
Robust and Flexible Error Handling
in the AristaFlow BPM Suite

Andreas Lanz, Manfred Reichert, and Peter Dadam

Institute of Databases and Information Systems, University of Ulm, Germany
{Andreas.Lanz, Manfred.Reichert, Peter.Dadam}@uni-ulm.de

Abstract. Process-aware information systems will be not accepted by
users if rigidity or idleness due to failures comes with them. When imple-
menting business processes based on process management technology one
fundamental goal is to ensure robustness of the resulting process-aware
information system. Meeting this goal becomes extremely complicated if
high flexibility demands need to be fulfilled. This paper shows how the
AristaFlow BPM Suite assists process participants in coping with errors
and exceptional situations in a flexible and robust way. In particular,
we focus on novel error handling procedures and capabilities using the
flexibility provided by ad-hoc changes not shown in other context so far.

Key words: Process-aware Information System, Adaptive Process, Er-
ror Handling

1 Introduction

During the last decade we developed the next generation process management
system ADEPT2 [1]. Due to the high interest of companies in this technology,
we transferred it into an industrial-strength process management system called
AristaFlow BPM Suite [2]. One of the fundamental goals of AristaFlow is to
enable robust and flexible process-aware information systems (PAISs) in the
large scale. In particular, we want to ensure error-safe and robust process execu-
tion even at the occurrence of exceptions or dynamic process changes. Recently,
ADEPT2 and AristaFlow, respectively, were applied to a variety of challenging
applications in domains like healthcare [3, 4], disaster management [5], logistics
[6], and software engineering [7]. The overall goal was to learn more about pro-
cess flexibility issues in advanced applications and to study how adaptive process
management technology can be applied to deal with errors and exceptions.

This paper complements our previous work on ADEPT2 [1, 2, 8, 9] and fo-
cuses on a fundamental pillar of any robust process implementation: error han-
dling. One important dimension in this context concerns error prevention. We
achieve the latter by applying a “correctness-by-construction” principle during
process composition and by guaranteeing correctness and robustness in con-
nection with (dynamic) process changes as well. This was probably the most
influential challenge for our whole research. It also had significant impact on the
development of the AristaFlow BPM Suite. In particular we try to detect as



2 Andreas Lanz, Manfred Reichert, and Peter Dadam

many errors as possible (e.g. incomplete data flow specifications or deadlocks)
already at buildtime in order to obviate their occurrence during runtime. In gen-
eral errors cannot be always foreseen and thus be prevented. Therefore, another
important dimension of PAIS robustness concerns exception handling. We will
show that AristaFlow provides an easy, but yet powerful tool to handle excep-
tions during runtime. As we will show, in respect to flexible exception handling
ad-hoc process changes have proven to be extremely useful. By utilizing them
it even becomes possible to cope with severe process failures and to continue
repaired processes in a correct way.

In Section 2 we introduce a simple application scenario which we use as
illustrating example throughout the paper. Section 3 gives backgrounds on the
AristaFlow BPM Suite. In Section 4 we show how this process management
system copes with errors that might occur during process execution, and how
to do this in a flexible and robust way. Section 5 summarizes real-world cases
to which AristaFlow was applied. Section 6 discusses related work and Section
7 concludes with a summary and outlook.

2 Illustrating Application Scenario

We use a simple example to illustrate how different kinds of errors within PAISs
can be handled when using AristaFlow. Consider Fig. 1. It shows a simple pro-
cess of an online book store. In the first step, a customer request is entered and
required data is collected. Next the bookseller requests pricing offers from his
suppliers. In this example he will request an offer from Amazon using a web ser-
vice and another offer from a second vendor using e-mail. After having received
the pricing offers from both suppliers, the bookseller checks whether or not he
can find a special offer for the requested books in the Internet. Finally, he makes
an offer to his customer for the requested books.

Receive
Customer

Request and
Collect Data

Get Amazon
O�er

(Web Service)

Get
SnailMailSeller

O�er (Mail)

Check Special
O�ers

Write
Customer

O�er

Fig. 1. Scenario: A simple process calling a web service (in BPMN notation)

As we will show, this scenario contains several sources of potential errors.
Some of them can be detected and prevented at buildtime while others can-
not. Assume, for example, that the process implementer does not foresee a way
to enter the offer from SnailMailSeller into the system. In this case, activity
Write Customer Offer might fail or produce an invalid output since its input
parameters are not provided as expected. Another source of error is the Amazon
web service, which it might be not available when making the request and there-
fore the activity Get Amazon Offer might fail during runtime. Respective errors



Robust and Flexible Error Handling in the AristaFlow BPM Suite 3

can be foreseen and hence be considered at buildtime. However, non-expected
errors might occur as well; e.g., activity Check Special Offers might fail due to
troubles with the Internet connection. Table 1 lists some typical errors in PAISs.
For a more complete discussion we refer interested readers to [10].

Buildtime Runtime

– structural errors, e.g.
– deadlocks
– isolated activities

– dataflow errors, e.g.
– missing parameter values

– activity failure, e.g.
– broken database connection
– invalid input

– context failure, e.g.
– mismatch between real-world and

process running in PAIS

Table 1. Typical errors in a PAIS

In summary the following requirements for error-safe and robust process ex-
ecution exist:

– Errors should be obviated at buildtime if possible.
– Users should be enabled to effectively deal with both expected and unexpected

errors during runtime.
– Error and exception handling must not counteract formal process properties

(e.g., proper termination) as guaranteed at buildtime by applying the afore-
mentioned “correctness-by-construction” principle.

3 Background

As aforementioned the AristaFlow BPM Suite1 is based on research results we
obtained in the ADEPT1 and ADEPT2 projects. With ADEPT1 a first pow-
erful prototype of the ADEPT technology became operational [11]. Based on
hands-on experiences we gathered in several projects in the healthcare domain
its most interesting feature was certainly the support of ad-hoc deviations [12].
Later ADEPT1 served as implementation platform for numerous projects (e.g.,
[4, 6, 13]). From this, we learned that a better integration of the offered features
as well as an open API was needed. In 2004 we therefore started the development
of the ADEPT2 project in which we targeted at a process management technol-
ogy which enables ease of use for all user groups involved in the specification
and execution of processes. Furthermore, the realization of robust process imple-
mentations and flexible support of dynamic process changes were fundamental
project goals. Ensuring both robustness and ease of use for process implementers
and application developers are indispensable in this context. This challenge was
probably the most influential one for the whole project [1, 2]. It had significant
impact on the development of the used process meta model as well as on our
work on process flexibility and adaptivity. It meant, in essence, the following:

1 The AristaFlow BPM Suite is provided free of charge to universities for research and
educational purposes. Please visit www.AristaFlow-Forum.de for more information
on this topic. For commercial usage please visit www.AristaFlow.com.



4 Andreas Lanz, Manfred Reichert, and Peter Dadam

1. We have to hide the inherent complexity of process-orientation (especially in
conjunction with flexibility) as far as possible from system supervisors and
application developers; i.e., we have to perform all complex things “beneath
the surface” in the process management system.

2. We have to provide powerful, high-level interfaces to application developers,
based on which they can implement easily usable end user interfaces.

To achieve this, we realized a “correctness-by-construction” principle and guar-
antee correctness in the context of ad-hoc changes at the process instance level.
“Correctness-by-construction” is realized by providing a theory [11] which pre-
cisely defines correctness criteria for the ADEPT meta model (e.g., absence of
deadlocks, no isolated activities). This theory also defines a comprehensive set
of change operations with pre-/post-conditions which ensure that, if the desired
change satisfies the preconditions, the resulting process schema will be correct
again, i.e., change operations allow to transform a structurally correct process
schema into another structurally correct one [11]. Additionally, all change op-
erations obey that data flow correctness is not violated. This is achieved by
utilizing the block-structure of the underlying process meta model [11]. Particu-
larly, a process schema can only be deployed to the process engine if it satisfies
the above mentioned correctness criteria [2]. Finally, the change operations allow
to safely deviate from the predefined process schema during runtime.

Another important aspect in the context of robustness is error handling. Any
PAIS will not be accepted by users if rigidity comes with it or if its use in error
situations is more expensive than just handling the error by calling the right
people by phone. Therefore, users may deviate from the pre-modeled process by
structurally adapting it, but without violating correctness properties.

4 Supporting the Described Application Scenario

In the following we re-consider the scenario from Section 2 from the perspectives
of the process implementer, the system, the end user, the system supervisor, and
the process reengineer. We demonstrate how each of these parties can be involved
in handling errors. This is by no means a complete list of all parties which par-
ticipate in the business process life cycle. We focus on those user groups involved
in the specification and execution of processes, but exclude other user groups
(e.g. business analysts or business process owners) who are mainly engaged in
the monitoring and analysis of business processes.

4.1 Process Implementer Perspective

We first consider the process implementer. He is responsible for correctly mod-
eling processes as well as for linking their activities to application services.
Process Modeling. Fig. 2 shows a part of the process from Fig. 1 as it can be
modeled using the AristaFlow Process Template Editor. Additionally, it depicts
parts of the data flow between the process activities (e.g., data element Customer



Robust and Flexible Error Handling in the AristaFlow BPM Suite 5

Name is read by activity Write Customer Offer (JAVA)). For implementing pro-
cesses, we pursue the idea of process composition in a “plug & play” style which
is additionally supported by on-the-fly correctness checks if needed. More pre-
cisely, AristaFlow provides an intuitive graphical editor and composition tool to
process implementers (cf. Fig. 2), and it applies the correctness-by-construction
principle by providing at any time only those operations to the user which allow
to transform one structurally sound process schema into another one; i.e., change
operations are enabled or disabled according to the region which is marked in the
process graph for applying an operation [2]. Deficiencies not prohibited by this
approach (e.g., concerning data flow correctness) are checked on-the-fly and are
reported continuously in the problem window of the Process Template Editor.
As a prerequisite, for example, implicit data flow dependencies among the appli-
cation services (implementing the process activities) have to be made known to
the process engine. An example is depicted in Fig. 2, where AristaFlow detects
that data element Customer Price per Unit is read by activity Write Customer
Offer although it is not written by any preceding activity. Such deficiencies are
highlighted to the process implementer who then can correct the model as re-
quired.

Problems View

Data element not supplied 
at read access

Fig. 2. AristaFlow Process Template Editor

Generally, we should not require from process implementers that they have
detailed knowledge about the internals of the application services they can assign
to process activities. However, this should not be achieved by undermining the
correctness-by-construction principle.
Activity Implementation & Configuration. In AristaFlow, all kinds of ex-
ecutables (e.g., user forms, web services, database components, file operations,
etc.) that may be associated with process activities first need to be registered in
the Activity Repository as activity templates (cf. Fig 3). An activity template, in
turn, provides required information to the Process Template Editor; e.g., about
mandatory and optional input/output parameters or about data dependencies



6 Andreas Lanz, Manfred Reichert, and Peter Dadam

to other activity templates. An application developer who wants to introduce a
new application service to the PAIS must first implement a corresponding ac-
tivity template and then add it to the AristaFlow Activity Repository. This way
it becomes available and accessible within the Process Template Editor during
process composition.

Available 
Activity Templates

Parameters of the
Activity Template

Activity Template Con�guration

Fig. 3. Activity template configuration with AristaFlow Activity Repository Editor

To ease the implementation of activity templates, AristaFlow provides sev-
eral levels of abstraction. This includes the execution environment at the lowest
one. An execution environment defines the set of methods (e.g., initialization and
execution of the activity) needed to interact with the AristaFlow runtime system
(i.e., the process engine) as well as to implement the operations and properties
(e.g., shall the activity be suspendable, abortable, etc.) to be provided by the
activity template. However, the implementation of such execution environment
requires knowledge about AristaFlow internals and, therefore, will typically not
be the task of an ordinary application developer, but be performed by system
implementers. Next, activity templates provide predefined configuration sets for
execution environments. Depending on the intended purpose of usage, an activ-
ity template can be very specific or rather generic, where a more specific activity
template can be derived from a generic one. An activity template for a web ser-
vice call, for example, may be completely pre-configured; e.g., the input/output
parameters and all configuration and connection settings are fixed. In this case,
the only remaining task for the process implementer is to check whether or not
the proposed mapping of input/output parameters to process data elements (i.e.,
the process variables used within the respective process to exchange data among
activities) is correct. A more generic web service activity template, in turn, may
allow the process implementer to specify connection details of the web service
(as illustrated in Fig. 4) or even allow to configure the number and types of
input/output parameters.



Robust and Flexible Error Handling in the AristaFlow BPM Suite 7

Fig. 4. Activity configuration of a generic web service activity template

In general, the AristaFlow runtime environment requires certain information
about the runtime behavior of the activities; e.g., whether or not they may be
aborted, suspended or undone. The implementer of an activity template has to
inform the AristaFlow runtime environment which of these facilities are sup-
ported by the activity. For this case, he must also provide the implementation of
this functionality in the respective execution environment [8]. Such provision of
activity templates at different levels of abstractions constitutes a powerful and
flexible means for process composition in a “plug & play”-like fashion.

Given the AristaFlow Process Template Editor and the AristaFlow Activity
Repository, the process implementer just drags and drops the activity templates
from the Activity Repository Browser window of the Process Template Editor
onto the desired location in the process graph. Configuration efforts in respect
to the chosen activity template are then reduced to the provision of the remain-
ing configuration values in the configuration wizard of the respective activity
template (cf. Fig. 4). For example, if a web service activity template shall be im-
plemented one page of the wizard will fix the required input parameters and the
output parameters for the attribute values of the web service, a second one the
settings of binding information for the web service (e.g. the web service URL)
(cf. Fig. 4), and a third one the mapping of activity input/output parameters to
process data elements (cf. Fig. 5).

One major advantage of this approach is that common errors, e.g. missing
data bindings, can be completely prevented at buildtime. Therefore the time
needed for testing and debugging can be significantly reduced; i.e., AristaFlow
guarantees that released process implementations are sound and complete with
respect to the data dependencies of the used activity templates.

Nevertheless, correctness-by-construction and automated checks can only en-
sure correct execution of processes on a syntactical level. By contrast, semantic
errors cannot be detected by automated checks. Therefore, AristaFlow provides
a sophisticated Test Environment which allows process implementers to test pro-



8 Andreas Lanz, Manfred Reichert, and Peter Dadam

Fig. 5. Mapping activity parameters to data elements

cesses prior their release in the production system. Using the AristaFlow Test
Client it is even possible to execute only partially specified processes, i.e., not
all activities need to have associated activity templates or staff assignment rules
may be still undefined. In case an activity has no assigned activity template,
in this test mode the user will be supported by automatically generated forms,
which allow him to review the input parameters of the activity and to set its
output parameters. In particular, this enables process implementers to get rapid
feedback from future users during process development. Consequently, semantic
errors and misinterpretations can be partially detected at a very early stage of
the process implementation phase.

4.2 System Perspective

In principle, the approach described in Section 4.1 ensures that released process
models are executable by the system in an error-safe way. As always, this might
not hold in practice. Again, consider the scenario from Fig. 1. The web service
associated with activity Get Amazon Offer might not be available during process
execution, leading to an exception that needs to be handled. Such errors can
neither be detected in advance nor be prevented by buildtime checks.

However, failures of the Amazon web service might be anticipated by the
process implementer. Thus he can assign specific error handling procedures to
the respective activity. Following a strict process paradigm, AristaFlow runs
specific processes to handle exceptions; i.e., we provide a reflective approach
in which error handling itself can be accomplished base on a (normal) process
instance running in the PAIS. A simple error handling process is shown in Fig. 6.
Depending on whether or not the failure of the process activity was triggered by
the user (e.g. through an abort button) either the system supervisor is notified
about the failure or the process terminates silently. Generally, error handling
processes can be arbitrarily complex and long running processes (e.g., comprising



Robust and Flexible Error Handling in the AristaFlow BPM Suite 9

compensation tasks). It is noteworthy that AristaFlow treats error handling
processes the same way as any other process. Thus they may refer to any activity
registered in the repository. In particular, this enables error handling at a higher
semantic level, as well as the involvement of users if required. We further can
assign error handling processes to the activities of another error handling process
if desired. This way it becomes possible to implement several layers of error-
handling on top of each other.

If an activity fails the error handling process assigned to it will be initiated
and be provided with all data necessary to identify, classify, and handle the error;
e.g. the ID of the failed activity instance, the agents (i.e., user or automated
agent) responsible for the activity, and the cause of the error (cf. Fig. 6).

User assigned to
the selected activity

Input parameters of the 
process template

Properties of the
selected activity

Fig. 6. A simple error handling process

After an error handling process has been created and deployed to the Arista-
Flow Server, it can be assigned to an activity by simply selecting it from a list of
available processes. It is further possible to assign an error handling process to
the whole process instead of single activities. This general error handling process
will then be used if a failed activity has no directly associated error handling
process. In case there is no error handling process being assigned to either the
activity or the process a default error handling process will be used.

Another advantage of user-defined processes for error handling is the possi-
bility to use standard process modeling tools and techniques for designing error
handling strategies. Therefore process implementers do not need to learn any
new concept to enable error handling. Another important advantage is that er-
ror handling at a higher semantic level can be easily achieved. For example, it
is also possible to use more complex error handling strategies like compensation
or to apply ad-hoc changes to replace parts of the failed process.



10 Andreas Lanz, Manfred Reichert, and Peter Dadam

4.3 End User Perspective

In certain cases simple error handling processes like the one depicted in Fig. 6
might be not appropriate since they increase the workload of the system su-
pervisor. Most standard errors can also be handled in a (semi-)automatic way
by the agent executing the activity. Upon failure of the respective activity the
agent responsible for its execution could be provided with a set of possible error
handling strategies he can choose from. An example for a more complex error
handling process is depicted in Fig. 7. Here the agent can choose between several
ways to handle the occurred error: retrying the failed process step, aborting the
whole process instance, or applying predefined changes to fix or compensate the
error. Additional error handling strategies may, for example, include the escala-
tion of the respective case to a responsible supervisor or an enquiry with a more
advanced user on how to handle the respective error.

Fig. 7. A more complex error handling process involving the user

Generally the concrete error handling strategies suggested to particular users
may depend on their capabilities and position as captured in the organizational
model. Consequently the assignment of error handling processes and respective
activities can be done dynamically and user-dependent in AristaFlow.

To flexibly cope with errors and exceptions, end users are not only allowed
to dynamically adapt process instances, but are also assisted in retrieving and
reusing knowledge about previously performed process changes applied in similar
problem context. Basic to this change reuse is the integration of the adaptive
process management system with concepts and methods provided by case-based
reasoning technology. This allows for expressing the semantics of process changes,
for memorizing these adaptations, and for reusing them in similar context later.
We implemented such an integrated approach in the ProCycle project [14].

The described semi-automatic, user-centered approach offers many advan-
tages. Since for each process activity a predefined set of possible error handling
strategies can be provided to users, they do not need to have detailed knowledge
about the process to handle errors appropriately, but are guided by the system in
error situations instead. This particularly fosters the reduction of waiting times
in the context of failed activity instances since users can handle errors immedi-
ately by their own and do not have to wait for their busy help desk to do this
for them.



Robust and Flexible Error Handling in the AristaFlow BPM Suite 11

4.4 System Supervisor Perspective

Certain errors cannot be handled by the user. This applies, for example, to
errors that might not have been foreseen at buildtime, i.e., no appropriate error
handling process exists. In other cases it might be simply not possible to handle
errors in an easy and generic way. At that point a system supervisor should
be notified about the error. For example, this can either be done through an
automatic notification by the error handling process (e.g., by adding a respective
item to his worklist) or by a user calling the help desk by phone. The system
supervisor then can use the AristaFlow Process Monitor shown in Fig. 8 to
identify the process in trouble. This can be done by either using the process
identifier provided by the error process or by applying different sets of filters to
the list of process instances currently known by the system (cf. Fig. 8). Process
instances can, for example, be identified by searching for active instances with
failed activities, searching for modified instances, or searching for instances by
name. Next, the system supervisor can take a look at the process instance in
trouble, analyze its execution log, and decide for appropriate error handling
measures. Additionally, the system supervisor can use the above described filters
of the AristaFlow Process Monitor to keep track of failed instances; e.g., he can
intervene if a web service becomes unavailable for a longer period of time.

Finding Instances 
with failed activities

Execution log

Fig. 8. Process Monitor: Monitoring Perspective

Consider again our bookseller example from Fig. 1. Assume that a process
instance wants to issue a request for a book using Amazon’s web service facili-
ties, but then fails in doing so. The system supervisor detects that the process
is in trouble and uses the AristaFlow Process Monitor to take a look at this
process instance (cf. Fig. 8). Analyzing the execution log of the failed activity he
detects that its execution failed because the connection to Amazon could not be
established. Let us assume that he considers this as a temporary problem and



12 Andreas Lanz, Manfred Reichert, and Peter Dadam

just resets the activity so that it can be repeated once again. Being a friendly
guy, he takes a short look at the process instance and its data dependencies,
and realizes that the results of this and the subsequent activity are only needed
when executing the Choose Offer activity. Therefore, he moves these two activ-
ities after activity Check Special Offers; i.e., the user can continue to work on
this process instance before the PAIS tries to re-connect to Amazon (cf. Fig. 9).
To accomplish this change he would switch to the Instance Change Perspective
of the Process Monitor which provides the same set of change operations as
the Process Template Editor (for a general overview on process change patterns
see [15]). In fact, the Instance Change Perspective is the Process Template Ed-
itor, but it is aware that a process instance has been loaded and, therefore, all
instance-related state information is taken additionally into account when en-
abling/disabling change operations and applying correctness checks.2 The system
administrator would now move the two nodes to their new position by using the
respective standard change operation. The resulting process is depicted in Fig. 9.

Assume now that the web service problem lasts longer than expected and,
therefore, the user wants to call Amazon by phone to get the price that way. In
this case he would ask the system supervisor to delete the activities in trouble
and to replace them with a form-based activity (or any other suitable activity)
which allows to enter the price manually. Note that structural ad-hoc changes
provide the means to realize such advance exception handling policies.

Move Nodes 
Change Operation

Fig. 9. Process Monitor: Instance Change Perspective

4.5 Process Reengineer Perspective

As discussed, in AristaFlow certain errors can be handled by dynamically adapt-
ing the corresponding process instance. When considering a larger instance col-
lection, respective model adaptations often result in a large number of model
variants derived from the same process model, but slightly differing in struc-
ture. We foster learning from process instance adaptations in order to discover

2 Whether or not a particular change can be applied in the current process state is
decided based on well defined correctness criteria as suggested by ADEPT2 [9].



Robust and Flexible Error Handling in the AristaFlow BPM Suite 13

an improved process model that can serve as reference for future process in-
stances of the respective type. An algorithm enabling such learning and model
improvement is presented in [16]. Finally, after identifying potential changes the
process (re-)engineer can perform a schema evolution. In this context he may
also migrate running instances to the new process model version if desired [9].

5 Applying AristaFlow in Practice

Recently, several projects applied the AristaFlow process management technol-
ogy in challenging domains like healthcare, logistics, disaster management, and
software engineering. In each project sophisticated PAISs were realized which
make use of the AristaFlow error handling features. For us, one important goal
of these projects was to understand whether or not the designed features are
applicable in practice.
Applying AristaFlow to Software Engineering Processes. The Q-Advice
project [7] tries to assist overburdened software engineers by providing orienta-
tion and guidance through automated workflows. Yet, since there are so many
different kinds of issues with ambiguous and subjective delineation, it is difficult
and burdensome to universally and correctly model them in advance. This also
leads to workflows of considerable size and complexity. The Q-Advice project
tries to alleviate this by starting with a basic and simple workflow for each case
and then, utilizing context information, dynamically extends it with activities
matching the current situation. Overall, Q-Advice provides situational and tai-
lored support and guidance for software engineers. In particular the workflows
resulting from the Q-Advice approach are much simpler than pre-modeled work-
flows would be. Respective adaptation features directly make use of AristaFlow’s
change facilities. In this context, the AristaFlow error handling processes and
the provided change support features have proven to be especially useful. For
example, if a bug is detected during the final steps of a release phase it needs to
be decided whether or not this bug shall to be fixed prior to the release. If the
bug turns out to be a show stopper, in turn, it may become necessary to change
great parts of the release process.
Applying AristaFlow in Healthcare and Logistics. Healthcare and lo-
gistics are both characterized by high flexibility demands. Additionally, both
require tools that are easy to use since domain specialists have no IT knowl-
edge. By supporting domain-specific views on processes (e.g., clinical pathways)
and services, the SPOT project [3] (Service-based technologies for orchestrating
PrOcesses in logisTics and healthcare) enables end-users to actively shape the
different phases of the process life cycle. In both domains exceptional situations
are part of the daily business and need to be handled quickly and in a way easy
to use by end-users. Another requirement fully met by AristaFlow concerned ap-
plication integration, i.e., to integrate heterogeneous, autonomous applications
in a process-oriented way.
Applying AristaFlow in Disaster Management. The project on process-
aware, cooperative emergency management of water infrastructures [5] aimed at



14 Andreas Lanz, Manfred Reichert, and Peter Dadam

improving and supporting emergency management for flood responses through
new IT methods. During the project, procedures and courses of actions were
analyzed, and results were mapped to formal process models. On the basis of
an organizational model, the activities of the process models were assigned to
responsible parties, thus enabling the involved organizations to act faster and in
a more coordinated way. AristaFlow was used to manage and control the pro-
cedures and tasks during flood events as well as the corresponding information
flow. Thus, it supported responders in planning and executing flood response
operations in a coordinated, but flexible way. As emergency situations are not
predictable, one important aspect was to provide the necessary flexibility, while
ensuring robustness and error-safety of the PAIS.

Overall, in all these projects, adaptive process management technology for
dynamically defining, composing and adapting process instances as well as for
flexibly handling errors was indispensable. AristaFlow was one of the few sys-
tems that offers adaptation interfaces as well as adaptation features for this.
All mentioned projects have proven that the previously described concepts are
highly necessary in practice. At buildtime they enable us to detect and obviate
design and runtime errors. This allows for easier and faster development of pro-
cesses as the time needed for testing can be significantly reduced. At runtime
the provided adaptation features enable PAIS utilizing the AristaFlow system to
rapidly and dynamically react to exceptional situations like errors or changes in
a process execution context. Additionally, the flexibility provided by the Arista-
Flow system allows processes to be at first only partially specified and then be
further developed as they are executed.

6 Related Work

Besides ADEPT, YAWL [17] has been one of the first process engines to sup-
port some sort of “correctness-by-construction” as well as correctness checks
at buildtime. jBPM [18] rudimentarily supports ad-hoc deviations of running
process instances, but without any correctness assurance as provided by the
AristaFlow BPM Suite. Furthermore, only simple adaptation patterns are pro-
vided [15]. Most BPEL-based workflow engines like WebSphere Process Server
[19] support error handling processes using fault handlers, but without the pos-
sibility to structurally change process instances during runtime.

Declarative workflow systems like Declare [20] and Alaska Simulator [21] al-
low for a great degree of flexibility during process execution, but mostly lack
means for ensuring robust process execution and for enabling application inte-
gration. Additionally, they neither support the specification of data dependencies
between activities nor correctness checks of the respective data flow.

Exception handling is an important topic in PAISs. In [10] the authors pro-
pose a classification framework for workflow exception handling in terms of work-
flow exception patterns. [22] incorporates language primitives for error handling
into workflow systems and, like AristaFlow, allows error handling strategies to



Robust and Flexible Error Handling in the AristaFlow BPM Suite 15

be modeled in the same notation as used for workflow processes. [23] uses a case-
base reasoning approach to match errors with suitable error handling strategies.
In [24] the authors propose several algorithms for mining process execution logs
regarding exception handling. Based on the way past exceptions were handled,
proposals are made on how to cope with the current one.

7 Summary and Outlook

Most existing PAISs are ill-equipped to meet the requirements of complex, real-
world processes especially in the context of exceptional situations. Although a
lot of papers claim that respective problems are solved in principle, we strongly
believe that up to now they are even not completely understood. As shown, our
tool provides an integrated solution for the easy and flexible handling of a vari-
ety of errors in exceptional situations. Most of the discussed projects would not
have been possible without flexible process support as provided by the Arista-
Flow BPM Suite. Due to its correctness-by-construction principle and its com-
prehensive support of ad-hoc changes during runtime, as well as the possibility
to define arbitrary error handling processes, AristaFlow is well suited to enable
robust process implementations while preserving the possibility to flexibly react
to exceptional situations during runtime.

The projects also showed that the provided flexibility is difficult to control by
end-users, i.e., there is need for further research. Especially more sophisticated
user-interfaces and user assistance are required for daily work. In this context,
other perspectives like temporal constraints [25] become increasingly important.

References

1. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information
systems. LNCS Transactions on Petri Nets and other Models of Concurrency
(ToPNoC) 2 (2009) 115–135

2. Dadam, P., Reichert, M.: The ADEPT project: A decade of research and de-
velopment for robust and flexible process support - challenges and achievements.
Computer Science - Research and Development 22 (2009) 81–97

3. Frauenhofer ISST: SPOT Project. http://www.spot.fraunhofer.de/ (accessed
07.09.2010) (2010)

4. Müller, R., Rahm, E.: Dealing with logical failures for collaborating workflows. In:
Proc. CoopIS’00. Volume 1901 of LNCS. (2000) 210–223

5. Wagenknecht, A., Rüppel, U.: Improving resource management in flood response
with process models and web GIS. In: TIEMS’09. (2009) 141–151

6. Bassil, S., Keller, R., Kropf, P.: A workflow-oriented system architecture for the
management of container transportation. In: Proc. BPM’04. Volume 3080 of LNCS.
(2004) 116–131

7. Grambow, G., Oberhauser, R., Reichert, M.: Semantic workflow adaption in sup-
port of workflow diversity. In: 4th International Conference on Advances in Se-
mantic Processing (SEMAPRO’10). (2010)



16 Andreas Lanz, Manfred Reichert, and Peter Dadam

8. Reichert, M., Dadam, P., Jurisch, M., Kreher, U., Göser, K., Lauer, M.: Archi-
tectural design of flexible process management technology. In: Proc. PRIMIUM
Subconference at MKWI’08. (2008) 415–422

9. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

10. Russell, N., van der Aalst, W., ter Hofstede, A.: Workflow exception patterns. In:
Proc. CAiSE’06. Volume 4001 of LNCS., Springer (2006) 288–302

11. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. Journal of Intelligent Information Systems 10 (1998) 93–
129

12. Reichert, M., Hensinger, C., Dadam, P.: Supporting adaptive workflows in ad-
vanced application environments. In: Proc. EDBT Workshop on Workflow Man-
agement Systems. (1998) 100–109

13. Bassil, S., Benyoucef, M., Keller, R., Kropf, P.: Addressing dynamism in e-
negotiations by workflow managament systems. In: Proc. DEXA’02. (2002)

14. Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing integrated life
cycle support in process-aware information systems. Int. Journal on Cooperative
Information Systems 18 (2009) 115–165

15. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data and
Knowledge Engineering 66 (2008) 438–466

16. Li, C., Reichert, M., Wombacher, A.: Discovering reference models by mining
process variants using a heuristic approach. In: Proc. BPM’09. Volume 5701 of
LNCS. (2009) 344–362

17. Russell, N., ter Hofstede, A.: Surmounting BPM challenges: the YAWL story.
Computer Science - Research and Development 23 (2009) 67–79

18. Koenig, J.: JBoss jBPM (whitepaper) (2004)
19. Kloppmann, M., König, D., Leymann, F., Pfau, G., Roller, D.: Business process

choreography in WebSphere: Combining the power of BPEL and J2EE. IBM
Systems Journal 43 (2004) 270–296

20. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between flexibility and support. Computer Science - Research and Development
23 (2009) 99–113

21. Weber, B., Reijers, H., Zugal, S., Wild, W.: The declarative approach to business
process execution: An empirical test. In: Proc. CAiSE’09. Volume 5565 of LNCS.
(2009)

22. Hagen, C., Alonso, G.: Exception handling in workflow management systems.
IEEE Transactions on Software Engineering 26 (2000) 943–958

23. Luo, Z., Sheth, A., Kochut, K., Miller, J.: Exception handling in workflow systems.
Applied Intelligence 13 (2000) 125–147

24. Hwang, S., Ho, S., Tang, J.: Mining exception instances to facilitate workflow
exception handling. In: Proc. Database Systems for Advanced Applications. (1999)
45–52

25. Lanz, A., Weber, B., Reichert, M.: Workflow time patterns for process-aware
information systems. In: Proc. BPMDS Workshop. Volume 50 of LNBIP. (2010)
94–107


