
Design and Verification of Instantiable
Compliance Rule Graphs in Process-Aware

Information Systems?

Linh Thao Ly1, Stefanie Rinderle-Ma2, and Peter Dadam1

1 Institute of Databases and Information Systems
Ulm University, Germany

2 Faculty of Computer Science
University of Vienna, Austria

{thao.ly,peter.dadam}@uni-ulm.de, stefanie.rinderle-ma@univie.ac.at

Abstract. For enterprises it has become crucial to check compliance
of their business processes with certain rules such as medical guidelines
or financial regulations. When automating compliance checks on pro-
cess models, existing approaches have mainly addressed process-specific
compliance rules so far, i.e., rules that correspond to a particular pro-
cess model. However, in practice, we will rather find process-independent
compliance rules that are nevertheless to be checked over process models.
Thus, in this paper, we present an approach that enables the instantiation
and verification of process-independent compliance rules over process
models using domain models. For this, we provide an intuitive visualiza-
tion of compliance rules and compliance rule instances at user level and
show how rules and instances can be formalized and verified at system
level. The overall approach is validated by a pattern-based comparison
to existing approaches and by means of a prototypical implementation.

1 Introduction

In many application domains, business processes are subject to compliance rules
and policies that stem from domain specific requirements such as standardiza-
tion or legal regulations [1]. Ensuring compliance of their business processes is
crucial for enterprises nowadays, particularly since auditing and certification has
become a competitive edge in many domains. Examples include certified family-
friendly enterprises being more attractive to prospective employees or clinics
proving a certain standard of their audited treatments to patients. Since process
models are the common way to represent business processes, business process
compliance can be ensured by verifying process models to be installed in process-
aware information systems against imposed compliance rules. Tab. 1 summarizes
quality compliance rules imposed on the software development process depicted
in Fig. 1.

? This work was done within the SeaFlows project, which is funded by the German
Research Foundation (DFG).

Table 1. Examples of compliance rules for software development

c1 Goals have to be defined before starting the development.

c2 Each test activity has to be documented.

c3 After the development freeze, no further development activities shall take place.

c4 Before carrying out a second usability test, a necessity check after the first us-
ability test is necessary.

c5 The testing has to be followed by an approval and the integration. Additionally,
no changes shall take place between the approval and the integration.

So far, existing approaches mainly focus on checking process-specific compli-
ance rules that correspond to certain process models [1–3]. One example is rule
c1 (cf. Tab. 1) over process model P (cf. Fig. 1) referring to process activities
define goals and start of development phase. However, in practice, com-
pliance rules are often specified in a more general manner and not specifically in
correspondence with a particular process model. Rule c2, for example, refers to a
general test activity and not to a functional test as present in the software
development process depicted in Fig. 1. Nevertheless, for quality assurance, it
could be desired to verify c2 over the development process. Thus, in order to
support a broad spectrum of realistic compliance rules, we must enable the veri-
fication of both, process-specific and process-independent compliance rules over
process models.

Define
goals Design

Start of
develop-

ment phase

System
develop-

ment

GUI
develop-

ment

Develop-
ment
freeze

Functional
test

Documen-
tation

Documen-
tation

Usability
walk-

through

Usability
question-

naire

Approval

Necessity
check

GUI
develop-

ment

Integration
End of

develop-
ment phase

End of
testing Approval

Change
process

1 2 3

4

5

6

78

9101112

13
14 15

1617

1819

Process model P

Fig. 1. Abstracted software development process (in BPMN notation)

Connected with supporting process-independent compliance rules, it is also
necessary to enable the definition of compliance rules at different design levels. At
user level an intuitive, high-level representation of compliance rules is desirable.
Contrary, at system level, it must be possible to conduct automatic verification
of process models against compliance rules. For this, it is necessary to instantiate
compliance rules over a particular process model and to equip them with formal
semantics for later verification.

In this paper, we present an approach for checking process-independent com-
pliance rules over process models. This is achieved by instantiating these compli-
ance rules over a particular process model using a domain model. The resulting
compliance rule instances can be verified separated from each other. This en-
ables individual compliance reports as well as individual solutions in case of
compliance violations. Furthermore, we show how compliance rules can be de-
fined at different design levels. At user level, compliance rules are specified using
an intuitive visualization based on graph structures. At system level compliance
rule graphs are equipped with formal semantics based on First Order Logic and
execution traces. The latter guarantees for independence of a particular process
meta model. The overall approach is validated by a pattern-based comparison
to existing approaches, by a general discussion on the co-existence of compliance
rules and process models, and by means of our prototypical implementation.

Sect. 2 discusses the compliance rule instantiation approach. Sect. 3 focuses
on the design of instantiable compliance rule graphs. Their counterpart formal-
ization is presented in Sect. 4. A validation of our approach is provided in Sect.
5. We close with a related work discussion in Sect. 6 and a summary in Sect. 7.

2 Compliance Rule Instantiation

Fig. 1 depicts the process model of a slightly abstracted software development
process that we discovered within several practical student projects at Ulm Uni-
versity. As discussed in Sect. 1, several compliance rules might be imposed on
the development process for quality and efficiency reasons (cf. Tab. 1). The basic
challenge is now to check whether the process complies to these compliance rules
or not. Additionally, in case of violations the system should yield helpful user
feedback in precisely reporting the reason for the problem.

Compliance rules are generally defined at different abstraction levels rang-
ing from rather abstract business policies to specific definitions [1]. To support
different levels of abstraction for compliance rules, we enable the use of do-
main models. Based on these, compliance rules can be instantiated for certain
processes. Note that domain models are demanded in many applications [4].
Moreover, we may also benefit from existing ontologies such as in the healthcare
domain [5]. Take for example compliance rules c2 and c4 (cf. Tab. 1): both refer
to test activities, where c2 is general and c4 more specific (usability test).
Fig. 2 shows an extract of the domain model belonging to the development pro-
cess. A test can be more specifically modeled as a usability or functional

test, where usability test can additionally distinguished into usability

Test Develop-
ment

Activity type

Usability
walk-

through

Usability
question-

naire

Usability
think
aloud

Usability
test

Functional
test

System
develop-

ment

GUI
develop-

ment

Fig. 2. An extract of the software development domain model

walkthroughs, usability questionnaires, or usability think aloud. A
development might be either a system development or a GUI development.

Without any further knowledge, compliance rule c2 cannot be evaluated over
development process P since P does not contain any test activity. In fact, c2
can only be evaluated by instantiation over P using the corresponding domain
model as depicted in Fig. 2. Based on the domain model, the general test activ-
ity referred to by c2 can be instantiated by three more specific testing activities
contained within P (i.e., usability walkthrough, usability questionnaire,
and functional test). This results in three compliance rule instances c21 , c22 ,
and c23 derived from c2 (cf. Tab. 2). The usability walkthrough and the
functional test are both documented according to the control flow of P. Thus,
c21 and c22 are satisfied. However, the usability questionnaire is not docu-
mented within P what violates instance c23 .

Table 2. Compliance rule instances for c2, cf. Tab. 1

c21 The functional test has to be documented.

c22 The usability walkthrough has to be documented.

c23 The usability questionnaire has to be documented.

We see that by using instantiation the verification of c2 over P becomes
possible. However, which benefits are offered by maintaining c2 and instantiating
it ”on demand” instead of replacing c2 by its instances c21 , c22 , and c23 for P
and the corresponding domain model? The different advantages become evident
when looking at the modeling, maintenance, and evolution of compliance rules
on the one side and compliance checking for process models on the other side as
depicted in Fig. 3.

First of all, for more complex domain models and processes, without instan-
tiation, the number of compliance rules might dramatically increase resulting
in huge effort for compliance rule modeling and maintenance. Moreover, sup-
porting high-level compliance rules and compliance rule instantiation eases the
evolution of compliance rules. Imagine, for example, that compliance rule c2 has

Modeling, maintenance,

and evolution of

compliance rules

High-level

compliance rules

Instantiation of

compliance rules

Compliance checking

Process-specific

compliance rule instances

Compliance

checking

Individual

compliance

reports

Process
model

Domain
model

Compliance checking

Fig. 3. The SeaFlows approach: compliance rule instantiation

to be adapted (e.g., due to changes in the quality policies) such that each test
activity not only has to be documented but also has to be approved. In this
case, if the strategy to explicitly model all compliance rule instances of c2 was
applied, c21 , c22 , and c23 would have to be individually modified in order to in-
tegrate the change. By contrast, following the approach proposed in this paper,
only high-level rule c2 has to be modified resulting in modified high-level rule
c’2. c’2 then can be reinstantiated and checked for relevant process models.

Moreover, checking compliance at instance level results in fine-granule feed-
back on individual violations of rule instance (cf. Fig. 3). In turn, fine-granule
feedback enables fine-granule treatment of compliance rule instance violations.
Let us assume, for example, that c2 is only of recommendation nature (i.e.,
enforcement level low). Since c23 is violated over process model P, the process
designer might decide to completey ignore c2. However, since c21 and c22 are
actually fulfilled, he might prefer to ignore c23 instead of c2.

Altogether, using compliance rule instantiation as proposed in this paper,
we achieve minimal effort for compliance rule modeling and maintenance on the
one hand, but enable individual compliance checks and corresponding reports
for compliance rule instances on the other hand.

3 Instantiable Compliance Rule Graphs

The next challenge is to design instantiable compliance rules in a way that they
can be easily understood by users. This task includes representation of (high-
level) compliance rules as well as of compliance rule instances. We found that at
both levels, graphs provide an intuitive visualization that can be equipped with
formal semantics and verified at system level later on (cf. Sect. 4).

Process-independent Compliance Rules To support process-independent
(i.e., high-level) compliance rule graphs and as well as their instantiation over
particular process models, a data model as depicted in Fig. 4 is needed: a process
model consists of a set of nodes distinguished by their node id to which activities
are assigned. An activity is assigned to activity types. An activity type may

be the sub-type of another activity. For example, the activity type usability

walkthrough is a sub-type of the activity type usability test (cf. domain
model in Fig. 2).

Execution event Activity execution Execution trace

Process Activity Activity type
1 .. *

Process node
1 1 .. * 0 .. *1 1

2 .. *

1
1 2 1 .. *

Logical model

Domain modelProcess model

0 .. *

subtype

Fig. 4. The data model for instantiable compliance rules.

When looking at compliance rules c1 to c5 (cf. Tab. 1), it can be observed that
compliance rules mostly reflect certain patterns. Typically, compliance rules re-
quire the occurrence and/or the absence of certain activities (occurrence/absence
patterns). For c1, for example, activity define goals should occur before start-
ing the development. By contrast, for c3 further development activities should
be absent if activity development freeze has taken place. Furthermore, it can
be observed that the occurrence or absence of certain activities is often condi-
tional upon the occurrence or absence of other activities. Thus a compliance rule
mostly comprises a triggering part (denoted as antecedent pattern) and a con-
sequence pattern. To be able to instantiate process-inpdedendent compliance
rule graphs later on, each node of a rule graph is associated with an activity
type from the domain model (cf. Fig. 4). Directed edges connecting the nodes
represent predecessor relations.

Based on these observations compliance rules c1 to c5 can be described by
compliance rule graphs as depicted in Fig. 5. Compliance rule graph c1, for ex-
ample, states that the execution of activity start of development process

has to be directly or indirectly preceded by the execution of the activity define

goals. Compliance rule graph c5 states that the execution of activity end of

testing has to be succeeded by an execution of approval and integration. Be-
tween these two executions, however, no execution of the change process must
occur. Note that compliance rule graphs might also contain data information as
data object Test for c2. How to integrate and evaluate such data information
into compliance rules is subject to our future research.

Process-specific Instantiation of Compliance Rules Generally, it must
be possible to define compliance rule graphs independent of a particular process
model. For later verification, however, it is necessary to instantiate independent
compliance rule graphs over process models.

The instantiation of compliance rule graphs is accomplished by “binding”
antecedent compliance rule nodes to nodes of the process model (reflected by
their node ids) with the associated activity type. Instantiation of compliance

Start of
development phase

Define goals Test Documentation Development freeze Development

Usability test Usability test

Necessity check

Compliance rule c1 Compliance rule c2 Compliance rule c3

Compliance rule c4

Results

End of testing Approval Integration

Change process

Compliance rule c5

Consequence
occurrence

Consequence
absence

Antecedent
occurrence

Antecedent
absencevard

Data object

Fig. 5. Process-independent compliance rule graphs

rule c2 (cf. Fig. 5) over process model P (cf. Fig. 1) using the domain model
as depicted in Fig. 2, for example, results in three compliance rule instances as
depicted in Fig. 6. Visualizing compliance rules that way, the user is able to
locate exactly, which occurrences of a compliance rule are relevant, which are
satisfied, and which are violated.

Functional test Documentation

Results

7

Usability walkthrough Documentation

9

Usability
questionnaire

Documentation

12

Compliance rule instances of c2

Compliance rule instance c21 Compliance rule instance c22 Compliance rule instance c23

Results Results

Fig. 6. Process-specific compliance rule instances

4 Formalization and Verification of Compliance Rules

The graphical compliance rule notation provides for more intuitive modeling
of compliance rules since it hides formal details from the user. However, as we
will show in this section, each compliance rule graph corresponds to a logical
formula with defined semantics. The latter is necessary to enable the verification
of processes against imposed compliance rules.

4.1 On Formalizing Compliance Rules

We opted for first-order predicate logic (FOL) to formalize compliance rules for
several reasons. The use of a general and expressive logic such as FOL enables the
extension of our approach in order to support further types of compliance rules
not supported so far (e.g., authorization or organizational model compliance
rules). Moreover, FOL allows for the definition of the antecedent-consequence-
structure of compliance rules in a straight-forward and elegant manner. The
nodes of compliance rule graphs are mapped to variables while properties of

compliance rule graph nodes and the relations between nodes are mapped to
corresponding predicates in a FOL formula. Due to lack of space we abstain
from a complete definition here, but rather informally describe the structure in
the following. The general structure of a compliance rule is as follows.

Structure 1 (Compliance rule) Let AT be the set of activity types of the
domain. Then, a compliance rule is of the following form:

[true | antecedentOccurrencePatterns | antecedentAbsencePatterns |
antecedentOccurrencePatterns ∧ antecedentAbsencePatterns]
→
consequence ∨ consequence ∨ · · · ∨ consequence
consequence :=
[consequenceOccurrencePatterns | consequenceAbsencePatterns |
consequenceOccurrencePatterns ∧ consequenceAbsencePatterns]

In Struct. 1 the antecedent is either empty (i.e., the compliance rule is always
activated) or consists of an antecedent pattern. The latter can be composed from
occurrence patterns defining the occurrences of activity executions that activate
the compliance rule. Compliance rule c2 (cf. Fig. 5), for example, is activated by
the occurrence of an activity execution associated to the activity type test while
compliance rule c4 is activated by a more complex occurrence pattern (namely
the sequence of two activity executions). The antecedent pattern may also con-
sist of absence patterns defining the absence of particular activity executions.
This allows for refining the occurrence pattern by putting additional conditions
on the absence of activity executions (for example, to express patterns such as “if
no approval takes place between the end of development and the integration”).
If the antecedent of a compliance rule applies, one of the rule’s consequence pat-
terns must also apply in order to satisfy the rule. Each consequence pattern, in
turn, may consists of occurrence as well as absence patterns and corresponding
relations. Compliance rule c3 (cf. Fig. 5), for example, has a consequence ab-
sence pattern in its consequence part while the consequence part of compliance
rule c5 is composed from both consequence occurrence and consequence absence
patterns.

The formula for compliance rule c2 is given below. It expresses that each
activity execution associated to the activity type test has to be followed by
an activity execution associated to the activity type documentation with the
same results data object. This is a process-independent compliance rule, since
it only references to activity types from the domain model (cf. Fig. 2).

Compliance rule c2:
∀t(ActivityType(t, test)→ ∃d : (ActivityType(d, documentation)∧Pred(t, d)∧
results(t) = results(d)))

Based on the development process (cf. Fig. 1), we can identify the process
nodes that are associated to the activity types referenced in the formula (namely
test and documentation). The formula for c2 can be adapted accordingly by
refering to activity executions associated to particular nodes in the process.

Process-specific compliance rule c2:
∀t(ProcessNode(t, 7) ∨ ProcessNode(t, 9) ∨ ProcessNode(t, 12)→
∃d : (ActivityType(d, documentation) ∧ Pred(t, d) ∧ results(t) = results(d)))

Based on this, we obtain the resulting compliance rule instances of c2 as
follows.

c21 : ProcessNode(t, 7)→ ∃d : (ActivityType(d, documentation) ∧ Pred(t, d) ∧
results(t) = results(d))
c22 : ProcessNode(t, 9)→ ∃d : (ActivityType(d, documentation) ∧ Pred(t, d) ∧
results(t) = results(d))
c23 : ProcessNode(t, 12)→ ∃d : (ActivityType(d, documentation)∧Pred(t, d)∧
results(t) = results(d))

4.2 Interpretation of Compliance Rules

So far we showed that compliance rules are represented by FOL formulas. To
round up the formalization of compliance rules, we also have to provide formal
semantics for these formulas. The formal semantics has to be defined over an
adequate logical model, that serves as interface between the compliance rule
perspective and the process perspective. To support a variety of business process
models, the logical model must be independent of a particular process meta-
model. As discussed in our previous work in [6, 3, 7] execution traces are a suitable
logical model since they are applicable to any process meta-model with formal
execution semantics.

Generally, depending on their particular purpose, execution traces comprise
different kinds of information. At minimum, execution traces store information
on the execution of activities for a particular process instance (e.g., start, end, or
start/end events for activity executions). Additional information might comprise
actor assignments, input or output data, and timestamps (see, for example, the
MXML execution traces used in ProM [8]). In the context of this paper, it is
important to be able to instantiate compliance rules over process models. Thus,
within execution traces, it should be possible to distinguish between concepts
such as nodes and activities (cf. data model in Fig. 4). Thus, we define an ordered
execution trace σ over a process model P as follows:
σP := <e1, . . . , ek> with
ei ∈ {Start(activity, node, timestamp), End(activity, node, timestamp)} where

– activity denotes the activity event ei is associated with
– node denotes the process node an activity is associated with
– timestamp represents an abstract timestamp

For our formal interpretation of compliance rules, we need the activity-
oriented view σ′

P of event-based execution traces σP . σ′
P represents the ordered

activity executions in σP :
σ′
P := <a1, . . . , am> with

ax = (activityx, nodex, startT imex, endT imex), x = 1, ..,m with ∃ei, ej ∈ σP :

– ei = Start(activityx, nodex, startT imex),
– ej = End(activityx, nodex, endT imex),
– i < j and @el ∈ σP : i < l < j and el = End(activityx, nodex, . . .) and
– ∀ar, ap : r < p⇒ startT imear < startT imeap

Based on the notion of execution traces and activity executions we can pro-
vide a default interpretation of compliance rules as follows. The interpretation
relates the predicates in the compliance rule formula to activity executions in
the execution trace. In the following, we focus on correct execution traces (e.g.,
each start event has a corresponding end event).

Definition 1 (Interpretation of compliance rules). Let AT be the set of
activity types of the domain model. Let σ′=<a1, . . . , am> be an activity-oriented
view of an execution trace. Then, the interpretation over σ′ over AT is a tuple
Iσ′=<Dσ′ , dσ′> with:
Dσ′ is the domain of the interpretation Iσ′ with Dσ′ := {a1, . . . , am}
Let further Nσ′ = {n|∃a = (activitya, nodea, startT imea, endT imea) ∈ Dσ′ :
n = nodea} be the set of process nodes associated to activity executions in σ′.
dσ′ is a function interpreting the predicates ActivityType, ProcessNode, and
Pred3 over σ′as follows:

– dσ′(ActivityType) 7→ {(a,A), a = (activitya, nodea, startT imea, endT imea) ∈
Dσ′ , A ∈ AT | activitya = A ∨ activitya is a subtype of A}

– dσ′(ProcessNode) 7→ {(a, n), a = (activitya, nodea, startT imea, endT imea) ∈
Dσ′ , n ∈ Nσ′ | n = nodea}

– dσ′(Pred) 7→ {(a, b), a = (activitya, nodea, startT imea, endT imea) ∈ Dσ′ , b =
(activityb, nodeb, startT imeb, endT imeb) ∈ Dσ′ | endT imea < startT imeb}

Based on Def. 1 compliance rule formulas can be interpreted over execution
traces. Def. 2 provides the formal criteria necessary for compliance verification.

Definition 2 (Satisfaction of compliance rules). Let P be a process model
and let Σ′

P be the set of all activity-oriented views on execution traces of P (i.e.,
all traces P is able to produce). Let further σ′

P ∈ Σ′
P be one activity-oriented

view of an execution trace of P .
We say σ′

P satisfies c (notation: σ′
P |= c) if and only if:

Iσ′
P
|= c.

We say P satisfies c (notation: P |= c) if and only if:
∀σ′

P ∈ Σ′
P holds σ′

P |= c.

To illustrate the formal semantics defined above, consider again compliance
rule c5 (cf. Fig. 5) and the development process (cf. Fig. 1). Based on the exe-
cution traces that the development process can produce, Def. 1 can be applied
to verify the development process against c5. Informally, the straight-forward
way to verify compliance rules corresponds to reachability analysis as applied

3 Constants in a compliance rule formula (i.e., node identifiers in compliance rule
instances) are mapped to themself and hence, are ommitted in the interpretation.

for checking the soundness of process models [9]. In all execution traces of the
process, there is an occurrence of end of testing (node 14). Hence, compli-
ance rule c5 is activated in all executions of the development process. After
end of testing, either the upper (case 1) or the lower split branch (case 2)
is executed. In the first case, the corresponding execution trace contains the
execution of the approval (node 15), directly followed by the execution of the
integration (node 18). Hence, this trace satisfies c5. In the second case, the
change process (node 16) is executed after the approval (node 15). However,
another approval activity (node 17) is executed afterwards, that is directly fol-
lowed by the integration. According to the interpretation from Def. 1, c5 is
also satisfied in the second case.

5 Discussion and Validation

Generally, different scenarios of integrating business processes and compliance
rules are conceivable. At the one side of the spectrum, all relevant compliance
rules might be integrated (as far as possible) within the process model. This
might be achieved by a multitude of partly nested alternative branchings. Full
merging of rules into process models could be desirable for scenarios with simple
process models and compliance rules that are mandatory for all process models.
However, this approach has also several drawbacks. The first one is the possibly
enormous complexity of the resulting process models in case of a multitude
of compliance rules imposed on them. This can be compared to approaches
for process configuration and variants, keeping all variants or rules within one
model. As research has discussed, for many scenarios, this approach quickly
leads to overly complex process models that cannot be understood by users
any longer [10]. In addition, from our practical examples, we know that often
not all compliance rules are mandatory, but rather have a suggesting character.
Examples include medical guidelines that might be overruled by the doctor at
any time. However, if all compliance rules are ”hard-wired” within the process
models, this optional character gets lost.

On the other side of the spectrum, we could also think of representing process
models and compliance rules entirely as rules, for example within rule engines
such as ILOG JRules or by using declarative approaches such as ConDec [11].
Aside from the fact that declarative process description can be covered by our
approach, it cannot be neglected that in practice, most process models are de-
scribed and automated using graph-based notations. Specifically, in practice, we
will often find a coexistence of business process (models) and compliance rules
imposed on them. Another reason for this coexistence is that compliance rules
might be introduced after the process model has been designed and enacted.

For these reasons, we mainly aim at supporting the coexistence of process
models and compliance rules which complies to approaches that aim at bal-
ancing flexibility and control by combining imperative and declarative process
description [12]. However, since our logical model is based on execution traces
(cf. Sect. 3), SeaFlows can also deal with pure process-model-based and declar-

ative scenarios. In the latter case, execution traces are a suitable representation
of process instances defined by following the imposed constraints [13].

5.1 Pattern-based Validation

We collected recurring compliance rule patterns from literature and modeled
them using the SeaFlows compliance rule formalism. Many pattern-based ap-
proaches [14, 15, 13] base their patterns on patterns collected by Dwyer and
Corbett [16]. Simple (particularly binary) patterns, such as global scope pres-
ence, global scope absence, after scope absence, before scope absence, response,
and precedence can be modeled similarly to some of the compliance rules from
Fig. 5 (e.g., compliance rule c3 corresponds to after scope absence). Hence, we
omit the illustration of these patterns due to space limitations. Three advanced
patterns [14, 16] are depicted in Fig. 7. The response with absence rule states that
A must be followed by an occurrence of C without B occurring in the meantime.
The precedence with absence rule states that C must be preceeded by A such
that no B occurs in between. The after scope precedence chain states that the
sequence A. . .B must occur between S and a succeeding occurrence of C.

In constrast to approaches based on a limited set of patterns and respective
combinations thereof using the logical conjunction (cf. Sect. 6), the SeaFlows
approach is compositional. It allows for modeling compliance rules with an an-
tecedent and a consequence part. The modeled compliance rule graphs can be
automatically mapped to logical formulas (cf. Sect. 4).

B

A C

Response with absence Precedence with absence

C

B

A S

After scope precedence chain

C

A B

Fig. 7. Advanced compliance rule patterns [14]

5.2 Technical Validation

Fig. 8 shows the SeaFlows compliance rule editor. It allows for separately mod-
eling the antecedent and consequence patterns of compliance rules (depicted in
separate boxes). The SeaFlows editor is integrated into the AristaFlow BPM
Suite that is based on ADEPT [6]. Each compliance rule node can be assigned
an activity type from the AristaFlow Activity Repository. The latter also pro-
vides the activity types used to model processes and serves as domain model in
our implementation. For convenient compliance rule modeling, the SeaFlows ed-
itor allows for modeling parametrized recurring compliance rules patterns. If the
user wants to model a compliance rule with the same structure, he may apply
the parametrized compliance rule pattern.

Fig. 8. The SeaFlows graphical compliance rule editor

6 Related Work

Many approaches have been proposed in literature to model compliance rules.
We focus on approaches for modeling compliance rules over the occurrence and
ordering relations of activity executions within a process with the goal of pro-
cess verification. Existing approaches range from rather informal annotations of
process models with compliance rules, over formal languages, to visual patterns.

To enable the verification of processes against imposed compliance rules, the
latter have to provide formal semantics. This requirement is met by compliance
rules specified in formal languages. Among the formal languages proposed for
compliance rule modeling, we often come across temporal logics such as linear
temporal logic (LTL) or computational tree logic (CTL) [17]. Both are fragments
of first-order logic (FOL). Due to its linear time semantics, which is more suit-
able in the business process context [18], LTL has been clearly prefered over CTL
which has branching time semantics. Albeit its expressiveness to model compli-
ance rules with regard to the occurrence and ordering relations of activities, pure
LTL has limitations when it comes to the incorporation of context conditions
within compliance rules. This is due to the fact that one cannot directly address
a particular state in LTL. Hence, to ensure the extendability of our approach,
we opted for the formalization in FOL. The formal contract language (FCL),
designed to specify business contracts, can also be applied to model compliance
requirements [19, 20]. However, FCL is based on a rather state-oriented than
activity-oriented paradigm. In general, it requires certain skills to model compli-

ance rules using a formal language which might be an obstacle to the practical
application of corresponding approaches.

Due to the difficulties of modeling compliance rules using formal languages
in practice, many approaches from literature suggest visual notations to hide the
formal details from the modeler. In [18], Liu et al. propose a graphical business
property specification language (BPSL) that is based on linear temporal logic.
BPSL provides visual notations for logical operators. In addition, it defines dedi-
cated operators for recurring logical patterns. In contrast to our approach, BPSL
does not support the explicit structure of antecedent and consequence patterns
within a compliance rule.

Other approaches aim at establishing a set of recurring compliance rule pat-
terns. The patterns are either given visually [21, 14, 11] or are organized in some
kind of a pattern ontology [15, 22, 12]. Generally, these patterns are based on
property patterns collected by Dwyer and Corbett [16]. Each pattern, in turn,
can be mapped to a logical formula (e.g., in LTL). This enables the formal veri-
fication. Clearly, establishing set of rule patterns recurring in a business domain
is an effective approach to facilitate compliance rule modeling. This can also
be accomplished with our compliance rule language. Although the rule patterns
can usually be combined using the logical conjunction, a fixed set of patterns
can still be too restrictive for particular application scenarios. In these case,
compositional approaches such as our approach are advantageous.

7 Summary and Outlook

We presented an approach to support the design and verification of compliance
rules at different abstraction levels ranging from high-level, process indepen-
dent rules to rules specified over particular process models. The main challenge
was to enable the verification of process models against process-independent
compliance rules. We solved this by introducing the mechanism of compliance
rule instantiation using domain models and showed that instantiation results in
many advantages such as easening design, mainenance, and evolution of compli-
ance rules as well as fine-granule compliance reports. Moreover, we introduced
an intuitive visualization of compliance rules and instances together with their
formal semantics based on FOL and execution traces. Finally, we showed the
feasability of our approach based on a pattern-based validation and by means
of our powerful prototype. In future work, we will equip compliance rule graphs
with operational semantics to enable more efficient compliance checking. In ad-
dition, we will further investigate on runtime issues. At runtime when process
instances are created from process models and executed, the compliance with
imposed compliance rules may change [7]. That is why it can become necessary
to monitor the compliance during process execution. Moreover, we

References

1. Sadiq, S., Governatori, G., Naimiri, K.: Modeling control objectives for business
process compliance. In: Proc. BPM ’07. (2007)

2. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q
and temporal logic. In: Proc. BPM 2008. LNCS 5240 (2008) 326–341

3. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Integration and verification of semantic
constraints in adaptive process management systems. Data and Knowledge Engi-
neering 64 (2008) 3–23

4. Filipowska, A., Hepp, M., Kaczmarek, M., Markovic, I.: Organisational ontology
framework for semantic business process management. In: Proc. BIS 2009. Vol-
ume 21 of LNBIP., Springer (2009) 1–12

5. Kumar, A., Smith, B., Pisanelli, D., Gangemi, A., Stefanelli, M.: An ontological
framework for the implementation of clinical guidelines in health care organiza-
tions. Stud Health Technol Inform. 102 (2004) 95–107

6. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

7. Ly, L.T., Rinderle-Ma, S., Göser, K., Dadam, P.: On enabling integrated process
compliance with semantic constraints in process management systems. Information
Systems Frontiers (2009) Accepted for publication.

8. van der Aalst, W., et al.: Prom 4.0: Comprehensive support for real process anal-
ysis. In: Proc. ICATPN 2007. Volume 4546 of LNCS., Springer (2007) 484–494

9. van der Aalst, W.: Verification of workflow nets. In: Int’l Conf. on Application
and Theory of Petri Nets. (1997) 407–426

10. Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process
lifecycle. In: Proc. ICEIS’08. (2008) 154–161

11. Pesic, M., Schonenberg, M., Sidorova, N., van der Aalst, W.: Constraint-based
workflow models: Change made easy. In: OTM 2007, Part I. Number 4803 in
LNCS, Springer (2007) 77–94

12. Sadiq, S., Orlowska, M., Sadiq, W.: Specification and validation of process con-
straints for flexible workflows. Inf. Syst. 30 (2005) 349–378

13. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, Eindhoven University of Technology (2008)

14. Awad, A., Weske, M.: Visualization of compliance violation in business process
models. In: Proc. BPI’09. (2009)

15. Yu, J., Manh, T.P., Hand, J., Jin, Y.: Pattern-based property specification and
verification for service composition. CeCSES Report SUT.CeCSES-TR010, Swin-
burne University of Technology (2006)

16. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proc. ICSE’99. (1999) 411 – 420

17. Ghose, A., Koliadis, G.: Auditing business process compliance. In: Proc. ICSOC
’07. Volume 4749 of LNCS., Springer (2007) 169–180

18. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Systems Journal 46 (2007) 335–361

19. Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory compli-
ance for business process models through semantic annotations. In: Proc. BPD’08.
(2008)

20. Lu, R., Sadiq, S., Governatori, G.: Compliance aware process design. In: Proc.
BPM Workshops ’07. (2007)

21. van der Aalst, W., Pesic, M.: DecSerFlow: Towards a truly declarative service flow
language. In: Proc. Web Services and Formal Methods (WS-FM’06). Volume 4184
of LNCS., Springer (2006) 1–23

22. Namiri, K., Stojanovic, N.: Pattern-based design and validation of business process
compliance. In: Proc. OTM 2007. Volume 4803 of LNCS., Springer (2007) 59–76

