
SOCA
DOI 10.1007/s11761-010-0062-7

SPECIAL ISSUE PAPER

MaDe4IC: an abstract method for managing model dependencies
in inter-organizational cooperations

Lianne Bodenstaff · Andreas Wombacher ·
Manfred Reichert · Roel Wieringa

Received: 4 March 2010 / Revised: 17 May 2010 / Accepted: 31 May 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Inter-organizational cooperations are complex in
terms of coordination, agreements, and value creation for
involved partners. When managing complex cooperations, it
is vital to maintain models describing them. Changing one
model to regain consistency with the running system might
result in new inconsistencies. As a consequence, this main-
tenance phase grows in complexity with increasing number
of models. In this context, challenges are to ensure consis-
tency at design time and to monitor the system at runtime,
i.e., at design time, consistency between different models
describing the cooperation needs to be ensured. At runtime,
behavior of the software system needs to be compared with
its underlying models. In this paper, we propose a structured
and model-independent method that supports ensuring and
maintaining consistency between running system and under-
lying models for inter-organizational cooperations.

This research has been supported by the Dutch Organization for
Scientific Research (NWO) under contract number 612.063.409.

L. Bodenstaff (B) · A. Wombacher · R. Wieringa
University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands
e-mail: l.bodenstaff@utwente.nl

A. Wombacher
e-mail: a.wombacher@utwente.nl

R. Wieringa
e-mail: r.j.wieringa@utwente.nl

M. Reichert
University of Ulm, James-Franck-Ring, 89069 Ulm, Germany
e-mail: manfred.reichert@uni-ulm.de

Keywords Consistency · Inter-organizational models

1 Introduction

Model-based approaches are used in various fields in
computer science like software development, information
systems engineering, and e-business development [23,31,
55]. Many of these approaches support several models, each
emphasizing one specific aspect or part of the described soft-
ware system. In this paper, we consider such model-based
approaches for realizing inter-organizational cooperations.
For example, we consider Web service compositions and
e-business cooperations. Both are often complex in terms of
coordination, agreements and value creation for the involved
partners.

Due to the complex nature of inter-organizational
cooperations, usually, a variety of models is used to specify
the information system to be developed. For example, finan-
cial benefits are captured in a business model [39], while
coordination details are specified in a process model (see
[11] or [13]). Using several models to represent one complex
information system has many advantages. Especially, model
understandability is enhanced since each model only repre-
sents some of the information about the system to be devel-
oped. As a result, complexity is reduced for decision makers
interpreting the models as well as for engineers developing
and maintaining them; especially for cooperations in which
different partners with different business goals need to come
to an agreement, such multi-model approach is beneficial. As
typical example of inter-organizational cooperation consider
product and change management where different partners
need to agree on a particular product change. For example, an
automotive vendor and its suppliers need to agree on changes
in the design of a car [54].

123

SOCA

1.1 Problem statement

Although using several models to represent one complex
system enhances usability when developing a specific model,
new challenges arise. Modeling complexity is reduced by
developing several models at design time, but these models
together form the basis for the running cooperation, and in
the end the running information system; i.e., system imple-
mentation must represent the combination of these different
models. Therefore, it is of fundamental importance that the
different models describe the same system, i.e., they are con-
sistent with each other—this constitutes our challenge. The
challenge is to ensure consistency between different models
describing one system before implementation. We refer to
this as the problem of ensuring design time consistency.

If the different models describing a particular coopera-
tion are consistent with each other, there is a proper basis for
implementing the information system. However, at runtime
the behavior of the system might be different than agreed
upon. Such deviant behavior can be caused by implementa-
tion errors. Another major cause is partners in the cooperation
that do not behave according to the agreement. For exam-
ple, business partners might not pay in time, or agreed upon
response times are violated. Furthermore, deviant behav-
ior might be caused by events that cannot be controlled by
the business partners. Usually, such behavior (e.g., customer
behavior) can be merely estimated when developing the mod-
els. In all these cases the running system behaves differently
from the agreed upon models, i.e., the running system and the
models describing it are inconsistent. We refer to this as run-
time inconsistency. The latter is not always problematic, but
typically some action is taken when inconsistencies occur.
The challenge is to monitor the system such that inconsis-
tencies with models it relies on can be detected.

Furthermore, when managing complex cooperations, it is
vital to maintain the models describing them to keep an over-
view on the behavior and successfulness of the cooperation.
Especially this maintenance phase is challenging since the
different models are tightly connected and describe differ-
ent perspectives of the same system. Changing one model
to regain consistency with the running system might result
in new inconsistencies between the different models. As a
consequence, this maintenance phase of the models is time
consuming and grows in complexity with increasing number
of models describing the system.

The problem of checking consistency between related
models, of checking consistency between a running system
and its underlying models, and of managing the running sys-
tem by maintaining consistency between models and running
system is not new. Concerning design time consistency, there
exist multi-model approaches, for example, Unified Model-
ing Language (UML) [32] and Open Distributed Process-
ing (ODP) [9]. Both aim at consistent model development.

However, these approaches are model-specific and are not
applicable to other modeling languages. Especially when
using different modeling languages that are not directly
related, developers do not have such support. Further-
more, there exist some approaches that support multi-model
development, but they stay on a high level explaining what
should be done rather than how this should be accomplished
[37,48].

Concerning runtime consistency, there exist monitoring
approaches that support consistency checking of the running
system and the models describing it (e.g., [44,46]). However,
these approaches mainly focus on monitoring the running
system against one model, neglecting dependencies between
this model and others. Furthermore, the most challenging and
dynamic part of the problem, i.e., maintaining consistency
between models and running system, is even less supported
in such consistency approaches.

1.2 Contribution

The main problem in ensuring and maintaining consistency
between a set of models is that these models are interre-
lated and, therefore, changing one model might affect sev-
eral other models. Therefore, the main challenge is to first
identify the exact nature of relations between the models,
and second to identify effects changes in one model have
on the others. In this context, this paper proposes a method
that supports ensuring and maintaining consistency between
models and running system for inter-organizational coo-
perations. Our goal is to provide a structured and model-
independent approach to check and maintain consistency.

In Sect. 2 we position our research by discussing the con-
ceptual frame and by providing a categorization of models
and consistency. We continue in Sect. 3 with a thorough prob-
lem analysis for ensuring and maintaining consistency in
inter-organizational models. The state of the art is reviewed
in the light of this analysis in Sect. 4. Section 5 introduces
our comprehensive MaDe4IC method for MAnaging DEpen-
dencies in Inter-organizational Cooperations. We discuss in
Sect. 6 how we evaluate our method. We conclude this paper
with a summary in Sect. 7.

2 Terms used in our MaDe4IC method

The proposed approach is model independent. Since related
work is usually based on a specific model providing refer-
ences on used terms is misleading. Detailed information and
references to the individual terms are available in Sect. 4.

2.1 Inter-organizational cooperation

In this paper, we refer to inter-organizational cooperations
where a cooperation is some voluntary interaction between

123

SOCA

two or more partners. Such cooperation can be short term
and market based, but also long term and of collaborative
nature. Models describing these cooperations are typically
conceptual models but can be expressed in a variety of lan-
guages like UML Activity Diagrams [38], Petri Nets [27], and
BPMN [56]. An inter-organizational model as addressed in
our method is a conceptual model that focuses on exchanges
(i.e., interactions) between different partners. These kinds
of models omit representing internal behavior of the part-
ners involved. Furthermore, it assumes that communication
and exchange of information between partners is (partly)
dependent on information technology. Typically, such infor-
mation technology enabled business models are referred to as
e-commerce business models (cf. [50]).

2.2 Consistency

Models of inter-organizational cooperations are used for
consistency checking at design time as well as maintain-
ing consistency during runtime of the system. Consistency
is checked and maintained across different models [1] and
within models [43]. Consistency can be defined in many
ways. Classical Aristotelian logic provides us with a seman-
tic notion of consistency [47]:

“Two or more statements are considered to be consis-
tent if they are simultaneously true under some inter-
pretation.”

In modern logic the syntactic notion for consistency is
defined as follows [30]:

“A set of statements is considered to be consistent to a
certain logical calculus if no formula P ∧ ¬P can be
derived from those statements by the rules of the calcu-
lus, i.e., the statements are free from contradictions.”

Therefore, we define the term ‘consistency’ as the absence
of contradictions. At design time we distinguish between
consistency within models (i.e., intra-model consistency) and
consistency across models (i.e., inter-model consistency).
Consistency is always determined under some interpretation.
A schematic view on the different consistency checks con-
sidered in this paper is given in Fig. 1.

ISIS

Intra-model
consistency Inter-model

consistency

Runtime
consistency

Fig. 1 Intra-model, inter-model, and runtime consistency relations

For intra-model consistency, we assume that the interpre-
tation under which consistency is determined is given by the
definition of the model-specification language. The produced
model needs to be syntactically well formed and meaningful,
i.e., consistent with the specification. Aside from the official
specification, additional constraints on the models can be
formulated in a specific context. For example, one might
want to reduce expressiveness to avoid complex models.
Here, we assume provided models are intra-model consistent
(i.e., well-formed) with respect to their specification.

The challenge in checking inter-model consistency at
design time is defining the proper interpretation under which
these models are considered being consistent. Especially for
models defined on different levels of abstraction, or defined
in different modeling languages, this is not a straightforward
exercise.

During runtime, first consistency is checked between the
running system and an interpretation of each model. Again,
defining this interpretation is a challenge. As a second step,
consistency can be maintained by adapting models or imple-
mentations when contradictions are detected.

2.3 Categorization for models and consistency

Based on the above terms and the study of related work
(Sect. 4), in the following a categorization of different
approaches is given. We distinguish between the type of
models which is considered, the type of consistency which
is ensured, and the way consistency is checked through the
different approaches.

Type of models. We distinguish approaches which han-
dle consistency between different viewpoints on a system
and approaches which handle consistency between differ-
ent partial models of a system. A viewpoint on a system
describes the entire system under development and focuses
on a specific characteristic (e.g., the messages exchanged
between partners). Reduction of complexity in modeling the
system is accomplished by leaving out those aspects of the
system that do not belong to the viewpoint characteristic.
For example, one viewpoint might be the cost perspective
of the cooperation, while another one describes the order in
which messages are exchanged. As opposed to viewpoint
models, partial models describe different parts of the system
in separate models. To reduce complexity, the system under
development is divided into parts. For example, a company
develops separate models for each partner it interacts with.

The distinction between these two approaches is impor-
tant since it influences the consistency relation between the
models. Different viewpoints have a complete overlap in the
modeling domain while their focus is disjoint. The challenge
is to find the exact relation between the different foci. Partial
models might have an overlap in the domain, but this is not a

123

SOCA

complete overlap. The focus of the models, however, might
be equal. For example, two Entity-Relationship diagrams of
which each one describes a part of the system, have the same
focus. In this case, the challenge is to find the relation between
the partial models rather than to find the relation between the
foci.

Since conceptual models that are used for modeling, inter-
organizational cooperations can be both viewpoints and par-
tial models, we look for an approach that checks consistency
for both types.

Type of consistency. We distinguish different types of
consistency. Intra-model consistency considers well-form-
edness of a model. The interpretation used for determining
consistency is according to the requirements set for the spec-
ification language. Inter-model consistency checks consis-
tency between two or more models. The interpretation used
for determining consistency depends on the type of model
used and on restrictions set by the engineer. However, in
this paper, two models are considered as being consistent
with each other if a specification can be found which rep-
resents both models. Homogeneous (i.e., intra-language)
approaches consider models of the same type, while hetero-
geneous (i.e., inter-language) approaches enable consistency
checks between models expressed in different languages.

For modeling inter-organizational cooperations, typical
heterogeneous models are used. Therefore, we look for an
approach that handles such heterogeneity.

Ensuring consistency. Further, we distinguish between dif-
ferent ways of ensuring consistency. Two main options are
to check consistency after models are developed or to ensure
consistency by construction during the development process.
Checking consistency can be done by testing the models with
some model checker, or by finding a translation. Usually
models are translated into a semantically well-defined for-
malism which allows for formal consistency checking. When
translating models, either they are completely translated
or only the overlapping parts between them are translated.
A complete translation is time consuming, while in a partial
translation the overlap between models is first determined.
Especially when dealing with heterogeneous models this
is not straightforward. When consistency is ensured during
model construction, either additional development require-
ments for the models are set or consistency is defined by
relating their meta-models.

Aside from consistency checking, we aim at maintain-
ing consistency during runtime of the system through some
adaptations. Maintaining consistency cannot be done through
construction since this is accomplished at design time.
Maintaining consistency is done at runtime. Therefore, our
approach should allow consistency ensuring through check-
ing rather than through construction.

Model A Model B

ISIS

ELEL check consistency

assume consistency

Model heterogeneity

Alignment with running system

Fig. 2 Consistency relations between models, event logs, and infor-
mation systems

3 The challenge: ensuring and maintaining consistency

We assess the problem of ensuring and maintaining consis-
tency between models and running system by considering
difficulties in identifying relations between models and run-
ning system. The issues presented in this section are the
result of literature study and previous experience in main-
taining consistency of specific models. We discuss model
heterogeneity in Sect. 3.1 (cf. Fig. 2), checking alignment of
the running system with the models describing in Sect. 3.2
(cf. Fig. 2), and we analyze issues when maintaining such
systems in Sect. 3.3.

3.1 Model heterogeneity

Different models have a different purpose and are, therefore,
often denoted in different modeling languages. Checking
consistency between such heterogenous models is a diffi-
cult process. We identify heterogeneity problems that make
it hard to identify overlap and dependencies across models.
We distinguish between syntactic, semantic and pragmatic
heterogeneity.

3.1.1 Syntactic heterogeneity

When comparing models described in different languages,
the first challenge is to look at the relation between the con-
structs of the languages. For example, an arrow in one lan-
guage might be used to describe data flow, while in another
one it denotes event flow. By comparing the syntax (i.e., the
structure) of the different languages, relations and depen-
dencies between them can be identified. These syntactic
characteristics need to be identified by hand. The challenge
is to identify both matching and non-matching concepts.
Typically, conceptual modeling languages use concepts and
relations between concepts to structure the world. Often,
these concepts and relations appear to match ones in another
language. However, usually there exist subtle differences
between them, which need to be identified.

123

SOCA

3.1.2 Semantic heterogeneity

Semantic heterogeneity is a broad research area closely
related to ontology matching (e.g., [24,36,40]), where the
challenge is to find a match between an ontology used in one
model and the one used in another model. A common prob-
lem is to identify differently named concepts in two models
referring to the same entity in the cooperation; i.e., to find
coreferences within the different models. For example, one
model might use the term “seller” where another one uses
the term “provider”. Another common problem is to identify
homographs where one semantic concept is used in differ-
ent models to refer to different entities in the cooperation.
For example, in one model the term “seller” might refer to a
wholesaler in the cooperation, while in another model it refers
to the retailer that buys from the wholesaler. When modeling
inter-organizational cooperations, semantic heterogeneity is
often due to different model developers, different actors dis-
cussing the models, and different purposes of the models.
Although ontology matching is a well-established research
area, automatic ontology matching constitutes a challenge;
i.e., many matchings are still done by hand which is a tedious
process.

3.1.3 Pragmatic heterogeneity

We refer to heterogeneity between two conceptual models
describing an inter-organizational cooperation not caused by
semantical or syntactical differences as pragmatic heteroge-
neity (cf. [41]).

Perspective & focus. Regarding a particular inter-organiza-
tional cooperation, it is important to provide several models
that together capture the full complexity of the cooperation.
Every model focusses on one aspect of the system. In addi-
tion, the cooperation is described from different perspectives.

First, there is a choice how to focus the model. Typically,
either partial models or viewpoints are used (cf. Fig. 3).
In a partial model, the focus is on part of the cooperation
that is described. For example, one model might describe
interactions between all suppliers in a cooperation, while
another one describes the interactions between one specific
supplier and its customers. In a viewpoint, a particular aspect
of the cooperation is modeled, ignoring all other aspects. For
example, one model might focus on exchanged money, while
another describes exchanged network messages.

Second, there is a choice from what perspective to describe
the model. Typically, either a single actor perspective or a
bird’s eye perspective is taken (cf. Fig. 3). On the one hand, a
model with single actor perspective ignores any information
that is not related to this specific actor in the context of the
considered cooperation. For example, a cooperation where
a group of wholesalers sells goods to a group of retailers

single actorbird’s eye

Perspective

Focus

Information
System Information

System

Viewpoint
model

Viewpoint
model

partial
model

partial
model

Fig. 3 Perspective and focus

might be described by a model depicting the relation between
one specific retailer with wholesalers, ignoring retailers and
wholesalers it has no relation with. On the other hand, a model
from a bird’s eye perspective describes the cooperation with
all involved actors.

Both foci (i.e., partial models and viewpoints) can be
described from both single actor perspective and bird’s eye
perspective. For example, a model might describe network
connections in a cooperation (i.e., viewpoint) from the per-
spective of a specific seller (i.e., single actor perspective).
Another model might describe just the suppliers (i.e., partial
model) as well as all their relations (i.e., bird’s eye view).

Granularity. Typically, a cooperation is described through
models of different granularity. Granularity constitutes the
level of detail with which the cooperation is described
in a model. We distinguish between fine-grained models
(i.e., more specific models) and coarse-grained ones. Coars-
ening a model, i.e., making it less detailed, filters out
details not necessary for the purpose of the model [57].
We distinguish between abstraction and generalization [57]
(cf. Fig. 4).

Coarsening through abstraction is the process of leaving
out details on the cooperation (cf. Fig. 4) to reduce complex-
ity. For example, a company might deliver its products using
a transporting company, while a model describing this pro-
cess might mention the transfer of products from company
to customer, leaving out the transporter.

Coarsening through generalization is the process where
commonalities between concepts or their relations are iden-
tified, and the result is used to describe a set of concepts or
relations (cf. Fig. 4). In this case, no information is left out,
but rather described on a higher level of detail. Common ways

123

SOCA

Coarse grained model

Fine grained model

Coarsening

Abstraction

Generalization

Leave out

information

wholesaler retailer

sellers

Model A’

Model A

Model B

Model B’

Generalize

Fig. 4 Coarsening models

of generalizing in conceptual models for cooperations are (1)
to identify patterns [33] and (2) to identify hierarchies [49].

The challenge at hand is to find relations and dependen-
cies between concepts and relations in models of different
granularity levels. For example, relating high-level concepts
on sales targets in one model with low-level concepts on
network exchanges in another model, is not straightforward.
Another solution is to bring models to the same granular
level by coarsening through abstraction and generalization.
A consequence of coarsening models is loss of information.

Time frames. A third pragmatic heterogeneity factor con-
cerns difference in time frames of models. Each conceptual
model of a cooperation is meant for a specific period of time.
The smallest possible time frame is captured in instance-
based models, while other models describe a period of time.

The problem at hand is to check models for consistency
while their time frames do not match. Consider the example
where average commodity costs are determined per year and
expected profit per month. It is difficult to ensure consistency
since the current expected profit might not fit average com-
modity costs, while the remaining eleven months of profit
might make up for this. Therefore, a choice in handling these
time-frame differences needs to be made, and a first step is
to recognize them.

Estimation and prescription. Since models considered in
this paper describe cooperation as it should be, they are
referred to as prescriptive models. Typically, these models
describe agreements between different actors. For example,
a model might describe that delivery of goods can only be
done after having received payment. This behavior might
be enforced in the implementation. However, besides agree-
ments such models might also contain estimations. Typically,
these estimations are done for that part of the cooperation
which cannot be controlled through implementation, like cus-
tomer behavior. Implementation of these estimations should
enable estimated behavior as well as deviations from it.

Often, it is not obvious whether certain behavior is esti-
mated or agreed upon. For example, a business model might
describe an average of fifty customers per month (i.e., an
estimated average) that should receive their ordered prod-
ucts on average in three days (i.e., an agreed average with the
suppliers). Both averages are depicted as transfers between
actors, leaving the difference between estimated and agreed
average implicit. However, this difference should be imple-
mented and when comparing high-level models (like busi-
ness models) with more detailed, low-level ones that are
directly implemented (like workflow models) this difference
should become apparent.

3.2 Alignment with the running system

Aside from checking consistency between different models
at design time, their consistency with the running system
should be ensured as well (cf. Fig. 2). Checking a model
against the running system is usually done based on event
logs and is typically referred to as conformance checking
[44] or consistency checking [3,19]. In particular, it is cru-
cial to check whether models are implemented accurately,
whether all actors behave according to the agreements made,
and whether estimated behavior is indeed realized. An event
log is consistent with a model if the essential parts of the
model do not contradict reality, i.e., reality does not contra-
dict the content of the event log, or vice versa.

In this paper, we assume that the event log is consistent
with the running system (cf. Fig. 2). Consequently, the event
log is used as correct representation of the running system.
The first challenge is to identify which essential parts in the
model actually appear in the event logs. For example, if esti-
mations are done on the number of customers that register the
coming month on a Web site, this data is detected as events
in event logs. However, estimations on the male-female ratio
of these registrations might not be visible in such log. The
second challenge is to abstract essential information from
event logs, i.e., to abstract information that enables consis-
tency checking between running system and model. Typi-
cally, either the system is adapted in such a way that events
entering the event log have the proper format or the neces-
sary format is reconstructed from raw event logs after they
are created. Although the first option, i.e., adaptation during
runtime, is preferred since it is a one time effort, this is often
not possible because of used software. As a consequence,
event logs are often analyzed after runtime, i.e., necessary
information is reconstructed.

3.3 Maintaining models

When checking consistency, contradictions between model
and running system or between models might be detected.
Ideally, such inconsistencies are resolved by adapting model

123

SOCA

Table 1 Approaches for checking consistency

Type of models Type of consistency Ensuring consistency

Viewpoints Partial Inter-model consistency Intra-model Checking Construction
models consistency

Homogeneous Heterogeneous Testing Translation

Overlap Complete

Mens et al. [32] x x x x

Astesiano and Reggio [4] x x x x

Engels et al. [17] x x x x

xlinkit: Nentwich et al. [34] x x x

Egyed and Medvidovic [16] x x x

Varró and Pataricza [53] x x x x

χbel: Easterbrook and Chechik [14] x x merge

Uchitel and Chechik [52] x x merge

Fradet et al. [22] x x x

Bowman et al. [10,9]; Derrick et al. [12] x x x

Hunter and Nuseibeh [26] x x x

Viewpoints: Finkelstein et al. [20] x x x

or implementation. This is part of model maintenance which
is particulary challenging since models overlap and contain
dependencies. As a consequence, changing one model to
regain consistency could introduce new inconsistencies with
other models. Therefore, not only the inconsistency itself
should be identified, but also its causes and, if possible,
information about effects of changes in the model to regain
consistency. This is typically not provided by multi-model
consistency approaches where inconsistencies are identified,
but no maintenance solutions are provided.

4 Related work

Terminology differs greatly among researchers. However,
related work is done in terminology used in this paper. Table 1
provides an overview of the different approaches discussed.
The table arranges approaches according to the categoriza-
tion discussed in Sect. 2.3. The type of models that are handled
by the approaches is specified in the first part of the table. In
addition, the table shows whether approaches provide mech-
anisms to cope with inter-model and intra-model consis-
tency constraints. Furthermore, some approaches are limited
to homogeneous models, i.e., different models described in
one language, while others are able to handle heterogeneous
models. The last part of the table specifies how consistency
is ensured. Some approaches provide mechanisms to check
consistency through testing, translation of overlapping parts,
or complete translation of models. Three approaches ensure
consistency through construction.

Partial models. Mens et al. [32] target at consistent evolu-
tion of UML models. However, their approach also allows
checking intra-model consistency. Their model checker
implements the different UML metamodels that ensure intra-
model consistency. Relations between metamodels ensure
inter-model consistency. Since their approach implements
existing metamodels (that specify consistency constraints),
this approach is only usable in UML context.

Astesiano and Reggio [4] investigate existence of ambi-
guities and inconsistencies in UML language definition. In
other words, the authors do not aim at solving inconsistencies
between UML diagrams for a particular specification. Their
goal is to develop a consistent UML language. They reduce
inconsistencies by improving the metamodels and they rely
on translating models. Therefore, it is classified as achiev-
ing consistency through construction by improving the meta-
model (cf. Table 1).

Engels et al. [17] develop a method for checking con-
sistency of UML models to decide at which point in time
of the development process UML partial models should be
consistent with each other. In UML, consistency require-
ments exist that specify consistency relations between
different model types (e.g., a statechart has to accept each
stimulus a sequence diagram specifies). Their implementa-
tion (the Consistency Workbench) tests whether two models
are consistent against these consistency rules. They formal-
ize overlapping parts of the models into a common seman-
tic domain. A discovered inconsistency is either tolerated
or resolved. Their approach suits horizontal and evolution
consistency [18]. With evolution consistency the emphasis

123

SOCA

lies on preserving model aspects while it is evolving. This
is achieved by adding implementation rules. This approach
uses several semantic domains for one set of models. There-
fore, relations between constraints across domains are not
expressed. Our method avoids using different semantic
domains to avoid losing these relations.

xlinkit [34] is a method for expressing constraints across
heterogeneous models. It offers semantics that shows links
between two mutually inconsistent elements of different
models. Focus is on identifying inconsistencies rather than
solving them. Nentwich et al. [35] extend this diagnos-
tic method with a repair actions method. Although xlin-
kit is mainly used for UML models the authors argue that
their method is language-independent. Consistency rules are
expressed using a restricted form of first order logic. Further-
more, models are transformed in XML. These restrictions
make xlinkit unsuitable for our problem.

Egyed and Medvidovic [16] provide an approach for het-
erogeneous software development. It enables refining an
architectural design model into UML models. It ensures ini-
tial consistency since it is a unidirectional approach. There-
fore, any updates to UML models or refinement of UML
models into other UML models might interfere with the orig-
inal architectural model. To overcome the problem of further
refinement of UML models and their possible inconsistency
with the overall architectural model, abstractions from con-
crete models to abstract ones (vertical) and from specific
ones to generic ones (e.g., instance to class) are supported.
The authors state the approach is language independent, but
it is only illustrated by transforming C2 models into UML.

Many approaches rely on model transformations using
an intermediate universal language (e.g. XML). A correctly
defined metamodel is crucial to handle such transforma-
tions. [53] tackle several metamodeling problems (causing
inconsistencies) by defining rules in their construction. Their
method which is also applicable to UML. Their multilevel
metamodeling approach overcomes the well-known prob-
lem of concept replication. Heterogeneous refinement is sup-
ported. Although focus is on metamodeling, it facilitates
consistent model development.

Viewpoints. Easterbrook and Chechik [14] develop the
χbel framework for merging state machine models that
describe different behavior. χcheck is a model checker which
analyzes properties of merged models. Multi-valued logics
is used which supports statements like “the majority says”
instead of “true” and “false” (i.e., “everyone says” and “no
one says”). This enables reasoning over inconsistent models
so that stakeholders can discuss different options when merg-
ing models. The merging and reasoning process depends on
relations models have with each other. The approach is suit-
able for homogeneous models and is, therefore, not applica-
ble to our problem.

Uchitel and Chechik [52] develop an approach for merg-
ing partial behavioral models in the same language. Here,
partial refers to partial behavior where models provide
concepts for not yet known behavior. Their approach is suit-
able for viewpoint models. It assumes models being intra-
model consistent, and argues that the result of the merger
should be the minimal common refinement of considered
models. The result is said to be consistent if it is a com-
mon refinement of both models. This approach is suitable
for any state-based behavioral system with formal seman-
tics. It focuses on observable behavior of models rather than
on structural aspects. Restrictions regarding homogeneous
state-based models are not sufficient in the context of our
problem statement.

Fradet et al. [22] develop a method for defining multiple
view architectures. Their approach is formal, suitable for het-
erogeneous models, and not language-specific. The structural
part of each view is represented as uninterpreted graph. Con-
sistency between different views is checked on graphs by
means of an algorithm. The interpretation of graphs is done
through formulating a set of constraints that specifies both
intra-model and inter-model requirements. Although it is rec-
ognized that formalizing all constraints in graphs might be
cumbersome for large models, the authors state that this is
not a problem since their graphs can be expressed in terms of
constraints. Their approach is specifically designed for soft-
ware architectures where focus is on different components
and their connections. More specifically, they focus on the
structural part of the architecture, while our method aims at a
more complete approach where also communication between
different actors is modeled.

Consistency checking is a big concern in Open Distrib-
uted Processing (ODP). ODP provides a method for distrib-
uted development where five viewpoints are proposed for
the modeling phase: enterprise, information, computational,
engineering, and technology. The requirements modeled in
each of these viewpoints should be reflected in the overall
description of the system. Approaches to ensure or check
existence of such a description are proposed by [9,10] and
[12]. They aim at checking and ensuring existence of an
overall system description capturing each viewpoint. Con-
sistency between specifications is defined as the existence of
an internally valid description which represents all require-
ments of the specifications. Consistency is checked between
a viewpoint specification and the overall description, but not
between two viewpoints. As a result, consistency require-
ments between one viewpoint and the overall description
might differ from requirements between another viewpoint
and the overall description. This difference occurs when
viewpoints are described in different languages and have dif-
ferent levels of abstractions. The authors refer to this as unbal-
anced consistency. By doing bilateral consistency checks, it is
difficult to create global consistency: Each viewpoint might

123

SOCA

be consistent with one or more descriptions, but finding a
description which is consistent with all viewpoints is hard.
Therefore, they propose to ensure global consistency by uni-
fication of viewpoints. Two viewpoints are unified after one
of them is translated into the other, or after both of them
are represented in a common semantic domain. By showing
intra-model consistency of the unified model, two viewpoints
are proven to be consistent with each other. Now, a third view-
point can be unified in the same manner with the result of
the previous unification. For our purpose, this approach is
less suitable since it relies on a universal language for all
viewpoints.

Hunter and Nuseibeh [26] propose a logic-based approach
for reasoning in the presence of inconsistencies. They pro-
pose quasi-classical logic, which is a weakened version of
classical logic. It allows reasoning with inconsistencies by
deriving all resolvants of assumptions without allowing triv-
ial derivations. This approach first labels information and
then these labels are propagated through the reasoning pro-
cess. This allows tracking inconsistent information and pro-
vides a better problem analysis. Furthermore, this approach
computes maximally consistent subsets of the inconsistent
information. Obviously, this means that viewpoints are trans-
lated into logic.

The Viewpoints framework, suggested by Finkelstein et al.
[20], and its extensions by Easterbrook et al. [15] and
Finkelstein et al. [21] allow inconsistencies when devel-
oping different viewpoints in order not to kill creativity.
Their method is logic-based and allows checking intra-model
and inter-model consistency. The viewpoints are translated
into logic and tested against predefined consistency and
well-formedness rules. Consistency rules are created per
viewpoint and are locally stored. So, there is no overall con-
sistency checking mechanism. The authors assume that each
developer is concerned with consistency of the viewpoint he
is working on. If a rule is violated, its “owner” determines
whether or not it should be resolved. Focus is rather on bilat-
eral consistency, resulting in a local view. As a result, it is
not calculated what the effects are on relations other than the
bilateral relation that is dealt with.

Overview approaches. Spanoudakis and Zisman [48] intro-
duce a six step approach to maintain consistency in model
development. This is based on unification of several other
approaches and tries to cover all concerns. The six steps are
as follows: detecting overlap, detecting inconsistencies, diag-
nosis of inconsistencies, handling inconsistencies, tracking,
and specification and application of an inconsistency man-
agement policy. An interesting detail in this method is the dis-
tinction between different overlap types. Many approaches
assume that there either exists a complete overlap or no
overlap at all, which is not realistic. Detection of inconsis-
tencies is done with logic-based approaches, model check-

ing approaches, specialized model analysis, or with human
centered exploration. The authors state that the main chal-
lenges in inconsistency detection are efficiency and scalabil-
ity, especially when dealing with evolving models. Although
this approach does not provide a tool or specific approach
for maintaining consistency, the identification of concerns in
maintaining consistency relations is impressive.

Nuseibeh et al. [37] describe a method for managing con-
sistency in software development. Consistency rules detect
inconsistencies during monitoring. The inconsistency is ana-
lyzed, and a solution provided. Consequences of handling
inconsistencies are, in turn, monitored. They emphasize it is
difficult to decide when to check consistency. During model
development, inconsistencies might be tolerated. Many of
them sort out themselves. Obviously, hoping that an inconsis-
tency resolves itself or does not cause any problems, causes
significant risks in information systems engineering.

In conclusion, there exist many approaches for checking
or maintaining consistency over many different disciplines.
Many solutions provide a high-level description of the prob-
lem and lack suggestions how to solve it. Other solutions are
often language-specific and, therefore, not usable in other
domains. The few approaches that are on the right level of
abstraction either lack the option to apply them in a heteroge-
neous context or rely on a common semantic domain (i.e., an
universal language is assumed).

5 Our MaDe4IC method

We discuss our MaDe4IC method for ensuring and main-
taining consistency within and between inter-organizational
models. The presented approach is derived from literature
study and previous experience in maintaining consistency of
specific models. We start with discussing model character-
istics in Sect. 5.1, after which we give an overview of the
different steps in Sect. 5.2. In Sect. 5.3, we discuss the run-
ning example. We conclude with a detailed description of
each step of our method in Sects. 5.4–5.8.

5.1 Model characteristics

A typical conceptual model consists of concepts representing
entities from the real world. These entities are characterized
by some properties which are also represented by the con-
cepts. Furthermore, relations are used to depict interrelated
concepts. Typically, models of cooperative systems abstract
from any internal behavior and focus on exchanging objects
between actors. Since these exchanges are an essential part of
the cooperative system, they are likely to be included in sev-
eral models on comparable granularity. In the following, the
models of cooperative systems contain the following types
of concepts and relations:

123

SOCA

1. Actors in the cooperation (i.e., parties cooperating
together).

2. Exchanged objects (such as information and money) that
are used to establish the relation between actors.

3. Relations between concepts, i.e., between actors and
between exchanged objects in different models.

For example, a concept representing a bike might have the
property “price”, indicating the specified bike has a certain
price. Furthermore, the nature of the relation might differ.
For example, there are causal and temporal relations indicat-
ing some concepts have a causal relationship, while others
have a temporal one.

Which real-life entities and relations in the cooperation are
captured by a specific model depends on the type of model
used. Our method is applicable to cooperative systems show-
ing these characteristics. It focuses on identifying dependen-
cies between concepts within and between models. These
dependencies form the basis for managing the models by
analyzing causes for inconsistencies.

5.2 Our method: an overview

Figure 5 gives an overview of our approach. It is divided in
five phases. Input is provided by different conceptual models
developed for the inter-organizational cooperation.

In the first phase, model analysis, preparations are done
for identifying dependencies within and between models.
This phase comprises two steps. In Step 1, each model is ana-
lyzed resulting in model characteristics. The latter are used to
homogenize models in Step 2 to make these (potentially het-
erogeneous) models comparable. We give some guidelines to
tackle heterogeneity problems in a structured way, without
providing details on how to do this.

In the second phase, inter-model analysis, we identify
different model relations and use them to define consistency
constraints. This phase also comprises two steps. In Step
3, we compare each pair of models, using knowledge about
their characteristics (cf. Step 2) to identify inter-model rela-
tions. For example, the existence of a concept in one model
might depend on the existence of a concept in another model.
Based on these relations, for each model pair we define a set
of consistency constraints in Step 4. These constraints expli-
cate when we consider two models being consistent with
each other. For example, if the existence of a concept from
one model depends on the existence of a concept from another
model, the constraint explicates this dependency relation.
Models are considered being inconsistent if a concept exists
in one model, but not in the other.

In the third phase, intra-model analysis, for each model
we identify in Step 5 the type of relations used to connect

Model
analysis

Characteristics

Homogenization

Homogeneous
models

Models

Inter-model
relation

detection

Step 3
Intra-model

relation
detection

Step 5

Inter-model
relations

Intra-model
relations

Dependency
analysis

Dependency
models

Inter-model
consistency
definition

Inter-model
consistency
constraints

Step 4

Intra-model
consistency
definition

Intra-model
consistency
constraints

Step 6

Log analysis

Event logs

Management
models

If A then B
If C then D

If A then B
If C then D

Step 1

Step 2

Step 8

Step 7

Causal
analysis

Step 9

contributes to results in

Phase I : Model analysis

Phase II:
Inter -model
analysis

Phase IV:
Combined
analysis

Phase III:
Intra-model
analysis

Phase V:
Management phase

Fig. 5 Managing dependency relations in inter-organizational models

the different concepts. This analysis helps us to explicate
intra-model consistency constraints in Step 6. These con-
straints describe when a model is considered being consistent
with the running system.

In the fourth phase, combined analysis, the identified
dependency relations and the consistency constraints are used
to perform a combined dependency analysis in Step 7 that
creates the combined dependency models. Together, these
models describe the different dependencies and consistency
constraints in a structured way so that they form a proper
base for managing the models. These dependency models
are formal models which enables easy implementation. Fur-
thermore, they only depict those parts of the original models
that influence the consistency constraints.

The fifth phase, management phase, occurs at runtime
of the system and comprises two steps. Step 8 checks con-
sistency constraints in the log analysis against the event logs
where the dependency models are used to construct feed-
back for managing the models. This feedback enables causal
analysis for constraint violation as well as prediction of con-
sequences for solving inconsistencies in Step 9.

The first seven steps are done manually and (possibly)
before the system is running. Steps 8 and 9, the actual

123

SOCA

Provider bike parts Bike selling company Online customers

Bike parts Bike

Fig. 6 Running example: selling bikes

management steps, can be automated through implementa-
tion, using the formalization created in Step 7.

5.3 Running example

We introduce a running example to illustrate the different
steps of our method (cf. Fig. 6). In this example, we are inter-
ested in the cooperation between a company selling bikes
online, and its customers and providers. The company offers
both mountain bikes and city bikes for online purchase. The
company buys the bikes in parts from a provider, then assem-
bles them and finally resells them. Each product is sent to the
customer for a fixed delivery price. In addition, a customer
can choose fast delivery, or delivery on a specific moment
like evenings or weekends. For such service an additional
fee is calculated.

5.4 Phase I: model analysis

In the model analysis part of our method, first of all, each
model is analyzed to identify its specific characteristics (Step
1). Following this, related model pairs are homogenized (Step
2). Homogenization is not the core part of this paper. How-
ever, in consistency checking, it is inevitable to address this
problem. Therefore, we provide a set of guidelines in Step 2
to stepwise tackle the problem without discussing solutions
in detail. In the remainder of this paper we assume heteroge-
neity problems are overcome.

5.4.1 Step 1: model analysis

Goal: Identify model characteristics of each conceptual
model of the cooperation in order to enable inter-model
and intra-model analysis.

Our method starts with an characteristics analysis of each
model (cf. Step 1 in Fig. 5). We identify the different concep-
tual characteristics as discussed in Sect. 3.1.3. These char-
acteristics are later on used to enable inter-model as well as
intra-model analysis. We analyze models for the following
characteristics:

(i) Focus: Viewpoint Partial model
(ii) Perspective: Single actor Bird’s eye view
(iii) Property type: Estimation Prescription
(iv) Time frame: Instance-based Period of time

Value
viewpoint
model A

Message

Example 1 Example 2

viewpoint
model B Partial model Partial model

bike money

value value

time timetimetimetime

order confirm send delivery payment

Mountain bike Bike parts

valuevalue

time time

concept property
asymmetric
relation

symmetric
relationmodel

Fig. 7 Dependency relations between viewpoints and partial models

To illustrate Step 1, we consider two examples:

Example 1 When considering our running example
described in Sect. 5.3 a possible choice is to develop two
viewpoint models. Assume model A describes exchanges
that have some value between customer and company, while
model B describes messages exchanged between actors. The
left part of Fig. 7 depicts these two models.

Example 2 Another possible choice for modeling our run-
ning example is to develop two partial models. The right side
of Fig. 7 depicts two such models where each one describes
one entity with different properties. The mountain bike is the
product purchased by the customer, while the bike parts are
represented by the box containing the unassembled mountain
bike as purchased by the company.

(i) Focus: A model focusses on a subset of entities as
well as relations of the system (i.e., a partial model), or on
the complete system with focus on a specific characteristic
(i.e., a viewpoint model). Typically, models related to the
same system have the same focus type. Example 1 in the left
part of Fig. 7 depicts our scenario with two viewpoint mod-
els, while Example 2 in the right part of the figure depicts
two partial models. Identifying the focus type constitutes an
important prerequisite for both intra-model and inter-model
analysis (cf. Fig. 5).

(ii) Perspective: A model can be described from a local
perspective (i.e., single actor perspective) or from a global
one where the system is considered as a whole (i.e., a bird’s
eye perspective). The models in Fig. 7 all reflect a single actor
perspective, i.e., they are described from the perspective of
the company. Other than with focus, perspectives often dif-
fer between models describing one system. In such situation,
it is important to identify how the part description from the
single actor perspective is related to the whole description of
the bird’s eye perspective. This heterogeneity difference is
addressed rather than homogenized since perspective choice
is model-specific and should not be changed.

(iii) Property type: The property type describes whether a
property value is an estimation or prescription. This can differ
within a model where some properties are estimations, while
others are prescriptions. Consider, for example, the left part
of Fig. 7 where the property values which prescribe behavior.

123

SOCA

The message viewpoint, however, describes an expected time
frame in which messages are exchanged. There are estima-
tions on exchange times described with the property ‘time’.
The estimations are predictions of reality, rather than pre-
scriptions.

(iv) Time frame: The time frame used in the model should
be identified. Especially whether a model is valid for a spe-
cific period of time, or whether it is an instance-based model.
For example, a model might describe behavior for the com-
ing half year (period of time) or describe behavior for each
invocation separately (instance-based). This information is
needed to homogenize the models for the inter-model anal-
ysis (cf. Fig. 5).

The results of Step 1 are as follows:

– Each model is characterized by its focus, perspective, and
time frame.

– Each property in the model is characterized by its prop-
erty type.

5.4.2 Step 2: homogenization

Goal: Identify heterogeneity between model pairs using
the model characteristics identified in Step 1. Homog-
enize differences between model pairs if possible.

We homogenize the different models to enable their com-
parison (cf. Step 2 in Fig. 5). For homogenization we need
to overcome differences between the models. For this, we
address syntactic, semantic and pragmatic heterogeneity
(cf. Sect. 3.1). Certain heterogeneity problems are addressed
in later steps, while others are homogenized in Step 2:

– syntactic: addressed in later steps
– semantic:

– coreferences: homogenize in Step 2
– homographs: homogenize in Step 2

– pragmatic:

– perspective: addressed in later steps
– focus: addressed in later steps
– granularity: homogenize in Step 2
– time frame: homogenize in Step 2
– estimation and prescription: addressed in later steps

Syntactic heterogeneity is inherently present since models
are simply described using different languages. The key is to
identify syntactic commonalities and differences across the
modeling languages. Explicating differences and common-
alities between concepts, relations, and properties of two
models suffices.

Example The models from Fig. 7 are described in the same
language, i.e., they use the same constructs for concepts, rela-
tions, and properties. There are no syntactic differences.

Furthermore, semantic heterogeneity must be addressed,
especially identifying and solving coreferences and homo-
graphs (cf. Sect. 3.1.2):

Example The value viewpoint model A in Fig. 7 describes
a concept bike, while the partial model in the same figure
models a concept mountain bike. Although the concepts dif-
fer semantically, they refer to the same real-life entity, i.e.,
they are coreferences.

This needs to be identified and resolved by choosing one
semantics to describe the entity. Also if two semantically
equal concepts in different models refer to different entities
(i.e., homographs), one concept should be renamed.

In addition, some pragmatic heterogeneities can be
homogenized in the current step, while others are simply
recognized here, and addressed when comparing the mod-
els in later steps. Addressing heterogeneity later means it
then becomes more difficult to find overlap or relations
between models since they are still heterogeneous. How-
ever, by identifying where the models are different in the
current step, relating the models in later steps becomes
easier. Concerning pragmatic homogenization, only time
frame differences and granularity differences are homog-
enized.

A time frame difference between two models needs to be
resolved before models can be compared in the following
steps. Changing the time frame of a model such that it fits
the time frame of another model is not a straightforward pro-
cess. It requires discussions with all involved actors to come
to an agreement on how to handle the changes. Generally,
there are two approaches that can be followed: either a time
frame is shortened or it is lengthened.

Example The Value viewpoint model A from Fig. 7 describes
the monetary relation between bikes the company sells and
money the company receives for this. The model might be
valid for a period of one year. The related Message viewpoint
model B, however, describes necessary message exchanges
between partners per bike sale, i.e., the time frame is instance-
based. This time frame difference is resolved by shortening
the time frame of the Value viewpoint model A from a period
of one year to an instance-based model.

When shortening the time frame, challenges arise with
agreed upon average values and with indivisible exchanges.
For example, if a contract specifies an average value
to accomplish over twelve months, this value cannot be
assumed to hold in the first six months only (e.g., due to sea-
sonal behavior). Furthermore, if there are exchanges between

123

SOCA

actors that only occur once during a period (e.g., selling
one bike), shortening this period implies dividing an atomic
exchange which is not always possible.

When extending a time frame, in turn, the biggest chal-
lenge is to estimate content of future contracts and models.
For example, if a contract is specified for the coming year
and we need to extend the model for the coming two years,
either all contracts need to be extended or estimations on
future contracts become necessary. Therefore, the changes
typically come with estimations of behavior.

The second pragmatic difference between models con-
stitutes granularity difference between models. To check
consistency between two models, they need to describe the
system on the same level of granularity. Coarsening is typi-
cally used to overcome granularity differences as described in
Sect. 3.1.3. Whether abstraction or generalization techniques
are used needs to be decided by the developer and will dif-
fer per model. Coarsening is done per model pair since it is
important to consider models on the most fine-grained level
as possible.

Results of Step 2 are as follows:

– All models are semantically homogeneous,
– Each model pair is time frame homogeneous, and
– Each model pair has the same level of granularity.

5.5 Phase II: inter-model analysis

The goal of inter-model analysis is to identify dependencies
between different models describing the same system, and
to use these dependencies for explicating inter-model con-
sistency constraints. These constraints are then checked and
ensured during the management phase (cf. Fig. 5). We first
identify inter-model relations between homogenized models
(Step 3). Then we define inter-model consistency constraints
based on identified relations (Step 4).

5.5.1 Step 3: inter-model relation detection

Goal: Identify inter-model relations for each model
pair. More specifically, we identify dependencies
between models, concepts, and properties.

When considering partial models, models describing dif-
ferent system parts are interconnected. This interconnection
needs to be identified. For example, if one partial model
describes interactions on the customer side, and another one
describes interactions on the provider side, these two mod-
els need to be interconnected before implementation. When
considering viewpoint models, overlapping parts (i.e., where
two models describe the same system) need to be identified.
For example, if one viewpoint model describes which mon-
etary actions are expected in a cooperation, and another one

describes the order in which messages are exchanged, the
monetary actions and messages that refer to the same real-
life entity need to be related. These inter-model relations are
used in Step 4 to formulate consistency constraints.

The term relationship has a broad meaning. Therefore,
we start with explicating which types of relations are distin-
guished. The goal is to ensure consistency between models
which is accomplished by identifying those parts of the mod-
els that influence each other. We consider any type of depen-
dency relation between concepts. This dependency can be
strong as, for example, in a causal relation where one con-
cept causes another one to occur. However, also less strong
dependencies are considered, e.g., in a temporal dependency
one concept always occurs before another one without being
its cause for occurrence. Further, relations can be symmetric:

Example In Fig. 7, payment of a bike (Value viewpoint
model) and its delivery (Message viewpoint model) have a
symmetric relation since there is no payment without deliv-
ery and no delivery without payment.

Relations can be asymmetric as well. For example, regard-
ing payment of a bike and its bill, the existence of the payment
depends on the existence of a bill, whereas the bill can also
exist without the existence of a payment.

We distinguish relations between concepts and those
between properties. A dependency relation between concepts
is referred to as existence dependency, while a dependency
relation between properties is called property dependency.

Existence and property dependencies. An existence depen-
dency between concepts indicates that existence of these con-
cepts depends on each other.

Example Considering our running example, the existence of
a concept referring to the payment of a mountain bike by a
customer depends on the existence of a concept referring to
the actual bill created by the company stating the total cost of
the purchase. In other words, without such a bill the customer
will not pay.

A property dependency indicates the value of one property
depends on the value of the other one:

Example The amount of money (represented as property
value of concept mountain bike, cf. Fig. 7) paid by the cus-
tomer for a bike depends on the amount of money (repre-
sented as property value of concept bike parts) paid by the
company to its suppliers for the bike parts. Here, the value
property of one concept depends on the one of another con-
cept.

If properties of two concepts depend on each other, the
concepts themselves have an existence dependency :

123

SOCA

purchase
cost

1-to-n, asymmetric
dependency

n-ary, symmetric
dependency

product delivery service delivery payment

concept

asymmetric
dependency

symmetric
dependency

Fig. 8 Example: asymmetric and symmetric dependency relations

Example Since the properties of concepts mountain bike and
bike parts depend on each other (cf. Fig. 7), the two concepts
are existence dependent on each other. The existence of con-
cept mountain bike depends on the existence of concept bike
parts since there exists no bike if there are no bike parts.

In other words, if two values depend on each other, exis-
tence of concepts containing these values also depends on
each other.

Symmetric and asymmetric dependencies. A second depen-
dency characteristic is its direction. A dependency can be
asymmetric where one concept depends on one or more other
concepts:

Example A cost dependency model depicts where costs of
purchasing a bike come from (cf. left part of Fig. 8). Pur-
chase cost depend asymmetrically on the purchased product,
delivery cost, and additional service costs for fast or weekend
delivery.

Alternatively, a dependency relation can be symmetric
where concepts depend on each other:

Example A dependency model (cf. right part of Fig. 8)
depicts a dependency between delivering the bike by the
company, and payment of the costs by the customer. Delivery
depends on payment, and vice versa since it is not specified
whether payment occurs before or after delivery, i.e., they
have a symmetric dependency.

In summary, we distinguish the following four types of
dependency relations:

– Asymmetric existence dependency, where the existence
of a concept depends on the existence of one or several
other concepts,

– Asymmetric property dependency, where the property
value depends on one or several other property values,

– Symmetric existence dependency, where the existence of
concepts depend on each other,

– Symmetric property dependency, where property values
depend on each other.

How to identify inter-model relations is explained next,
where these relations depict for viewpoint models overlap-
ping parts and for partial models connecting parts.

Viewpoints. When identifying relations between two view-
point models, the goal is to identify their overlap. We adopt
the definition of overlap as given by [17]:

“Overlap is defined as two specifications which are not
independent since they describe common aspects.”

Our aim is to find these common aspects, and to iden-
tify the type of relation they have. In conceptual modeling,
the common aspects are concepts with potentially different
properties referring to the same real-life entity. Preprocessing
models in the homogenization phase (Step 2) eases identi-
fication of concepts referring to the same entity. Identifying
the relation type between these commonalities is done by
hand:

Example The left part of Fig. 7 depicts a Value and Mes-
sage viewpoint model with their inter-model dependencies.
We assume model engineers refer to a bike sold to custom-
ers with concepts bike in model A and delivery in model B.
Further, they refer to money paid by the customer with con-
cepts money in model A and payment in model B. In both
cases, concepts refer to the same entity in the real world, and
existence of one concept assumes existence of the other. For
example, if a bike is delivered (Message viewpoint model),
it is also paid for (Value viewpoint model). Therefore, they
have a symmetric existence dependency.

Partial models. When identifying relations between partial
models, the goal is to identify relations between concepts,
referring to different real-life entities, and between the same
properties in different concepts. This can be a more challeng-
ing task than identifying overlap in viewpoints since there are
no commonalities to observe; each entity is captured in only
one model:

Example In the right part of Fig. 7, one partial model depicts
the mountain bike and the other one the bike parts. The mod-
els refer to different entities, but there exist dependencies
between them. For example, the bike value depends on its
parts value. Identifying such dependencies constitutes a chal-
lenge since there is no overlap between the models.

Usually, there exists some (implicit) model that links par-
tial models. For example, if a cooperation is developed, there
exists a common model that explains which partial model is
connected to which other one, and how this connection looks
like. However, these are high level connections, describing
the relation on model level rather than on concept level:

Example In the right part of Fig. 7, the partial models are
related. There exists a common model describing that the
mountain bike depends on its parts (i.e., a common model
describing high-level connections). The challenge, however,

123

SOCA

is to find the relations between these two models on a con-
cept level. For example, what is the relation between delivery
time of bike parts and possible delivery time of the bike.

With our method we identify different properties that are
modeled for each real-life entity in a concept. This way, prop-
erty dependencies are identified between the same properties
in different, but related concepts. In partial models, each real-
life entity is represented in one model as a concept with some
properties. For example, a concept in a partial model might
contain information on its monetary value, size, and validity.
Concepts in related models are related through identifying
equal properties. For example, the monetary value of one
concept might depend on the monetary value of other con-
cepts, while their physical size is unrelated:

Example In the right part of Fig. 7, a schematic represen-
tation identifying these relations is represented. Each par-
tial model describes one entity with different properties. The
value of the mountain bike depends on the one of its parts.
The possible delivery time depends on the delivery time of its
parts. These are asymmetric property dependency relations.

The results of this step are as follows:

– Identification of inter-model dependency relations
between concepts and properties,

– Inter-model relations are categorized as follows (i) sym-
metric and asymmetric, and (ii) property and existence
dependencies.

5.5.2 Step 4: inter-model consistency constraints

Goal: Identify inter-model consistency constraints for
each model pair. More specifically, we use the iden-
tified dependency relations from Step 3 to formulate
constraints for each relation.

We consider two models being consistent if they have no
contradictions. Since contradictions only occur in related
models, they only emerge in inter-dependent model parts. In
Step 3, we identify these inter-model dependencies. In Step 4,
we now use them to formulate consistency constraints. These
constraints are divided into different categories, in analogy to
the different dependency relations introduced in Step 3. For
each identified dependency, we formulate a consistency con-
straint. Each dependency constraint is formulated according
to the related dependency type:

– If concept x is asymmetric existence dependent on set
Y of one or more concepts, the constraint states: If x exists
then Y exists.

– If concepts in set X of two or more concepts are symmet-
ric existence dependent on each other, the corresponding
constraint states: If x ∈ X exists, all concepts in X exist.

Example In the left part of Fig. 7, the viewpoint models have
a symmetric existence dependency relation as discussed in
Step 3. These relations are translated into consistency con-
straints. For example, concepts bike of Model A and delivery
of Model B are symmetric existence dependent. The cor-
responding constraint states: If concept bike exists, concept
delivery exists, and vice versa. This constraint expresses that
if at runtime the bike gets delivered, it is also paid for, and
vice versa. If this is not the case, the constraint is violated.

In case of asymmetric and symmetric property dependen-
cies, there exists a relation between property values. The
exact relation between the values is model dependent. For
example, property value of x might be twice as big as related
property value of y. The general format for defining con-
sistency constraints for asymmetric and symmetric property
dependency is as follows:

– If concept x is asymmetric property dependent on set Y
of one or more concepts, and z is the predicate describing
this relation, the corresponding constraint states: Prop-
erty value of x relates to property values of Y according
to predicate z.

– If concepts in set X of two or more concepts are sym-
metric property dependent on each other, and z is the
predicate describing this relation, the corresponding con-
straint states: For each x ∈ X it holds that property value
of x relates to all other concepts in X according to pred-
icate z.

Example In the right part of Fig. 7, the partial models have
asymmetric property dependency relations as discussed in
Step 3. Assume that the relation between value property of
Mountain bike and value property of Bike parts states the
value property of Mountain bike is always larger than the
one of Bike parts. Then, this relation is translated into the
following consistency constraint: Concept Mountain bike is
asymmetric property dependent on concept Bike parts, where
the property value of Mountain bike is larger than the one of
Bike parts (i.e., this is the predicate). The corresponding con-
straint states: The property value of Mountain bike is larger
than the one of Bike parts. This constraint depicts at runtime
the value of the bike is larger than the value of its parts. If
this is not the case, the constraint is violated.

Often it is possible to formulate generalized consistency
constraints where constraints are defined over a set of inter-
model dependencies. Since every identified dependency rela-
tion results in a consistency constraint, it is convenient to
explicate one general consistency constraint that captures a
set of similar single constraints.

Example If hundreds of payments in one model are exis-
tence dependent on a bill in another model, each of these

123

SOCA

dependency relations results in a separate constraint stating
“If payment A exists, also bill B exists”. However, a single
constraint stating: “If a payment with characteristic Y exists,
also a bill with characteristic Z exists”, would generalize over
this large space of constraints.

Generalization is applicable in both viewpoint models and
partial models. For both it holds that generalization is only
possible over related combinations with the same type of
dependency relation and, therefore, over consistency con-
straints of the same type. For example, it is not possible to
define a general consistency constraint for two sets of related
concepts where one set has an asymmetric existence relation
and the other one a symmetric existence relation. General-
ization constraints differ for viewpoint models and partial
models. Therefore, we discuss them separately:

Viewpoint models. In viewpoint models, often a set of con-
cepts in one model is related to concepts in another model.
Currently, each of these relations has a separate constraint:

Example In the left part of Fig. 7, two symmetric existence
dependency relations are depicted. Fig. 9 shows these two
relations. The value viewpoint model describes which prod-
ucts are transferred. The message viewpoint model, in turn,
specifies which messages are exchanged. If a message indi-
cates the bike is delivered or a payment is done (message
viewpoint), it is concluded the bike or payment is received
(value viewpoint), respectively. If the bike or money has
exchanged hands (value viewpoint), it further is concluded
there must be a message confirming bike delivery or money
payment (message viewpoint). Therefore, existence of a good
transfer (e.g., bike) and existence of a message exchange
(e.g., delivery message) have a symmetric dependency. With-
out generalization, there are two constraints describing the
relation between value and message viewpoint model. One
states that if the bike is transferred also a message confirming
the bike delivery exists and vice versa. The second one states
that if money for the bike is transferred, a message confirm-
ing the bike payment exists and vice versa. We construct a
general consistency constraint that covers both constraints:
“If a valuable product is handed over, a message confirming
this exists and vice versa”.

Value
viewpoint

Message
viewpoint

valuevalue

time time

bike money

delivery payment

generalization

value

time

product

message

Fig. 9 Possible generalization over symmetric consistency constraints

Generalization in viewpoint models is possible if there are
inter-model consistency constraints based on the same type
of relation (e.g., symmetric existence dependency). If gen-
eralization of property dependency constraints occurs, prop-
erties in the different constraints are the same. For example,
if one constraint describes a dependency between two time
frames, while another one describes a dependency between
monetary values, it is not possible to generalize over these
two constraints.

This general constraint typically describes the nature of
the models. Here, we state that every concept that represents
some valuable transfer in the value viewpoint has a related
concept in the message viewpoint describing the message
transfer:

Example In a value and message viewpoint, several enti-
ties in the cooperation are modeled in both viewpoints. For
example, in the left part of Fig. 7, money paid for a bike
is modeled as valuable transfer in the first viewpoint, and
as message transfer in the second one. However, not every
concept describing a message transfer has a monetary value.

Therefore, we state that for each message transfer in the
message viewpoint containing some value there is a concept
representing this value in the value viewpoint model. With
this consistency constraint we check whether all necessary
concepts are modeled or whether a model is incomplete.

Aside from checking whether all concepts are present, it
is important for each business transaction to check whether
both models describe the same set of transfers. For example,
for viewpoints model entities “bike” and “money” for the
bike, it is important that no model assumes two bike transfers
occur for one money transfer, while the other model assumes
one bike transfer occurs for a money transfer. Therefore, an
additional general consistency constraint describes that for
each business transaction modeled in the viewpoint models,
the concepts should occur in the same setting.

Partial models. In partial models, we often observe that
property values of a set of concepts in different models are
dependent on each other:

Example In the left part of Fig. 10, the concept customer
payment has three dependencies; money paid by the cus-
tomer depends on special costs but also on product costs and
delivery costs. Each property dependency relation has a sepa-
rate constraint clarifying how customer payment depends on
the different costs. For example, one constraint might state:
“The amount of money paid by the customer contains special
costs”.

However, it is possible to construct one general constraint
that describes the three separate ones:

123

SOCA

customer
payment

delivery
cost

special
cost

product
cost

value

value value value

customer
payment

delivery
cost

special
cost

product
cost

Partial models Partial models

value

value value value

customer
payment

value

customer
payment

value

generalization

Fig. 10 Generalization over asymmetric consistency constraints

Example The right part of Fig. 10 depicts that customer
payment and its three relations are interconnected. Now, the
general constraint states: “The amount of money paid by the
customer is at least the sum of special costs, product costs,
and delivery costs.”

In general, we state that constructing a generalization of
constraints in partial models is possible if (1) the dependency
relations described by the constraints are interconnected, and
(2) they connect the same type of property. For asymmetric
relations, it should be possible to form a tree out of the depen-
dency relations and for symmetric ones it should be possible
to create an undirected graph from the dependency relations.

Results of Step 4 are as follows:

– Identification of consistency constraints for both sym-
metric and asymmetric dependencies, and property and
existence dependencies, and

– Illustrating generalization of consistency constraints.

5.6 Phase III: intra-model analysis

Intra-model analysis identifies dependencies between differ-
ent concepts within one model (Step 5). Further, we define
intra-model consistency constraints based on these relations
(Step 6).

5.6.1 Step 5: intra-model relation detection

Goal: Identify intra-model relations for each model.
More specifically, we identify dependencies between
concepts and properties.

For detecting intra-model relations, we use the original
models and not the homogenized ones since we want to pre-
serve as much original data as possible. Although conceptual
models all describe relations between concepts and proper-
ties, the relation type differs. Therefore, we explicate the rela-
tion type used in the language for depicting relations between
concepts and properties within a single model. More than one
type of relationship can be used in a model. We use the same
distinction as discussed in Step 3.

In viewpoint models, these dependency relations typically
exist between concepts and properties referring to different
entities, but describing the same property. For example, in
the left part of Fig. 7, concepts bike and money both have a
value, while they describe different entities that depend on
each other. In partial models these dependency relations typi-
cally exist between different properties referring to the same
entity. For example, in the right part of Fig. 7 the concept
mountain bike contains a property value that depends on the
property value of delivery time, both properties refer to the
same real-life mountain bike entity.

The results of this step are as follows:

– Identification of intra-model dependency relations
between concepts and properties,

– Dependency relations are categorized in (1) symmetric
and asymmetric, and (2) in property and existence depen-
dencies.

5.6.2 Step 6: intra-model consistency constraints

Goal: Identify intra-model consistency constraints for
each model. More specifically, we use the intra-model
dependency relations identified in Step 5 to formulate
constraints for each relation.

Analogously to defining inter-model consistency con-
straints in Step 4, we define intra-model consistency con-
straints in Step 6. Note that these constraints still assume
the models are built properly, i.e., that they are well-formed.
Intra-model constraints depict constraints on concepts,
properties, and their relations within the model, not on the
language used to describe the model. For example, there is
no constraint stating that concepts can only be connected
through a specific arc since this is a language constraint.
However, there exist intra-model constraints stating that a
specific concept shall be present if another one occurs. For
example, if a payment is done, a bike needs to be shipped
because this is a model-specific constraint (i.e., a specific
constraint for our example).

Dependency relations identified between the different
concepts in Step 5 are used to define the constraints. The
same structure for building the constraints as in Step 4 is
applied. As difference, constraints are now defined within a
model and not between models.

In addition to consistency constraints, which are defined
based on dependencies between concepts, the existence of
the concepts itself, with or without a specific property value,
is defined here. For example, if a concept represents money
transfer from customer to company, this concept should also
occur in the implementation, regardless of dependencies with
other concepts. The general form of such a constraint is as
follows:

123

SOCA

customer
payment

delivery
cost

special
cost

bike
parts

Viewpoint model:
value

Partial model:
bike purchase

value

value value value

customers

price

model

bike

Fig. 11 Generalization over intra-model consistency constraints

– Let x be a concept with property y in a model. The cor-
responding consistency constraint states: x exists with
property y.

For example, if concept money transfer with property
value 100 euro exists in a model, the constraint states this
concept with property value needs to exist in the implemen-
tation.

Often it is possible to generalize over different consis-
tency constraints as it is done for inter-model consistency
constraints in Step 4. By generalizing over a set of constraints,
the number of constraints to be checked reduces significantly,
increasing applicability of our method. Next, we discuss for
both viewpoint models and partial models which consistency
constraints are generalized, and how this is accomplished.

Viewpoint models. In Step 5, intra-model dependencies are
identified. In this step, each of them is used to formulate a
consistency constraint. As a result there are many similar
consistency constraints:

Example The left part of Fig. 11 depicts a viewpoint model
that describes monetary values of different entities. For
example, bike parts have a certain monetary value, and deliv-
ery costs are paid by the company to the delivery service.
Properties (i.e., monetary values) are dependent on each
other. For example, the total price (i.e., property value) for
the customer depends on the price of the bike parts.

Generalization is done for constraints that depict the
same type of dependency and only over constraints being
interconnected through concepts and properties. This is the
same approach as taken for generalization in partial models
for inter-model consistency constraints.

Example There are three constraints for the value viewpoint
model (cf. left part of Fig. 11): 1) costs for the customer
depend on special costs, 2) costs for the customer depend
on bike part costs, and 3) costs for the customer depend on
delivery costs. These constraints are generalized into a gen-
eral one that states: Total costs for the customer depend on
the sum of special costs, bike part costs, and delivery costs.

In general, we state that generalization in viewpoint mod-
els is possible if the dependency relations are interconnected,
and if they connect the same type of property. For asymmet-
ric relations it should be possible to form a tree out of the
relations (as done in the example), and for symmetric ones
it should be possible to create an undirected graph from the
relations.

Partial models. Dependencies in partial models identified
in Step 5 typically exist between properties within one con-
cept that refer to the same entity. We illustrate generalization
in partial models:

Example The right part of Fig. 11 depicts a partial model for
the concept bike. It has three properties: expected number of
customers, price, and model type (e.g., mountain bike). The
number of customers depends on the price of the bike and
the price, in turn, depends on the model type. Each of these
dependencies results in a consistency constraint. For general-
ization we develop one consistency constraint that captures
both dependency relations, i.e., relations between number
of customers and price, and between price and model type.
The constraints state: 1) For a mountain bike (i.e., a specific
model) x euro are paid, and 2) If a customer pays x euro for
a bike, y customers will buy one. The general one now states:
For a mountain bike the price is x euro, and y customers buy
the bike.

Generalization within partial models is possible over those
constraints that describe relations between different proper-
ties of one concept (i.e., one entity) if these properties are
interconnected. For asymmetric relations, like in our exam-
ple, it should be possible to build a tree with the properties
and their relations. For symmetric relations, in turn, it should
be possible to build an undirected graph.

Joint constraints. Each model is built with a specific pur-
pose. It prescribes (1) which entities should occur, (2) which
properties they should have, and (3) in which way they
should manifest in the cooperation. Typically these are model
generic constraints where a model depicts, for example, (1)
which transfers occur between actors in one business transac-
tion, (2) what the value of certain exchanges between actors
is, or (3) the order in which entities should occur in a busi-
ness transaction. Model-specific consistency constraints are
formulated taking the model purpose into account. It is not
possible to formulate a general constraint for this purpose
since this is model-dependent. Generalization is often not
necessary since the constraints are typically model-specific
and therefore general.

The results of Step 6 are as follows:

– Identification of intra-model consistency constraints, and
– Illustration of generalization of consistency constraints.

123

SOCA

5.7 Phase IV: combined analysis

5.7.1 Step 7: dependency analysis

Goal: Formalization of model parts that are checked
for consistency, and formalization of the defined intra-
model and inter-model consistency constraints. This
formalization enables easy implementation for auto-
matic consistency checking.

Checking consistency is typically done by testing mod-
els with some model checker, or by finding a translation.
Since we not only check consistency between models, but
also between models and running system, we choose to trans-
late them. Typically, models are translated into a semantically
well-defined formalism, which enables formal consistency
checking. Either complete models are translated or only their
overlapping parts. In the inter-model and intra-model anal-
ysis phase (Phase II and Phase III) we identify crucial parts
for consistency checking, i.e., we identify overlapping parts.
Therefore, we choose to partially translate models into a lan-
guage-independent, formal notation, i.e., we only translate
those parts crucial for consistency checking. Formalization
of model parts and their constraints enable easy implementa-
tion. This facilitates automatic constraint checking at runtime
in the Management Phase (cf. Steps 8 and 9). To manage mod-
els of inter-organizational cooperations, we monitor several
parts of the models:

– concepts with their properties,
– relations between properties, and
– relations between concepts.

We monitor these items by checking consistency con-
straints as defined in Steps 4 and 6. These constraints depict
dependencies between concepts and between properties. We
check whether the constraints hold by comparing running
system and models. We illustrate what is present in the for-
mal models with the following examples:

Example The value viewpoint model in the left part of Fig. 7
consists of two concepts with a value property that have a
symmetric dependency relation. The concepts and their con-
straint (based on the dependency relation) are included in the
formal model. Further, all concepts in the message viewpoint
model have some dependency relation, and are, therefore,
related to one or more constraints. Therefore, all concepts
and their constraints in the message viewpoint are part of
the formal model. This also holds for constraints describing
symmetric relations between bike and delivery, and between
money and payment, respectively.

Example Concepts mountain bike and bike parts in Fig. 7
are included in the formal model since their properties have

dependency relations. Further, inter-model consistency con-
straints describing the asymmetric property dependency rela-
tions between the two prices and the two delivery dates,
respectively, are included. Also intra-model consistency con-
straints (i.e., property dependency between price and delivery
date of the bike and the bike parts, respectively) are included.

Many formalizations are possible. The key is to group
representations of concepts that belong to the same business
activity. For example, using sets, one instance is represented
as a set, while using graphs one instance is represented as a
graph:

Example In the left part of Fig. 7 concepts bike and money
are grouped since one purchase of a bike entails both bike
and money transfer. Furthermore, also concepts order, con-
firm, send, deliver, and pay are grouped since these messages
together make up one purchase of a bike. Regarding the right
part of Fig. 7, value properties and delivery time properties
are grouped.

The results of Step 7 are as follows:

– Formalization of model parts that are used in the consis-
tency constraints, and

– Formalization of consistency constraints.

5.8 Phase V: management phase

In the management phase, we check whether or not the run-
ning system performs as prescribed in the models. In other
words, we check consistency between event logs and formal
models, i.e., the dependency models. To enable such com-
parison, we analyze event logs and create an event log model
that enables easy comparison in Step 8. The result of this
comparison is reflected in the management models where
inconsistencies are depicted. These models enable causal
analysis to identify why inconsistencies occur (Step 9). Using
this analysis, different solutions for handling inconsisten-
cies are identified. However, as a consequence of applying
these solutions, new inconsistencies might be introduced. It
is important to identify these consequences because we aim
at minimizing the number of model changes when regaining
consistency between models and running system.

5.8.1 Step 8: log analysis

Goal: Abstract necessary information from the event
logs to monitor the models and their constraints.

In inter-organizational models conceptual structures are
present that are not visible in event logs. To check them for
evidence of consistency between models and system behav-
ior, we need to add this structural information. Therefore, we

123

SOCA

suggest to reconstruct relations between event log entries. For
example, for each entry in the event logs we identify to which
instance it belongs: If a payment is done and afterward stored
as entry in the event log, it is necessary to identify for which
service or product this payment is done.

Identifying these relations is a widely known problem
for which different solutions exist: Many approaches aim
at deriving this structural information through mining tech-
niques [2], while other approaches add structural informa-
tion to event logs when they are created [29,42]. We do not
describe data mining or event log structuring in detail. Rather,
we discuss which information is necessary for our approach.

We use identifiers to reconstruct model structures captured
by event logs. We assume that the structure as described in the
models is reflected in both implementation and event logs.
Furthermore, we assume identifiers are added to an event log
entry. For example, a contract number can be used to iden-
tify to which transaction an entry belongs, log on and log
off messages can be used to identify separate transactions,
and timestamps (e.g., “Thu, 17 July 2009 09:23:12”) can be
used to identify in which order certain events occur. For each
cooperation it needs to be decided which identifiers can and
need to be used.

Necessary information abstracted from event logs is struc-
tured using sets. Event log entries belonging to one trans-
action are grouped into a set. Each entry is represented as
a tuple. Typically, each tuple contains a timestamp, issuer,
recipient, unique name, and some property information.
The resulting model contains all information necessary for
checking constraints in the formal models. In general, we
construct the event log model as follows:

1. Identify which property values should be present in
the event log model using the dependency models.

2. Represent each entry in an event log as tuple con-
taining a timestamp, issuer, recipient, unique name,
and all property values.

3. Group tuples belonging to one transaction into sets
using identifiers like log-on and log-off messages,
and contract numbers.

After creating the event log model, we compare runtime
results with the models describing the system. The result is
represented in management models. When using sets to repre-
sent the formal models, consistency constraints are checked
by matching tuples and sets between event log model and
formal model. When using graphs, tuples and sets of the
event log are matched with vertices and edges of the graphs.
Furthermore, additional constraints are matched by checking
occurrences of tuples, properties of tuples, and occurrences
of sets in the event log model. For example, if a consistency
constraint states that the presence of a concept (i.e., tuple)

indicates the presence of another one (i.e., tuple), this rela-
tion is checked in the different sets of the event log model.

Example In our example, the company offers two business
transactions: purchasing mountain bikes and purchasing city
bikes. At runtime, we collect information from event logs.
For example, we expect evidence of selling mountain bikes,
represented as sets of events representing the sale. In addi-
tion, we expect evidence of selling city bikes in a similar
manner. Furthermore, to sell bikes, the company needs to
purchase its parts before. This constraint is checked during
runtime. We expect evidence to support the constraint that
bike parts are purchased before bikes are sold, represented
as events with different timestamps.

Violation of consistency constraints is different for exis-
tence dependencies and for property dependencies. When a
constraint describing an existence dependency is violated,
this constitutes a violation where the concept does not exist.
For example, a bike needs to be paid by the customer after he
receives it. If there is no evidence of payment in the event log,
this is a violation of the constraint. If a constraint describing
property dependency is violated, this violation can come in
gradations, depending on the scale of the value of the con-
cept. For example, when the selling price of a bike is twice
the amount paid for the bike parts according to the model, and
the runtime result in the event log deviates from this ratio.

The results of Step 8 are as follows:

– A description of information that needs to be abstracted
from the event logs for monitoring the models and their
constraints.

5.8.2 Step 9: causal analysis

Goal: Identification of causes for constraint violations,
and identification of consequences of restoring consis-
tency between models and running system.

The monitoring results containing constraint violations
need to be presented in an intuitive way. We suggest to
represent monitoring results by showing deviations in color
codings (cf. Fig. 14, Sect. 6.2 as example). For example, red
indicates violation of an existence or property dependency
constraint, green indicates compliance, while orange indi-
cates a deviation of not more than 10%. Coloring can be done
in original models or in dependency models. In this way, both
arrows (indicating dependencies) and concepts (containing
property values) are colored. The results are management
models that show relations between concepts, whether these
relations are violated during runtime, and whether their prop-
erty values are accomplished.

If management models are created, it becomes clear which
parts of the running system comply with the models and

123

SOCA

which parts do not. If there is a violation the analyst can
either evolve the models or the running system. In this paper
we focus on changing models so that they reflect the running
system.

Violations are often related. A constraint violation in one
part of the model often results in violations in other parts of
the model. These causal relations are important to identify
for efficient model management since solving a constraint
violation of the source might solve numerous other viola-
tions at the same time. The dependency models created in
Step 7 show all dependencies between concepts. Here, these
dependencies are used to identify causes for violations. For
this causal analysis only asymmetric dependencies are used
because in those relations it is clear which concept influenced
the other. In symmetric dependencies you might travel to end
leafs of the problem instead of identifying the source of the
violations:

Example If there is an existence constraint violation of con-
cept money in Value viewpoint model A (cf. left part Fig. 7)
(i.e., there is no evidence that money has been paid), the sym-
metric dependency relations make it difficult to determine its
cause. For example, the symmetric relation between concepts
bike and money does not indicate whether money is not paid
because the bike is not delivered, or the other way around.
In other words, determining causes in symmetric relations is
difficult.

After deciding which model parts to change, it is impor-
tant to identify what consequences these changes have. For
example, when making a product more expensive to resolve
a lack of income, the number of expected customers might
decrease, leading to even less income. Therefore, besides
identifying causes for violation, it is also important to decide
which parts to change.

Every element in the constraints can cause an inconsis-
tency and is, therefore, able to regain consistency. Often,
there are different ways to make a change in one of the mod-
els to regain consistency. For example, if during runtime bike
parts turn out to be more expensive than agreed upon in
the models, one solution is to negotiate a lower price, while
another possibility is to change provider and purchase bike
parts elsewhere. Although both solutions solve the constraint
violation, the first one is less intrusive for the model than the
second one, since the second solution results in deletion of
an offered service. To distinguish intrusive from less intru-
sive changes, we divide possible model changes into different
categories. Each constraint violation is now solved by apply-
ing a subset of changes suggested by these categories. Each
change has its own consequences for the models.

– Non-observable changes in a model have no impact on
the formal model, i.e., the change does not influence the
dependency models. As a consequence, these changes are

outside the parts that influence consistency. For exam-
ple, in the right part of Fig. 7 the partial models describe
the mountain bike and its parts. If the payment method
changes, this does not affect these models since payments
are not captured.

– Observable structural changes in a model are changes
where concepts are removed or added to the model while
preserving its well-formedness. These changes influence
existence dependencies since these dependencies rely on
the existence of certain concepts. Also property depen-
dencies are influenced since non-existence of a concept
implies that its property value does not exist. For exam-
ple, if we remove concept bike in the left part of Fig. 7,
this will be an observable structural change. It affects the
existence dependencies with concept money of the same
viewpoint model, and with concept delivery of the mes-
sage viewpoint model B.

– Observable non-structural changes are changes where
the property value of a concept is affected, or where the
way two concepts are related is affected. For example,
when changing the order of two concepts, their relation
is affected. These changes do not affect constraints on
existence dependencies since they do not change the exis-
tence of concepts. However, it does affect constraints on
property dependencies since it changes property values.
For example, if the value property of concept bike parts in
the right part of Fig. 7 becomes larger, i.e., the bike parts
become more expensive, then this will be an observable
non-structural change. It affects also the value property
of concept mountain bike since the price of the mountain
bike depends on its parts.

Explicating for each constraint which changes can be used
to regain consistency (if necessary) is a step toward more effi-
cient and precise model management. By relating changes to
constraints, it is possible to predict the impact of a change, not
only on the violated constraint, but also on other constraints
that are related to this particular change.

With this last step we conclude the analysis of models
and event logs. Using our method, it is possible to monitor
consistency constraints between models and between mod-
els and running system. Further, it is possible to identify
causes for violations based on a causal analysis. With the
analysis, violated constraints are selected for inconsistency
resolution. Now, we describe the last part where we use iden-
tified possible changes and dependency relations to predict
consequences of changes made in the models.

Each suggested change to regain consistency might affect
more than the violated constraint. By considering depen-
dency models, we identify which constraints are affected
when changing a particular concept. An observable structural
change affects both the existence and property dependen-
cies, while an observable non-structural change only affects

123

SOCA

Example 1

Example 2

Product(price) Customer(number)Profit(amount)

Product(price) Material(price)Profit(amount)

Fig. 12 Consequence analysis for changing models

related property dependencies. If the affected dependency is
symmetric, the change also affects the related concept. If the
affected dependency is asymmetric, the change only affects
the related concept in case it depends on the original one:

Example Examples 1 and 2 (cf. Fig. 12) depict a property
dependency model where the constraint between product
price and amount of profit is violated. In other words, event
logs show that the property relation between product and
profit does not hold. The model can be changed to solve this
inconsistency: Profit, product price, or ratio between profit
and price can be adjusted.

Assume the developer considers changing the product
price. Now, consequences for other dependencies are ana-
lyzed. In Example 1, product price and number of customers
depend on each other. Therefore, if the product price changes,
the number of customers is affected, just as their dependency
relation. In Example 2, product price depends on its material
price. Now, changing product price does affect their rela-
tion, but not the material price. The developer concludes
that changing product price in the second example has lim-
ited consequences, while changing product price in the first
example leads to more adjustments.

Especially in the context of large models and many depen-
dencies it is useful to enable analysis where changes are
related to types of dependencies. Analysis is done for the
consequences of such changes in the rest of the models, but
also for constraints it has with other models. Our method
uses constraints, dependencies, and types of changes to show
which parts of a model are affected by the specific change.
As a result, the developer is better able to estimate neces-
sary effort to adapt models, and he is better able to make a
choice between different change possibilities. In general, the
most suitable change is the one with the least impact on other
constraints.

The results of Step 9 are as follows:

– We provide a method for causal analysis of the depen-
dency models created in Step 7. This analysis identifies
possible causes for constraint violations.

– Furthermore, we provide a method to predict the impact
model changes have on consistency constraints. This sup-
ports analysts in identifying the least intrusive model
adaptation to regain consistency.

6 Evaluation

In Ref. [5], we validate our method by conducting two case
studies. To show suitability for a variety of models, the two
scenarios are sufficiently different. The first one captures
business and coordination models, and the second scenario
concerns Service Level Agreements of composite services.

6.1 Scenario 1: business and coordination models

Bodenstaff [5] shows applicability of our method regard-
ing models of inter-organizational cooperations. We consider
two fundamental perspectives which are of high relevance for
modeling such cooperations: business and process perspec-
tive [25,1]. At business level [25], expectations of exchanged
values, like e.g. expectations on the number of transferred
products and their prices, between partners are modeled as a
value model. In particular, the exchange of goods, money, and
immaterial goods (like e.g. customer satisfaction) between
different actors are modeled. Further, estimates are made on
the expected size of market segments, number of custom-
ers, sales per customer, as well as prices for products and
services. This information is used to determine whether an
inter-organizational cooperation is beneficial for all actors
involved. At process level ([1]), coordination of inter-orga-
nizational processes is modeled as a coordination model. In
particular, messages exchanged between different partners,
and the order of exchanged messages, thus the supported
business transactions are represented. The model is the basis
for describing observable behavior of information systems
operated at various partners.

In case of perspectives the aim of the MaDe4IC approach
is to keep models consistent, i.e., the models describe the
same information system. Event logs, as considered in the
MaDe4IC method, represent run-time observable behavior of
involved information systems, thus event logs are an abstrac-
tion of the underlying information systems. In addition,
business and process models must be related to event
logs to identify inconsistencies between models and actual
implemented information systems. Understanding depen-
dencies between business and process model and event logs
can be facilitated to resolve model inconsistencies.

Business and process perspectives used in this sce-
nario describe necessary transfers between partners although
focusing on different aspects (finances versus coordination).
Since both models have a different level of abstraction, use
different modeling notations, and have a different purpose,
determining consistency is a challenge.

Following our MaDe4IC method intra- and inter-model
consistency constraints are identified (Steps 4 and 6) and
dependencies with the event log are derived (Step 8). These
constraints and dependencies are now facilitated (Step 9)
to determine the effect of a change on one model on the

123

SOCA

Constraint 1

Constraint 2
Business Transaction

Constraint 3
Number of Occurrences

Constraint 4
Average Value

Constraint 5
Business Transaction

Constraint 6
Ordering

Business<-> Process Model

BusinessModel <-> Event Log

ProcessModel <-> Event Log

Constraints

Change 5: Non-
observable change

Business Model
Changes

Process Model
Changes

Change 5: Non-
observable change

Change 1: Removing/
adding a business

transaction

Change 1: Removing/
adding a business

transaction

Change 1: Removing/
adding a product/
money transfer

Change 2: Changing
number of occurrences

Change 3: Changing
average value

Change 1: Removing/
adding a non-valuable

message transfer

Change 1: Removing/
adding a valuable
message transfer

Change 4: Changing
the message order

Fig. 13 Relating consistency constrains and model changes

constraints and, therefore, its potential implication on other
models.

Figure 13 illustrates the business and process model
changes as well as the identified constraints between models
and event log as a basis for the causal analysis in Step 9 (for
a detailed description see [7]). A main bilateral constraint
between all models is that the business transaction of one
model has to be consistent with the business transaction in
the other model (see Constraints 1,2, and 5). Further, explicit
model capabilities must be consistent with the event log, i.e.,
number of occurrences and average value of an exchanged
object for business models (Constraints 3 and 4), as well as
the order of exchanged messages in business models (Con-
straint 6) must be consistent with the event log. The changes
on business and process models are represented as basic
change operations on models altering specific properties of
the models. The class of unobservable changes (Change 5 in
business and process model) refers to changes in the model,
which are not effecting any constraints. An unobservable
change is for example the change of an internal order approval
step within a business model effecting only a single partner.
The arrows between changes and constraints indicate that
changes in a model effect consistency constraints. Usually a
change is performed to resolve an inconsistency. However,
if a change has several outgoing arrows, then a change may
resolve inconsistency on one constraint while introducing
an inconsistency on another constraint. These dependencies
between changes and consistency constraints can be facili-
tated in a change management tool for maintaining consistent
models.

6.2 Scenario 2: service compositions

Also in [5], we present a second scenario, which is inher-
ently different from the first one. We apply our method to
monitoring Service Level Agreements (SLAs) for service
compositions. A typical example of such an SLA is:

In 90% of all cases, invocation of service X will have a
response time within y milliseconds (ms).

We use SLA models to describe quality of service of
a composition. More specifically, we focus on monitoring
response times and costs of services. The challenge is to
relate different SLAs, taking the composition into account.
Further, we develop an approach to manage SLAs at runtime.

For a business operating in a networked environment it
is vital to accurately manage services it provides to its cus-
tomers. This is particularly challenging if a company offers
composite services where interactions with services offered
by other providers influence its performance. Consider a
composite service which returns combined information from
several search engines. In this case, the quality of service
(e.g., response time) that can be offered depends on the qual-
ity of service delivered by the search engines. Together with
constraints of the customer, these calculations form the basis
for the SLA between customer and service provider [28,45].

Since SLAs are typically bilateral agreements, current
monitoring approaches (e.g., [28,45,51]) focus on identify-
ing violations in bilateral communication. However, to prop-
erly manage its composite service a company has to reason
about causes of SLA violations. For example, if the offered
response time for a composite service provided by a company
depends on response times of other services this company
uses, it is vital to identify and monitor these dependencies.
Exactly these dependencies are ignored in bilateral moni-
toring approaches. With our MaDe4IC method for manag-
ing dependency relations in inter-organizational models we
developed the MoDe4SLA approach (MOnitoring DEpen-
dency relations for SLAs) ([6,8]). With this approach, we can
analyze during development phase different types of depen-
dencies between services, and the impact these services have
on each other. Further, it allows combining bilateral monitor-
ing results with analyzed dependencies and impact services
have on the composition.

By applying our MaDe4IC method to the problem of man-
aging service compositions, we are now able to manage the
complex dependencies between the different SLAs of com-
posite services. We manage these dependencies by creating
a feedback tree (i.e., a dependency model) that shows devia-
tions between agreed upon SLAs (i.e., constraints) and real-
life behavior of services (cf. Fig. 14), i.e., this tree shows SLA
violations. Furthermore, causes for violations are detected
through dependencies between services (cf. Step 9).

The feedback tree depicts deviations from agreed upon
SLA values. Colors on edges and vertices are used to visu-
alize these deviations. Currently, red, green, yellow, dark-
green, and colorless are used, but these colors can be extended
or changed in any preferred way. Intuitively, red and yel-
low represent negative deviations, while green and darkgreen
represent positive deviations. The goal of the feedback tree

123

SOCA

COMP

WS 1 WS 2

sum(subset)

IF: 0.32

sum(total) WS 3 sum(one) WS 6

WS 4 WS 5

0.7
0.65 0.95

0.7

0.37 0.58

Cost: € 14.47

0.7 0.7

1

IF: 0.22

Cost feedback tree

IF: 0.2

IF: 0.06 IF: 0.2

IF: 0.2

Deviation %

+

-

0

5

-5

10

_

Fig. 14 Illustrative example: Cost feedback tree

is to support management in identifying causes for badly
performing compositions.

The result of applying our method to service compositions
is illustrated by a feedback tree (cf. Fig. 14) as generated
by MoDe4SLA. The tree shows a service composition that
depends on six Web services concerning its costs. Using the
event log abstraction, it is calculated that the average cost for
invoking the given composition is 14.47e. This is between 5
and 10% under performance, and, therefore, colored yellow.
Further, we see that only Web service WS 6 costs on average
less than expected, i.e., the service is colored darkgreen. The
other services all cost on average more per invocation from
that agreed upon (i.e., colored red or yellow). We see that the
branch with WS 3 is invoked less often than expected, i.e.,
is colored darkgreen, as opposed to the branch of WS 4 and
WS 5 which is invoked more than expected, i.e., is colored
red. WS 4 has a low impact on the overall cost (IF 0.06),
while other Web services have an impact between 0.2 and
0.32. MoDe4SLA enables users to

– identify how well each service is performing,
– detect whether services are invoked as often as expected,
– determine the impact each service has on the composition

regarding its SLAs.

In the given case, we derive that the exceeded composi-
tion costs are caused by its underlying services (i.e., we do a
causal analysis, Step 9). These services, in turn, exceed their
agreed upon invocation costs. Although WS 4 violates its
costs SLO, its impact is low. Further, the expensive branch
(with WS 4 and WS 5) concerning costs is more often invoked
than expected. The cheaper branch (i.e., the branch with WS
3) concerning costs, in turn, is invoked less often, causing
the overall composition to exceed its agreed upon costs. Our
MaDe4IC method proves especially useful for identifying the
complex relations between different services. Furthermore,
it provides the means to develop an approach for causal anal-
ysis to identify causes for SLA violations.

7 Summary

In this paper, we introduce a stepwise method toward efficient
model management of inter-organizational cooperations. We
develop our MaDe4IC method by investigating general prop-
erties of inter-organizational models and by conducting an
extensive literature research. The approach itself relies on
the identification of different types of dependencies between
the different concepts within and between models. Further-
more, we suggest translating relevant model parts into formal
models for easy consistency checking. The same approach
as used for these formalizations is applied to abstracting use-
ful information from event logs into an event log model such
that runtime behavior of the system can be compared with the
models describing it. Furthermore, an additional causal anal-
ysis, using identified dependencies, allows identifying causes
for inconsistencies between models and running system. As
a last option the method provides an approach to check the
consequences for consistency constraints when changes are
made to a model. In other words, we analyze what the conse-
quences are for other consistency constraints when trying to
resolve an inconsistency. As a whole, our method presents a
stepwise, structured approach into managing these complex
constellations in an effective and efficient way. The method
is evaluated by conducting two case studies from different
research domains where the method is applied.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Aalst WMPvd (2000) Loosely coupled interorganizational work-
flows: modeling and analyzing workflows crossing organizational
boundaries. Inf Manag 37(2):67–75

2. Aalst WMPvd, Dongen Bv, Herbst J, Maruster L, Schimm G,
Weijters A (2003) Workflow mining: a survey of issues and
approaches. Data Knowl Eng 47(2):237–267

3. Andrews J, Zhang Y (2003) General test result checking with log
file analysis. IEEE Trans Softw Eng 634–648

4. Astesiano E, Reggio G (2003) An attempt at analysing the consis-
tency problems in the UML from a classical algebraic viewpoint.
In: Proceedings of WADT’03, Springer, pp 56–81

5. Bodenstaff L (2010) Managing dependency relations in inter-
organizational models. PhD thesis, University of Twente, to be
published soon: Ask guest editor for a copy

6. Bodenstaff L, Wombacher A, Reichert M, Jaeger MC (2008a) Mon-
itoring dependencies for SLAs: The MoDe4SLA approach. In: Pro-
ceedings of SCC’08, pp 21–29

7. Bodenstaff L, Wombacher A, Reichert M, Wieringa R (2008b) An
approach for maintaining models of an e-commerce collaboration.
In: Proceedings of EEE’08

8. Bodenstaff L, Wombacher A, Reichert M, Jaeger MC (2009) Ana-
lyzing impact factors on composite services. In: Proceedings of
SCC’09

123

SOCA

9. Bowman H, Boiten E, Derrick J, Steen M (1996) Viewpoint con-
sistency in ODP, a general interpretation. In: Proceedings of FMO-
ODS’96, pp 189–204

10. Bowman H, Steen M, Boiten E, Derrick J (2002) A formal
framework for viewpoint consistency. Form Methods Syst Des
21(2):111–166

11. Dadam P, Reichert M (2009) The ADEPT project: a decade of
research and development for robust and flexible process support.
Comput Sci Res Dev 23(2):81–97

12. Derrick J, Boiten E, Bowman H, Steen M (1996) Supporting
ODP – translating LOTOS to Z. In: Proceedings of FMOODS’96,
pp 399–406

13. Dustdar S (2004) Caramba-A process-aware collaboration system
supporting ad hoc and collaborative processes in virtual teams.
Distribut Parallel Databases 15:45–66

14. Easterbrook S, Chechik M (2001) A framework for multi-val-
ued reasoning over inconsistent viewpoints. In: Proceedings of
ICSE’01, pp 411–420

15. Easterbrook S, Finkelstein A, Kramer J, Nuseibeh B (1994)
Co-ordinating distributed viewpoints: the anatomy of a consistency
check. Technical Report 94/7

16. Egyed A, Medvidovic N (2000) A formal approach to heteroge-
neous software modeling. In: Proceedings of FASE’00, Springer,
pp 178–192

17. Engels G, Küster J, Heckel R, Groenewegen L (2001) A method-
ology for specifying and analyzing consistency of object-oriented
behavioral models. SIGSOFT 26(5):186–195

18. Engels G, Heckel R, Küster JM, Groenewegen L (2002) Consis-
tency-preserving model evolution through transformations. In: Pro-
ceedings of UML’02, Springer, pp 212–226

19. Feather M (1998) Rapid application of lightweight formal methods
for consistency analyses. IEEE Trans Softw Eng

20. Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L,
Goedicke M (1992) Viewpoints: a framework for integrating
multiple perspectives in system development. Int J Softw Eng
Knowl Eng 2(1):31–58

21. Finkelstein A, Gabbay DM, Hunter A, Kramer J, Nuseibeh B
(1993) Inconsistency handling in multi-perspective specifications.
In: Proceedings ESEC’93, pp 84–99

22. Fradet P, Métayer DL, Périn M (1999) Consistency checking
for multiple view software architectures. SIGSOFT 24(6):410–
428

23. Frank U (1999) Conceptual modelling as the core of the informa-
tion systems discipline—perspectives and epistemological chal-
lenges. In: Proceedings of AMCIS’99, pp 13–15

24. Giunchiglia F, Shvaiko P, Yatskevich M (2004) S-Match: an algo-
rithm and an implementation of semantic matching. In: Proceed-
ings of ESWS’04, Springer, pp 61–75

25. Gordijn J, Akkermans H, van Vliet H (2000) Business modelling
is not process modelling. In: Proceedings of eCOMO’00, Springer,
pp 40–51

26. Hunter A, Nuseibeh B (1998) Managing inconsistent specifica-
tions: reasoning, analysis, and action. ACM Trans Softw Eng Meth-
odol 7(4):335–367

27. Jensen K (1997) Coloured petri nets. Basic concepts, analysis
methods and practical use, three volumes. Springer, Berlin

28. Keller A, Ludwig H (2003) The WSLA framework: Specifying and
monitoring Service Level Agreements for Web services. J Netw
Syst Manag 11(1):57–81

29. King S, Chen P (2005) Backtracking intrusions. ACM Trans Com-
put Syst 23(1):76

30. Kleene S (2002) Mathematical logic. Dover, New York
31. Loucopoulos P, Zicari R (1992) Conceptual modeling, databases,

and CASE: an integrated view of information systems develop-
ment. Wiley, New York

32. Mens T, Van Der Straeten R, Simmonds J (2005) A framework
for managing consistency of evolving UML models. In: Software
Evolution with UML and XML, pp 1–31

33. Mitchell T (1982) Generalization as search. Artif Intell 18(2):203–
226

34. Nentwich C, Capra L, Emmerich W, Finkelstein A (2002) xlinkit:
a consistency checking and smart link generation service. ACM
Trans Internet Technol 2(2):151–185

35. Nentwich C, Emmerich W, Finkelstein A (2003) Consistency man-
agement with repair actions. In: Proceedings of ICSE’03, pp 455–
464

36. Noy N, Musen M (2001) Anchor-PROMPT: using non-local
context for semantic matching. In: Proceedings of ONTOL’01,
pp 63–70

37. Nuseibeh B, Easterbrook S, Russo A (2000) Leveraging inconsis-
tency in software development. Computer 33(4):24–29

38. OMG (2009) OMG UML specification. http://www.omg.org/
technology/documents/formal/uml.htm

39. Osterwalder A, Pigneur Y (2002) An e-business model ontology
for modeling e-business. In: Proceedings of Bled electronic com-
merce conference’02, pp 17–19

40. Paolucci M, Kawamura T, Payne T, Sycara K (2002) Seman-
tic matching of Web services capabilities. In: Proceedings of
ISWC’02, Springer, pp 333–347

41. Pokraev S (2009) Model-driven semantic integration of service-
oriented applications. PhD thesis, University of Twente

42. Porras P, Neumann P (1997) EMERALD: event monitoring
enabling responses to anomalous live disturbances. In: Proceedings
of national information systems security conference’97, pp 353–
365

43. Rahm E, Bernstein PA (2001) A survey of approaches to automatic
schema matching. VLDB J 10(4):334–350, http://link.springer.de/
link/service/journals/00778/bibs/1010004/10100334.htm

44. Rozinat A, Aalst WMPvd (2008) Conformance checking of pro-
cesses based on monitoring real behavior. Inform Syst 33(1):64–
95

45. Sahai A, Machiraju V, Sayal M, van Moorsel APA, Casati F (2002)
Automated SLA monitoring for Web services. In: Proceedings of
DSOM’02, pp 28–41

46. Sefika M, Sane A, Campbell R (1996) Monitoring compliance of a
software system with its high-level design models. In: Proceedings
of ICSE’96, vol 18, pp 387–396

47. Smith R (2007) Aristotle’s logic. Stanford encyclopedia of philos-
ophy

48. Spanoudakis G, Zisman A (2001) Inconsistency management in
software engineering: survey and open research issues. In: Hand-
book of software engineering and knowledge engineering, vol 1,
pp 24–29

49. Teorey T, Yang D, Fry J (1986) A logical design methodology for
relational databases using the extended Entity-Relationship model.
ACM Comput Surv 18(2):197–222

50. Timmers P (1998) Business models for electronic markets. Elec-
tron Markets 8:3–8

51. Tosic V, Pagurek B, Patel K, Esfandiari B, Ma W (2005) Man-
agement applications of the Web Service Offerings Language
(WSOL). Inf Syst 30(7):564–586

52. Uchitel S, Chechik M (2004) Merging partial behavioural models.
SIGSOFT 29(6):43–52

53. Varró D, Pataricza A (2003) VPM: a visual, precise and multilevel
metamodeling framework for describing mathematical domains
and UML. J Softw Syst Model 2(3):187–210

54. VDA (2005) VDA Recommendation 4965 T1: engineering change
management (ECM)—part 1: engineering change request (ECR)
version 1.1. Association of German Automobile Manufacturers
(VDA)

123

http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://link.springer.de/link/service/journals/00778/bibs/1010004/10100334.htm
http://link.springer.de/link/service/journals/00778/bibs/1010004/10100334.htm

SOCA

55. Wand Y, Weber R (2002) Research commentary: information sys-
tems and conceptual modeling—a research agenda. Inf Syst Res
13(4):363–376

56. White S (2008) Business Process Modelling Notation (BPMN).
http://www.bpmn.org/Documents/BPMN November 2, 2009

57. Yao Y (2004) Granular computing. Comput Sci 31:1–5

123

http://www.bpmn.org/Documents/BPMN

	MaDe4IC: an abstract method for managing model dependencies in inter-organizational cooperations
	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 Contribution

	2 Terms used in our MaDe4IC method
	2.1 Inter-organizational cooperation
	2.2 Consistency
	2.3 Categorization for models and consistency

	3 The challenge: ensuring and maintaining consistency
	3.1 Model heterogeneity
	3.1.1 Syntactic heterogeneity
	3.1.2 Semantic heterogeneity
	3.1.3 Pragmatic heterogeneity

	3.2 Alignment with the running system
	3.3 Maintaining models

	4 Related work
	5 Our MaDe4IC method
	5.1 Model characteristics
	5.2 Our method: an overview
	5.3 Running example
	5.4 Phase I: model analysis
	5.4.1 Step 1: model analysis
	5.4.2 Step 2: homogenization

	5.5 Phase II: inter-model analysis
	5.5.1 Step 3: inter-model relation detection
	5.5.2 Step 4: inter-model consistency constraints

	5.6 Phase III: intra-model analysis
	5.6.1 Step 5: intra-model relation detection
	5.6.2 Step 6: intra-model consistency constraints

	5.7 Phase IV: combined analysis
	5.7.1 Step 7: dependency analysis

	5.8 Phase V: management phase
	5.8.1 Step 8: log analysis
	5.8.2 Step 9: causal analysis

	6 Evaluation
	6.1 Scenario 1: business and coordination models
	6.2 Scenario 2: service compositions

	7 Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

