
Managing Processes on Mobile Devices:
The MARPLE Approach

Rüdiger Pryss, Julian Tiedeken and Manfred Reichert

Institute for Databases and Information Systems, Ulm University, Germany
{ruediger.pryss, manfred.reichert, julian.tiedeken}@uni-ulm.de

Abstract. Ubiquitous Computing is considered as enabler for linking
everyday life with information and communication technology. However,
developing pervasive applications that provide personalized user assis-
tance is still a challenge. Relevant scenarios are diverse and encompass
domains like healthcare, logistics, and business collaboration. Two of the
technologies that show increasing maturity in respect to the demands of
such applications are light-weight frameworks and process engines for
mobile computing. Their fusion, however, is in a rather premature state.
Generally, the support of mobile collaboration using a process engine
raises challenging issues that need to be addressed. In the MARPLE
project we target at a tight integration of process management technol-
ogy with mobile computing frameworks in order to enable mobile process
support in the aforementioned scenarios. In this demo paper we give in-
sights into the MARPLE architecture and its components. In particular,
we introduce the MARPLE process engine which enables light-weight as
well as flexible process support on mobile devices.

1 Introduction

Mobile assistance in daily life as empowered by information and communication
technology is a much discussed topic. To better understand the challenges emerg-
ing in this context, we analyzed real-world scenarios in which mobile user assis-
tance is urgently needed and which stem from domains like healthcare, logistics
and business collaboration. In particular, our analyses revealed the fundamental
role of process support in respect to mobile and personalized user assistance.
This paper picks up a healthcare scenario in which chronically ill patients shall
be assisted by mobile devices. Such mobile device gives recommendations in re-
spect to medications. These recommendations, in turn, are made remotely by
healthcare professionals and depend on the previously gathered patient data (e.g.
blood pressure). Despite its high potential, so far there exists no comprehensive
mobile assistance for such scenarios. One issue emerging in the given context
is to decide which process parts shall run on mobile devices and which on sta-
tionary computers. In the following we refer to the described scenario to discuss
fundamental challenges and to show the high potential of mobile assistance. Fig.
1 illustrates both traditional realization of this scenario 1© and its realization
based on mobile devices and mobile assistance respectively 2©.



Typical healthcare scenario:

- Patient is admitted to clinic    
- Patient gets treatment and care
- Patient is discharged
- Due to his illness, the patient 

must be monitored by clinician
after his discharge

- Monitoring requires that the
patient has to visit the clinic
on a regular basis

- If patient status changes,
treatment has to be adapted

- Patient treatment is completed

Patient Treatment (as abstract process)

11

12 12Replace 
fragment
by mobile
process

A B C D

B CStart End

Realization

Realization

Fig. 1. Abstract Healthcare Scenario

After discharging a patient the usual way to monitor his health status is to
schedule regular visits for him in the clinic. In certain cases, however, this can
lead to delayed adaptations of his treatment plan in case his status has changed.
To improve this situation and to enable real-time monitoring, mobile data col-
lection and mobile assistance 2© of the patient would be highly welcome by all
parties; i.e., the patient needs to be assisted by a mobile device which gathers
medical data from him and informs clinicians about status changes.
To realize the second scenario patient-specific application logic needs to be pro-
vided on the mobile device. Consequently, the overall treatment workflow is
maybe partitioned 2© and process fragments may run on stationary computers
as well as on mobile devices. In particular, the process fragment running on the
mobile device needs to be adapted to the specific patient and may evolve over
time, i.e., hard-coded process implementations are not tolerable.
To enable mobile assistance we developed a light-weight process engine called
MARPLE that runs on the mobile device and that is able to interact with back-
end processes if required. In addition, we provide advanced tools for defining,
configuring and verifying process fragments. In this paper, we focus on the core
architecture and components of the MARPLE mobile process engine. Conceptual
issues related to the partitioning of processes as well as to the synchronization
of the resulting fragments are outside the scope of this paper.
When developing our MARPLE engine we had one shining example to follow
- the ADEPT process management system we had developed during the last
decade [1]. In particular, we adopt basic design principles from ADEPT (e.g.,
correctness-by-construction, dynamic process adaptability), but also align the
MARPLE architecture with specific needs of mobile processes.
Section 2 introduces a concrete application scenario. In Section 3 we give in-
sights into the MARPLE architecture, while Section 4 shows how the described
scenario can be supported in MARPLE. Section 5 discusses related work and
Section 6 concludes with a summary and outlook.



2 Application Scenario

Fig. 2 shows a typical example of a healthcare process which is modeled in terms
of BPMN. Assume that for a particular patient this process is executed three
times per day and involves three parties. The first swim lane 1© shows activities
conducted at the clinic, which starts the process. When executing step 2©, the
clinic triggers the process fragment running on the mobile device of the patient.
This mobile process collects patient data and coordinates required actions (e.g.,
to measure blood pressure or to gather ECG data).

Fig. 2. Healthcare Process with Mobile Patient Support

Let us consider the process 3© to be run on the mobile device of the patient in
more detail: While the patient stays at home, he first gets a message through his
mobile device. Then he measures and collects the requested data being assisted
by the process running on his mobile device. Following this, results 4© are sent
back to the clinic which then decides 5© about next steps. Ideally no special
actions are required. In this case a message is sent back to the patient’s mobile
device containing information about his medication 6©. Alternatively, the clinic
may send a message with information about further treatment or special treat-
ment to home care 7© (either provided by a professional service or a relative of
the patient). In the latter case, an additional process fragment is started on the
mobile device of the person who is responsible for home care. This process has to
be synchronized with the process with the one running on the patient’s mobile
device. Finally, either the process running on the mobile device of home care or
the one running on the mobile device of the patient sends back a report 9© to
the clinic. Then the process is finished.
Altogether the process fragments of three parties need to be synchronized.
Thereby, the runtime infrastructure must be able to cope with communication
problems, device failures and so forth. In Fig. 2 the pictograms with label DS
and NS indicate a Network Switch or Device Switch within the overall process



choreography. Assume that the mobile device of the patient or its connection
with the clinic fail. Then the clinic has now knowledge about the status of the
patient, but only has the information that the network connection has broken.
Such failure scenarios must be covered by the architecture. In particular, the
following requirements need to be met by a supporting infrastructure:
– It must be possible to partition a process model and to allocate the resulting

fragments on mobile devices as well as stationary computers.
– Soundness of the process (i.e., the process choreography) needs to be ensured.
– The runtime infrastructure has to cope with physical problems like broken

connections or malfunctioning devices.
– When running the fragments on distributed devices their execution must be

synchronized and messages be exchanged in a reliable way.
– Both the overall process model as well as its fragments might have to be

adapted during runtime, e.g. to deal with exceptional situations.
– A mobile process must be able to gather sensoric data during its execution.

3 MARPLE Architecture

In this section we give insights into the MARPLE architecture (cf. Fig. 3). Its
two core components are the MARPLE Mobile Process Engine V1.3 and the
MARPLE Mediation Center. Here we focus on those parts of the MARPLE
architecture that are relevant in the context of our application scenario. Other
components and features of MARPLE are only mentioned shortly and will be
subject of future publications.

MARPLE ARCHITECTURE
MARPLE MEDIATION CENTER

MAINTENANCE

o CONFIGURE PDA
o INSTALL ENGINE

CONTROL

o ASSIGN PROCESSES
o ADHOC DEVIATION
o PROCESS MIGRATION
o PROCESS 

MONITORING

DESIGN

o MODEL
o CONFIGURATION
o TESTING
o SIMULATE

REPOSITORY

o PDA CONFIGURATION
o PROCESS TEMPLATES
o ACTIVITY TEMPLATES
o INSTANCE DATA

MARPLE MOBILE DEVICE

XML /
WEB SERVICES

.NET 3.5 / WPF

XML 
PERSISTENCE

MANAGER

MOBILE 
PROCESS 
ENGINE 

V1.3

CORE 
COMMUNICATION 

SERVICE (CCS)

.NET CF 3.5 

DEVIATION 
SERVICE

Current Version: 1.3
LOC: 48t

Fig. 3. MARPLE Architecture

If a mobile device shall be added to the MARPLE environment, it first needs to
be equipped with the basic software services required in the MARPLE context.
Amongst others this includes Core Communication Services (CCS) as part of
the MARPLE Mobile Process Engine V1.3. Thereby, we follow a light-weight
approach; i.e., services that are initially not needed are not loaded to the device.
Following this, the mobile device can connect to the MARPLE Mediation Cen-
ter and indicate that its configuration may start. When starting the MARPLE



configuration procedure on the mobile device through the MARPLE Mediation
Center, CCS dynamically loads the MARPLE Mobile Process Engine V1.3, the
MARPLE XML Persistence Manager, and the relevant process as well as Ac-
tivity Templates to this device. In this context, Activity Templates encapsulate
pre-manufactured application components that implement the process steps. In
MARPLE, for example, activity templates can be associated with a user forms
or a (remote) web service call. Regarding our example from Section 2, in process
step 7© a report is sent from the patient’s mobile process to the clinic. When real-
izing the MARPLE Mobile Process Engine V1.3, we re-use fundamental concepts
and design principles of the ADEPT process management technology, which we
developed during the last decade [1]. In particular, we adopt the ADEPT process
meta model, apply its fundamental correctness notions and correctness checks,
and enable flexible process enactment on the mobile device. The latter includes
dynamic adaptations of process instances running on the mobile device (e.g.,
to cope with contextual changes in the environment) and is realized by the
MARPLE Mobile Deviation Service.
Despite these commonalities with ADEPT it is noteworthy that we provide a
complete new implementation of the kernel of the MARPLE Mobile Process En-
gine V1.3 in order to meet performance requirements of mobile scenarios and
to cope with their specific requirements (e.g., broken connections and limited
GUIs). In particular, the implementation framework MARPLE is based on is
not the same as the one used in the context of ADEPT. While ADEPT relies on
JAVA, our MARPLE architecture is based on .NET Compact Framework. The
MARPLE Mediation Center consists of four major parts. First, its Maintenance
component allows us to configure mobile devices such that they can be used
for mobile process support. Second, the Control Unit enables users to assign
executable processes to mobile devices, to enact them on the mobile device, to
invoke user forms or web services during process execution, and to apply ad-hoc
deviations from the pre-modeled process logic.
Another fundamental feature of the MARPLE Control Unit is its ability to mi-
grate running process instances from one mobile device to another (e.g., if a
patient wants to switch his device). Like ad-hoc changes such process migration
can be initiated by the owner of the mobile device as well as by authorized users
via the Control Unit. Another important component of the MARPLE Mediation
Center is its Modeler. This component adopts basic correctness principles we de-
veloped in ADEPT, but provides additional features for partitioning processes
and for specifying conceptual models for mobile processes. Consider again our
example from Section 2. Using MARPLE Modeler, the fragment representing
the data collection process (see Lane 3©) can be defined. The same holds for the
process fragment relating to home care. All meta data (e.g., PDA configurations)
needed by the different components of the MARPLE architecture are maintained
in the Repository of the MARPLE Mediation Center. Fig. 4 exemplarily illus-
trates the interaction between the MARPLE Mediation Service and two mobile
devices: Initially, only one mobile device is involved in the interaction. Then a
second device is added. Following this, the process instance running on the first



mobile device is migrated to the newly introduced one (e.g., due to connection
problems with the first device or better technical features of the new one). Note
that this migration can be triggered either by the MARPLE Mediation Cen-
ter or by the owners of the two devices. During process executions, the Control
Unit may suspend, resume, abort and monitor running processes. Further, the
MARPLE Mobile Process Engine V1.3 logs progress of the process using the
Persistence Manager.

PDA 2 PDA 1 MARPLE Mediation Service

Online

InstanceStarted (I1)

sendTemplate (T1)

foreach (n in Nodes I1) {
RunActivity(n);

}

available

migrateInstance (I1)

acknowledge I1

Instance I1 finished

InstanceMigrated (I1)

foreach n in Nodes I1 
updateState (n)

sendInstance (I1)

InstanceMigrationDeclined

Suspend, Migrate, 
Abort

foreach (n in Nodes I1) {
RunActivity(n);

}

I1

foreach n in Nodes I1 
updateState (n)

Suspend, Migrate, 
Abort

Instance I1 finished

send:

#1 InstanceTemplate I1 (XML)
(including workflow sequence and data
elements)

#2 ActivityTemplates
for each (n in Nodes I1) {

LoadActivityTemplate (n)
}

#3 PDA-Profile
(Security Aspects, User Aspects,
Environment Aspects)

after every finished step, the status
of the data elements of the whole process
are made persistent

Fig. 4. MARPLE: Interaction Sequence

4 MARPLE-Demonstration

We revisit our scenario from Section 2 and show how it can be realized using
MARPLE. Fig. 5 depicts the user interface of the MARPLE Mediation Center.
With MARPLE Modeler, we can completely define the patient-centered data
collection process from the middle lane in Fig. 2. Further, MARPLE, enables
remote monitoring of process instances; e.g. Fig. 5 1© shows a concrete process
instance running on a mobile device as it can be monitored using MARPLE.
Note that this perspective displays both the current status of the mobile pro-
cess and the data values collected during process execution (see 7©). Obviously,
this is exactly the information a medical professional would need when remotely
monitoring patient processes. Let us shortly consider how the above mentioned
process fragment is modeled in MARPLE. Fig. 5 shows a part of this model
together with instance-specific markings. Activity 2© is a receive activity which
is waiting for an incoming message requesting a health check. The subsequent
three activities constitute data collection steps which are either implemented as
user forms or sensing activities; the blood pressure is gathered via a bluetooth



activity template from the linked blood pressure system. Blood glucose and ECG
recordings are entered via form-based activities; i.e., the user of the mobile device
gets respective requests in his worklist and then has to fill in the two forms (e.g.
see the PDA display in Fig. 4). Following data collection, activity 4© is automat-
ically executed. It invokes a web service at the clinic to report about measured
results (e.g., to add them to the electronic patient record). Subsequent activity
4© then waits until a message is received either from the clinic or from home care.

The toolbar on the left of Fig. 5 ( 8©) displays available functions for managing
process templates, users, mobile devices and mobile device settings. Further, 6©
displays the list of currently released process templates, which can be assigned
to registered mobile devices. So far, we have focused on the implementation of
the MARPLE Mobile Process Engine V1.3 and on robustness issues emerging
with mobile processes.

Fig. 5. MARPLE: Mediation Center

5 Related Work

In literature we can find approaches which focus on logical models for mobile
processes on the one hand and approaches addressing architectural and imple-
mentation issues of light-weight process engines on the other hand. Regarding
the first category, for example, [2] deals with the partitioning of BPEL pro-
cesses. A similar approach has been suggested in the context of ADEPT [3].
However, none of the two approaches has provided an architecture for mobile
process support as suggested by MARPLE. Taking mobile network dynamics
as core demand for mobile process engines, many approaches deal with failures
and exceptions like broken connections or lack of communication facilities [4–7].



Respective tools usually apply web service standards and base process execution
on BPEL or more specific execution models derived from BPEL. We consider
the use of BPEL as process execution language as too low level, particularly
if it shall be possible to dynamically evolve or adapt mobile processes during
runtime. Instead we provide a high level process model that can be adapted by
both remote users as well as users of the mobile device.

6 Summary and Outlook

We introduced our MARPLE architecture and described how its core compo-
nents enable the execution and monitoring of processes on mobile devices. Our
overall vision is to provide sophisticated mobile process support; i.e., to real-
ize generic process management features including support for process instance
changes, instance migrations, etc. To foster this vision we base our work on
core design principles and fundamental concepts we developed in our ADEPT
project. In future work we will extend the MARPLE Modeler such that it pro-
vides sophisticated methods for modeling complex process choreographies like
the one from Fig. 2. This will include, for example, a methodology for correctly
partitioning processes models, for allocating resulting fragments on different ma-
chines and devices, and for synchronizing them at runtime. In particular, we will
adopt and extend concepts from autonomic computing and self-healing systems
to cope with the many failure scenarios in connection with distributed and mo-
bile applications.

References

1. Dadam, P., Reichert, M.: The ADEPT project: A decade of research and develop-
ment for robust and flexible process support - challenges and achievements. Com-
puter Science - Research and Development 23 (2009) 81–97

2. Baresi, L., Maurino, A., Modafferi, S.: Workflow partitioning in mobile information
systems. In: MOBIS’04. (2004) 93–106

3. Bauer, T., Reichert, M., Dadam, P.: Intra-subnet load balancing in distributed
workflow management systems. Int’l Journal of Cooperative Information Systems
12 (2003) 205–323

4. Kunze, C.P.: Demac: A distributed environment for mobility-aware computing. In:
Proc. 3rd Int. Conf. on Pervasive Computing. (2005) 115–121

5. Hackmann, G., Haitjema, M., Gill, C.: Sliver: A BPEL workflow process execution
engine for mobile devices. In: Proc. 4th Int. Conf. on Service Oriented Computing.
(2006) 503–508

6. Schmidt, H., Kapitza, R., Hauck, F.J.: Mobile-process-based ubiquitous computing
platform: a blueprint. In: Proc. 1st Workshop on Middleware-application interac-
tion. (2007) 25–30

7. Gerhard, S., Jürgen, M., Erich, S.: Building a modular service oriented workflow
engine. In: IEEE Int. Conf. on Service-Oriented Computing and Applications. (2009)


