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Abstract. In the light of an increasing demand on business process
compliance, the veri�cation of process models against compliance rules
has become essential in enterprise computing. To be broadly applicable
compliance checking has to support data-aware compliance rules as well
as to consider data conditions within a process model. Independently of
the actual technique applied to accomplish compliance checking, data-
awareness means that in addition to the control �ow dimension, the
data dimension has to be explored during compliance checking. However,
naive exploration of the data dimension can lead to state explosion. We
address this issue by introducing an abstraction approach in this paper.
We show how state explosion can be avoided by conducting compliance
checking for an abstract process model and abstract compliance rules.
Our abstraction approach can serve as preprocessing step to the actual
compliance checking and provides the basis for more e�cient application
of existing compliance checking algorithms.
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1 Introduction

In many application domains, business processes are subject to compliance rules
and policies that stem from domain-speci�c requirements such as standardization
or legal regulations [1]. Examples of compliance rules for order-to-delivery pro-
cesses are collected in Table 1. Ensuring compliance of their business processes is
crucial for enterprises today, particularly since auditing and certi�cation of their
business processes has become a competitive edge in many domains. Examples

? This work was done within the research project SeaFlows partially funded by the
German Research Foundation (DFG).



Table 1. Examples of compliance rules for order-to-delivery processes

c1 After con�rming an order, goods have to be shipped eventually.

c2 Production (i.e., local and outsourced production) shall not start until the order
is con�rmed.

c3 Each order shall either be con�rmed or declined.

c4 Local production shall be followed by a quality test.

c5 Premium customer status shall only be o�ered after a prior solvency check.

c6 Orders with a piece number beyond 50,000 shall be approved before they are
con�rmed.

c7 For orders of a non-premium customer with a piece number beyond 80,000 a
solvency check is necessary before assessing the order.

c8 Orders with piece number beyond 80,000 require additional shipping insurance
before shipping.

c9 After con�rming an order of a non-premium customer with piece number of at
least 125,000, premium status should be o�ered to the customer

include certi�ed family-friendly enterprises being more attractive to prospective
employees or clinics proving a certain standard of their audited treatments to
patients. Since process models are the common way to represent business pro-
cesses, business process compliance can be ensured by verifying process models
against imposed compliance rules at process buildtime. Such a priori compliance
checking might help process designers to de�ne compliant process models and
avoid instantiations of non-compliant processes. Further, legacy process models
can be checked for compliance, when introducing new compliance rules.

Fig. 1 shows a simpli�ed order-to-delivery process P which might be subject
to the rules given in Table 1. For brevity we abstain from modeling the complete
data �ows of P . A closer look at compliance rules c1 to c4 reveals that they
basically constrain the execution and ordering of activities and events within a
process model. For example, c1 being applied to P means that event confirm
order has to be eventually followed by the activity ship goods in all execution
paths of P . We can apply approaches from literature to verify P against c1 to
c4, (e.g., [2�4]). However, compliance rules c6 to c9 obviously do not only refer
to activities and events, but also to process data. In particular, in the context
of P process data includes piece number pn, customer status c, and approved
a. In order to verify P against data-aware compliance rules such as c6 to c9,
data �ows as well as branching conditions of P have to be considered, i.e., any
compliance checking approach should be able to deal with data conditions.

It is notable that although compliance rule c5 does not contain any references
to process data of P , data-awareness of the compliance checking is still needed to
enable correct veri�cation. Verifying c5 while ignoring the data conditions in P
would lead to violation of c5 over P since activity offer premium status is not
always preceeded by activity check solvency. However, when having a closer
look at the data conditions under which these activities are executed (i.e., the
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Fig. 1. A simpli�ed order-to-delivery process modeled in BPMN

branching conditions) we can see, that c5 is satis�ed over P . Note that offer
premium status is executed only for orders of non-premium customers with
piece number beyond 150,000. The correlation of the data conditions assigned
to data-based exclusive gateways in P guarantee a prior solvency check.

We denote compliance checking mechanisms that are able to deal with corre-
lations of data-based gateways as well as to verify processes against data-aware
compliance rules as data-aware compliance checking.

Challenges. As our examples show, data-awareness is crucial for applying
compliance checking in practice. Independently of how compliance checking is
actually accomplished (i.e., which techniques, such as model checking [2], are
applied), data-awareness poses challenges for compliance checking in general.
Data-aware compliance checking has to consider the states that relevant data ob-
jects can adopt during process execution. Activity offer premium status from
Fig. 1, for example, can only be executed under data condition pn > 150,000.
As this example shows, we may have to deal with arbitrary data such as integers
that have huge domains. When compliance checking is applied in a straight-
forward and naive manner, data-awareness can lead to state explosion caused
by the states that relevant data objects can adopt during process execution.
Consider for example data object pn representing the piece number in the order-
to-delivery process and compliance rule c8. Let us assume, for example, that the
domain of pn ranges from 1 to 500,000. Then, naive exploration of the data
dimension means that process model P is veri�ed against c8 for each possible
state of pn between 1 and 500,000. This, in fact, means that the complexity
of data-aware compliance checking is 500,000 times the complexity of the non-
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Fig. 2. The overall process of automatic abstraction based on the analysis of the process
model and the compliance rules to be veri�ed

data-aware case. Hence, to enable e�cient compliance checking, strategies are
required that keep the complexity manageable. A further challenge is that data-
aware compliance checking also necessitates advanced concepts for user feedback.
This is necessary since compliance violations that occur only under certain data
conditions are often not as obvious as compliance violations at activity level.

Contributions. Although the veri�cation of process models has been addressed
by a multitude of recent approaches, data-awareness has not been su�ciently
supported yet. Only few approaches consider the data perspective at all. While
addressing data-aware compliance rules, [5] only enables data conditions that do
not correlate. However, as the order-to-delivery process in Fig. 1 shows, data-
based gateways may also contain conditions that are correlated. For example,
the data conditions pn > 100,000 and pn > 150,000 in P correlate (i.e., pn >

150,000 implies pn > 100,000 but not vice versa). In addition, these conditions
correlate with data condition pn > 80,000 ("piece number beyond 80,000")
resulting from compliance rule c8. The limitation to only non-correlating data
conditions facilitates the compliance checking problem. However, as our examples
indicate, this can be too restrictive for many practical applications.

While existing approaches mainly focus on the compliance checking part (cf.
Fig. 2 A), this paper focuses on the pre- and postprocessing steps (cf. Fig. 2
B) that enable data-aware compliance checking by tackling the state explosion
problem. The latter can occur when fully exploring the data dimension dur-
ing compliance checking. In this paper, we introduce abstraction strategies to
reduce the complexity of data-aware compliance checking. This is achieved by
abstracting from concrete states of data objects to abstract states. Based on the
compliance rules to be checked our approach automatically derives an abstract
process model and abstract compliance rules. The latter enable more e�cient
exploration of the data dimension when used as input to the actual compli-
ance checking (cf. Fig. 2 B). Moreover, we discuss how a concretization can be
accomplished to provide users with intelligible feedback in case of compliance
violations. Our approach is �nally validated by a powerful implementation, the
SeaFlows compliance checker.

This paper is structured as follows. Related work is discussed in Sect. 2. Fun-
damentals are introduced in Sect. 3. Sect. 4 discusses how the abstract process
model and corresponding abstract compliance rules are derived. The applica-



tion of our abstraction approach and the proof-of-concept implementation are
discussed in Sect. 5. We close with a summary and an outlook in Sect. 6.

2 Related Work

Due to its increasing importance compliance veri�cation has been addressed by
numerous approaches. Most of them focus on the compliance checking part (cf.
Fig. 2 A). They propose a variety of techniques to accomplish the veri�cation of
process models against imposed compliance rules, such as model checking [2, 6�9]
or the analysis of the process model structure [3, 10]. In our previous work in the
SeaFlows project, we addressed the support of activity-level compliance rules
throughout the process lifecycle [4, 10]. So far, however, only few approaches
have addressed data-awareness. The modeling of data-aware compliance rules
is addressed by [4, 5, 7, 11]. Graphical notations that are mapped to logical for-
mulas (e.g., in linear temporal logic) are introduced in [4, 5, 7]. Basically, these
approaches support the enrichment of activity-related compliance rules by data
conditions. Our work in this paper apply these modeling approaches, since we do
not focus on how to model data-aware compliance rules but rather on enabling
their veri�cation.

[12] introduce an approach for semantically annotating activities with pre-
conditions and e�ects that may refer to data objects. In addition, [12] discusses
an e�cient algorithm for compliance veri�cation using propagation. In contrast
to this approach, we focus on deriving suitable abstraction predicates from pro-
cess models and compliance rule. Further [5] allows for verifying process models
against compliance rules with data conditions based on linear temporal logic
(LTL). However, as previously discussed [5] only addresses data conditions that
do not correlate. This is for example not su�cient to support proper veri�ca-
tion of the order-to-delivery process from Fig. 1 against compliance rule c5 from
Table 1, since we have to deal with the correlation of two data-based exclusive
gateways both refering to data object pn. In this paper, we propose strategies
to deal with such cases. By applying abstraction techniques, our approach ac-
complishes the basis to apply approaches such as [5].

Orthogonal strategies to reduce complexity of compliance checking are dis-
cussed in [6, 7]. [7] sequentializes parallel �ows in order to avoid analyzing irrele-
vant interleavings. [6] limits the complexity of compliance checking by reducing
process models to the relevant parts. These abstraction strategies operating at
the structural level are orthogonal to our abstraction approach. They can be
applied to complement the approach introduced in this paper.

3 Fundamentals

Independently of the actual technique applied to accomplish compliance check-
ing, data-awareness means that in addition to the control �ow dimension the
data dimension must be explored during compliance checking. However, this can
lead to state explosion since a potentially huge number of states of data objects



has to be explored. In Sect. 4, we show how the state explosion can be avoided
by applying suitable abstraction strategies. Before discussing these, we provide
some fundamentals.

A process domain representing a particular business domain typically consists
of process artifacts (e.g., activities and events). The process domain notion in
Def. 1 provides the basis for both process models and compliance rules.

De�nition 1 (Process Domain). A process domain D is a tuple with D =
(A,E,O,D, dom) where

� A is the set of activity types,
� E is the set of event types,
� O is the set of data objects,
� D is the set of data domains, and
� dom : O→ D is a function assigning a data domain to each data object.
� We further de�ne ΩD :=

⋃
D as the set of all values (i.e., data states) of D.

Example 1. Consider process model P from Fig. 1. The related process domain
may be D = (A,E,O,D, dom), where
A := {process order, 10% discount, check solvency, assess order, ...}
E := {receive order, confirmation of receipt, confirm order, ...}
O := {pn, c, a}
D := { N = {0, 1, 2, ...} , {new, normal, premium} ,B = {true, false} }
dom(pn) := N; dom(c) := {new, normal, premium}; dom(a) := B

Data-Aware Compliance Rules. It is not our intention to introduce an ap-
proach to model data-aware compliance rules. Hence, we rely on existing work
such as [4, 5, 13]. Since our approach is not restricted to a particular compliance
rule modeling language, we come up with a general notion of data-aware com-
pliance rules in Def. 3 that is applicable to a multitude of existing approaches.

Compliance rules typically contain conditions on activities and events of cer-
tain types (e.g., cf. compliance rules c1 to c4). We denote these as type conditions.
In addition to type conditions, data-aware compliance rules contain conditions
on the states of data objects, so-called data conditions. Formalization of type
conditions and data conditions is given in Def. 2.

De�nition 2 (Type Condition, Data Condition). Let D = (A,E,O,D, dom)
be a process domain and let t ∈ A∪E be an activity type or an event type. Then

� a type condition is an expression of the form: (type = t).

Let further o ∈ O be a data object, v ∈ dom(o) a certain value of the related
domain, and ⊗ ∈ {=, 6=, <,>,≤,≥, . . .} a relation. Then

� a data condition is an expression of the form: (o⊗ v).

Moreover, we de�ne:

� TCD ⊆ { (type = t) | t ∈ A ∪ E} as the set of all type conditions over D.
� DCD ⊆ { (o ⊗ v) | o ∈ O, v ∈ dom(o),⊗ := {=, 6=, <,>, ...}} as the set of

all data conditions over D.



Example 2. Consider compliance rule c9 from Table 1. Here, c9 yields the
following type conditions (TCD) and data conditions (DCD) where pn ∈ O is
the data object representing the piece number and c ∈ O is the data object
representing the customer status (cf. Fig. 1).

Phrase Corresponding condition

After con�rming an order (type = confirm order) ∈ TCD
of a non-premium customer with (c 6= premium) ∈ DCD
piece number of at least 125,000 (pn ≥ 125,000) ∈ DCD
premium status should be o�ered (type = offer premium status) ∈ TCD
to the customer

Finally, a general data-aware compliance rule is de�ned as follows:

De�nition 3 (Data-Aware Compliance Rule). Let D = (A,E,O,D, dom)
be a process domain. Then, a data-aware compliance rule is a tuple c = (C,∆),
with:

� C = TCc ∪DCc is �nite set of conditions that is partitioned into the set of
type conditions TCc ⊆ TCD and the set of data conditions DCc ⊆ DCD.

� ∆ an expression de�ning temporal (ordering) and logical relations over the
conditions in C.

Further, we de�ne:

� conditionsCRc : O → 2DCc , o′ 7→ {(o⊗ v)|o = o′ ∧ (o⊗ v) ∈ DCc} as a
function returning all data conditions of c that a�ect a certain data object.

Example 3. To illustrate our examples, we use linear temporal logic (LTL).
LTL is applied to model compliance rules by numerous approaches [5, 13]. Note,
however, that our approach is not restricted to a particular compliance rule mod-
eling language. Using LTL we can model c9 from Table 1 as follows:
c9 : G ( ((type = confirm order) ∧ (pn ≥ 125,000) ∧ (c 6= premium))

⇒ F (type = offer premium status) )

According to Def. 3 this means c9 = (C9, ∆9), where
C9 = {tc1 = (type = confirm order), tc2 = (type = offer premium status)

dc1 = (pn ≥ 125,000), dc2 = (c 6= premium)}
∆9 = G ( (tc1 ∧ dc1 ∧ dc2) ⇒ F tc2)
TCc9 = {(type = confirm order), (type = offer premium status)}
DCc9 = {(pn ≥ 125,000), (c 6= premium)}

Based on the above notion of data-aware compliance rules, we later show how
automatic abstraction is conducted to enable data-aware compliance checking.

Processes. A process model, commonly represented by a process graph, can
be composed using activities, events, and data objects from a process domain.
Since our approach is not restricted to a particular process de�nition language,
we provide a general de�nition of process graphs in Def. 4 following common
notations, such as BPMN:



De�nition 4 (Process Graph). Let D = (A,E,O,D, dom) be a process do-
main. Then, a process graph is a tuple with P = (N,F,O, I, type, con), where:

� N = AP ∪EP ∪GP is a �nite set of nodes that is partitioned into the set of
activities AP , the set of events EP , and the set of gateways GP .

� F ⊆ N ×N represents the sequence �ow relation between nodes.
� O ⊆ O is a �nite set of data objects.
� I ⊆ O×N ∪N ×O is the data �ow relation between nodes and data objects.
� type : AP ∪ EP → A ∪ E is a function assigning an activity type to each

activity in P and an event type to each event in P , where holds:
a ∈ AP ⇒ type(a) ∈ A and e ∈ EP ⇒ type(e) ∈ E

� con : F → 2DCD is a function assigning a (maybe empty) set of data condi-
tions to each sequence �ow.

Further, we de�ne:

� DCP := {(o⊗ v)|∃f ∈ F : (o⊗ v) ∈ con(f)} ⊆ DCD as the set of data con-
ditions in P .

� conditionsPGP : O → 2DCP , o′ 7→ {(o⊗ v)|o = o′ ∧ (o⊗ v) ∈ DCP } as a
function returning all data conditions of P on the associated data object.

Example 4. Process model P from Fig. 1 contains the following data conditions
over pn:
conditionsPGP (pn) = {(pn ≤ 50,000), (pn > 50,000), (pn ≤ 100,000),

(pn > 100,000), (pn ≤ 150,000), (pn > 150,000)}

4 On Enabling Data-Aware Compliance Checking

As discussed the full exploration of the data dimension can lead to state ex-
plosion, when conducting compliance checking. The basic idea to achieve more
e�cient data-aware compliance checking of process models and to limit the state
explosion problem is to abstract from states that are irrelevant for the veri�ca-
tion of a particular compliance rule. Consider, for example, compliance rule
c8 from Table 1. Concerning the satisfaction/violation of c8 it is not relevant
whether pn = 120,000, pn = 120,001, pn = 120,002, . . ., or pn = 130,000

holds when executing the order-to-delivery process from Fig. 1. Hence, it is not
necessary to di�erentiate between these cases when verifying P against c8. These
potential states of pn, namely 120,000, . . ., 130,000, could be treated as one
"merged" state. The merged state can be described by the abstraction predicates
(pn ≥ 120,000) ∧ (pn ≤ 130,000) and be applied to data-aware compliance
checking (e.g., by applying model checking techniques). Other irrelevant states
of pn can be merged in a similar manner to derive a more compact set of states
that serve as domain of pn in the abstract process model. In fact, a di�erentiation
between the concrete states of pn beyond 100,000 is not necessary for verifying
P against c8. Hence, all states of pn beyond 100,000 can be merged to one
abstract state pn > 100,000.



In general, by abstracting from states of data objects irrelevant for the ver-
i�cation of a compliance rule, less cases have to be explored in the veri�cation
procedure. This helps to reduce complexity of compliance checking. However,
abstracting from states must not lead to incorrect veri�cation results. Consider,
for example, again the order-to-delivery process P and compliance rule c8 from
Table 1. To verify particularly c8 it is not su�cient to only consider whether
pn > 100,000 or pn ≤ 100,000 holds. The challenge of automatic abstraction
is to identify adequate abstraction predicates that enable us to "merge" states
wihtout falsifying veri�cation results

In literature, abstracting from concrete states to abstract predicates is com-
mon practice for dealing with state explosion [14�17]. This is particularly relevant
in engineering domains, where large systems have to be veri�ed against safety
properties. In many applications, abstraction constitutes a task that requires
human interaction. In particular, domain experts are required to �nd the right
abstraction. By analyzing the dependencies between a process model P and a
compliance rule c our abstraction approach automatically derives an abstract
process model Pabstract and an abstract compliance rule cabstract. These can
serve as input to the actual compliance checking. We want to �nd conservative
abstraction predicates such that holds: P |= c⇔ Pabstract |= cabstract

The data-based abstraction introduced in this paper can be combined with
structural abstraction strategies (cf. Sect. 2) to achieve further reduction of the
compliance checking complexity.

Automatic Abstraction for Data Conditions

To achieve automatic abstraction, we have to accomplish three steps:

1) Identify data objects potentially relevant to c and the data conditions on
them in c and in the data-based gateways of P

2) Identify abstraction predicates for relevant data objects
3) Application of abstraction predicates to obtain Pabstract and cabstract

Altogether, the states of each data object o can be represented by a set of
abstraction predicates beeing relevant for proper veri�cation of the associated
compliance rule over the process model. This is accomplished by analyzing the
data conditions in the process model and in the compliance rule. For the iden-
ti�ed set of abstraction predicates we can identify combinations of predicates
whose conjunction is satis�able (i.e., evaluated with true). Each such combina-
tion represents a potential abstract state of the corresponding data object o:

De�nition 5 (Abstraction for Data Conditions). Let D = (A,E,O,D, dom)
be a process domain, P = (N,F,O, I, type, con) be a process model, and c be a
compliance rule over D. Let further o ∈ O be a data object in P . Then,

� predicatescP : O → DCD, o 7→ predicatescP (o) with
predicatescP (o) := conditionsCRc(o) ∪ conditionsPGP (o) is a function
returning the set of all data conditions in c and P that a�ect o and, thus,
constitute relevant abstraction predicates.



� solve : 2DCD × ΩD → 2DCD , (C, v′) 7→ solve((C, v′)) with solve(C, v′) :=
{(o⊗ v) | (v′ ⊗ v) = true ∧ (o⊗ v) ∈ C} is a function returning the partic-
ular subset of predicates that are satis�ed by v.

� allocationscP : O → 22
DCD , o 7→ allocationscP (o) with

allocationscP (o) := {S | ∃v ∈ dom(o) : S = solve(predicatescP (o), v)} is a
function returning a set of sets of predicates such that for each value v ∈
dom(o) there is a set in allocationscP (o) containing all predicates over o that
are satis�ed by v.

Note that for deriving the abstraction predicates predicatescP (o) not only
the data conditions of P , but also the data conditions of c are considered. Based
on the predicates predicatescP (o) for a data object o, we can narrow the data
domain of o which has to be explored during data-aware compliance checking.
In particular, instead of exploring the complete domain of o, which may cause a
state explosion, only the corresponding set of abstract states (i.e., the elements
of allocationscP (o)) has to be explored in the compliance checking procedure.
Due to the Def. 5 |allocationscP (o)| ≤ |dom(o)| always holds. For a large data
domain dom(o) typically, allocationscP (o) contains signi�cantly less elements.
Hence, to be able to narrow the domain of o to the set of abstract states of o
being relevant for the veri�cation of the actual compliance rule is a crucial step
to avoid the state explosion problem.

Dealing with Large Domains. Although it is easy to derive allocationscP (o)
for small �nite domains by calculating solve(C, v) for each v ∈ dom(o), this
procedure is not feasible for large data domains, such as D = N. However, if
D is a totally ordered domain (e.g. N, Z, or R) and all conditions (o ⊗ v) ∈
predicatescP (o) are using ordering relations ⊗ ∈ {<,≤,=,≥, >, 6=}, as it is the
case with pn and corresponding data conditions, we can e�ciently calculate
allocationscP (o) as follows:

First, we determine (vi)1≤i≤n =< v1, . . . , vn > the ascendingly sorted �nite
sequence of such values v with ∃(o⊗v) ∈ predicatescP (o) without any multiple oc-
currences. Now it is su�cient to limit the calculation of solve(predicatescP (o), v)
to the following cases of v

1. the values v1, . . . , vn that are the limits of the relevant abstraction predicates,
2. for any two successive values vi and vi+1, a value wi with v1 < wi < vi+1,
3. a value s < v1 smaller than any vi and b > vn bigger than any vi

Obviously, it is su�cent to use one wi with vi < wi < vi+1, since all values of
this interval exactly ful�ll and violate the same conditions of predicatescP (o).
For the same reason the use of one s and one b is su�cent. Note that sometimes
there may be no s ∈ D with s < v1 or no wi ∈ D with vi < wi < vi+1 (i.e.
D = N and v1 = 0, v2 = 1). Then, the corresponding cases have to be ignored.

The calculation of allocationscP (o) may also be delegated to a SMT-Solver
(e.g., Yices [18]) that is even able to deal with large domains and conditions
using linear arithmetics.



Example 5. Consider process model P from Fig. 1 and compliance rule c9 from
Table 1 over process domainD. As described above, to calculate allocationsc9P (pn)
it is su�cient to consider 50,000, 100,000, 125,000, 150,000 as well as
75,000, 112,500, 137,500 and 49,999, 150,001. So we receive the follow-
ing abstraction predicates for the data object pn.
predicatesc9P (pn) = conditionsCRc9(pn) ∪ conditionsPGP (pn)

= {(pn ≥ 125,000)} ∪ {(pn ≤ 50,000), (pn > 50,000), (pn ≤ 100,000),
(pn > 100,000), (pn ≤ 150,000), (pn > 150,000)}

= {(pn ≥ 125,000), (pn ≤ 50,000), (pn > 50,000), (pn ≤ 100,000),
(pn > 100,000), (pn ≤ 150,000), (pn > 150,000)}

allocationsc9P (pn) = {α, β, γ, δ, ε}, where
α := {(pn ≤ 50,000), (pn ≤ 100,000), (pn ≤ 150,000)}
β := {(pn > 50,000), (pn ≤ 100,000), (pn ≤ 150,000)}
γ := {(pn > 50,000), (pn > 100,000), (pn ≤ 150,000)}
δ := {(pn ≥ 125,000), (pn > 50,000), (pn > 100,000), (pn ≤ 150,000)}
ε := {(pn ≥ 125,000), (pn > 50,000), (pn > 100,000), (pn > 150,000)}

The sets of predicates in allocationsc9P (pn) constitute properties describing
the "merged" sets of original states of pn. {α, β, γ, δ, ε} may be used as abstract
data domain of pn for veri�cation against c9. During compliance checking of
P against c9, only these abstract states have to be explored. Compared to the
original domain of pn, this constitutes a signi�cant reduction of the complexity
for exploring the data dimension.

In Def. 6 we transfer the above results into process domain, process graph
and compliance rule and, therefore, formalize the abstract process domain, the
abstract process graph, and the abstract compliance rule (cf. Fig. 2).

De�nition 6 (Abstract Process Domain, Abstract Process Graph, Ab-
stract Compliance Rule). Let D = (A,E,O,D, dom) be a process domain with
a process graph P = (N,F,O, I, type, con) and a compliance rule c = (C,∆).
The abstract process domain Dabstract of D with respect to P and c is de�ned as
Dabstract = (A,E,O,Dabstract, domabstract), where

� Dabstract := {allocationscP (o)|o ∈ O}
� domabstract(o) := allocationscP (o)

Then the abstract process graph Pabstract of P with respect to c is de�ned as
Pabstract = (N,F,O, I, type, conabstract), where for f ∈ F holds

� conabstract(f) := { (′′(o⊗ v)′′ ∈ o) | ′′(o⊗ v)′′ ∈ con(f) }

The abstract compliance rule cabstract of c with respect to P , is de�ned as cabstract =
(Cabstract, ∆) where:

� Cabstract := TCc ∪ { (′′(o⊗ v)′′ ∈ o) | ′′(o⊗ v)′′ ∈ DCc) }



Example 6. Consider process model P from Fig. 1 and compliance rule c9
over process domain D (cf. Example 1). Due to space limitation, we apply the
abstraction only for data object pn. Based on Example 5 we obtain the abstract
process domain Dabstract = (A,E,O,Dabstract, domabstract), with

� Dabstract := { allocationsc9P (pn), . . .}
= { {α, β, γ, δ, ε} , . . . }

� dom(pn)abstract := allocationsc9P (pn) = {α, β, γ, δ, ε}

The corresponding abstract process graph Pabstract = (N,F,O, I, type, conabstract)
is depicted in Fig. 3). Further, we obtain the corresponding compliance rule
cabstract = (Cabstract, ∆), where:
Cabstract := TCc ∪ { ((o⊗ v) ∈ o) |(o⊗ v) ∈ DCc)}

= {tc1 = (type = confirm order), tc2 = (type = offer premium status)
dc1abstract = ((pn ≥ 125,000) ∈ pn), . . . }

5 Analyis and Implementation

We applied our approach to enable data-aware compliance checking of process
models without running into intractable state explosion problems. To accomplish
the actual compliance checking step (cf. Fig. 2 A), we applied model checking
techniques (e.g., by using SAL [19]). Model checking is applied to compliance
veri�cation by numerous approaches in literature [2, 6, 7]. It comprises techniques
for automatic veri�cation of a model speci�cation against prede�ned properties.

Process model P

x

check
solvency

x

x

enable 
tracking

x

x
x

10% 
discount[c = premium]

x
[c ≠ premium]

x

[a = false AND
(pn > 50,000) є pn]

x

receive 30% prepayment

x

+

+

x

shipping 
insurance

x

receive order

process
order

quality test

split order

c
customer

[new, normal, 
premium]

x

offer premium 
status 

x

+

+

x

confirmation of receipt

x

a
approved
[true, false]

decline order

comfirm order

confirm shipping

pn
piece number

send invoice

ship goods

local 
production

assess 
order

[(pn > 100,000) є pn]

[(pn ≤ 50,000) є pn]

[(pn > 150,000) є pn]

[(pn ≤ 150,000) є pn]

[(pn ≤ 100,000) є pn]

[a = true OR 
(pn ≤ 50.000) є pn]

[(pn > 100,000) є pn]

[(pn ≤ 100,000) є pn]

[(pn > 100,000) 
є pn]

[ c = premium OR (pn ≤ 150,000) є pn]

[ c ≠ premium AND 
(pn > 150,000) є pn]

[(pn ≤ 100,000) є pn]

[(pn > 50,000) є pn]

local 
production

outsourced 
production

abstract

Fig. 3. The abstract order-to-delivery process after applying abstraction to pn



SeaFlowsSeite 2

process domainprocess 
model

data-aware
compliance rule

counterexample
process trace

automatic 
abstraction

abstraction
mappings

model compliance rule process trace

automatic
concretization

abstract process domainabstract
process model

abstract data-aware
compliance rule

counterexample
abstract process trace

transformation retransformationtransformation
mappings

state transition system

i

state transition
system

temporal-logic
property

i

counterexample
state trace

conversion

SAL
ifi d l h k

conversion

SAL input file

parsing

counterexample
SAL output stream

conversion
mappings

specific model checker

model checking with SAL

p SAL output stream

true
false

Fig. 4. Data-aware compliance checking and generation of counterexample

In order to apply model checking, we have to provide a state transition system
and a logic property model to the model checker (cf. Fig 4). Therefore, we
transform the abstract process model into a state representation and the abstract
compliance rule into a logic property. To provide both to the model checker, a
conversion with respect to the model checker's speci�c syntax and restrictions is
required. The model checker then performs automatic exploration of the state
space and checks for conformance to the compliance rule. In case of a violation,
the model checker provides an incompliant execution trace as counterexample.

As previously discussed, a major challenge of data-aware compliance checking
is to provide meaningful feedback in case of compliance violations (e.g., data
conditions under which a violation occurs). To tackle this we have to memorize
the steps taken during the transformation procedure and we need to conduct a
retransformation. Fig. 4 shows the steps accomplished by our implementation.

Our proof-of-concept implementation, the SeaFlows compliance checker, is
implemented as Java-plug-in for the Arista�ow Process Template Editor which
is part of the Arista�ow BPM Suite [20]. 17.000 lines of code and the class
hierarchy comprising about 70 interfaces and 210 classes indicate the complexity
of the implementation. The SeaFlows compliance checker enables modeling of
LTL-based data aware compliance rules using a tree-based editor. Automatic
abstraction as discussed in Sect. 4 is supported for domains of numbers. The
SeaFlows compliance checker conducts the automatic abstraction, transforms a
AristaFlow process model into a state representation, and pass it to the model
checker SAL [19]. Counterexamples obtained from SAL can be shown as process
logs or visualized as process graph as shown in Fig. 5.

6 Summary and Outlook

Enabling process-aware information systems to support the compliance of pro-
cess models with imposed data-aware compliance rules can be regarded as one
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Fig. 5. Arista�ow Process Template Editor with the SeaFlows compliance checker plug-
in for data-aware compliance rule checking

step towards installing business process compliance management in practice.
In this paper, we introduced an abstraction approach that enables data-aware
compliance checking in a more e�cient manner by limiting the state explosion
problem that can occur when fully exploring the data dimension during veri�ca-
tion. The approach serves as preprocessing step to actual compliance checking
and provides the basis for e�cient application of existing compliance check-
ing algorithms. Being indepedent of a particular process meta-model and of a
particular compliance rule modeling language, our approach is applicable to a
variety of existing approaches. To accomplish data-aware compliance checking in
a comprehensive manner, we also address the challenge of providing users with
intelligible feedback in case of compliance violations. To our best knowledge, we
are the �rst to apply automatic data abstraction in the context of compliance
checking of business process models. In future, we will further research on au-
tomatic abstraction for other types of domains, also considering relationships
among them. Further we will go on in re�ning the veri�cation output to provide
more intelligible feedback to users.
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