
Advanced Migration Strategies for Adaptive Process Management Systems

Stefanie Rinderle-Ma
University of Vienna, Austria
Faculty of Computer Science

stefanie.rinderle-ma@univie.ac.at

Manfred Reichert
Ulm University, Germany

DBIS Institute
manfred.reichert@uni-ulm.de

Abstract

Enabling dynamic process changes is an essential re-
quirement for any adaptive process management technol-
ogy. Particularly, it should be possible to migrate (long-)
running process instances to a new process schema ver-
sion. Further, instance migration must not violate sound-
ness; i.e., structural and behavorial consistency of executed
process schemas need to be preserved. State compliance
has been introduced as basic correctness notion to ensure
that instances, whose state has progressed too far, are pro-
hibited from being migrated. However, this also excludes
them from future process optimizations, which is often not
tolerable in practice. This paper introduces advanced mi-
gration strategies for coping with non-compliant instances
in the context of process change such that they can benefit
from future process type changes on the one hand, but do not
run into soundness problems on the other hand. Contrary
to existing approaches, the strategies proposed in this paper
are based on adjustments at process type and instance level.
Altogether, the suggested migration strategies complement
treatment of non-compliant process instances.

1 Introduction

The ability to effectively deal with change has been
identified as key functionality for any process-aware in-
formation systems (PAIS). Through the separation of pro-
cess logic from application code, PAIS facilitate process
changes significantly. In the context of long-running pro-
cesses (e.g., medical treatment), PAIS should additionally
enable the propagation of such process changes to ongoing
process instances. Regarding the support of dynamic pro-
cess changes, PAIS robustness is fundamental; i.e., changes
must not violate soundness [14] of the running process in-
stances. In response to this challenge adaptive process man-
agement technology has emerged, which enables dynamic
process changes at different levels [1, 8, 11, 12, 14]. Most
approaches apply a specific correctness notion to ensure

that only those process instances may migrate to a modi-
fied process schema for which soundness is maintained af-
terwards. One of the most prominent criteria used in this
context is state compliance [1, 8]. Based on state compli-
ance it is ensured that instances, whose state has progressed
too far, are prohibited from being migrated. However, tak-
ing the experience we gathered when applying our adaptive
process management system AristaFlow (www.aristaflow-
forum.de) in practice we learned that state compliance is
sometimes too restrictive in respect to the migration of long-
running processes (see next paragraph).

S S‘ S‘‘
ΔS ΔS‘ ΔS‘‘

I1, …, Ik I1, …, Ik-j I1, …, Ik-j-i

Ik+1, …, In Ik-j+1, …, Ik Ik-j-i+1, …, Ik-j

migrate
compliant

non-compliant

migrate

adjustment migrate adjustment migrate

Figure 1. Instance Migration

Consider the abstract scenario from Fig. 1: On process
schema S, instances I1, ..., In are running. Then S is trans-
formed into new schema version S′ by applying process
change ∆S . Assume that it can be decided that I1, ..., Ik
may migrate to S′ without violating soundness (i.e., they
are compliant with S′), whereas Ik+1, ..., In have already
progressed too far (i.e., they are not compliant with S′).1

As suggested by most approaches Ik+1, ..., In then remain
running on S. Assume that a further optimization of the
new schema version S′ takes place captured by process
change ∆S′ resulting in new type schema version S′′. Then
I1, ..., Ik could also benefit from ∆S′ if they were compli-
ant with S′′. However, Ik+1, ..., In are excluded from mi-
gration to S′′ anyway since they are not running on S′ at
all. This is not tolerable in many practical settings. Think
of, for example, a patient who is excluded from an opti-
mized treatment because his particular process instance can-

1We assume that instances are clustered along their state.

1

not be migrated to the changed process type schema. Or
consider engineering processes that require changes due to
the replacement of an already released product component.
Regarding change management processes in the automotive
domain, for example, we learned that it must be also possi-
ble to adjust already passed process regions without rolling
back the process. Or in a project with an electricity sup-
plier, we experienced that in the context of schema evolu-
tion, non-compliant instances were adjusted individually to
re-link them to the new process schema version.

In this paper, we introduce advanced strategies for cop-
ing with non-compliant instances in the context of pro-
cess change such that they can benefit from future process
changes on the one hand, but do not run into soundness
problems on the other hand. As depicted in Fig. 2 existing
approaches treat non-compliant process instances by rolling
them back [11], by migrating them with delay [3], or by
enabling a higher number of process instances to migrate
based on relaxing compliance notions [10]. The approach
presented in this paper, can be seen as complementary to all
these approaches. The decision which strategy is to applied,
might depend on the application context. We will give a
short discussion on this in Sect. 5. Note that our work pro-
vides the technical foundation for improving migratability
of instances in adaptive PAIS. Additionally, semantical is-
sues can become relevant for deciding on certain cases. We
will refer to this issue in Sect. 5 based on our work within
the SeaFlows project [5] on semantic-aware processes.

Local Adjustment

Global Adjustment

History-based

Strategy 1
Strategy 2
Strategy 1
Strategy 2

Bias-based

Strategy 3Strategy 3

Strategy 4Strategy 4

Adjustments

Strategy 1
Strategy 2 :
- Single insertions:
- Multiple insertions: cf. Sect. 5

Data Flow Changes
(accompanying)

Strategy 1
Strategy 2
Strategy 4

INSERT
Control Flow Changes

Strategy 1
Strategy 3

DELETE

Strategy 1
Strategies 2/4
+ Strategy 3

MOVE

Strategy 1

ANY
OTHER

Strategies along Change Types

Coping with Non-
compliant Instances

Relaxed Compliance

Partial Rollback

Delayed Migration

Figure 2. Treating Non-Compliant Instances

Section 2 introduces background information. Section 3
presents different strategies for dealing with non-compliant
instances. Section 4 shows how non-compliant process in-
stances can be structurally adjusted to make them migrate-
able. Section 5 provides an evaluation for applying the dif-
ferent strategies. Section 6 discusses related work and Sec-
tion 8 closes with a summary.

2 Background

We first summarize basic concepts and notions used in
this paper. For each business process to be supported a pro-
cess type T represented by a process schema S has to be de-
fined. For a particular type several process schemas may ex-
ist, representing the different versions and evolution of this
type over time. In the following, a single process schema
is represented as directed graph, which comprises a set of
nodes – representing activities or control connectors (e.g.,
XOR-Split, AND-Join) – and a set of control edges (i.e.,
precedence relations) between them. In the following we
assume relaxed block-structured process schemas; i.e., on
top of block-based process patterns, we provide sync links
for setting up order relations between activities belonging
to parallel branches (similar to the link concept in BPEL).
In this paper, we assume acyclic process structures. In Sect.
5 we provide a discussion on how the proposed migration
strategies can work in connection with loops as well.

Further, a process schema comprises data elements
and data edges. A data edge links an activity with
a data element and represents a read/ write access of
this activity to the respective data element. Altogether,
a process schema S is represented by a tuple S :=
(N,CtrlE, SyncE,D,DataE, ...) where N denotes the
set of activities, CtrlE the set of control egdes, SyncE the
set of sync edges, D the set of data elements, and DataE
the set of data edges. Based on process schema S at run-
time process instances can be created and executed. For
instance I running on S, start and/or completion events of
corresponding activities are recorded in execution trace σS

I .
A compact representation of trace σS

I is given by instance
marking NSI which assigns to each activity of I its current
state. Possible activity states include NotActivated, Acti-
vated, Running, Completed, and Skipped [8].

In general, we assume sound process schemas S [2]. Fol-
lowing the definition given in [14], we distinguish between
structural and behavorial soundness. Basically, a schema
S is structurally sound if it has exactly one start and one
end activity and all activities are connected. There might
be additional structural soundness constraints set out by the
particular process meta model (e.g. block-structuredness).
In summary, behavorial soundness refers to correct instance
states [8], i.e., the instance must not run into any livelock or
deadlock. Additionally, input data has to be correctly sup-
plied for all activities. If, for example, an activity is started
before all predecessor activities are completed, this activity
will not necessarily be supplied with all required input data.

Process change: Basically, changes can be triggered and
performed at the process type and process instance level.
Changes of a process type T may become necessary to cover
the evolution of the business processes captured in process
schemas of this type [12, 8, 14]. By contrast, changes of

2

individual process instances are usually performed by end
users and become necessary to react to exceptional situ-
ations [8]. In particular, effects of such changes must be
kept local, i.e., they must not affect other instances of same
type. Thus for each individually modified instance I an
instance-specific schema SI is maintained. The difference
between SI and original schema S is captured by the so
called instance-specific bias of I; i.e., ∆I(S). Specifically
∆I(S) captures all change operations applied to S at in-
stance level in order to obtain instance-specific schema SI .
Instances which have not been individually modified are de-
noted as unbiased instances.

In the context of process type and process instance
changes, structural and behavorial soundness have to be pre-
served. In our ADEPT approach, structural soundness is
achieved based on well-defined pre- and post-conditions for
the different change operations [8]. Behavorial soundness
is accomplished by behavorial correctness criteria. One
prominent example is the state compliance criterion [1]
which is used in the remainder of this paper. Informally,
state compliance checks whether execution trace σS

I of in-
stance I on schema S could be also produced by an instance
on S′ in the same order as set out by σS

I .
Metrics on Process Schemas: One possiblity to eval-

uate the migration strategies proposed in the following is
to measure the difference between original process schema
S1 and schema S2 resulting after applying a certain migra-
tion strategy. For this we apply process metrics like activity
coverage and process similarity. Further we must consider
the number of control relations being different for S1 and
S2, denoted by dS(S1, S2). Informally, for each node in S1

(S2) all successor nodes are counted that are different from
the successor nodes of S2 (S1). This number should be min-
imized in order to enable propagation of subsequent schema
changes (see Sect. 5 for definitions of these metrics).

3 Treating non-compliant instances

This section discusses strategies for treating non-
compliant instances. Certain kinds of adjustment (cf. Fig.
2) enable non-compliant instances to migrate to the new
schema version if desired by the process engineer; i.e., to
relink them to the new type schema. One of the possible
adjustments is to ”simulate” an instance-specific bias such
that the effects of the type change, for which the instance
has progressed too far, are ”neutralized”. This enables mi-
gration or – more precisely – ”re-linking” of the respective
instance to the new type schema version. Consequently, this
instance can benefit from further schema optimization.
Strategy 1 (Always-Migrate): Basically, any non-
compliant instance can be migrated (i.e., relinked) to modi-
fied type schema version. The idea is as follows: Let S be
a process schema which is transformed into S′ by change

∆S . Let further I be an instance on S. So far, ∆S is prop-
agated to I when migrating I to S (i.e., I reflects ∆S after
its migration to S′). However, if I is not compliant with
S′, ∆S must not be applied to I; i.e., execution of I should
be continued on its old schema. However, at technical level
this effect can be ”simulated” when re-linking I to S′ by
”neutralizing” type change ∆S . ”Neutralizing” means to
introduce an artificial bias ∆I on S′ which reverses the ef-
fects of ∆S for this particular instance. Consider Fig. 3. At
type level activity X is inserted between activities A and B
including the insertion of a read data edge from X on data
element d. Then instance I (cf. Fig. 3b) is not compliant
with S’ since B has been already completed. Nevertheless,
I can be migrated to S′ by not applying type change ∆S .
The invalid change ∆S for I on S′ can be ”healed” by cre-
ating an instance-specific bias ∆I(S′) for I on S′; ∆I(S′)
then reflects the deviations between S′ and instance-specific
schema SI . Specifically, ∆I(S′) constitutes the ”inverse”
change operation of ∆S . In our example, addingX to S can
be reversed by deleting read data edge X → d as X from
S′. Strategy 1 can be applied for any kind of change regard-
less whether they concern control or data flow. The chal-
lenge is to determine the ”inverse” change to be maintained
for the migrated instance. Tab. 1 shows inverse changes for
activity insertion, deletion, and order-changes as well as for
selected data flow changes. Alternatively, we can directly
determine schema ”difference” between type schema S′ and
instance-specific schema, e.g., [4] presents an approach for
comparing two schemas S1 and S2 in terms of high-level
change operations needed to transform S1 into S2.

CCXX

a) Process type schema S:

b) Unbiased instance I on S:

AA BB CC

XX

Modified process type schema S`:

ΔS = <insert(S,X,A,B),
insDEdge(S,d,X,r>

ΔI(S‘) = <delete(S‘,X),
delDEdge(S,d,X)>

I:

AA BB

AA BB CC

I non-compliant with S‘

migrate

Biased instance I on S‘:

AA BB CC

S[ΔS>S‘

Activity States:
Completed

Activity:

Activated

d d

d
5

d
5

Data Flow:
Data element
Data edge

d

Figure 3. Strat. 1: Always-Migrate (Example)

Strategy 2 (Instance-Specific Adjustment) The idea be-
hind Strategy 2 is to conduct instance-specific adjustments
of type changes. This way we are able to relink non-
compliant instances to the new type schema version. For
this purpose we exploit the specific semantics of the applied
change operation [13]: When inserting an activity, for ex-
ample, the user has to specify the position where to insert
the new activity. Thus activity insertion is a candidate for
instance-specific change adjustment since such position pa-
rameters can be easily adapted; e.g., by inserting the activtiy

3

Change operation ∆ on S opType subject paramList inverseOp
insert(S, X, A, B)a insert X S, A, B delete(S, X)
Effects on S: inserts activity S between activities A and B.
delete(S, X) delete X S insert(S, X, pred(S,X), succ(S,X))b

Effects on S: deletes activities from S
move(S, X, A, B) move X S, A, B move(S, X, pred(S,X), succ(S,X))
Effects on S: moves activity S from its original position in S to another position between activity sets A and B
insDE(S, d) insert d S delDE(S,d)
Effects on S: inserts data element d into S
delDE(S, d) delete d S insDE(S,d)
Effects on S: deletes data element d from S (d is not referenced by any data connector)
insDEdge(S, d, X, [r|w]) insert d S, X, [r|w] delDEdge(S,d,X)
Effects: inserts read/write dada edge between activity X and data element d into S
delDEdge(S, d, X) delete d S, X insDEdge(S, d, X, [r|w])
Effects: deletes data edge between activity X and data element d
aBasically, insertion between activities A and B can be generalized to insertion between activity sets A, B. Additionally,
for conditional insert an optional parameter [sc] can be included for representing a conditional insert (for details see [13]).
bpred(S,X) / succ(S,X) denotes the direct predecessor(s) / successor(s) of X in S.

Table 1. Selection of Change Operations on Process Schemas

”later” than originally intended.
Consider the example depicted in Fig. 4. Instance I (cf.

Fig. 4b) is not compliant with new type schema S′ since B
has state Running. Basically, if possible from a semantic
point of view, at instance level X can be inserted at other
positions as well such that I becomes compliant again. As-
suming that we keep A as ”left anchor” for the insert opera-
tion, possible ”right anchors” for the insertion are C and D
respectively. First consider insertion of X between A and
C (¬): When applying ∆1

I(S) to I as instance-specific ad-
justment, we obtain instance schema S1

I . The bias between
S1
I and S′ is captured by ∆1

I(S′) and reflects an insertion
with ”relaxed” insertion position.2 Schema S2

I resulting
from the insertion of X between A and D is depicted in
Fig. 4b (). Obviously, the question is which of the two
schemas we shall prefer. The premise of this paper is to
enable migration of non-compliant instances such that they
can benefit from further optimizations. In general, the ap-
plication of further modifications at type level will be sup-
ported best when keeping the instance-specific schemas ”as
close as possible” to the type schema version they are mi-
grated to. Intuitively, S1

I is ”closer” to S′ when compared
to S2

I . To define ”as close as possible” we can use structural
distance dS as introduced in Section 2.

Basically, it is also possible to use ”left anchors” other
thanA for realizing instance-specific adjustments. Consider
Fig. 4b(®): When compared to S′ the order betweenX and
B has been reversed for Fig. 4b(®), whereas for Fig. 4b(¬)
X and B are ordered in parallel. Thus in Fig. 4b(¬), still
X can be started before B is finished, what is not possible
in Fig. 4b(®). Hence, the instance schema from Fig. 4b(¬)
is ”closest” to S′. – Generally, we want to answer: how to
determine instance-specific adjustments ∆I(S′) such that I

2i.e., X is not inserted between A and B, but between A and the first
”possible” successor of B.

is compliant with SI where S′[∆I(S′) > SI
3 and distance

between instance schema SI and modified type schema S′

dS(SI , S
′) becomes minimal?

Strategy 3: History-Based Adjustment History-based ad-
justment is mainly applied for delete operations: e.g., an
instance is not compliant if the activity to be deleted is
running or completed. Basically, deletions of activities ”in
the past” of process instances are enabled by adjusting in-
stance traces4. Assume that activity X is to be deleted from
schema S resulting in schema S′. Regarding instance I on
S, X has been already completed and respective start
and/events for X were logged in trace σS

I . Thus σS
I

cannot be ”replayed” on S′ and compliance for I on S′

is not fulfilled. However, when discarding respective trace
entries of X from σS

I , the modified trace can be replayed
on S′ and thus I be migrated. Entries of deleted activities
are physically not deleted from the exeuction traces, but are
only flagged within the trace to preserve traceability. Strat-
egy 3 does not harm soundness of the affected instances.
Strategy 4: Global-Adjustment Basically, adjusting
schema changes may be done at both, the process type
and the process instance level. Assume that process type
schema S is transformed into another type schema S′ by
change ∆S . Let further I be an instance on S which is not
compliant with S′. If ∆S is adjusted to ∆′

S at type level
(i.e., transforming S into S′′ instead of S′), more instances
running on S become compliant with S′′ afterwards. Gener-
ally, more instances will become compliant with a changed
type schema, if added activities are inserted as late as pos-
sible. Most important, all data dependencies imposed by
the process type schema and the intended change must be
fulfilled. For the given example this implies that activities

3An interesting question arises in the context of data flow changes ac-
companying insert operations as, for example, depicted in Fig. 3

4For practical scenarios from the automotive domain in which such
non-compliant deletions are required, we refer to [6].

4

AA BB CC DD

CCXX

a) Process type schema S:

b) Unbiased instance I on S:

AA BB CC

XX

Modified process type schema S`:

ΔS = <insert(S,X,A,B),>

Δ1
I(S‘) = <move(S, X, A, C)>

AA BB

I non-compliant with S‘

Biased instance I on S‘:

AA BB CC

XX

+ +

CompletedActivity + AND-Split/Join

DD

DD

DD

Δ3
I(S‘) = <move(S, X, B, C)>

CCBBAA XX DD

Δ4
I(S‘) = <move(S, X, B, C)>

XXBBAA CC DD

Δ2
I(S‘) = <move(S, X, A, D)>

AA BB CC

XX

+ + DD

Running

S1
I

S3
I

S4
I

S2
I

S[ΔS>S‘

Activated

Figure 4. Strat. 2: Instance-Specific Adjust-
ment (Example)

X and Y can be inserted ”later in the type schema” (i.e.,
as ”close” to the process end as possible) as long as the
data dependency between them is fulfilled. Since a pro-
cess type schema might contain more than one process end
node, the formalization of ”later in a process graph” should
not be based on structural properties; i.e., we want to be in-
dependent of a particular process meta model. As for state
compliance, we use process traces in this context. Due to
lack of space we omit a formalization here. Finally, when
inserting two or more data-dependent activities, additional
constraints must hold. More precisely, it cannot be allowed
to move the insertion position of the writing activity ”be-
hind” the reading activity since the resulting schema would
not be correct anymore.

4 Instance-Specific Adjustment of Instances

Bias-based strategies as introduced in Sect. 3 are promis-
ing approaches for treating non-compliant instances. As-
sume that instance I on S is not compliant with modified
type schema version S′ (S[∆S > S′). However, if type
change ∆S can be locally adjusted to ∆I(S′) such that I
becomes compliant with instance schema S|∆I(S′) > SI ,
I can be relinked to S′ using bias ∆I(S′) (Strategy 2). As
motivated by Fig. 4, different adjustments of ∆S are con-
ceivable. However, we are particularly interested in the
adjustment which results in the lowest structural distance
dS(S′, SI) between instance schema SI and type schema
S′ (cf. Sect. 2). In this section we show how to automat-
ically derive such optimal instance-specific adjustment for
unbiased process instances. In the example from Fig. 4, op-
timal instance-specific adjustment for operation ”insert ac-
tivity X between A and B” can be achieved if X is inserted
between A and the next possible successor of A which has

not been started yet. Theorem 1 captures this aspect:

Theorem 1 (Optimal Instance-specific Adjustment)
Let S = (N, E, ...) and S’ be two process schemas and let
∆S = <insert(S, X, A, B)> describe an insertion which
transforms S into S’; i.e., S[∆S > S′. Let further I ∈ I5 be
an instance running on S for which NSI(B) ∈ {Running,
Completed} holds for the state of activity B; i.e., I is not
compliant with S’. We define instance-specific adjustment
∆I(S′) as follows:

∆I(S′) = move(S’,X,A,C) with
C ∈ nextNonStartedSucc(S’,I,B)6 where

nextNonStartedSucc: S × I × N 7→ 2N with
nextNotStartedSucc(S’,I,n) =
{n ∈ succ*(S’,X) 7| NSI(n) 6∈ {Running, Com-

pleted}
∧ (6 ∃ n’: NSI(n′) 6∈ {Running, Completed}

∧ n ∈ succ*(S’,n’) }
Then: I is compliant with SI where S′[∆I(S′)>SI and

dS(S’,SI) = min{dS(S’,S̃I) | S′[˜∆I(S′)>S̃I with I com-
pliant with S̃I}

We prove Theorem 1 in a technical report [9]. Its ad-
justment strategy is applicable for single insert operations
with accompanying data flow change operations as well.
Consider, for example, Fig. 3 where the insertion of ac-
tivity X at schema level is accompanied by insertion of a
read data edge between activity X and data element d. If
we adjust the insert operation at instance level to ∆I(S′) =
<move(S’,X,A,C)> according to Theorem 1, data flow re-
mainsl correct. This holds for all possible single insert op-
erations with accompanying data flow operations. Accom-
panying data flow operations for single activity insertions
can only be insertions of read data edges for the inserted
activity. Correct supply of the corresponding read accesses
at schema level requires that the left anchor of the newly
inserted activity or one of its predecessors writes the data
element accordingly. Since the left anchor as well as all
its predecessors still precede the inserted activity after ad-
justing the change at instance level, the read access will be
correctly supplied.

So far, insert and delete operations have been discussed.
Regarding insert operations instance-specific adjustments
can be applied (cf. Strategy 2), whereas for delete op-
erations, ”adjustment” of the execution history of the af-
fected instance might relax compliance issues (cf. Strategy
3). What about move operations? First, moving an activity

5I denotes the set of all instances
6In connection with parallel or alternative branchings more than one

successor of B can be the ”next non-started activity”. In this case one of
them is chosen arbitrarily or the user is asked to make a choice.

7succ*(S, X) returns all direct and indirect successor activities of aci-
tivity X in S.

5

can be logically seen as combination of a delete and insert
operation. Second, regarding state compliance, an activ-
ity cannot be moved if it has already been started or com-
pleted. Further it cannot be moved in front of an activity
which has been already started or completed. Thus we dis-
tinguish between the following cases: if an activity shall be
moved, which has been already started or completed, we
apply history-based adjustment (Strategy 3). If it shall be
moved to a position before an already started or completed
activity, we apply instance-specific adjustment (Strategy 2).

When using ADEPT technology and AristaFlow BPM
Suite in practice, it has often become necessary to apply
more than one (i.e., multiple) change operation to conduct
an intended change at process type level. Assume, for ex-
ample, that a set of activities is inserted while other ones
are deleted at same time. The challenge then is to de-
termine instance-specific adjustments in case of multiple
change operations. We illustrate the basic idea of instance-
specific adjustments for multiple change operations by ex-
ample of multiple insertions: For each insert operation ap-
plied to schema S a corresponding move operation is gen-
erated based on Theorem 1 if necessary; i.e., if I is not com-
pliant regarding this particular insert operation. In Fig. 5,
I is not compliant with S′. Hence for both insert oper-
ations (i.e., of X and Y) corresponding move operations
are applied to realize an instance-specific adjustment (bias).
However, we have to take special care of multiple inser-
tions in connection with data flow changes: assume that for
the change operations depicted in Fig. 5 accompanying data
flow changes are applied, i.e., new data element d is inserted
with write data edge from Y to d and read access fromX on
d. At schema level, these data flow change operations are
correctly applicable since Y is a predecessor of X in any
case. However, at instance level, after adjusting instance I
as shown in Fig. 5, it is not guaranteed that data element d
is written by Y before being read by X , since Y is no pre-
decessor ofX for I on S′ (specificallyX and Y are ordered
in parallel). Thus the correct data supply of X by Y is not
ensured at instance level.

Thus, the optimality criterion set out by Theorem 1 has
to be modified to conditional optimality; i.e., we have to de-
termine instance-specific adjustment ∆′

I(S′) in such a way
that the order relation between writing activity X and read-
ing Y is preserved. This can be accomplished by inserting
an additional sync edge between X and Y (this is possi-
ble since they are ordered in parallel) leading to instance-
specific schema SI′ . We will elaborate on conditional opti-
mality in future work.

5 Strategy Evaluation

Assume that instances IS := {I1, ..., In} are running on
type schema S which is then transformed into schema S′

AA BB

CC EE

X FFX

DD

a) Process Type Schema S:

b) Instances on Schema S:

Process Type Schema Sb:
ΔS= < insert(S,X,C,E).

insert(S, Y, A, B)>

AA BB

CC EE

X FFX

DD

AA BB

CC XX

X FFX

DD

EE

AA BB

CC

XX

X FFX

DD

EE

+ +

Activity States: Completed

Activity

X XOR-Split/Join

Control edge

Sync edge

ΔI = < insert(S,X,C,F)>

YY

+
Δ I(S)= <>

+

YY

Δ I(S‘)= < move(S,X,C,F), move(S, Y, A, D)>

sD(S‘, S‘I) = 5Skipped

Activated

Figure 5. Instance-specific Adjustment

(S[∆S>S’). Assume further that a subset of the running in-
stances is not compliant with S’. In this section we want to
evaluate the quality of the different strategies introduced in
Section 3 for treating such non-compliant instances. On the
one hand, the quality of a strategy is related to the number
of instances which can be migrated in addition to the num-
ber of compliant instances (i.e., instances without applying
any strategy). On the other hand, we also have to consider
the ”price” to be paid for each additionally migrated in-
stance I . The latter is reflected by the distance between
instance schema SI and S′ after migration. One metric
for measuring structural distance between process schemas
SI := (NI , CtrlEI , ...) and S′ = (N ′, CtrlE′, ...) is pro-
vided by structural distance dS(S′, SI) as introduced in
Sect. 2. However, this metrics can be only applied if SI

and S′ have same activity set; i.e., there exists a bijective
mapping between NI and N ′ or – in other words – activ-
ity coverage between SI and S′ is 100%. Actually, activity
coverage can be also used to compare process schemas, for
example, in the context of Strategy 1 (cf. Section 3), which
leads to NI 6= N ′ in most cases. Finally, process schemas
SI and S′ can be also compared based on the number of
high-level operations necessary to transform SI into S′.

Formula (1) enables evaluation of the quality of Strate-
gies 1 to 4 with SC(s, S′, IS) :=

#mIs −
∑

I∈IS
PS(SI, S′) −

∑
I∈IS

AC(SI, S′) −
∑

I∈IS
SD(SI, S′)

|IS |
(1)

Specifically, #mIs denotes the number of migratable in-
stances when applying strategy s. Note that we can com-
pare the application of a strategy with the case of applying
no strategy. Then #mIs reflects the number of instances,
which are compliant with modified type schema version S′

anyway. The remainder of the formula quantifies the side-
effects when applying one of the strategies. If we do not
apply any strategy, the formula yields SC(”none”, S’, IS)

6

Metric M Formula Preconditions

Process Similarity PS(SI ,S’):= distance(SI,S′)
|NI |+|N′|−|NI∩N′|

a

Activity Coverage AC(SI ,S’):= |NI∩N
′|

|NI |+|N′|−|NI∩N′|

Structural Distance SD(SI ,S’):= dS(SI,S′)
|NI |

AC(SI ,S’) = 100%
a distance(SI ,S’)denotes the high-level operations applied for transforming SI into S′.

Table 2. Metrics for Comparing Process schemas

= #mIs
|IS | ; i.e., the number of compliant instances divided

by the number of all instances. For Strategy 1, for ex-
ample, which enables migration of all instances (”always-
migrate”), #mIs = |IS | and thus SC = 1 holds.

Consider the scenario depicted in Fig. 6. Type schema
S is transformed into S′ by inserting activity X between
A and B and by deleting C. Assume that 500 instances
are running based on S and that they are clustered along
their current instance state. Assume further that for in-
stances I1, ..., I100, activity A is completed and B is ac-
tivated, for instances I101, ..., I200 activities A and B are
completed and C is activated, and for I201, ..., I500 activi-
ties A, B, and C are completed whereas D is either acti-
vated or running. Then instances I1, ..., I100 are compliant
with S′, whereas I101, ..., I500 have progressed too far; i.e.,
they are non-compliant with S′. Without any further treat-
ment of the non-compliant instances the quality turns out as
SC(”none”,S’,IS) = 0.2.

The result of applying our four strategies is illustrated
by Fig. 6. First, Strategy 1 (Always-Migrate) is applied
to instances I101, ..., I500. Instances I101, ..., I200 are not
compliant with respect to the insertion of X , but they are
compliant with respect to the deletion of C. Hence, when
applying Strategy 1 to I101, ..., I200, the insert operation
has to be neutralized, which can be expressed by a delete
operation on S′ (i.e., to delete X on S′). Contrary, in-
stances I201, ..., I500 are not compliant with respect to both
changes. Hence, the deletion of C has to be neutralized as
well by a respective insert operation (cf. Fig. 6).

As summarized in Fig. 2, some of the strategies are only
applicable in the context of certain change operations; i.e.,
Strategy 2 for insert operations and Strategy 3 for delete
operations. Type schema change ∆S captures an insert as
well as a delete operation. Hence, we have to combine
Strategies 2 and 3 in order to adequately treat non-compliant
instances by bias-based local adjustment. Regarding in-
stances I101, ..., I200, the delete operation can be applied
(no history-based adjustment). However, the insert opera-
tion has to be adjusted to a move operation as depicted in
Fig. 6. Regarding I201, ..., I500 we have to apply history-
based adjustment for the deletion of C as well (i.e., logi-
cally discarding the entries of C in traces of I201, ..., I500).
Finally, Fig. 6 shows an example for applying Strategy 4

(Global Adjustment); i.e., by inserting activity X between
C and D instead of inserting it between A and B, all in-
stances for which D has not been started yet become com-
pliant with S′′ (e.g., I1, ..., I450). Fig. 6 also depicts quality
estimations for Strategies 1, 2, and 4 as depicted in Fig. 6.

Strategy 1: Always Migrate

Instances
I101, …, 200

A B D

Instances
I201, …, 500

ΔIj = <delete(S‘,X)>, j = 101, …, 200

A B C D

ΔIj = <delete(S‘,X), insert(S, C, B, D)>, j = 201, …, 500

Strategy 2: Local Adjustment
Instances
I101, …, 500

ΔIj = <move(S‘,X,A,D)>, j = 101, …, 500
A B D+ +

X

A B C D

A B C D

A B C D

A B C D A X B D

a) Process Schema S: S`:ΔS = < insert(S,X,A,B), delete(S,C)>

A B X DA B C D

Strategy 4: Global Adjustment Δ‘S = < insert(S,X,C,D), delete(S,C)> S‘‘:
S:

SC(1,S‘,I)=1.31

SC(2,S‘,I)=1.5

SC(4,S‘,I)=1.9

Figure 6. Application of Different Strategies

Aside this quantitative reflections, applicability of the
proposed strategies has to be discussed in connection with
advanced issues such as loops and semantic constraints on
the one side and its application-dependency on the other
side. Commenting on the latter, Strategy 1, for example,
can be applied when no other strategy seems to be conceiv-
able. Definitely, this might be useful in the medical domain,
where there is often no time to roll-back an instance first
and then migrate it, but rather let a patient benefit from fur-
ther process optimizations immediately. Instance-specific
and global adjustments exploit the flexibility degrees pro-
cess schemas offer anyway. This is supported by the emer-
gence of new paradigms such as declarative modeling.

When Strategy 1 is applied within a loop, within the next
iteration the change would become effective. However, we
have to ”take back” the instance-specific bias for subsequent
iterations and mark this within the assoicated change op-
eration. We will further investigate on the connection of
loops with the other strategies in future work. Regarding
semantic constraints, they might yield useful information
for the application of the different scenarios. One example
is global adjustment which might be applicable without vi-
olating soundness, but harming some semantic constraints.

7

6 Related Work

Many approaches deal with soundness issues in adaptive
PAIS [12, 14, 8, 11]. The kind of applied correctness cri-
terion often depends on the used process meta model. A
discussion and comparison of the particular correctness cri-
teria is given in [8]. Aside from the applied correctness cri-
teria, mostly, these approaches do neither address the ques-
tion of how to increase the number of migratable instances
nor how to deal with non-compliant instances. Frameworks
for process flexibility have been presented in [7, 13]. In
[7], different paradigms for process flexibility and related
technologies are described. [13] provides change patterns
and evaluates different approaches based on them. How-
ever, [7, 13] do not address the treatment of non-compliant
instances. For treating non-compliant instances, different
strategies have been proposed in literature (cf. Sect. 2).
Partial rollback has been suggested [11]. Applying this pol-
icy to instances which have already progressed too far re-
sults in a compliant state. Generally, instance rollback is
accomplished by compensating activities [11]. An obvious
drawback is that it is not always possible to find compen-
sating activities, i.e., to adequately rollback non-compliant
instances. Apart from this, rollback is mostly connected
with loss of work and thus not well accepted by users. An
alternative is delayed migration of non-compliant instances.
Even if instance I on S is not compliant with S′ within the
actual iteration of a loop, a delayed migration of I to the
new change region is possible when another loop iteration
takes place. Alternatively, the number of non-compliant in-
stances can be kept smaller by relaxing the underlying cor-
rectness criteria. Basically, the strategies presented in this
paper can be combined with any of the above strategies as
well. For example, it is possible to first reduce the number
of non-compliant instances by applying relaxed compliance
[10], then apply one of the strategies provided in this paper,
and try to treat the remaining instances by partial rollback.
Further the strategies are applicable to any other flexible
process approach using change operations and compliance.

7 Summary and Outlook

In this paper we provided four strategies to cope with
non-compliant process instances that are based on adjust-
ments either of process changes at type schema level or in-
stance level. Alternatively, ”adjustments” of the instance
traces are helpful in some cases. All strategies preserve
soundness of the running instances after relinking them to
the new type schema version. In particular, we elaborated
the migration of instances by locally adjusting the type
schema change at instance level; e.g., moving the inser-
tion position such that the instances become compliant with
the resulting instance-specific schema. How respective ad-

justments can be determined such that the distance between
instance-specific schema and modified type schema version
becomes minimal has been shown as well. When consider-
ing real-world migration scenarios in domains like health-
care, automotive engineering or electricity supply, we could
experience the high practical relevance of the presented re-
search. In future work, we will investigate the interplay
between relaxing compliance, treating non-compliant in-
stances, and ensuring semantic process constraints.

References

[1] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolu-
tion. Data and Knowl. Engineering, 24(3):211–238, 1998.

[2] J. Dehnert and A. Zimmermann. On the suitability of cor-
rectness criteria for business process models. In Int’l Confer-
ence Business Process Management, pages 386–391, 2005.

[3] C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change
within workflow systems. In ACM Conf. on Organizational
Computing Systems, pages 10–21, 1995.

[4] C. Li, M. Reichert, and A. Wombacher. On measuring
process model similarity based on high-level change oper-
ations. In Int’l Conf. on Conceptual Modeling, pages 248–
264, 2008.

[5] L. Ly, S. Rinderle-Ma, and P. Dadam. Design and verication
of instantiable compliance rule graphs in process-aware in-
formation systems. In Int’l Conf on Advanced Information
Systems Engineering, pages 9–23, 2010.

[6] D. Müller, M. Reichert, and J. Herbst. A new paradigm for
the enactment and dynamic adaptation of data-driven pro-
cess structures. In Int’l Conf. on Advanced Information Sys-
tems Engineering (CaISE’08), pages 48–63, 2008.

[7] N. Mulyar, M. Schonenberg, R. Mans, N. Russell, and
W. van der Aalst. Towards a taxonomy of process flexibility.
Technical Report BPM-07-11, BPMcenter.org, 2007.

[8] S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria
for dynamic changes in workflow systems – a survey. Data
and Knowledge Engineering, 50(1):9–34, 2004.

[9] S. Rinderle-Ma and M. Reichert. Adjustment strategies for
non-compliant process instances. Technical Report UIB-
2009-06, Ulm University, 2009.

[10] S. Rinderle-Ma, M. Reichert, and B. Weber. Relaxed com-
pliance notions in adaptive process management systems. In
Int’l Conf. on Conceptual Modeling, pages 232–247, 2008.

[11] S. Sadiq, O. Marjanovic, and M. Orlowska. Managing
change and time in dynamic workflow processes. IJCIS,
9(1&2):93–116, 2000.

[12] W. van der Aalst and T. Basten. Inheritance of workflows:
An approach to tackling problems related to change. Theo-
ret. Comp. Science, 270(1-2):125–203, 2002.

[13] B. Weber, M. Reichert, and S. Rinderle-Ma. Change pat-
terns and change support features - enhancing flexibility in
process-aware information systems. Data and Knowledge
Engineering, 66(3):438–466, 2008.

[14] M. Weske. Business Process Management: Concepts, Lan-
guages, Architectures. Springer, 2007.

8

