∃ϕ ∈ τS : iteration(S, ϕ, τS) = I

For an iteration I = (e0:n0, eL1 :nL1 , . . . , eLk :nLk) the succeeding
iteration I⊕ is defined as

I⊕ = (e0:n0, eL1 :nL1 , . . . , eLk : (nLk + 1))

Table 2. Useful notions based on Definition 6

5.2 Formalization

The semantics of each pattern is now defined by characterizing the traces τS
that can be produced when executing any instance of process schema S while
satisfying the time constraints expressed by the patterns. Formally:

Definition 7 (Compliance). A temporal execution trace τS ∈ TS is compliant
with the set of temporal constraints defined on process schema S ∈ PS if and
only if τS is compliant with each of the temporal constraints corresponding to
process schema S. Compliance of a trace with a single temporal constraints is
defined by the pattern semantic of each constraint.

Based on the meta model independent notions of Def. 3-7 we now describe
formal semantics of the different time patterns introduced in the previous sec-
tion. The given formal specifications do not contain any constraints specific to
a particular meta model. This has to be achieved separately by associating time

20 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

patterns with meta model-specific pre-/post-conditions. Our specifications con-
tain generally valid pre-conditions where necessary; e.g., a minimum duration
needs to be greater or equal to 0.

Pattern Category I The time patterns in this category all restrict the temporal
distance between different sorts of events in the execution of a process instance.
Thus their semantics can be formalized based on the time lag between those
events.

The definition of the pattern semantics also needs to be valid in connection
with loops. As illustrated in Fig. 18, considering time lags between two activities
(TP1), for which one of the activities resides inside a loop and the other one
outside that loop (e.g. Activities A1 and A3 or Activities A3 and A6 in Fig. 18)
is problematic, since the exact semantics for such a case is unclear. This becomes
even more complicated when considering nested loops.

Consider for example a time lag between activities A1 and A6 (cf. Fig. 4) in
Fig. 18. There are several possible semantics for this case imaginable. Firstly,
time lags coming from one loop or the process itself and entering a nested loop
(cf. Fig. 18) could be restricted to only apply to the first or last iteration of the
nested loop. Secondly, such an “incoming” time lag could also be applied to all
iterations of the inner loop, and thirdly the time lag could be augmented by
meta information which describes the iteration or iterations the time lag apply
to. The same is possible for time lags starting inside a nested loop and ending
outside this loop (cf. Fig. 18). As sketched in Fig. 19 there are even way more
complex cases imaginable. Hence such cases need to be excluded when defining
the semantics of pattern TP1.

A1 e2e0 A3

A6

A7

e4 e9 A10 e11 e13A12e5 e8

looploop

Fig. 18. Time Lags and Loops

looploop

loop

Fig. 19. Loops in parallel Branches

Time Patterns for Process-aware Information Systems 21

Pattern Sematics 1 (TP1: Time Lags between Activities). A time lag
between two activities A and B can be mapped onto a time lag between the
respective start and/or end events of these activities based on Design Choice E
(cf. Fig. 4). Thus we denote the respective event of activity A as eA and the
respective event of activity B as eB . Based on design choice E we then have the
following relations between activity A and event eA and activity B and event
eB respectively:

Design Choice E

E[a] eA is the start event of activity A and eB is the start event of activity B
(start-start)

E[b] eA is the start event of activity A and eB is the end event of activity B
(start-end)

E[c] eA is the end event of activity A and eB is the start event of activity B
(end-start)

E[d] eA is the end event of activity A and eB is the end event of activity B
(end-end)

This way, for example, start/start and end/start time lags can be described
the same way. A time lag between events eA and eB can now be applied to a
temporal trace if:

eA ∈ τS and eB ∈ τS

Compliance of a given trace with such a time lag now means that all occurrences
ϕ = (eA, ·) and ψ = (eB , ·) of the two events fulfill the given time lag. Based
on design choice D a time lag between activities can now have three slightly
different semantics which lead to slightly different definitions of compliance:

Design Choice D

D[a] A temporal trace τS complies with a minimum time lag tmin ≥ 01 between
two activities A and B if for the respective events eA and eB the following
condition holds true

∀ϕ ∈occurrences(S, eA, τS)∀ψ ∈ occurrences(S, eB , τS) :

iteration(S, ϕ, τS) = iteration(S, ψ, τS)

⇒ ϕt + tmin ≤ ψt

D[b] A temporal trace τS complies with a maximum time lag tmax ≥ 0 between
activities A and B if for the respective events eA and eB the following con-
dition holds true

1 A negative minimum time lag is be equal to maximum time lag with the same
positive value and activities A and B swapped.

22 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

∀ϕ ∈occurrences(S, eA, τS)∀ψ ∈ occurrences(S, eB , τS) :

iteration(S, ϕ, τS) = iteration(S, ψ, τS)

⇒ ϕt + tmax ≥ ψt

D[c] A temporal trace τS complies with an interval time lag [tmin, tmax] with
tmax ≥ 0 and tmin ≤ tmax between activities A and B if for the respective
events eA and eB the following condition holds true

∀ϕ ∈occurrences(S, eA, τS)∀ψ ∈ occurrences(S, eB , τS) :

iteration(S, ϕ, τS) = iteration(S, ψ, τS)

⇒ ϕt + tmin ≤ ψt ≤ ϕt + tmax

The condition for a minimal time lag for example expresses, that for all
occurrence of Events eA and eB which are in the same Iteration the time of
the occurrence of Event eA needs to happen at least tmin time units before the
occurrence of Event eB , i.e. that there is a minimum time lag of tmin time units
between the respective Events of the two activities A and B.

Pattern Sematics 2 (TP2: Durations). The semantics for pattern TP2 can
easily be defined based on the compliance rules of pattern semantics 1. Thereby,
eA corresponds to the start event of the respective process element, while eB cor-
responds to its end event. Based on Design Choice C we then have the following
relations for events eA and eB .

Design Choice C

C[a] eA is the start event and eB is the end event of the activity

C[b] eA is the start event of the first activity to start of the activity set and eB
is the end event of the last activity to end of the activity set

C[c] eA is the start event and eB is the end event of the process

C[d] eA is the start event of the first process instance of the set of process in-
stances to be started and eB is the end event of the last process instance of
the set of process instances to be finished

Beside these differences in events eA and eB the same rules apply as for pattern
semantics 1.

Design Choice D

D[a] A temporal trace τS complies with a minimum duration tmin ≥ 0 for activity
A if the following condition holds true

∀(ϕS , ϕE) ∈occurrences(S,A, τS) :

ϕtS + tmin ≤ ϕtE

Time Patterns for Process-aware Information Systems 23

D[b] A temporal trace τS complies with a maximum duration tmax ≥ 0 for
activity A if the following condition holds true

∀(ϕS , ϕE) ∈occurrences(S,A, τS) :

ϕtS + tmax ≥ ϕtE

D[c] A temporal trace τS complies with a interval duration [tmin, tmax for activity
A if the following condition holds true

∀(ϕS , ϕE) ∈occurrences(S,A, τS) :

ϕtS + tmin ≤ ϕtE ≤ ϕtS + tmax

Pattern Sematics 3 (TP3: Time Lags between Events). Again, the se-
mantics for time pattern TP3 can easily be defined based on pattern semantics
1. However, no restriction regarding events eA and eB apply. Thus eA and eB
can now be arbitrary Events in E . Besides this exactly the same rules apply as
for pattern semantics 1.

The definition of the last three pattern semantics easily leads to the assump-
tion, that we could just drop the first two time patterns and only use pattern
TP3 combine with pattern semantics 3. From a point of view of the just defined
pattern semantics this may be true. However, the main difference between time
pattern TP1, TP2 and TP3 does not lie in their execution semantics, but in
their semantics in respect to other topics like escalation and escalation handling,
how agents responsible for a missed time constraint are determined and how
the compliance with a respective time constraint can be enforced by the process
engine.

For example, for a duration constraint there can always be one or more agents
determined which can be held responsible for the fulfillment of the respective
time constraint, namely the agent responsible for the activity or the process
instance. This is not always true for time lags between activities or time lags
between arbitrary events. In fact it may only be true in very rare cases where
the time lag more or less corresponds to a duration. Thus other ways need to
be found to enforce the fulfillment of such a time constraint, like for example
reducing the duration of the involved activities, or escalating the whole process
instead of just one activity.

At this point we would like to stress one other important point concerning
pattern semantics 1-3: They do not require, that any on the respective events
needs to occur in a temporal execution trace or an instance type. This means that
a maximal time lag can be fulfilled although it’s second event never occurred.
For events bound to the start or end of an activity or a process this poses no
problem since their occurrence can be guaranteed be the control flow. For other
events, which are e.g. triggered by an external source, other way’s for ensuring
their occurrence need to be found if necessary.

24 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

Pattern Category II The time patterns in this category restrict the execution
points of process elements and thus the possible time points for the occurrence
of the respective Events.

In most cases the value of a fixed date element (cf. Fig. 8) not only depends
on process schema S, but also on the current process instance (i.e., trace τS)
and the current iteration I of the respective process element. To capture this we
define the function fde:

Definition 8 (Fixed Date Element). fde is a function, which returns for
each process element A with a fixed date element and each iteration I the current
value of the fixed date element. Formally: fde : PS ×AS × IS × TS 7→ C

Therefore fde effectively represents the Fixed Date attached to each Fixed
Date Element (cf. Fig. 8). Based on Definition 8 we can now provide a formal-
ization of the semantics of time pattern TP4:

Pattern Sematics 4 (TP4: Fixed Date Elements). A fixed date element
for a process element A restricts the allowed time points for either the start or
the end event. Thus we denote the respective event of process element A as e.
Design Choice F now determines whether e is the start event (F[a] and F[b]) or
the end event (F[c]) of the respective activity or process A (Design Choice C[a]
vs. C[c]).

Compliance of a given trace with a fixed date element now means that all occur-
rences ϕ = (e, ·) of event e need to fulfill the following compliance rules based
on Design Choice G:

Design Choice F

F[a] A temporal trace τS is compliant with an earliest start date on process
element A iff

∀ϕ ∈ occurrences(S, eAS
, τS) : fde(S,A, iteration(S, eAS

, τS), τ) ≤ ϕt

where eAS
is the start event of process element A.

F[b] A temporal trace τS is compliant with a latest start date on process element
A iff

∀ϕ ∈ occurrences(S, eAS
, τS) : fde(S,A, iteration(S, ϕ, τS), τ) ≥ ϕt

where eAS
is the start event of process element A.

F[c] A temporal trace τS is compliant with a latest completion date on process
element A iff

∀ϕ ∈ occurrences(S, eAE
, τS) : fde(S,A, iteration(S, ϕ, τS), τ) ≥ ϕt

where eAE
is the end event of process element A.

Time Patterns for Process-aware Information Systems 25

The schedule attached to a schedule restricted element (TP5, cf. Fig. 9) is an
abstract representation of a possibly infinite set of time points or time frames,
e.g. Mo-Fr 8:00-17:00 (cf. Fig. 20). Since we do not want to make any restrictions
regarding the representation of such a schedule we simply require that it can be
materialized as a set of subset of the time points of a calender C.

Definition 9 (Schedule). A schedule s is a possibly infinite set of subsets of
the time points of a calendar C, i.e. s ⊆ 2C.

A schedule can either be a set of discrete time points s = {t|t ∈ C} or a set
of intervals s = {[tmin, tmax]|[tmin, tmax] ⊆ C}.

It is important to note, that the subsets of a schedule may have overlapping
values.

Daily 6:05, 10:30, 12:25, 17:35, 20:40

6:05 10:3012:25 6:05 10:3012:2517:35 20:40

Mo-Fr 8:00-17:00

Mo
8:00

Mo
17:00

Tue
8:00

Tue
17:00

Wed
8:00

Wed
17:00

Fr
8:00

Sa
8:00

Fr
17:00

Fig. 20. Schedules

Based on this general definition of a schedule the pattern semantics of pattern
TP5 (cf. Fig. 9) can now be formalized as follows:

Pattern Sematics 5 (TP5: Schedule Restricted Elements). As for pat-
tern semantics 4, the schedule restricted element for a process element A restricts
the allowed time points for either the start or the end event of A. Thus again
we denote the respective event of process element A as e and it is determined
by Design Choice F whether this is the start (F[a] and F[b]) or the end event
(F[c]) of process element A.

Depending on Design Choice G the schedule associated with process element A is
either materialized as a set of time points sA = {t|t ∈ C} or as a set of intervals
sA = {[t1, t2]|[t1, t2] ⊆ C}. An exception to the schedule is then materialized by
removing and/or adding the respective time points or time intervals from/to the
schedule.

To verify that a particular activity (process) instance complies with the schedule
it needs to be checked whether the timestamp t of the respective event constitutes
an element of the schedule (i.e. t ∈ sA). Based on design choice F the compliance
of a given trace τS with a schedule restricted element A is then defined as follows:

Design Choice F

F[a]and F[b] A temporal trace τS is compliant with a schedule sA for the start
date on process element A iff

26 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

∀ϕ ∈ occurrences(S, eAS
, τS) : ϕt ∈ sA

where eAS
is the start event of process element A.

F[c] A temporal trace τS is compliant with a schedule sA for the end date on
process element A iff

∀ϕ ∈ occurrences(S, eAE
, τS) : ϕt ∈ sA

where eAE
is the end event of process element A.

Time Pattern TP6 (Time Based Restriction) restricts the number of occur-
rences of a process element or a set of process elements within a time frame.
There we first define the function executionsPerT ime as follows:

Definition 10 (Executions Per Time frame). executionsPerT ime returns
the number of executions of a particular activity within a given time frame.
Formally: executionsPerT ime : PS ×A× C × C × TS 7→ N

executionsPerT ime(S,A, tmin, tmax, τS)

= |{(ψS , ψE) ∈occurrences(S,A, τS)|[tmin, tmax] ∩ [ψtS , ψ
t
E] 6= ∅}|

Based on Definition 10 we can now formalize the semantics of time pattern
TP6 as follows:

Pattern Sematics 6 (TP6: Time Based Restrictions). Depending on De-
sign Choice H a time based restriction is applied to a set of activities or processes
denoted as Γ in the following. For a set of activities within one process instance
compliance of a given trace τS with a Time Based Restriction on Γ is based on
design choice I then defined as follows:

Design Choice I

I[a] A temporal trace τS is compliant with a maximum number of concurrent
executions n on a set of activities Γ iff

∀A ∈ Γ :∀(ϕS , ϕE) ∈ occurrences(S,A, τS) :∑
A′∈Γ

executinosPerT ime(S,A′, ϕtS , ϕ
t
E , τS) ≤ n

I[b] As with pattern semantics 5 the time periods of a time based restriction on
the number of executions per time period can be materialized as a schedule
s = {[t1, t2]|[t1, t2] ⊆ C} according to definition 9. A temporal trace τs is
then compliant with a maximum number of executions n per element of
schedule s iff:

∀[tmin, tmax] ∈ s :
∑
A∈Γ

executionsPerT ime(S,A, tmin, tmax, τS) ≤ n

Time Patterns for Process-aware Information Systems 27

For a set of activities within different process instances or a set of processes this
needs to apply for the respective set of temporal traces.

Time Pattern TP7 is a Variant of Time Pattern TP4 (Fixed Date Element)
with the difference being that the value of a fixed date element depends on the
current instance of process S and it’s current iteration (cf. Pattern Semantics 4)
and the value of a validity period does not. Thus the definition of semantics of
pattern TP7 is similar to pattern semantics 4.

Pattern Sematics 7 (TP7: Validity Period). A validity period for a process
element A restricts the allowed time points for either the start or the end event.
Thus we denote the respective event of process element A as e. Design Choice
F now determines whether e is the start event (F[a] and F[b]) or the end event
(F[c]) of the respective activity or process A (Design Choice C[a] vs. C[c]).

Compliance of a given trace with a validity period now means that all occurrences
ϕ = (e, ·) of event e need to fulfill the following compliance rules based on Design
Choice F:

Design Choice F

F[a] A temporal trace τS is compliant with an earliest validity date v ∈ C on the
start event eAS

of process element A iff

∀ϕ ∈ occurrences(S, eAS
, τS) : v ≤ ϕt

where eAS
is the start event of process element A.

F[b] A temporal trace τS is compliant with a latest validity date v ∈ C on the
start event eAS

of process element A iff

∀ϕ ∈ occurrences(S, eAS
, τS) : v ≥ ϕt

where eAS
is the start event of process element A.

F[c] A temporal trace τS is compliant with a latest validity date v ∈ C on the
end event eAE

of process element A iff

∀ϕ ∈ occurrences(S, eAE
, τS) : v ≥ ϕt

where eAE
is the end event of process element A.

Pattern Category III Time Pattern TP8 allows varying the control flow de-
pending on time aspects. Thus it restricts the set of events a compliant temporal
trace may consist of, since the events of the selected path or activity need to
occur within the trace and the events of the deselected paths or activities may
not occur in the trace.

To formalize this pattern we define function eval, which allows to evaluate
the respective condition for each of the possible paths with respect to the current

28 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

iteration I and the current process instance. Depending on the outcome the sub-
traces of the respective path (i.e. the traces producible by this path) must occur
or must not occur in the trace.

First we give a formal definition of a path

Definition 11 (Path). A Path P within a process schema S ∈ PS is a con-
nected part of process schema S with a single entry and a single exit node where
for each of the contained split-nodes the respective join-node is also contained
and vice versa.

A Path P can be represented as subset EP of the events of process schema S,
i.e. EP ⊂ ES, where EP contains all events which may occur during the execution
of path P .

In case of late binding a path only consists of a single activity representing
the service chosen in this path. As an example a process schema with three paths
can be found in figure 21.

Path 2Path 1

Path 3

Fig. 21. Paths of a process schema

Based on the definition of paths (cf. Definition 11) we now define the function
eval which evaluates the respective condition for a path:

Definition 12 (Eval). eval is a function, which evaluates the condition asso-
ciated with a path EP with respect to the current iteration I. Formally

eval : PS × 2ES × IS × TS 7→ {true, false}

The concrete implementation of the function eval depends on the formalizm
used to desribe the conditions for path selection. Based on this definition the
semantics of pattern TP8 is defined as follows:

Pattern Sematics 8 (TP8: Time Dependent Variability). A temporal
trace τS is compliant with a time dependent variability iff for all paths P of
trace τS the following condition is fulfilled

∀I ∈ IS : τS ` I =⇒
((eval(S, EP , I, τS) = false)

⇒ (∀e ∈ EP : (∀ϕ ∈ occurrences(S, e, τS) : iteration(S, ϕ, τS) 6= I)))∧
((eval(S, EP , I, τS) = true)

⇒ (∃e ∈ EP : (∃ϕ ∈ occurrences(S, e, τS) : iteration(S, ϕ, τS) = I)))

Time Patterns for Process-aware Information Systems 29

Pattern Category IV The time patterns in this category allow to express
temporal relations between different occurrences of recurrent activities. Therefor
loops and the current iteration of these loops play an important role in the
definition of their semantics.

As stated earlier, Time Pattern TP9 is a variant of Time Pattern TP1. In-
stead of enforcing the two events to be inside the same iteration of a loop, the
second event now lies in the iteration succeeding the one to which the first event
belongs.

Since the value of the time lag between the different iterations may depend
on the current iteration we define function cycleT ime as follows:

Definition 13 (Cycle Time). cycleT ime is a function, which returns for each
tuple of process elements A and B which are Cyclic Elements and each iteration
I the current value of the time lag. Formally:

cycleT ime : PS ×AS ×AS × IS × TS 7→ 2C .

Where the result of cycleT ime(S,A,B, I, τS) is a continuous subset of C, i.e. an
interval, or a single element of C.

Pattern Sematics 9 (TP9: Cyclic Elements). A time lag between two ac-
tivities A and B can be mapped onto a time lag between the respective start
and/or end events of these activities based on Design Choice N (cf. Fig. 14).
Thus we denote the respective event of activity A as eA and the respective event
of activity B as eB . Based on design choice E we then have the following relations
between activity A and event eA and activity B and event eB respectively:

Design Choice N

N[a] eA is the start event of activity A and eB is the start event of activity B
(start-start)

N[b] eA is the start event of activity A and eB is the end event of activity B
(start-end)

N[c] eA is the end event of activity A and eB is the start event of activity B
(end-start)

N[d] eA is the end event of activity A and eB is the end event of activity B
(end-end)

Compliance of a given trace with such a time lag between two cyclic elements
now means that all occurrences ϕ = (eA, ·) and ψ = (eB , ·) of the two events
fulfill the given time lag:

∀ϕ ∈occurrences(S, eA, τS)∀ψ ∈ occurrences(S, eB , τS) :

iteration(S, ϕ, τS)⊕ = iteration(S, ψ, τS)

⇒ ψt − ϕt ∈ cycleT ime(S,A,B, iteration(S, ϕ, τS), τS)

30 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

Based on Design Choice L the value of cycleT ime(S,A,B, I, τS) is either a single
value, a time interval or may vary depending on the current iteration.

Last but not least, Time Pattern TP10 allows specifying periodically re-
curring process elements according to an explicit periodicity rule (cf. Fig. 15).
Pattern TP10 is actually a rather abstract concept covering a lot of different
cases related to recurring process elements.

To formalize Pattern TP10 we assign a schedule to each of the process element
participating in the periodicity, which constitutes the respective periodicity rule.
More formally:

Definition 14 (Periodicity Rule). A periodicity rule can be materialized as
a set of schedules S, where each of the events eA of the process elements A
participating in the periodicity receives its own schedule seA . These schedules
are not independent from each other but correlated by the respective periodicity
rule.

Exceptions to the periodicity rule can be applied to the schedules by either
adding or removing the respective exceptional elements to or from the schedules.

Based on this “materialization” of the periodicity rule the semantics for pat-
tern TP10 can be formalized as follows:

Pattern Sematics 10 (TP10: Periodicity). A temporal trace τS is compli-
ant with a periodicity rule if all occurrences of the respective events occur within
an element of the respective schedule and for each element of the schedule there
is a corresponding event occurrence. Let EP be the set of events involved in
the periodicity, then a temporal trace τS is compliant with the periodicity rule
represented by the schedules in S = {se|e ∈ EP } iff

∀e ∈ EP :

(∀ϕ ∈ occurrences(S, e, τS) : ϕt ∈ se)∧
(∀i ∈ se : ∃!ϕ ∈ occurrences(S, e, τS) : ϕt ∈ i)

where se is the schedule associate with event e and i ∈ se is a single subset of
schedule se (cf. Definition 9).

6 Evaluation

In the following we describe the evaluation of selected approaches from academia
and industry regarding their support for time patterns. Section 6.1 describes our
evaluation methodology, while Section 6.3 shows our evaluation results.

Time Patterns for Process-aware Information Systems 31

6.1 Evaluation Methodology

This section sketches the methodology employed for conducting our evaluation.
In particular, we describe evaluation goal, evaluation objects, evaluation criteria,
evaluation metrics, and the evaluation procedure.

Definition of Evaluation Goal. The goal of our evaluation is to measure
how well current PAISs cope with time aspects.

Selection of Evaluation Objects. As evaluation objects we choose process
management systems, calendar systems, and project planning tools from both
academia and industry. In terms of academic approaches our evaluation consid-
ers the proposals made by Eder [3], Bettini [5], and Combi [1]. As samples for
commercial systems our evaluation includes the process management systems
MQSeries Workflow and Tibco iProcess Modeller, for which we have hands-on
experience as well as running installations in our labs. Further, we include the
widely used calendar systems Outlook, Google Calendar and Lightning, and
the well-known project management tool MS Project. Finally, with BPMN our
evaluation comprises a commonly used process modeling language.

Definition of Evaluation Criteria and Metrics. Evaluation criteria are
the 10 change patterns described in Section 4. We measure the ability of a PAIS
to deal with time aspects as the degree of support for the described evalua-
tion criteria. For each evaluation criterion we differentiate between supported,
partially supported, not supported, and not specified. If an evaluation object pro-
vides support for a particular criterion the supported design choices are listed.
If a particular evaluation object is only partially supported this is additionally
labeled with “*”. No support is labeled with “-” and not specified with “?”.
Assume that an evaluation object supports Pattern TP4 with Design Choices C
and F. Further assume that for Design Choice C Option a is partially supported
and for Design Choice F Option c is supported. This would result in the String
“C[a*], F[c]” (e.g., Eder et al. in Fig. 22).

Analyzing the Evaluation Objects along the Evaluation Criteria.
For the academic approaches we base our evaluation on a comprehensive lit-
erature study. Regarding commercial systems, support for time patterns was
determined based on the installations in our lab and on our hands-on experience
with respective systems. A summary of our evaluation results is given in Fig. 22.
An in-depth description of each of the evaluated approaches including a detailed
description of all supported design choices can be found in the next section. Note
that this evaluation only considers time patterns. Time features like verification
of time constraints, escalation mechanisms or scheduling support are outside of
the scope of this paper.

6.2 Evaluation Details

Evaluation Results: Outlook - Lightening - Google Calendar MS Out-
look 2007, Mozilla Lightening 0.9 and Google Calendar are widely used calendar
systems. Due to their similarities in respect to time support the evaluation re-

32 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

sults of these three calendar systems are discussed in conjunction with each other.

General Design Choices. In terms of general design choices the evaluated
calendar systems support Design Choice A with Option c, while Options a and
b are not applicable. Design Choice B, in turn, is supported with Options a
and b (Design Choice B[a,b]). As basic granularities, Day, Week, Month and
Year are supported. In addition, Minute and Hour are supported when specify-
ing durations. All calendar systems support system-defined granularities. Google
Calendar supports Working Days, each Monday, Wednesday and Friday as well
as each Tuesday and Thursday. Lightening, in turn, supports Bi-Weekly and
Working Days while Outlook only supports Working Days.
Category I - Durations and Time Lags. The evaluated calendar systems
only support Pattern TP2 (Durations) from Category I. Thereby, durations can
only be specified for single activities (i.e., tasks) or events (i.e., calendar items)
(Design Choice C[a]) and are treated as maximum values (Design Choice D[b]).
Category II - Restrictions of Process Execution Points. In this pattern
category support is provided for Pattern TP4 (Fixed Date Elements). In particu-
lar, the pattern can be applied to single activities. Google Calendar and Outlook
additionally support the invitation of different users to appointments. This can
be considered as partial support for multiple instances of a particular activity
(Design Choice C[a,b*2]). Both Outlook and Lightening provide support options
a and c of Design Choice F, as earliest start dates and latest completion dates
can be specified (Design Choice F[a,c]). Google Calendar, in turn, only provides
support for Option a (Design Choice F[a])
Category III - Variability. This pattern category is not supported by any of
the calendar systems.
Category IV - Reoccurring Process Elements. This pattern category is
supported pretty well by all evaluated calendar systems. Pattern TP9 (Cyclic
Elements) is supported with Design Choice L[a], i.e., time lags between the
different cycles are always the same. The number of cycles can either be fixed
(i.e., 5 cyles) or be calculated depending on the time lag and the end date (e.g.,
every 2 weeks until the end of the year) (Design Choice K[a,b]). Pattern TP10
(Periodicity), in turn, is supported with Design Choice O[a], i.e., the periodicity
rule can only contain one date. Like for TP9 the number of cycles can either be
fixed (i.e., 5 cyles) or be calculated depending on the time lag between cycles
and the end date (e.g., every 2 weeks until the end of the year) (Design Choice
K[a,b]). Finally exceptions to a periodicity rule have to be defined manually by
deleting single appointments.

Evaluation Results: MS Project 2007 MS Project is a commonly used com-
mercial project planning system.

General Design Choices. In terms of general design choices MS Project sup-
ports Design Choice A with Options a and c, while Option b is not applicable

2 A * means, the respective design choice is only partially supported based on some
workaround.

Time Patterns for Process-aware Information Systems 33

(Design Choice A[a,c]). Design Choice B, in turn, is supported with Options a
and b (Design Choice B[a,b]). As basic granularities Day, Week, Month, and
Year are supported. In addition, Minute and Hour are supported when speci-
fying durations. In terms of system-defined granularities MS Project supports
Working Days as well.
Category I - Durations and Time Lags. MS Project supports Pattern TP1
(Time Lags between Activities) and Pattern TP2 (Durations) from Category I.
In the context of Pattern TP1, Design Choice E is fully supported; i.e., start-
start relations, start-end relations, end-start relations, and end-end relations can
be expressed (Design Choice E[a,b,c,d]). Time lags are minimum values (Design
Choice D[a]). Time lags can only be expressed between two directly succeeding
activities, since the control flow is modeled through time dependencies. Regard-
ing Pattern TP2 durations can be only specified for single activities (i.e., tasks)
(Design Choice C[a]), and can only be maximum ones (Design Choice D[b]).
Category II - Restrictions of Process Execution Points. In this pattern
category, support is provided for Patterns TP4 (Fixed Date Elements) and TP5
(Schedule Restricted Elements). Pattern TP4 can be applied to single activi-
ties, but also to a whole process instance (i.e., an entire project) (Design Choice
C[a,c]). Design Choice F is supported with Option a, allowing for the specifi-
cation of the earliest start dates only (Design Choice F[a]). Regarding Pattern
TP5, in turn, Design Choice C is supported for single activities (i.e., for each
activity a special calendar can be created) (Design Choice C[a]). Schedule entries
correspond to time frames (i.e., special working hours can be specified) (Design
Choice G[b]). Finally, it is possible to specify exceptions like days off work.
Category III - Variability. This pattern category is not supported by MS
Project.
Category IV - Reoccurring Process Elements. This pattern category is
reasonably supported. For Pattern TP9 (Cyclic Elements), Design Choice L
is supported with Option a, i.e., time lags between different cycles are always
the same (Design Choice L[a]). In addition, support for Design Choice K[a,b] is
provided – the number of cycles can either be fixed (i.e., 5 cyles) or be calculated
depending on the time lag and the end date (e.g., every Monday at 11:30 until
the end of the year). Pattern TP10 (Periodicity), in turn, is supported with
Design Choice O[a], i.e., any periodicity rule may only contain one date. Like
for TP9 the number of cycles can either be fixed (i.e., 5 cyles) or be calculated
depending on the time lag and the end date (Design Choice K[a,b]). Finally
exceptions to a periodicity rule have to be defined manually by deleting single
appointments.

Evaluation Results: Business Process Modelling Notation 1.2 The Busi-
ness Process Modelling Notation (BPMN) [19] is a process modelling standard
published by the Object Management Group (OMG). It was specifically designed
to provide standardized notations and diagramming conventions for the descrip-
tion of business processes.

34 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

General Design Choices. Using BPMN it becomes possible to set time pa-
rameters during build-time as well as determining them during run-time at the
time they are needed for further process execution (Design Choice A[a,c]). Con-
cerning Design Choice B, it might be possible to use basic time granularities, as
well as system-defined and user-defined ones (Design Choice B[a?3,b?,c?]); since
the formalism used for specifying time parameters is not preassigned no definite
conclusion can be made.
Category I - Durations and Time Lags. Regarding Pattern TP1, BPMN
only allows to express end-start relations (Design Choice E[c]). Additionally,
only relations between two directly succeeding activities are supported. Regard-
ing Design Choice D, Option a is fully supported by adding an Intermediate-
Timer-Event on the sequence flow connecting the activities; Option b may be
emulated by adding an event-based decision between the two activities with
an Intermediate-Timer-Event parallel to the second activity. BPMN supports
time pattern TP2 with Design Choices C[a,c*] and D[b], i.e., it allows to spec-
ify the maximum duration of an activity by attaching an Intermediate-Timer-
Event to the activity. By adding a cancelling discriminator [6] together with
an Intermediate-Timer-Event in parallel to the whole process it also becomes
possible to emulate Option c of Design Choice C.
Category II - Restrictions of Process Execution Points. In this pattern
category BPMN only provides support for pattern TP4 (Fixed Date Elements).
Design Choice C is fully supported, i.e., it is possible to add a fixed date to an
activity or multi-instance activity (by putting an Intermediate-Timer-Event on
the sequence flow leading to the respective element) or to a process (by using
a Start-Timer-Event) (Design Choice C[a,b,c]). Due to the modeling technique
using timers, for Design Choice F only Option a is supported.
Category III - Variability. This Pattern Category is supported by using an
event-based XOR in combination with an Intermediate-Timer-Event (Design
Choice J[a,b]).
Category IV - Reoccurring Process Elements. BPMN supports this pat-
tern category to a certain degree. Concerning TP9 (Cyclic Elements) design
choice L[a*,b*] is partially supported by adding an Intermediate-Timer-Event
on the sequence flow connecting the iterations. Additionally, support for De-
sign Choice K[a,c] is provided as the number of cycles can either be fixed (e.g. 5
iterations) or be dependent on an exit condition. Regarding pattern TP10 (Peri-
odicity), Design Choice O is partially supported with Option a, whereas support
for Option b depends on the formalism used for specifiying time, which as stated
before, is not preassigned. As with TP9 the number of cycles may either be fixed
or be dependent on an exit condition (Design Choice K[a,c]). Whether or not
exceptions to the periodicity rule are supported again depends on the formalism
used for specifying time constructs.

Evaluation Results: IBM WebShere MQ Workflow Buildtime 3.4 MQ
Workflow Buildtime is the graphical process definition tool that ships with IBM

3 A ? means, that based on the available material we could not decide whether or not
the respective design choice is supported.

Time Patterns for Process-aware Information Systems 35

WebSphere MQ Workflow.

General Design Choices. Regarding general design choices, MQ Workflow
supports setting the time parameters during build-time or specifying a data
container which provides them during runtime (Design Choice A[a,c]). Further-
more, MQ Workflow supports the basic time granularities Year, Month, Week,
Day, Hour, Minute and Second (Design Choice B[a]).
Category I - Durations and Time Lags. In Category I, MQ Workflow only
supports pattern TP2. More precisely, it is possible to specify the maximum
duration (Design Choice D[b]) of a single activity or process (Design Choice
C[a,c]).
Category II - Restrictions of Process Execution Points. As the only one
of the systems evaluated by us, MQ Workflow allows for the specification of a
Validity Date (TP7). Thereby, it is possible to specify the earliest possible start
date (Design Choice F[a]) of a process (Design Choice C[c]). None of the other
patterns in this category is supported.
Category III - Variability. This pattern category is not supported by MQ
Workflow.
Category IV - Reoccurring Process Elements. This pattern category is
not supported by MQ Workflow.

Evaluation Results: Tibco iProcess Modeller 10.3.5 Tibco iProcess Mod-
eller is one of the most popular workflow tools in practice.

General Design Choices. Tibco iProcess Modeller allows specifying time pa-
rameters during build-time as well as determining them during process execu-
tion (Design Choice A[a,c]). Concerning Design Choice B, Tibco iProcess Mod-
eller supports basic time granularities; i.e., Year, Month, Week, Day, Hour, and
Minute. In addition, it is possible to use Working Days when specifying time
expressions (Design Choice B[a,b]).
Category I - Durations and Time Lags. From this category only Pattern
TP2 (Durations) is supported. Thereby, it is only possible to specify the maxi-
mum (Design Choice D[b]) duration of a single activity (Design Choice C[a]).
Category II - Restrictions of Process Execution Points. Tibco iProcess
Modeller does not allow for the restriction of process execution points in any
way.
Category III - Variability. It is not possible to vary the control flow depending
on time time aspects.
Category IV - Reoccurring Process Elements. None of the patterns of
Category IV is supported.

Evaluation Results: Eder et al. [3] Eder et al. [3] discusses an approach for
calculating activity deadlines such that all time constraints are satisfied and the
overall process deadline can be met.

36 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

General Design Choices. Concerning general design choices, time parameters
may be set during build-time, be fixed at process instantiation time or be de-
termined during runtime (Design Choice A[a,b,c]). Only one basic granularity is
considered, i.e., [3] does not provide direct support for Design Choice B.
Category I - Durations and Time Lags. In this category, TP1 (Time Lags
between Activities) and Time Patterns TP2 (Durations) are considered. Time
Lags between activities (TP1) may be specified in terms of end-end relations.
However, since the durations of the activities are considered to be determinis-
tic, it is possible to also simulate start-start, start-end and end-start relations
by adding the duration of the first and/or substracting the duration of the sec-
ond activity from the time lag (Design Choice E[a*,b*,c*,d]). Time Lags can
be represented as minimum, as maximum or as time intervall (Design Choice
D[a,b,c]). Regarding Time Pattern TP2, Option a of Design Choice C is sup-
ported; Option c can be simulated by using a time lag between the first and the
last activity of the process (Design Choice C[a, c*]). Regarding Design Choice
D, Options a and b are supported (Design Choice D[a,b]), but only one duration
value may be specified per activity, the concrete kind of which is set by the re-
spective implementation. Thus each implementation only supports one of these
three Options.
Category II - Restrictions of Process Execution Points. [3] indicates
support of Fixed Date Elements (TP4) by using a schedule with only one valid
date. However, the case in which for a specific point in time no further date is
available from the Schedule is not considered in the algorithm (Design Choice
C[a*]). Since [3] just considers end events of activities it is possible to specify the
latest completion time of an activity (Design Choice F[c]). As aforementioned,
TP5 (Schedule Restricted Elements) is supported. In particular it is possible
to specify a schedule for an activity (Design Choice C[a]), which can either
consist of several discrete points in time or time frames (Design Choice G[a,b]).
Additionally these schedules can support exceptions. Detailed information on
the implementation of the schedules is not available.
Category III - Variability. Support for this pattern is not explicitly consid-
ered, but depends on the underlying workflow management system.
Category IV - Reoccurring Process Elements. Since [3] does not consider
the repetitive execution of process elements, no support for this category is given.

Evaluation Results: Bettini et al. [5] Bettini et al. [5] investigate the calcu-
lation of enactment schedules for activities, which guarantee, that all temporal
dependencies are met.

General Design Choices. Regarding general design choices, [5] supports De-
sign Choice A with Option a, while Options b and c are not discussed (Design
Choice A[a,b?,c?]). Moreover support for basic time granularities as well as user-
defined granularities (e.g. business days) is provided (Design Choice B[a,c]).
Category I - Durations and Time Lags. Pattern Category IV is broadly
supported by this approach. For Pattern TP1 (Time Lags between Activities) all
four types of relations are supported, i.e., start-start, start-end, end-start, and

Time Patterns for Process-aware Information Systems 37

end-relation (Design Choice E[a,b,c,d]). Again, time lags can be set in terms
of minimum, maximum or time interval (Design Choice D[a,b,c]). Durations
(TP2) can be specified for a single activity or for a whole process (by specifying
a time lag between the start of the first and the end of the last activity) (Design
Choice C[a,c]). Like for TP1, minimum, maximum or time intervals can be set
for durations (Design Choice D[a,b,c]). Pattern TP3 is supported with Design
Choice D[a,b,c], i.e., time lags between events can be represented as minimum,
as maximum or as time interval.
Category II - Restrictions of Process Execution Points. [5] supports the
specification of Fixed Date Elements (TP4) for single activity instances (Design
Choice C[a]) by adding a time lag between an artificial event at time point
01.01.0000 and the activity in question. Thereby it is possible to specify the
the earliest start date , the latest start date, the latest completion date (Design
Choice F[a,b,c]) of the activity.
Category III - Variability. Support for this pattern category is not explicitly
expressed, but depends on the used workflow management system.
Category IV - Reoccurring Process Elements. [5] does not consider the
repetitive execution of process elements, i.e., no support for this pattern category
is provided.

Evaluation Results: Combi et al. [1] Combi et al. [1] discusses the con-
ceptual modelling of temporal constraints in the medical domain and provides
rather broad support for our time patterns.

General Design Choices. In terms of general design choices, [1] supports De-
sign Choice A with Option a, while Option b and Option c are not discussed
(Design Choice A[a,b?,c?]). Combi et al. [1] considers different time granularities,
slicing the time domain into a sequence of granules. However, no details are pro-
vided on which granules are supported. User-defined granularities are partially
supported (i.e., only granularities without laps are considered) (Design Choice
B[a,c*]).
Category I - Durations and Time Lags. [1] supports Pattern TP1 (Time
Lags between Activities), Pattern TP2 (Durations) and partially supports Pat-
tern TP3 (Time Lags between Events). For Pattern TP1, Design Choice E is fully
supported, i.e., start-start relations, start-end relations, end-start relations, and
end-end relations can be expressed (Design Choice E[a,b,c,d]). Time lags can
either be minimum values, maximum values or time intervals (Design Choice
D[a,b,c]). Durations in the context of Pattern TP2 can be specified for single ac-
tivities as well as for an entire process (by specifying a time lag between the start
of the first and the end of the last activity) (Design Choice C[a,c]). Durations can
either be minimum values, maximum values, or time intervals (Design Choice
D[a,b,c]). Pattern TP3 is supported with Design Choice D[a*,b*,c*]. Time lags
cannot be defined between arbitrary events as at least on of the events has to be
a start or completion event of an activity (e.g., a time lag between the reaching
of a milestone and the start of a subsequent activity).

38 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

Category II - Restrictions of Process Execution Points. In this pattern
category support is provided for Pattern TP4 (Fixed Date Elements) and Pat-
tern TP5 (Schedule Restricted Elements). Pattern TP4 can be applied to single
activities, but also to multiple instances of a single activity (i.e., Multitask with
Fixed Date Element) (Design Choice C[a,b]). Design Choice F is supported with
Options a and c, allowing for the specification of earliest start date and latest
end date (Design Choice F[a,c]). Thereby, absolute constraints restrict the in-
terval during which an activity can be performed. For Pattern TP5, in turn,
Design Choice C is supported for single activities (i.e., for each activity a special
calendar can be created) (Design Choice C[a]). Schedule entries can be discrete
points as well as time frames (Design Choice J[a,b]). Support for exceptions, in
however, is not provided.
Category III - Variability. Support for this pattern is not explicitly addressed,
but depends on the underlying workflow management system.
Category IV - Reoccurring Process Elements. This pattern category is
supported very well by this approach. For Pattern TP9 (Cyclic Elements), De-
sign Choice L is supported with Option a; i.e., the time lags between the different
cycles are always the same (Design Choice L[a]). In addition, support for Design
Choice K[a,b,c] is provided as the number of cycles can either be fixed (i.e., 5
cyles), be calculated depending on the time lag and the end date, or depend on
the exit condition. Pattern TP10 (Periodicity), in turn, is supported with Design
Choice O[a], i.e., periodic constraints on loop activities can be expressed. Like
for TP9 the number of cycles can either be fixed (i.e., 5 cyles), be calculated
depending on the time lag and the end date, or depend on the exit condition
(Design Choice K[a,b,c]). Finally, it is not possible to specify exceptions to a
periodicity rule.

6.3 Evaluation Results

Fig. 22 shows which time patterns are supported by our evaluation objects. Cal-
endar systems like MS Outlook, Google Calendar and Lightening provide good
support for Pattern TP4 (Fixed Date Element) and Pattern TP10 (Periodicity),
while limited support is provided for specifying business rules and regulations
(i.e., patterns TP1, TP2, TP3 and TP6). In addition to the support provided
by calendar systems, project management tools like MS Project provide some
support for specifying business rules and regulations. However, project man-
agement systems lack operational support for multiple concurrently executed
process instances. BPMN as a representative of a process modeling language
provides limited support for time aspects. The support for time constraints in
commercial workflow management systems is even more limited and restricted
to the definition of maximum execution durations. Academic approaches are
comparably more expressive and provide good support for specifying business
rules and regulations. However, except for the proposal of Combi et al. [1] the
evaluated approaches do not consider any loops resulting in missing support
for patterns of Category IV (Reoccurring Process Elements). Interestingly, de-
spite their relevance for real world applications support for Pattern TP6 (Time

Time Patterns for Process-aware Information Systems 39

Based Restrictions) and Pattern TP7 (Validity Periods) is missing in almost all
evaluation objects.

7 Related Work

Patterns were first used by Alexander [20] to describe solutions to recurring
problems and best practices in architectural design. Patterns also have a long
tradition in computer science. Gamma et al. [21] applied same concepts to soft-
ware engineering and described 23 design patterns. In the workflow area, patterns
were introduced for analyzing expressiveness of process meta models [6, 22]. In
this context, control flow patterns describe constructs to specify activities and
their ordering. In addition, workflow data patterns [7] provide ways for model-
ing the data aspect in PAIS while workflow resource patterns [8] describe how
resources can be represented in workflows. Furthermore, patterns for describing
control-flow changes [9] and service interactions were introduced [23]. The in-
troduction of workflow patterns has had significant impact on PAIS design and
on the evaluation of PAIS and process languages. To evaluate powerfulness of
a PAIS regarding its ability to cope with time aspects, existing workflow pat-
terns are important, but not sufficient. In addition, patterns addressing time
constraints are needed.

Most academic approaches on time support for PAIS focus on time features
like verification of time constraints [2, 5, 1, 3], escalation management [13], and
scheduling support [14, 15]. The effect of ad-hoc changes on temporal constraints
is investigated in [24]. A systematic investigation of requirements for time sup-
port from different heterogeneous application domains is missing so far.

8 Summary and Outlook

We have proposed 10 time patterns to foster selection of appropriate PAIS-
enabling technologies and to facilitate comparison of process management sys-
tems, calendar systems and project planning tools regarding their ability to cope
with time constraints. We have shown that suggested time patterns are highly
relevant in practice and complement existing workflow patterns with another
fundamental dimension. In future work we will provide a reference implemen-
tation. Furthermore, we will conduct a comprehensive study of time support
features (e.g., verification of time constraints, escalation management, schedul-
ing support), in addition to the proposed time patterns, and also consider the
resource dimension in this context.

References

1. Combi, C., Gozzi, M., Juarez, J., Oliboni, B., Pozzi, G.: Conceptual modeling of
temporal clinical workflows. In: Proc. TIME’07. (2007) 70 – 81

40 Andreas Lanz1, Barbara Weber2, and Manfred Reichert1

Pa
tte

rn
s

C
al

en
da

r
Sy

st
em

s
Pr

oj
ec

t
M

an
ag

em
en

t
St

an
da

rd
s

C
om

m
er

ci
al

A

ca
de

m
ic

O
ut

lo
ok

 2
00

7,

Li
gh

tn
in

g
0.

9,

G
oo

gl
e

C
al

en
da

r
M

S
Pr

oj
ec

t
B

PM
N

M

Q

W
or

kf
lo

w

TI
B

C
O

iP

ro
ce

ss

M
od

el
le

r
Ed

er
 e

t a
l.

B
et

tin
i e

t a
l.

C
om

bi
 e

t a
l.

G
en

er
al

 D
es

ig
n

C
ho

ic
es

A[
c]

, B
[a

, b
]

A[
a,

 c
],

B[
a,

 b
]

A[
a,

 c
],

B[

a?
, b

?,
 c

?]

A[
a,

 c
],

B[
a]

A[

a,
 c

],
B[

a,
 b

]
A[

a,
 b

, c
]

A[
a,

 b
?,

 c
?]

,
B[

a,
 c

]
A[

a,
 b

?,
 c

?]
,

B[
a,

 c
*]

C
at

eg
or

y
I:

D
ur

at
io

ns
 a

nd
 T

im
e

La
gs

TP

1
–

Ti
m

e
La

gs

be
tw

ee
n

A
ct

iv
iti

es

–
D

[a
],

E[

a,
 b

, c
, d

],
F[

a]

D
[a

, b
*],

 E
[c

],
F[

a]

–
–

D
[a

, b
, c

],

E[
a*

, b
*,

c*
, d

],
F[

b]
D

[a
, b

, c
],

E[

a,
 b

, c
, d

],
F[

b]

D
[a

, b
, c

],

E[
a,

 b
, c

, d
],

F[
b]

TP

2
–

D
ur

at
io

ns

C
[a

],
D

[b
]

C
[a

],
D

[b
]

C
[a

, c
*],

 D
[b

]
C

[a
, c

],
D

[b
]

C
[a

],
D

[b
]

C
[a

, c
*],

 D
[a

, b
]1

C
[a

, c
],

D
[a

, b
, c

]
C

[a
, c

],
D

[a
, b

, c
]

TP
3

–
Ti

m
e

La
gs

be

tw
ee

n
Ev

en
ts

–

–
–

–
–

–
D

[a
, b

, c
]

D
[a

, b
, c

]*

C
at

eg
or

y
II:

 R
es

tr
ic

tio
ns

 o
f P

ro
ce

ss
 E

xe
cu

tio
n

Po
in

ts

TP
4

–
Fi

xe
d

D
at

e
El

em
en

ts

C
[a

, b
*],

 F
[a

, c
]

C
[a

, c
],

F[
a]

C

[a
, b

, c
],

F[
a]

–
–

C
[a

]*,
 F

[c
]

C
[a

],
F[

a,
 b

, c
]

C
[a

, b
],

F[
a,

 c
]

TP
5

–
Sc

he
du

le

R
es

tr
ic

te
d

El
em

en
ts

–

C
[a

],
F[

a]
, G

[b
]

–
–

–
C

[a
],

F[
c]

,
G

[a
, b

]
–

C
[a

],
F[

a,
 c

],

G
[a

, b
]

TP
6

–
Ti

m
e

B
as

ed

R
es

tr
ic

tio
ns

–

–
–

–
–

–
–

–

TP
7

–
Va

lid
ity

 P
er

io
d

–
–

–
C

[c
],

F[
a]

–

–
–

–

C
at

eg
or

y
III

: V
ar

ia
bi

lit
y

TP
8

–
Ti

m
e

D
ep

en
de

nt

Va
ria

bi
lit

y
–

–
J[

a,
 b

]
–

–
?

?
?

C
at

eg
or

y
IV

: R
eo

cc
ur

rin
g

Pr
oc

es
s

El
em

en
ts

TP
9

–
C

yc
lic

 E
le

m
en

ts

K[
a,

 b
],

L[
a]

, N
[a

]
K[

a,
 b

],
L[

a]
, N

[a
]

K[
a,

 c
],

L[

a*
, b

*],
 N

[c
]

–
–

–
–

K[
a,

 b
, c

],
L[

a]
,

N
[a

, b
, c

, d
]

TP
10

 –
 P

er
io

di
ci

ty

K[
a,

 b
],

O
[a

]
K[

a,
 b

],
O

[a
]

K[
a,

 c
],

O

[a
*,

b?
]

–
–

–
–

K[
a,

 b
, c

],
O

[a
]

1 O
nl

y
on

e
du

ra
tio

n
va

lu
e

is
 s

up
po

rt
w

hi
ch

 c
an

 e
ith

er
 b

e
m

in
im

um
 o

r m
ax

im
um

,
de

pe
nd

in
g

on
 th

e
co

nc
re

te
 im

pl
em

en
ta

tio
n

Sy
m

bo
ls

:
A[

x]

Su
pp

or
t o

f D
es

ig
n

C
ho

ic
e

A
w

ith
 o

pt
io

n
x.

A[

x*
]

O
pt

io
n

x
is

 p
ar

tia
lly

 s
up

po
rte

d
–

N
ot

 s
up

po
rte

d
?

N
ot

 s
pe

ci
fie

d

Fig. 22. Evaluation Results

Time Patterns for Process-aware Information Systems 41

2. Marjanovic, O., Orlowska, M.E.: On modeling and verification of temporal con-
straints in production workflows. Knowl. Inf. Syst. 1 (1999) 157–192

3. Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems. In:
CAiSE’99. (1999) 286–300

4. Dadam, P., Reichert, M., Kuhn, K.: Clinical workflows – the killer application for
process-oriented information systems? In: Proc. Int’l Conf. on Business Information
Systems (BIS’00), Poznan, Poland (2000) 36–59

5. Bettini, C., Wang, X.S., Jajodia, S.: Temporal reasoning in workflow systems. In:
Distributed and Parallel Databases. (2002) 269–306

6. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Pat-
terns. Distributed and Parallel Databases 14 (2003) 5–51

7. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow Data
Patterns. Technical Report FIT-TR-2004-01, Queensland Univ. of Techn. (2004)

8. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow Resource
Patterns. Technical Report WP 127, Eindhoven Univ. of Technology (2004)

9. Weber, B., Reichert, M., Rinderle-Ma, S.: Change Patterns and Change Support
Features -Enhancing Flexibility in Process-Aware Information Systems. Data and
Knoweldge Engineering 66 (2008) 438–466

10. Thom, L., Reichert, M., Iochpe, C.: Activity patterns in process-aware information
systems: Basic concepts and empirical evidence. International Journal of Business
Process Integration and Management (IJBPIM) 4 (2009) 93–110

11. Russell, N., van der Aalst, W., ter Hofstede, A.: Exception Handling Patterns in
Process-Aware Information Systems. In: Proc. CAiSE’06. (2006) 288–302

12. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT Support for Release Man-
agement Processes in the Automotive Industry. In: Proc. BPM’06. (2006) 368–377

13. van der Aalst, W.M.P., Rosemann, M., Dumas, M.: Deadline-based escalation in
process-aware information systems. Decision Support Systems 43 (2007) 492–511

14. Combi, C., Pozzi, G.: Task scheduling for a temporal workflow management system.
In: Proc. TIME’06. (2006) 61–68

15. Eder, J., Pichler, H., Gruber, W., Ninaus, M.: Personal schedules for workflow
systems. In: Proc. BPM’03. (2003) 216–231

16. Schultheiß, B., Meyer, J., Mangold, R., Zemmler, T., Reichert, M.: Designing the
processes for chemotherapy treatment in a Women’s Hospital (in German). (1996)

17. German Association of the Automotive Industry: Engineering Change Manage-
ment. Part 1: Engineering Change Request, V 1.1., Doc. No. 4965 (2005)

18. Bobrik, R.: Konfigurierbare Visualisierung komplexer Prozessmodelle. PhD thesis,
Univ. of Ulm (2008)

19. Object Management Group: Business Process Modeling Notation (BPMN) Version
1.2. http://www.omg.org/spec/BPMN/1.2 (2009)

20. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Oxford Univer-
sity Press, New York (1977)

21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

22. Puhlmann, F., Weske, M.: Using the Pi-Calculus for Formalizing Workflow Pat-
terns. In: Proc. BPM’05. (2005) 153–168

23. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In: Proc.
BPM’05. (2005) 302–318

24. Sadiq, W., Marjanovic, O., Orlowska, M.E.: Managing change and time in dynamic
workflow processes. Int. J. Cooperative Inf. Syst. 9 (2000) 93–116

