
Refactoring Large Process Model Repositories

Barbara Webera, Manfred Reichertb, Jan Mendlingc, Hajo A. Reijersd

aDepartment of Computer Science, University of Innsbruck, Austria
bInstitute of Databases and Information Systems, University of Ulm, Germany

cHumboldt-Universität zu Berlin, Germany
dSchool of Industrial Engineering, Eindhoven University of Technology, The Netherlands

Abstract

With the increasing adoption of process-aware information systems, large
process model repositories have emerged. Typically, the models in such repos-
itories are re-aligned to real-world events and demands through adaptation
on a day-to-day basis. This bears the risk of introducing model redundan-
cies and of unnecessarily increasing model complexity. If no continuous in-
vestment is made in keeping process models simple, changes will become
more difficult and error-prone over time. Although refactoring techniques
are widely used in software engineering to address similar problems, so far,
no comparable state-of-the-art has evolved in the business process manage-
ment domain. Process designers either have to refactor process models by
hand or are simply unable to apply respective techniques at all. This paper
proposes a catalogue of process model “smells” for identifying refactoring
opportunities. In addition, it introduces a set of behavior-preserving tech-
niques for refactoring large process repositories. The proposed refactorings
enable process designers to effectively deal with model complexity by making
process models better understandable and easier to maintain. The refactor-
ings have been evaluated using large process repositories from the healthcare
and automotive domain. To demonstrate the feasibility of the refactoring
techniques, a proof-of-concept prototype has been implemented.

Key words: Process-aware Information System, Process Model Quality,
Process Model Smell, Process Model Refactoring

Email address: Barbara.Weber@uibk.ac.at (Barbara Weber)

Preprint submitted to Computers in Industry November 17, 2010

1. Introduction

Process-aware Information Systems (PAISs) have become an integral part
of enterprise computing and are used to support business processes at an op-
erational level [100]. In contrast to conventional information systems, PAISs
strictly separate process logic from application code, relying on explicit pro-
cess models that provide the schemes for process execution. This enables
a separation of concerns, which is a well established principle in Computer
Science to increase maintainability and to reduce costs of change [13].

1.1. Problem Statement

Process repositories are the central store of process models in PAISs. In
large companies, such repositories can easily contain several thousands of
process models [72]. Such sheer numbers give rise to several quality issues.
Over time new process models emerge, existing ones need to be adapted
to changing requirements, and new process model variants are created to
align processes to a particular context (e.g., specific regulations in one of the
countries where the company operates). While support for model changes is
quite well understood from a research perspective both in terms of process
model configuration [74, 71] and adaptation of running process instances
[58, 60], a notable research gap exists concerning quality assurance in process
repositories.

This gap is underlined by two facts: First, regarding model construction
companies try to delegate process modeling tasks to operational staff that
has little or no modeling competence [72]. Thus, it is not surprising that
process model repositories tend to contain a rate of unsound models that
ranges from 3.3% up to 37.5% [40]. This rate is a severe roadblock to process
model usage. Second, it is well known from software engineering research that
computer programs degenerate over time when code is modified or added by
different developers [54]. Since numerous users may work on a single pro-
cess repository, we can expect that process repository evolution faces similar
challenges as software program evolution does; i.e., maintenance will become
increasingly difficult over time if no techniques for quality improvement are
provided.

While methods and tool support are still limited in process modeling,
there has been considerable progress in software engineering (SE) on related
problems. So called refactoring techniques have been widely used to ensure

2

that code bases remain maintainable [52, 17]. Refactoring enables program-
mers to restructure a software system without altering its behavior. Thus, it
is typically used to improve code quality by removing duplication, improving
readability, simplifying software design, or adding flexibility [2]. Examples
of SE refactoring techniques include the renaming of a class to foster under-
standability and the extraction of a new method from an existing code block
to reduce redundant code fragments and to increase readability. In the SE
domain, code smells are widely used for identifying refactoring opportunities
[50] (e.g., duplicate code or very long methods).

It has been noted by various authors that process models and computer
programs are similar in various respects [23, 90]. In [92], the following par-
allels are singled out:

• Both types of artifacts provide a procedural view on the processing of
information. Within each described step, either within a process model
or a computer program, one or more outputs are produced on the basis
of one or more inputs.

• A process model has a compositional structure that is similar to that of
a computer program. A computer program can be split up into mod-
ules or classes. Every module consists of a number of statements, and
every statement references variables and constants. Likewise, a process
model contains activities, each of these being composed of elementary
operations, which in turn use one or more pieces of information to
produce new information.

• Both a process model and a computer program can be used as script
for enactment. When instantiating either of these, an execution flow
of their elements is invoked that unfolds in accordance with this static
representation. This flow may involve consecutive executions, concur-
rency, conditional routings, etc.

Considering these similarities, it is not surprising that some authors even
refer to process modeling as “programming in the large” [90]. Our line of
reasoning now is that the idea of refactoring, well-known in the area of soft-
ware engineering, may well be an attractive direction to investigate in the
context of process model usage in PAISs.

3

1.2. Contribution
This article adapts the concept of refactoring from SE to process model-

ing. Our contribution is twofold. Firstly, we provide an extensive discussion
of process model smells facilitating the identification of refactoring opportu-
nities. Secondly, we introduce refactoring techniques that provide remedies
for these smells. A refactoring technique improves upon the internal quality
of a model such that it becomes easier to read and maintain, but it does not
affect the model’s semantics or external behavior. The techniques are pro-
posed as a means to assist process designers, but the final decision whether or
not to apply a refactoring in a specific situation is always at their discretion.
In that sense, the proposed refactoring techniques support a modeler’s task
without making it superfluous.

The presented smells and refactorings are not complete in a mathematical
sense: It can be easily imagined that refactorings might be added in future
or that existing refactorings will be refined. The presented list, however, is
duly empirically validated on utility considerations. Using a range of existing
process repositories from the healthcare and automotive domain, we are able
to show that all identified refactorings are frequently needed in practice. A
similar argument of relevance is also used in SE as constructive criterion
for design patterns [18]. Beyond that, we provide a second constructive
validation in terms of a prototypical implementation, which demonstrates
how the different refactorings can be offered to process designers in an easy-
to-use fashion.

While some isolated refactorings are discussed in [15], our contribution is
the first comprehensive account of the refactoring concept for process models.
At the same time, process models typically comprise different perspectives
including control-flow, data flow, and resource allocation. Our contribution
is restricted in the sense that it purely focuses on the control-flow perspective.
This is, however, not a fundamental limit: It can be imagined how the current
set of refactorings can be extended to cover other dimensions as well.

With respect to previous work, our paper significantly extends the ap-
proach presented in [95] where various refactoring techniques were intro-
duced. The extensions cover (a) the introduction of a catalogue of process
model smells facilitating the detection of refactoring opportunities, (b) the
evaluation of the refactorings based on both empirical data from the health-
care and the automotive domain and the existing literature, and (c) a demon-
stration of the applicability of the refactorings based on a proof-of-concept
implementation.

4

This paper further complements previous work on process redesign and
process adaptation. Both refactoring and process redesign may require model
transformations. However, the scope of process redesign is broader and goes
beyond structural adaptations. It is primarily business-driven and aims to
improve one or more performance dimensions of a process (e.g., time, quality,
costs) [61]. Therefore, redesign often affects the external quality of a PAIS
and its results are visible to the customer. In contrast, refactoring techniques
primarily impact the internal quality of a PAIS, ensure conceptual integrity,
and foster maintainability. Similar to refactorings, process adaptations [58,
60, 98] refer to structural changes of a process model (e.g., using change
patterns) [96]. In contrast to refactorings, they usually affect process model
behavior.

The paper is structured as follows. Section 2 presents a generic meta
model we assume for a process repository. We use an illustrative example to
introduce process modeling as well as refactoring concepts. We then define
the scope of the process model refactorings we consider. Section 3 presents
a set of empirically supported process model smells for detecting refactor-
ing opportunities. Section 4 describes 11 refactoring techniques which en-
able process designers to improve the quality of process models and provide
remedies for the process model smells as discussed in Section 3. Section 5
demonstrates the applicability of the refactorings based on a prototypical
implementation and provides a realistic use scenario. Section 6 discusses
related work, before Section 7 concludes the paper.

2. Preliminaries

We first introduce general concepts providing the foundation of this paper.
Section 2.1 presents the meta model we assume for a process repository.
Section 2.2 defines refactoring and aligns it to process modeling concepts.

2.1. Process Repository Meta Model

The most essential entities in a process repository are process models.
Several process modeling languages have been defined including Event-driven
Process Chains (EPCs), Business Process Modeling Notation (BPMN), and
Workflow Nets. They have distinctive elements and sometimes display sub-
tle differences in semantics. In the following, we aim to abstract from these
differences, and focus on basic commonalities of these languages instead [84].
Accordingly, we define a process model as a set of activities and gateways

5

that are connected by control-flow arcs. Gateways can be either split nodes
(i.e., nodes with one incoming and multiple outgoing arcs) or join gateways
(i.e., nodes with multiple incoming and one outgoing arc). There are three
different types of splits and joins. The XOR-split defines a decision point
where one outgoing branch becomes activated and the XOR-join the respec-
tive merge. The AND-split introduces concurrent processing of all outgoing
branches while the AND-join synchronizes its incoming branches. The OR-
split represents a non-exclusive choice in the sense that one, multiple, or all
outgoing arcs can be activated. The OR-join guarantees proper synchroniza-
tion of those branches that have become active.

There are relationships that span different process models as well. Most
relevant is the subprocess relationship that refers from an activity of one
process model (parent) to another process model as a whole (child). This
signifies that the subprocess implements the activity, i.e., every time the
activity gets activated, it is the subprocess that has to be executed. We
denote such an activity as a complex activity. We require the parent-child
process relationship to be acyclic such that we have different process model
trees linking parent and child process models. Subprocesses constitute a
powerful concept for describing the common parts of different process models.

Fig. 1a illustrates the content of a very simple process repository at a
certain point in time. There are five process models S, S1, S2, S3, and S4.
Model S includes an AND-split after activity A. Accordingly, B, C and D,
and also E and F can be executed concurrently. The AND-join synchronizes
the different paths. M is a complex activity pointing to subprocess S3 that
executes activity sequence X, Y and Z. Model S1 uses this subprocess as well.
S1 and S2 also contain the same process fragment, which is built upon an
AND-split and AND-join. Finally, S2 contains complex activity K that refers
to S4. As can be seen, parts of the different models are redundant in the
sense that they cover exactly the same process logic.

Process models can either be created from scratch or through adaptation
of a reference process model, i.e., by means of configuration. From such a ref-
erence model Sref , several process model variants V 1 . . . V n can be derived
based on a restricted set of high-level change patterns [58, 96].1 Thereby,
for a given variant model V we denote the minimal number of high-level

1Examples of change patterns include the insertion, deletion and movement of activities
within a process model.

6

Process Model S

a.) Model Repository with Model Tree

A

Process Fragment G

Process Model S1
H

Process Fragment G1

Process Model S2
J

Process Fragment G1

+

++
B C D +

E F

Process Fragment G

B C D E F

Process Fragment G1

+

+
B C D E F

Process Fragment G1

+
K

M
M

+

+

+
+

I

(Sub) Process Model S4

XOR-Split/Join

AND-Split/Join

Atomic Activity

+ Complex Activity

+
x

(Sub) Process Model S3

X Y Z

(Sub) Process Model S4

S T V

b) Process Family

+ +

Process Variant V1

A
C

F
B

+ +

Process Variant V2

A
C

F
B Y

Generic Process Model Sref
CB

+A

E

F

D

Δ = <Delete G>

ED

Δ = <Insert Y after C
Delete G>

+ +A
C

E

F
B

D

G

Process Variant V4

Δ = <Delete F>

Process Variant V3

Δ = <Insert Y
after C Delete G>

+ +

Process Variant V4

A
C

E

G
B

D
+ +

Process Variant V3

A
C

E

F
B

D

Y

Δ := bias

Figure 1: Core Concepts

changes needed to transform the reference model Sref into V as change dis-
tance σ(Sref , V) between Sref and V . Furthermore, a minimal sequence of
high-level changes needed to transform model Sref into V is denoted as bias
(∆) between Sref and V .2 The total set of all variant models (i.e., variants
for short) derived from a reference process is called a process model family.

Fig. 1b shows a reference process model Sref and four process variants
V 1, . . . , V 4 derived from it; e.g., to configure Sref into V 2 we need to insert
Y and delete Activity G; i.e., we obtain distance σ(Sref , V 2) = 2 and bias
∆(Sref , V 2) = [Insert Y after C, Delete G].

Based on a given process model, at run-time new process instances can

2Generally, it is possible to have more than one minimal sequence of change operations
to transform Sref into V , i.e., given two process models their bias does not need to be
unique (see [36] for a detailed discussion on this).

7

be created and executed according to this model. The latter is reflected by
the execution traces of these instances, which log information about events
relating to the start and completion of process activities [85].

2.2. Process Models and Refactorings

The term “refactoring” was coined by Opdyke [52] and refers to “the
process of changing a software system in such a way that it does not al-
ter the external behavior of the code, yet improves its internal structure”
[17]. As such, refactoring neither resolves errors nor adds functionality, but
improves understandability and maintainability through behavior-preserving
model transformations. Therefore, refactoring differs from model transfor-
mations applied when redesigning or adapting processes, since these transfor-
mations are typically not behavior preserving. Refactoring can be classified
as both endogenous (i.e., transformations between models expressed in same
language) and horizontal (i.e., source and target model reside at same level
of abstraction) [49]. Refactorings constitute small changes with little value
when applied in isolation, but these become valuable when combined with
other refactorings [2]. Thus, model refactoring constitutes an iterative pro-
cess which enables designers to improve the quality of a process repository.
According to [50] we define refactoring by a procedure consisting of a number
of distinct activities:

1. Identify refactoring opportunities
2. Determine which refactoring(s) shall be applied
3. Ensure that the applied refactoring(s) preserve model behavior
4. Apply the refactoring
5. Assess the effect of the refactoring on quality characteristics of the
process model repository (e.g., understandability, maintainability)

In SE, the incentive to consider a particular refactoring is the detection
of a code smell [17]. Code smells are indicators of bad code quality and
in our application domain of bad process model quality. Let us revisit our
process repository from Fig. 1a to illustrate this point. We have already
stated that the repository contains several redundancies. Using “refactoring
terms” we can now describe these as process model smells : models S1 and S2
both include the common process fragment3 G1, which is a slight variation

3In the context of this paper a (process) fragment denotes a subgraph of a process
model with single-entry and single-exit node.

8

of process fragment G contained in the left model S (i.e., although process
fragments G and G1 are not structurally equivalent, they expose the same
behavior). Using refactoring techniques, we can extract these commonalities
from the different models (cf. Fig. 2). This results in a new model S5, which
represents the logic of process fragment G1 and G, respectively, and which
becomes a subprocess of the refactored models S, S1, and S2. Due to the
reduced redundancy, the resulting process models should now be easier to
maintain, but still expose the same behavior.

Whether the occurrence of a smell really means that a model must be
refactored is not a black or white decision. The value of a particular refac-
toring often involves the trade-off between different quality characteristics.
For example, extracting (redundant) process fragments from one or several
process models decreases the overall model size on the one hand, but poten-
tially increases the number of process models (with low number of activities).
This aspect is captured in our approach that aims to assist the process de-
signer rather than to fully automate the refactoring process.

a) Model Repository before Refactoring
Process Model S

A

Process Model S1
H

Process Model S2
J

++
B C D +

E F

G

B C D E F

G1
+

B C D E F

G1

+
K

M

+

M

+

+

+

E F

+

I

+

+

XOR S lit/J i

AND-Split/Join

Atomic Activity

+ Complex Activity

+
x

(Sub) Process Model S3

X Y Z

(Sub) Process Model S4

S T V

Process Process

XOR-Split/Joinx

+

B C D E F

Process Model S5

L
+

J

Process
Model S2’

L
+

H

I

Process
Model S1’

L

A

Process
Model S’

KK +
M
+

L
+

M
+

(Sub) Process Model S3

K

(Sub) Process Model S4 ()

X Y ZS T V

Figure 2: Model Repository after Refactoring (cf. Fig. 1a)

In the following, we approach process model refactorings from two angles,
and with reference to the five refactoring steps as summarized above. First,
we explain how refactoring opportunities can be identified. In this context,
we introduce a catalogue of process model smells that signal low process
model quality. The guidelines are supported both by an empirical evaluation
and a study of the relevant literature. Thereby, we assume that process
designers determine – in the same spirit as software engineers do for code
refactorings – whether or not a refactoring shall be applied taking various
trade-offs into account. Second, we describe a set of behavior-preserving
refactoring techniques which can be used to improve overall quality of the

9

process model repository without changing actual process behvior. Again we
assume that process designers assess the effect of the applied refactoring.

3. Identifying Refactoring Opportunities

In the SE domain code smells are the most popular method for identi-
fying refactoring opportunities [50]. Picking up this metaphor, Section 3.2
introduces a list of process model smells serving as indicators for low process
model quality. These smells were identified based on a large collection of pro-
cess models from different domains (cf. Fig. 3). Such an empirical approach
seems justified given the lack of an established theory that captures how
modeling artifacts come into being. Additional support was gathered from
a literature study that focuses on the understandability and maintainability
of process models (cf. Section 3.1). Section 3.3 summarizes our results on
process model smells.

3.1. Research Methodology

We first describe the selection criteria for our process model smells, the
data sources providing the empirical evidence for them, and the procedure
we applied for their identification.

3.1.1. Selection Criteria

We consider process model smells for assisting designers in detecting op-
portunities for process model refactoring. Our focus is on smells which can
be addressed by behavior-preserving refactoring techniques; i.e., our refactor-
ings do not change the actual behavior of the process models to which they
are applied. In addition, the smells should not be restricted to a specific
process modeling language.

3.1.2. Data Sources and Data Collection

The following collections of process models have been used as sources
for the identification of process smells (cf. Fig. 3 for an overview). The
data sources were carefully selected to cover processes from several domains
(i.e., healthcare and automotive engineering) and to mitigate the risk that the
identified process model smells are specific for a particular domain. Moreover,
we ensured that the selected data sources comprise processes with different
characteristics. The process models range from very small ones (with just
a few activities) to very large models (with hundreds of activities). The

10

sources include single process models, but also families of process models
expressed in different process modeling languages. Finally, the selection of
data sources also considered aspects like the presence of a sufficiently large
number of models and full access to the respective process model repository.

Smell Sources Literature Metrics Refactorings
PMS1 1-7 [41,43,46,77,78] verb-object style RF1, RF2, RF7
PMS2 1-7 [1,8,9,42,48,88,90,91] cyclomatic number, structuredness,

density, structural appropriateness
RF3

PMS3 1, 4, 5, 6 [3,89] footprint similarity RF4, RF5, RF8
PMS4 5 [42,44,48,63] size RF4
PMS5 6 [63,77] #activities / subprocess RF6
PMS6 2, 3, 7 [75,83] behavorial appropriateness RF10
PMS7 3 [51,97] #instance changes RF11
PMS8 4, 6, 7 [35,37,62] change distance RF9

Data
Source

Domain Scenarios Number of
Models

Reference

Source 1 Healthcare Birth and postnatal care
Inpatient chemotherapy treatment
Outpatient chemotherapy treatment
Ovarian carcinoma surgery
Keyhole surgery

70 process models [59]

Source 2 Healthcare Clinical guidelines and pathways in
internal medicine

46 process models

Source 3 Healthcare Clinical guidelines for urinary stone
diagnosis

1 process model
with 98 instances

Source 4 Healthcare Handling of medical procedures (i.e.,
requesting, scheduling, performing
and validating medical examinations)

84 process model
variants

Source 5 Automotive Vehicle development 1 process model [6]
Source 6 Automotive Electronic change management 60 process models [19]
Source 7 Automotive Vehicle repair 900 variants [24]

Smell Literature Metrics Refactorings
PMS1 [27-32] verb-object style RF1, RF2, RF7
PMS3 [44-46] footprint similarity RF4, RF5, RF8
PMS4 [39,40,48,49] size RF4

Before Refactoring Refactorings After Refactoring
PMS1 – 1 violation of verb-object style RF1 (1x) All activities labeled according to

verb-object style
PMS3 – Fragments 1 and 2 are redundant RF4 (1x)

RF5 (1x)
No redundant fragments
Reduction of model size by 8

PMS4 – Process model with 42 nodes
(22 activities, 18 gateways,
1 start node, 1 end node)

RF4 (4x) Flight Schema (S1): size 12
Preflight Process Schema (S2): size 7
Clearance Process Schema (S3): size 6
Taxiing Process Schema (S4): size 9
Take-Off Process Schema (S5): size 8
Repair Process Schema (S6): size 11

Figure 3: Data Sources for Identifying Process Smells

Source 1. In a large healthcare project we analyzed five core processes
of a women’s clinic as documented in its organizational manual: birth and
postnatal care, inpatient chemotherapy treatment, outpatient chemotherapy
treatment, ovarian carcinoma surgery, and keyhole surgery [59]. In total,
these five core processes consist of 70 process models, which are expressed
either in terms of Event Process Chains or UML Activity Diagrams. Each
process model contains 2 to 18 activities.

Source 2 comprises 46 process models (with up to 40 activities) repre-
senting medical guidelines and clinical pathways in internal medicine.

Source 3 consists of a clinical guideline for urinary stone diagnosis as
implemented in a PAIS (1 process model with 98 process instances).

Source 4 comprises process models from a clinical center, i.e., 84 process
model variants with 7 to 17 activities for the handling of medical procedures;
i.e., activities for requesting, scheduling and performing medical examina-
tions as well as for validating their results.

Source 5 is a core process in vehicle development: product planning [6].
The process model (plotted on a 1,5m x 5m wallpaper) comprises several

11

hundreds of activities for planning production facilities and resources with
complex inter-dependencies, and the flow of about 50 relevant documents.
Further, there exists a process handbook with detailed activity descriptions.

Source 6 refers to a case study on electronic change management (ECM)
from the automotive industry. ECM process models were partially published
by the German Automotive Industry [19]. Our material comprises 60 process
models expressed in different notations like Event Process Chains and UML
Activity Diagrams (with 2 to 32 activities).

Source 7 is a vehicle repair process from the automotive domain [24].
Overall, there exist around 900 variants of this process, 68 of which are
documented in explicit process models (in a BPMN-like language).

3.1.3. Procedure for Process Model Smell Identification.

We first created a list of candidate process smells by taking an existing
list of code smells from the SE domain as starting point [17]. Since the focus
of this paper is on the control-flow perspective, we only considered smells
which are related to this perspective. In addition, we used the outcomes
of an extensive literature study to support the importance of the proposed
smells and to underline that the process model smells are really indicators
of bad model quality. Next we thoroughly analyzed the above mentioned
material to find empirical evidence for our process model smells and – if
necessary – extended the candidate list of process model smells. Since we
want our process model smells to help detecting common quality problems in
process models, we required each of the smells to be observed at least three
times in the different models from our sources. Therefore, only those smells,
for which enough empirical evidence exists, are included in the final list of
process model smells.

3.2. Process Model Smells

In the following we present the identified process model smells (cf. Fig. 4).
Each smell is briefly described and then illustrated using material from the
aforementioned data sources.4 We subsequently discuss each smell along its
supporting literature, also explicitly addressing related process model quality
metrics. Forward references are provided to the refactoring techniques in
Section 4 that can be used to address the respective smells.

4Even though we illustrate each smell by way of an example, we have observed it
multiple times when analyzing the numerous process models from our data sources.

12

RF3: Substitute Process Fragment
RF4: Extract Process Fragment
RF5: Replace Process Fragment by Reference
RF6: Inline Process Fragment
RF7: Re-label Collection
RF8: Remove Redundancies
RF9: Generalize Variant Changes
RF10: Remove Unused Branches
RF11: Pull Up Instance Change

Process Model Smells
PMS1 - Non-intention Revealing Naming of Activity / Process Model
PMS2 - Contrived Complexity
PMS3 - Redundant Process Fragments

PMS4 - Large Process Models

PMS5 - Lazy Process Models
PMS6 - Unused Branches
PMS7 - Frequently Occurring Instance Changes
PMS8 - Frequently Occurring Variant Changes

Figure 4: Catalogue of Process Model Smells

3.2.1. PMS1: Non-intention Revealing Naming of Activity / Process Model.

Description. Activities in a process model are normally tagged with textual
labels. However, improper labels may not reveal the intended content or
purpose to readers. This makes the model more difficult to understand.
Illustration. When analyzing the 70 process models from Source 1 we
identified significant inconsistencies regarding activity names and labeling
styles. For example, 16 process models contained activities dealing with
the scheduling of medical procedures (e.g., surgeries, medical examinations,
drug administrations). Although all these activities had similar intentions,
different labels and labeling styles were used (e.g., “make appointment”, “ap-
pointment”, “schedule examination”, “fix day”, “agree on surgery date”, and
“plan”). This, in turn, caused considerable efforts when reusing the models
later in the context of a large harmonization project (see the illustration of
the “Lazy Process Models” smell in Section 3.2.5).
Discussion. In literature, many guidelines exist stressing the importance of
appropriate activity namings in process models [77, 39, 78]. Furthermore, em-
pirical evidence exists that negative effects can occur if inappropriate labels
are used. In an experimental study [41, 43] the impact of different grammat-
ical styles for activity labeling was investigated. When being asked to single
out the labels in a process model that were ambiguous, respondents often
referred to labels that did not first mention a verb, followed by an object. In
contrast, labels that followed this “verb-object” style (e.g., Determine Loan
Conditions) were rated as being significantly more useful. In addition, length
of a text label can be an issue, as was established in another experiment [46].
While activities not following the “verb-object” style can be automatically
detected [34], non-intention revealing labels have to be manually identified

13

by process designers.
Relevant Refactorings. RF1 (Rename Activity), RF2 (Rename Process
Model), RF7 (Re-label Collection)

3.2.2. PMS2: Contrived Complexity

Description. It is often possible to express a piece of control-flow logic
within a process model in different ways. However, one alternative may be
more difficult to comprehend for humans than another, despite their equiva-
lence with respect to the (partial) execution traces they produce. Using the
more complex alternative may negatively affect model understanding, and
thus make maintenance of the model more difficult.
Illustration. In the model repositories from all considered data sources we
were able to identify process models with unnecessarily complex control-flow
structures, which could be simplified without changing the models’ behav-
ior. Examples of such complications include unnecessary AND-splits/-joins
in connection with parallel branchings and superfluous control arcs express-
ing order relations that could be transitively derived by a set of other control
arcs. Fig. 5a gives an example of unnecessary logical connectors; its simplified
version is shown in Fig. 5b. It is worth mentioning that another factor im-
pacting the difficulty humans had in respect to the comprehension of process
models in the considered sources concerns the layout of the process model.

++

+ ++
Patient information

of consent sheet
Patient

preparation
Appointment

med. examination Medical order entry
1 2 3 4

x

Patient information
of consent sheet

Patient
preparation

Appointment
med. examination Medical order entry

1 2 3 4

x

x

Planning
transport Sending order form

5 6+
x

Planning
transport

Sending order form
5 6

x

x

++

x
+

b)a) ++

+ +

Patient information
of consent sheet

Patient
preparation

Appointment
med. examination Medical order entry

x

Patient information
of consent sheet

Patient
preparation

Appointment
med. examination Medical order entry

x

x

Planning
transport Sending order form

+

x

Planning
transport

Sending order form

x

++

x
+

Figure 5: Process Fragment from Healthcare Case

Discussion. Various studies have investigated the impact of structural
model properties on model understandability. For example, [9] is centered
around an adaptation of the cyclomatic number (one of the most widely

14

used SE metrics) for business processes. Other research has analyzed process
model understandability as aspect of maintainability, and has identified sev-
eral correlations [8, 1]. Further metrics take their motivation from cognitive
research [91] or are based on concepts of modularity [93, 88]. Most notably,
an extensive set of metrics has been validated as factor influencing both error
probability [48] and understandability [42]. The various validations show that
factors like structuredness of a process model (i.e., the proper nesting of its
gateways) and its density (i.e., the number of connections between its model
elements) are influential. Both aspects can be manipulated by restructuring a
process model; e.g., [91] presents three different, but trace-equivalent process
models displaying different degrees of connectivity between model elements.
Similarly, [75] proposes a metric for structural appropriateness, which can be
used to determine how different models compare in their ability to capture a
process in a compact and meaningful way.
Relevant Refactoring. RF3 (Substitute Process Fragment)

3.2.3. PMS3: Redundant Process Fragments

Description. Both within a single and across different process models,
there may be fragments capturing the same control-flow logic. Whenever it is
required to change this logic (e.g. due to changes in regulation or policy), the
change must be propagated across all these occurrences. When overlooking
some of them or when applying any of the changes incorrectly, inconsistencies
arise which make successive maintenance even more problematic.
Illustration. Source 1 comprises 70 process models of a women’s clinic. De-
spite their diversity the models contained many redundant fragments, which
in most cases covered repetitive procedures relevant in a more general con-
text. Examples include patient admission and discharge, medical reporting,
and medical order handling (e.g., ordering drugs or a medical examination).
Discussions with process owners showed that redundancies had been par-
tially introduced through copying and pasting fragments from existing models
when defining new ones. Furthermore, over time these cross-model redun-
dancies led to problems in model maintenance due to oversized models as
well as model inconsistencies.
Discussion. A common reason for redundancies entering process models is
that multiple model variants are created for different scenarios [73]. Process
parts may then be applied in a copy-paste fashion, which is indeed also the
case for the illustration we provided above. As a consequence, even simple
changes might require manual re-editing of process variants [35]. Accordingly,

15

the advice to avoid redundancy in process models is widespread [3, 29]. For
example, [29] extracts typical modeling errors analyzing hundreds of process
models. The researchers suggest that each activity, whenever possible, should
only be defined once and be made available in some sort of global repository
to avoid execution errors and to improve model understandability. In [89]
the footprint similarity metric is proposed to detect highly similar process
models or process model parts, which can be used to detect this smell.
Relevant Refactorings. RF4 (Extract Process Fragment), RF5 (Replace
Process Fragment by Reference), RF8 (Remove Redundancies)

3.2.4. PMS4: Large Process Models

Description. With an increasing number of activities process models be-
come more difficult to understand and maintain.
Illustration. The product planning process from Source 5 comprises several
hundreds of activities for planning production facilities. Interviews with pro-
cess owners revealed that the current model contains several flaws, is known
in its entirety to only very few experts, and is partially outdated. Moreover,
the model is considered as being too large and difficult to maintain.
Discussion. Beyond the sources available to us, various instances of process
models that have grown to a very large size have been recorded in literature.
For example, the model in [79] initially consisted of more than 800 activities,
but this number grew with 17% in an observed time period of two years.
Even though it is natural for process models to grow in size along with
their increased use, it is by now well-known that size of a process model is
connected to understandability and correctness issues. An empirical study of
a set of over 600 process models in an industrial repository provides evidence
that larger, real-world process models tend to have more formal flaws (such
as deadlocks or unreachable end states) than smaller ones [48]. Moreover, an
empirical study investigating the effect of using modularity in process models
(i.e., use of complex activities referring to subprocesses) has indicated that
this eases understanding [63]. Some considerations are available on when a
process model would have to be split up into subprocesses. In this context,
practitioner books recommend modularizing process models with more than
5–15 [27] or 5–7 activities [77]. According to [44] models with more than
50 elements have an error probability of 50%. To support the process
designer in finding this process model smell, process model size can be used
as a metric. Based on the above described insights a process model size of
50 elements should be regarded as upper bound. However, modularization

16

might also be effective for a smaller process model.
Relevant Refactoring. RF4 (Extract Process Fragment)

3.2.5. PMS5: Lazy Process Models

Description. Inclusion of many small process models will increase the over-
all number of models in a process repository. This is bad for maintenance
and it will make model retrieval more difficult.
Illustration. 15 out of 60 process models of Source 6 comprised only 3 or
less activities. All these models were referred to by exactly one superordi-
nated process. This rather large number of small process models aggravated
both model maintenance and model training, and it was additionally ac-
companied by inconsistencies. Therefore, model harmonization, removal of
redundancies, and reduction of the number of models were considered as key
contributions towards improved model management by the involved stake-
holders.
Discussion. Use of complex activities referring to subprocesses is known
to improve the understanding of process models in comparison with models
merely using atomic activities [63]. Clearly, decompositions which are too
extreme (i.e., which result in many tiny process models) are not optimal in
terms of maintenance and usability. While there is no source that specifies an
optimal, lower bound for the number of activities in subprocesses, guidelines
suggest that this number should range from 5 to 7 [77]. A metric that could
be used to identify this smell is the number of activities per subprocess.
Relevant Refactoring. RF6 (Inline Process Fragment)

3.2.6. PMS6: Unused Branches (Unused Code in SE)

Description. Process models may specify behavior that never occurs in re-
ality; i.e., such models are too large and complex for their purpose. This will
have negative consequences for their understandability and maintainability.
Illustration. An analysis of the 46 process models representing clinical
guidelines from Source 2 showed that some of the models contained branches
that were never executed and which, therefore, unnecessarily inflated the
models. Interestingly, in several cases the execution of the unused branches
depended on a particular medical context (e.g., pregnancy). Since that par-
ticular context had already been covered by another, more specific process
variant, the respective branches remained unconsidered.
Discussion. The problem of unused branches is closely linked to the issue of
“overfitting” [83], which refers to situations where a process model contains

17

behavior not found in a series of observations of the actual process. Clearly,
if one can observe a process for only a limited amount of time or only with
respect to few different instances, it does make sense for designers to create a
process model that attempts to generalize those observations. However, it is
relatively easy to generate models that are too general, as shown in [75]. In
this work the degree to which a model represents reality and does not become
too generic is captured as metric, referred to as behavioral appropriateness.
Relevant Refactoring RF10 (Remove Unused Branches)

3.2.7. PMS7: Frequently Occurring Instance Changes

Description. When executing a particular process instance it may become
necessary to deviate from the logic predefined in the process model. A high
frequency of such changes can, however, be problematic. It may indicate
that the actual process model does not properly reflect the real process,
which undermines its role as communication instrument.
Illustration. In patient treatment, clinical guidelines play an important role
[32]. They aim at supporting physicians by providing recommendations for
medical decision making and patient treatment based on existing evidence.
However, physicians are not supposed to follow the process set out by a
guideline step-by-step. Instead, they must estimate the patients’ chances
and risks, and ensure that their decisions are consistent with the patients’
states (i.e., the specific treatment process depends on medical knowledge as
well as on case-specific decisions). Consequently, physicians frequently adjust
the treatment process defined by a guideline to the specific situation of the
patient (i.e., the process is adapted at instance level). As example, consider
a clinical guideline for urinary stone diagnostics taken from Source 3 (cf.
Fig. 6a). This process has been implemented using the ADEPT2 adaptive
process management system [11]. Physicians deviate from this process quite
frequently, for example, in case a patient is pregnant or has an increased blood
sugar level. In the former case, an additional lab test (“Blood glucose”) is
added and activity “Abdominal X-ray” is exchanged by activity “MRT”.
In the latter case, lab tests are added (i.e., “HbA1C” and “Blood glycemic
profile”). Fig. 6b depicts the guideline taking pregnancy and diabetes into
consideration.
Discussion. A much investigated PAIS feature concerns the deviation from
predefined process logic during run-time. There are various reasons why ex-
ceptions occasionally occur that necessitate such changes [80]. Interestingly,
a study of processes in the chip design industry [51] found that actual in-

18

stance changes are often highly similar. This has been confirmed in other
domains like healthcare, e-negotiation, and transportation [97]. When ex-
ceptions occur frequently, it is desirable to pull similar instance changes up
to the process type level. On the one hand, this improves semantic quality of
the process model (i.e. it decreases the gap between modeled and real-world
process). On the other hand, it reduces the need for future instance changes.
This is advantageous, because a proper instance change might be rather diffi-
cult to achieve due to various constraints to be taken into account. ProCycle
[97, 67], for example, has been explicitly developed to support such discovery
of desirable process model changes. To automatically detect this smell, the
number of instance changes could be used as a metric.
Relevant Refactoring. RF11 (Pull Up Instance Change)

+Lab specimen
d li

Anamnesis Examination Sonography

Consider
findings

Suspicion for
urinary stone?+ x x

a.)

delivery

Lab test 1

findings

Lab test 2

urinary stone?+

Abdominal
X-ray

XOR-Split/JoinAND-Split/JoinAtomic Activity + x

Anamnesis Examination Sonography

Patient is pregnant process
variant “pregnancy” is chosen

Increased blood sugar level; process
variant “Diabetes” is chosen b.)

xx

+

+Lab specimen
delivery

Lab test 1

Consider
findings

Lab test 2

Suspicion for
urinary stone?+

HbA1C Blood glycemic
profile

no

yes

+

Blood
glucose MRT

New process fragments are
inserted in parallel

Figure 6: Example of Clinical Guideline “Urinary Stone Diagnostics”

3.2.8. PMS8: Frequently Occurring Variant Changes

Description. Ongoing creation of multiple model variants leads to an en-
largement of the size of the model repository aggravating its maintenance.
Illustration. In one of our case studies in a large clinical centre (cf. Source
4) we have identified more than 80 process variants for handling medical
procedures (e.g., X-ray inspections or cardiological examinations). Fig. 7
depicts four variant models of Source 4 and their distances to a documented
reference process model. Despite the high similarity of the four variants they
are captured in separate process models. Discussions with process owners
have shown that in the past even simple changes (e.g. due to new regula-
tions or reengineering efforts) required error-prone, manual re-editing of a
large number of logically related process variants. Over time, this had led
to degeneration and divergence of the respective process models, which ag-
gravated their maintenance significantly. As a consequence, costly manual

19

refactorings became necessary. We observed similar problems with respect
to model maintenance in Source 7.

Select
Examination

Order
Examination

Inform Patient
about Procedure

Prepare
Patient (ward(

Perform
Examination

Create
Medical Report

Read/Validate
Medical Report

P C fi i

Reference Model SA B C D E F G

+ +xx Select
Examination

Order
Examination

Prepare
Patient (ward)

Second
Opinion
by other
Ph i i

+ +Select
Examination

Order
Examination

Prepare
Patient (ward)

Call
Patient

Process Configuration
H

I

Inform Patient
about

Procedure

Physician

Prepare P f Create R d/V lidC ll Aft

Inform Patient
about Procedure

Create Summary Read Summary
J

L M
I J K

++
Prepare
Patient

(exam unit)

Perform
Examination

Create
Medical
Report

Read/Validate
Medical Report

Call
Patient

Aftercare
for Patient Prepare

Patient
(exam unit)

Perform
Examination

Create
Medical
Report

Read/Validate
Medical Report

Aftercare
for Patient

Variant V1 Variant V2

J K

N O
Select

Examination
Order

Examination
Register

Examination
Inform Patient

about Procedure
Prepare
Patient

Aftercare
for Patient

Select
Examination

Order
Examination

Schedule
Examination

Inform Patient
about Procedure

Prepare
Patient

Aftercare
for PatientCall

Patient

Tranport
Patient back

N O

Q

I

K

M
I K

+

+

+
++

+Perform
Examination

Create
Medical

Read/Validate
Medical Report

Create
Summary

Read
SummaryCall

Patient

+
+Perform

Examination

Create

Read/
Validate
Medical
Report

Create
Summary

Read
Summary

Patient

Tranport
Patient

P
I

L
L

M

Distance (S, V1) = 6 ∆(S,V1) = <Insert(H,A,B), Insert(loop,START,B), Insert(I,D,E), Move(D,B,I), Insert (J,I,E), Insert(K,E,F) >

Medical
Report

Create
Medical
Report

Summary

Variant V3 Variant V4

Distance (S, V3) = 5 ∆(S,V3) = <Insert(N,B,C), Insert(I,D,E), Insert(K,E,G), Insert(L,E,F), Insert(M,L,G)>

Distance (S, V2) = 6 ∆(S,V2) = <Insert(I,D,E), Insert(J,I,E), Move (D,B,I), Insert(K,E,F), Insert(L,E,END), Insert(M,L,END)>

Distance (S, V3) = 7 ∆(S,V4) = <Insert(O,B,C), Insert(I,D,E), Insert(K,E,G), Insert(L,E,F), Insert(M,L,G), Insert(P,I,E), Insert(Q,K,G)>

Figure 7: Examples of Configured Process Variants for Handling Medical Procedures

Discussion. The number of process models in real-life repositories can be
substantial [38, 62]. One of the common reasons for this is the creation
of multiple model variants for different scenarios [73]. In [89], an indus-
trial repository of 74 sales and distribution process models was investigated.
Alone in this sample 50 pairs of process model variants were identified. This
indicates the uncontrolled profusion that can take place when creating pro-
cess variants. This exact issue is the subject of methods as described in
[62, 38, 35, 37], which aim to search and match process variants towards the
creation of more generalized models. In this way, the size of model reposito-
ries can be controlled. For example, in the setting of a large financial orga-
nization it was possible to combine 15 different variants of the same offering
into one process model, which was well-received by the users that maintain
the repository [62]. The profusion of process variants can be determined by
inspection of their change distances.

20

Relevant Refactoring. RF9 (Generalize Variant Change)

3.3. Summary of Process Model Smells

Above, we have identified and discussed eight frequent process model
smells. Fig. 8 summarizes this discussion including references to related
work in the literature. For each smell, the source process model collections
are mentioned in which we observed their occurrence. Each of the smells
was at least supported by its occurrence in three different models. The
column metrics mentions the indicators that are useful to detect the smell.
Finally, in the last column, we point to relevant refactoring techniques. These
techniques will be discussed in more detail in the next section.

Smell Sources Literature Metrics Refactorings
PMS1 1-7 [41,43,46,77,78] verb-object style RF1, RF2, RF7
PMS2 1-7 [1,8,9,42,48,88,90,91] cyclomatic number, structuredness,

density, structural appropriateness
RF3

PMS3 1, 4, 5, 6 [3,89] footprint similarity RF4, RF5, RF8
PMS4 5 [42,44,48,63] size RF4
PMS5 6 [63,77] #activities / subprocess RF6
PMS6 2, 3, 7 [75,83] behavorial appropriateness RF10
PMS7 3 [51,97] #instance changes RF11
PMS8 4, 6, 7 [35,37,62] change distance RF9

Data
Source

Domain Scenarios Number of
Models

Reference

Source 1 Healthcare Birth and postnatal care
Inpatient chemotherapy treatment
Outpatient chemotherapy treatment
Ovarian carcinoma surgery
Keyhole surgery

70 process models [59]

Source 2 Healthcare Clinical guidelines and pathways in
internal medicine

46 process models

Source 3 Healthcare Clinical guidelines for urinary stone
diagnosis

1 process model
with 98 instances

Source 4 Healthcare Handling of medical procedures (i.e.,
requesting, scheduling, performing
and validating medical examinations)

84 process model
variants

Source 5 Automotive Vehicle development 1 process model [6]
Source 6 Automotive Electronic change management 60 process models [19]
Source 7 Automotive Vehicle repair 900 variants [24]

Smell Literature Metrics Refactorings
PMS1 [27-32] verb-object style RF1, RF2, RF7
PMS3 [44-46] footprint similarity RF4, RF5, RF8
PMS4 [39,40,48,49] size RF4

Before Refactoring Refactorings After Refactoring
PMS1 – 1 violation of verb-object style RF1 (1x) All activities labeled according to

verb-object style
PMS3 – Fragments 1 and 2 are redundant RF4 (1x)

RF5 (1x)
No redundant fragments
Reduction of model size by 8

PMS4 – Process model with 42 nodes
(22 activities, 18 gateways,
1 start node, 1 end node)

RF4 (4x) Flight Schema (S1): size 12
Preflight Process Schema (S2): size 7
Clearance Process Schema (S3): size 6
Taxiing Process Schema (S4): size 9
Take-Off Process Schema (S5): size 8
Repair Process Schema (S6): size 11

Figure 8: Summary of the Discussion of the Various Smells

4. Refactoring Techniques

In the following, we describe 11 refactoring techniques which enable pro-
cess designers to improve the quality of their models and to cope with the
discussed model smells (cf. Fig. 9). An analysis of our sources, the process
repositories from the healthcare and automotive domain, and the additional
literature study have clearly shown that all identified refactorings are fre-
quently needed in practice (cf. Section 3).

For each of the proposed refactorings we describe its intent and the process
smell(s) it addresses, give illustrations, provide a description of the refactor-
ing operation (with pre- and postconditions), and sketch its implementation.
We organize our refactorings into three groups. The first one is introduced
in Section 4.2 and contains refactorings for process model trees. Refactorings
in this category can be applied to a single model or to entire process model

21

trees (i.e., hierarchies of process models). The second group additionally re-
lies on the support for reference process models. It provides a refactoring
that can be applied to a collection of process variants. More precisely, this
refactoring helps process designers in finding a process reference model that
is close to the given variant collection (cf. Section 4.3). Finally, the third
group describes two refactorings, which support model evolution by consider-
ing process history data (Section 4.4). Since respective refactorings make use
of history data (i.e., execution traces), their application requires the presence
of a run-time environment.

Refactorings
RF1: Rename Activity RF7: Re-label Collection
RF2: Rename Process Schema RF8: Remove Redundancies
RF3: Substitute Process Fragment RF9: Generalize Variant Changes
RF4: Extract Process Fragment RF10: Remove Unused Branches

RF5: Replace Process Fragment by Reference RF11: Pull Up Instance Change

RF6: Inline Process Fragment

Figure 9: Refactoring Catalogue

4.1. Preliminaries

In our context, refactorings constitute model transformations which are
behavior-preserving if certain preconditions are met. Several of our refactor-
ings can be implemented based on process change patterns as introduced in
[96, 68]. However, since change patterns are usually not behavior-preserving
our refactorings are imposing the required preconditions to ensure this.

Most refactorings are not applicable to arbitrary process fragments, but
are restricted to single-entry, single-exit (SESE) regions or sequences of SESE
regions (e.g., RF3, RF4, RF5 and RF8). Fig. 10 shows process model S and
its decomposition into SESE regions (for details on SESE decomposition see
[93]). SESE regions can be nested (e.g., R3, R4, R5 and R6 are contained
in R2), sequentially composed (e.g., regions A, R2 and M), or disjoint (e.g.,
regions R3 and R4). In Fig. 10a refactorings are applicable to region R2, but
not to a selection comprising regions R3, R4 and R5.

The resulting process structure tree PSTS is depicted in Figure 10b.
Nodes in such a tree represent SESE regions of the process model, while
edges represent the nesting of regions (see [93] for details).

Models S and S ′ are called structurally equivalent if and only if they have
the same process structure tree.

22

Process Model S

Model Repository

A

Process Model S1
H

Process Model S2
J

++
B C D +

E F

G

B C D E F

G1
+

B C D E F

G1

+
K

M

+

M

+

+

+

E F

+

I

+

+

XOR S lit/J i

AND-Split/Join

Atomic Activity

+ Complex Activity

+
x

(Sub) Process Model S3

X Y Z

(Sub) Process Model S4

S T V

XOR-Split/Joinx

c) Process Structure Tree

Process Structure Tree PSTa) b)

+

Process Model S
R1

A R2 M

Process Structure Tree PSTS
A

+

R2

R6R3 R4 R5

) b)

R3 R4AND-
Split

B C D
+

B C D
+

E F

R5

R5 R6 AND-
Join

R7 R8

+
R1 M

+

R7 R8AND-
Split

AND-
Join

E F

Figure 10: Process Model with SESE Regions

Definition 1 (Structural Equivalence). Two process models S and S ′

are structurally equivalent iff PSTS = PSTS′ .

To reason about behavior-preservation of the refactorings, it is essential
to settle the notion of equivalence to be applied. Many such notions exist
(e.g., trace equivalence, bisimulation, branching bisimulation). This paper
will use trace equivalence as the main formal notion. For example, σ1 =
< A,B,C,D,E, F,M > and σ2 = < E,B,D,C,A, F, M > both constitute
traces producible on model S from Fig. 1a. Models S (cf. Fig. 1a) and S ′

(cf. Fig. 2) are called trace equivalent since the same set of traces can be
produced based on S as well as on S ′.

Definition 2 (Trace Equivalence). Let PS be the set of all process mod-
els. Let further A be the total set of activities or – more precisely – activity
labels based on which models S ∈ PS are specified (without loss of generality
we assume unique labeling of activities). Let further QS denote the set of
all possible execution traces producible on model S ∈ PS. A trace σ ∈ QS
is given by σ = < a1, . . . , ak > (with ai ∈ A) where the temporal order of
ai in σ reflects the order in which activities ai were completed over S. Two
process models S and S ′ are trace equivalent iff QS = QS′ .

Many of the described refactorings do not only affect a single process
model, but an entire process model tree. To determine whether two – po-
tentially hierarchical – process models S and S ′ are trace equivalent, the

23

respective process model trees need to be expanded. To this end, each com-
plex activity needs to be replaced by the (sub) process model it refers to.
Consequently, the trace of an activity does not contain the complex activity
directly, but the trace of the associated subprocess. A possible execution
trace for model S in Fig. 1a is σ1 = < A,B,C,D,E, F,X, Y, Z >.

For refactorings RF10 and RF11 the notion of trace equivalence is not
applicable since the behavior producible on the changed process model is
altered. Therefore, we use state compliance [65] as formal notion instead.
In the given context, it indicates whether the actual trace of a process in-
stance could have been produced on the changed process model as well.
More precisely, if all instances of a process model are state compliant with
its refactored model version (i.e., the traces are re-producible on this model),
its observed behavior remains unchanged.

Definition 3 (State Compliance). Let I be a process instance with exe-
cution trace σ. Let further S be a process model. Then: I is state compliant
with S iff σ is producible on S.

4.2. Refactorings for Process Model Trees

First, we describe 8 refactorings for process model trees. Refactoring RF1
(Rename Activity) can be applied if the name of an activity is not intention
revealing. Similarly, RF2 (Rename Process Model) enables designers to al-
ter the name of a model. Using RF3 (Substitute Process Fragment) process
designers can substitute a fragment within a model by another one which
is simpler in structure, but has the same behavior. RF4 (Extract Process
Fragment) enables designers to extract a process fragment into a subprocess
to remove model redundancies, to foster reuse, and to reduce model size. By
applying RF5 (Replace Process Fragment by Reference) a process fragment
can be replaced by a complex activity referring to a (sub) process model con-
taining the respective fragment. RF6 (Inline Process Fragment), in turn, can
be applied to collapse the hierarchy by inlining a fragment. RF7 (Re-Label
Collection) is a composed refactoring, which supports re-labelling of selected
activities within a collection of process models. Finally, RF8 (Remove Re-
dundancies) enables the combined use of RF4 and RF5 in order to remove
redundant fragments from multiple models in a model collection at once.

24

4.2.1. RF1/RF2 (Rename Activity / Process Model),
RF7 (Re-label Collection)

Description. With RF1 the name of an activity can be changed if it is not
intention revealing. If an activity occurs several times in a process model,
all occurrences of that activity will be renamed. RF1 is comparable to the
Rename Method refactoring in SE [17]. Similarly, RF2 enables designers to
rename a model S into S ′. A similar refactoring in SE is called Rename
Class [7]. RF7, in turn, is a composed refactoring for re-labeling a particular
activity in all models of a model collection. For this, RF1 is applied to all
models containing the activities to be re-labeled.
Addressed Process Smell. Altogether these refactorings can be used to
address smell PMS1 (Non-Intention Revealing Naming).
Pre-conditions. RF1 requires that no activity from S is labelled with the
new name. RF2, in turn, requires that no process model with label S ′ exists.
Implementation. Labels which are not following the “verb-object” style
can be automatically refactored using techniques described in [33].
Behavior-Preservation. Renaming an activity does not alter the actual
behavior of the model as only its label is changed; i.e., trace equivalence can
be guaranteed when taking changed labels into account appropriately. To
guarantee that RF2 does not alter process behavior all references to S need
to be updated. Obviously, trace equivalence can be used as a formal notion
for RF2 ensuring that behavior of the model collection remains unchanged.
Effects. Applying RF1 enables process designers to improve model un-
derstandability through more intention revealing labels and consequently to
reduce errors and to decrease costs of change (cf. Section 3.2.1).
Illustration. Regarding the illustration provided for PMS1 (cf. Section 3.2.1),
RF1 was used for harmonizing activity labels before extracting fragments and
replacing them by subprocess references.

4.2.2. RF3 - Substitute Process Fragment

Description. Using RF3, a fragment G can be substituted by another
fragment G′ with simpler structure, but showing same behavior (cf. Fig. 5).
The Substitute Algorithm refactoring known from SE [17] is comparable to
RF3.
Addressed Process Smell. Scenarios in which RF3 is useful include un-
necessarily complex parallel branchings or superfluous control-flow arcs due
to transitive relations, i.e., RF3 addresses PMS2 (Contrived Complexity).

25

Pre-conditions. RF3 requires G and G′ to be trace equivalent SESE frag-
ments or sequences of SESE fragments.
Implementation. RF3 can be implemented based on process change pat-
tern Replace Process Fragment as described in [96, 68].
Behavior-Preservation. Guaranteed based on pre-conditions.
Effects. Substituting a fragment by a simpler one enables designers to im-
prove model quality along several dimensions: removing unnecessary parallel
branchings and control-flow arcs does not only increase model clarity, but
also decreases model size and control-flow complexity (CFC).
Illustration. Fig. 5a gives an example of a process model with unnecessary
logical connectors. Its simplified version (after applying RF3) is shown in
Fig. 5b.

4.2.3. RF4 (Extract Process Fragment), RF5 (Replace Process Fragment by
Reference), RF8 (Remove Redundancies)

Description. RF4 can be used to extract a process fragment G from any
model S (e.g., to eliminate redundant fragments or to reduce size of model
S). Applying RF4 results in the creation of a new (sub) process model
S ′ implementing the fragment. In addition, in S the original fragment is
replaced by a complex activity referring to S ′. RF5, in turn, is used to
replace a process fragment by a trace-equivalent subprocess model. Finally,
RF8 is a composed refactoring based on RF4 and RF5. It can be applied to
a collection of models S1 . . . Sn in order to remove redundancies. For this,
RF4 is applied to one of these models to extract the redundant fragment.
To all other models, RF5 is applied for replacing the respective fragment by
a reference to the (sub) process model created before. The intent of these
refactorings is similar to Extract Method as known from SE [17].
Addressed Process Smell. RF4, RF5 and RF8 are potential remedies
for process model smells PMS3 (Redundant Process Fragment) and PMS4
(Large Process Model).
Pre-conditions. To guarantee that RF4 does not alter the behavior of
the model tree, the fragment to be extracted must be a SESE region or
a sequence of SESE regions (cf. Fig. 10). For applying RF5, the SESE
fragment to be replaced and the corresponding (sub-) process model need to
be trace-equivalent.
Implementation. RF4 can be implemented using change pattern Extract
Process Fragment [96]. RF5, in turn, can be implemented based on change
pattern Replace Process Fragment [96].

26

Behavior-Preservation. Guaranteed by pre-conditions.
Effects. Extracting parts of a process model often results in reduced control-
flow complexity (CFC). Similarly, in SE the Extract Method refactoring is
suggested as remedy for high cyclomatic complexity [20]. RF4 and RF5 can
also be used to reduce the size of large models and overall number of nodes
in the process repository by removing redundancies. Furthermore, removing
redundancies reduces costs of future process changes.
Illustration. Regarding the illustration that was provided for PMS3 (see
Section 3.2.3), it was possible to extract 9 redundant fragments relevant for
more than one process model and to map them to separate (sub-) process
models (RF4) (e.g., process models for admitting patients, creating discharge
summaries, or handling medical orders). Taking the extracted process mod-
els, 30 redundant process fragments within the 70 process models could be
replaced by references to the corresponding (sub-) process models (RF5).
These refactorings led to a significant reduction of redundancies, a decrease
of model sizes (while increasing the total number of process models), an
increase of model consistency, and better overall maintainability.

4.2.4. RF6 - Inline Process Fragment

Description. RF6 can be used to collapse the hierarchy of a model by
inlining the process fragment, e.g., if it is not justifying its induced overhead.
Similarly, in SE Inline Method [17] enables programmers to inline the body
of a method. By inlining a fragment S1 into S the complex activity referring
to S1 is substituted by the fragment corresponding to S1.
Addressed Process Smell. This refactoring can be applied to address
PMS5 (Lazy Process Model).
Pre-conditions. RF6 can be applied to complex activities (i.e., activities
referring to a (sub) process model).
Implementation. RF6 can be implemented based on the Inline Process
Fragment change pattern described in [96].
Behavior-Preservation. Trace equivalence can be used as formal notion.
Effects. RF6 enables designers to collapse the hierarchy of a process model
tree resulting in a decrease of levels. Note that model size and control-flow
complexity might increase when applying RF6.
Illustration. The models described in the illustration of PMS5 (see Sec-
tion 3.2.5) can be significantly improved by applying RF6. In particular, the
total number of process models can be reduced from 60 to 26 (containing 2

27

to 18 activities). Especially, the number of very small models (i.e., models
with 2 or 3 activities) can be be decreased from 15 to 4 models.

4.3. Refactoring of Process Variants

Another challenge is to manage the process variant models belonging to
the same process family (cf. Fig. 1b). Typically, the model of a process
variant is directly or indirectly derived through configuration from a given
reference process model Sref , i.e., by applying a sequence of change operations
to Sref (see Fig. 7 for an example from the healthcare domain). As discussed
in the context of process model smell PMS8 (Frequently Occurring Variant
Changes), in many cases the process variants have to be maintained by their
own, and even simple changes affecting multiple variants (e.g. due to new
laws or re-engineering efforts) require error-prone, manual re-editing of a large
number of related process variants. Over time this leads to a degeneration
and divergence of the models, which further aggravates maintenance.

In general, the configuration of new variants or the adaptation of existing
ones can be done most effectively if the reference model is kept close to the
given variant collection. This, in turn, can be achieved if the average change
distance between the reference process model Sref and its corresponding vari-
ant models V1, . . . , Vn is kept minimal; i.e., the average number of high-level
change operations needed to transform Sref into variant models Vi, i = 1 . . .n
is minimal [36, 37]. In order to ensure this, continuous efforts have to be
made to evolve the reference model accordingly. Otherwise, more and more
redundant changes would have to be performed to different variant models in
order to keep them aligned with the real-world processes. As example con-
sider again Fig. 7. Obviously, the depicted variant models contain redundant
changes (e.g., insertion of activity Call Patient) which should be pulled up
to the reference model in order to reduce future configuration efforts and to
decrease average distance between reference model and process variants.

Though the variant models of a process family are similar, unnecessary
differences of their control flow structure can make refactorings RF4 and RF5
inapplicable in many situations. Therefore, an additional refactoring tech-
nique is needed, which supports designers in maintaining reference models.

4.3.1. RF9 - Generalize Variant Changes

Description. RF9 enables designers to pull changes, which are common to
several variants, up to the reference model (similar to Pull Up Method and

28

Push Down Method known from SE [17]). This enables process designers to
remove redundancies and to decrease costs of future changes. As example
consider Fig. 7 where the depicted variant models have several changes in
common. To each variant model, for instance, activities Inform Patient

about Procedure, Call Patient and Aftercare for Patient have been
added. When pulling respective changes up to the reference model the aver-
age distance between reference model and process variants can be reduced.
Consider our example from Fig. 7 for which we can derive an optimized refer-
ence model by applying RF9 to the given variant collection. This optimized
reference model is depicted on the top of Fig. 11. As can be further seen from
the bottom of Fig. 7 and Fig. 11, respectively, average change distance be-
tween reference model and variants decreases when evolving the old reference
model S to the new one (i.e. to S∗).
Addressed Process Smell. This refactoring can be applied to address
PMS8 (Frequently Occurring Variant Changes).
Implementation. RF9 necessitates a framework for managing reference
models and the variants derived from them. First of all, techniques for an-
alyzing process variants and for identifying process variant changes to be
pulled up to the reference model are needed. In this context, we apply a
family of advanced mining algorithms as described in [37, 35]. Using the
clustering approach as introduced in [35], a reference model S ′ref can be de-
rived by mining a set of process variants V1, . . . , Vn such that average distance
between S ′ref and the variants becomes minimal. The heuristics approach de-
scribed in [37], in addition, allows to take the old reference model into account
as well; i.e. we are able to also control the (maximal) distance between old
reference model and newly discovered one, which helps to avoid spaghetti-like
process models.5 Furthermore, when evolving a reference model Sref accord-
ingly, all variants need to be re-linked from Sref to S ′ref , and for each variant
its bias needs to be re-calculated in respect to S ′ref [97]. Finally, effective
techniques are needed for internally representing a reference model and its
variants.
Behavior-Preservation. Note that RF9 does not alter the variant be-
havior. Applying the updated bias of a variant Vi to S ′ref results in same
variant-specific model as it can be obtained when applying the old bias to

5A technical description of these algorithms can be found in [35, 37] and is out of the
scope of this paper.

29

Sref .6 Thus trace equivalence can be used as formal notion.
Effects. The average change distance between a reference process model
and its variants is reduced.
Illustration. We applied RF9 to the healthcare scenario as provided in the
context of PMS8 and Source 4 respectively. In total, 84 process model vari-
ants were considered. Based on their relevance (i.e., the relative frequency
with which process instances from the variant models were created), we as-
signed weights to the variant models ranging from 0.1% to 8.67%. Consider-
ing this, the original reference process model S was a simple process model
comprising 7 activities (see Fig. 7 for S and four exemplarily chosen process
variants). When evaluating this model in respect to the 84 variants, average
change distance between S and the variant models corresponded to 5.3; i.e.,
per average we needed to apply 5.3 high-level change patterns (e.g., to add,
delete or move activities) to configure a variant model out of S. Applying
RF9 to the collection of 84 variants resulted in a new reference model S∗ (cf.
top of Fig. 11) with average weighted distance of 2.79 between S∗ and the
process variants; i.e., RF9 performed well for this case and contributed to
the inclusion of important changes in the new reference model and thus to
less configuration efforts in future.

4.4. Refactorings for Model Evolution

This section describes refactoring techniques, which become applicable when
process models are executed by PAISs and historic data on process instances
is available in execution or change logs [85, 66]. These logs can be analyzed
and mined to discover potential refactoring options. In this context RF10
(Remove Unused Branches) enables process designers to remove unused paths
from a process model (cf. PMS6 - Unused Branches) and RF11 (Pull Up In-
stance Change) enables generalization of frequent instance changes by pulling
them up to the process type level (cf. PMS7 - Frequently Occuring Instance
Changes). Several mining methods for discovering such situations already
exist [85, 37]. We therefore do not look at respective techniques, but use
them for realizing refactorings based on historical data.

6This also becomes evident from the examples depicted in Fig. 7 and Fig. 11 respec-
tively.

30

+ +Select
Examination

Order
Examination

Inform Patient

Prepare
Patient (ward)

Perform
Examination

Read/Validate
Medical Report

Call
Patient

Schedule
Examination

Aftercare for
Patient

Create
Medical Report

A B

C

D E F G

N R f M d l S*

O I K

Inform Patient
about ProcedureNew Reference Model S*

+ +xx Select
Examination

Order
Examination

Prepare
Patient (ward)

Second
Opinion
by other + +Select

Examination
Order

Examination
Prepare

Patient (ward)
Call

Patient

H

Examination Examination

Inform Patient
about

Procedure

Patient (ward)by other
Physician

P C

Examination Examination

Inform Patient
about Procedure

Patient (ward) Patient

Create Summary Read Summary
L M

J

++
Prepare
Patient

(exam unit)

Perform
Examination

Create
Medical
Report

Read/Validate
Medical Report

Call
Patient

Aftercare
for Patient Prepare

Patient
(exam unit)

Perform
Examination

Create
Medical
Report

Read/Validate
Medical Report

Aftercare
for Patient

Variant V1 Variant V2

JJ

Select
Examination

Order
Examination

Register
Examination

Inform Patient
about Procedure

Prepare
Patient

Aftercare
for Patient

Select
Examination

Order
Examination

Schedule
Examination

Inform Patient
about Procedure

Prepare
Patient

Aftercare
for PatientCall

P i
Tranport

Patient back

N

Q

M

+

+

+
++

+Perform
Examination

Create
M di l

Read/Validate
Medical Report

for Patient

Create
Summary

Read
SummaryCall

Patient

+
+Perform

Examination

Read/
Validate
Medical
Report

for Patient

Create
S

Read
Summary

Patient

Tranport
Patient

Patient back

P
L

M

L

M

+

Distance (S*, V1) = 4 ∆(S,V1) = <Insert(H,A,B), Insert(loop,START,B), Delete(O), Insert(J,I,E)>

Medical
Report

Create
Medical
Report

Summary

Variant V3 Variant V4

() () () (p) () ()

Distance (S*, V3) = 6 ∆(S,V3) = <Delete(O), Move(C,B,D), Insert(N,B,C), Move(K,E,G), Insert(L,E,F), Insert(M,L,G)>

Distance (S*, V2) = 4 ∆(S,V2) = <Delete(O), Insert(J,I,E), Insert(L,E,END), Insert(M,L,END)>

Distance (S*, V3) = 6 ∆(S,V4) = <Move(C,O,D), Move(K,E,G), Insert(L,E,F), Insert(M,L,G), Insert(P,I,E), Insert(Q,K,G)>

Figure 11: Newly Mined Reference Model

4.4.1. RF10 - Remove Unused Branches

Description. RF10 enables designers to remove non-executed process frag-
ments from a model S. While unused branches can be automatically de-
tected, RF10 is not automatically applied, but designers have to ensure that
the misalignment between model and log was not caused by design errors or
an execution log not covering all relevant traces.7

Addressed Process Smell. This refactoring provides a remedy for smell
PMS6 (Unused Branches).
Implementation. RF10 can be implemented based on the change pattern
Delete Process Fragment [96, 68] and standard process mining techniques

7Note that we require access to an execution log in order to be able to identify unused
branches.

31

[85].
Behavior-Preservation. Trace equivalence is not suitable as formal basis
for RF10 since behavior producible on the respective process model is altered
by RF10. Instead, we use the notion of state compliance. RF10 can be applied
to S if the traces of all instances on S are re-producible on the new model
(i.e., observed behavior remains unchanged). Generally, state compliance can
be guaranteed when removing previously unused execution paths.
Effects. Applying RF10 decreases model size and control flow complexity.
Illustration. Regarding the illustration provided for PMS6 (cf. Section
3.2.6), we were able to apply RF10 to some of the 46 process models in order
to remove branches that had never been chosen for execution in any of the
logged process instances. However, the deletion of such unused branches had
to be explicitly approved by process owners (e.g., to avoid the removal of
relevant exceptional paths that were not covered in another way within the
total collection of the 46 process models).

4.4.2. RF11 - Pull Up Instance Change

Description. RF11 can be used to generalize frequently occurring instance
changes by pulling them up to the process type level (similar to RF9 where
variant changes are generalized).
Addressed Process Smell. RF11 serves as a remedy for smell PMS7
(Frequently Occurring Instance Changes).
Implementation. Implementation of RF11 is similar to the one of RF9,
but requires change logs to reconstruct the models of the respective process
instance collection.
Behavior-Preservation. Trace equivalence cannot be used to exclude er-
rors when applying RF11. By pulling changes from instance level to type
level, producible behavior is always altered. Therefore, state compliance (cf.
Definition 3) is used as formal notion. Like RF9, RF11 has the potential for
full automation.
Effects. Like for RF9, the goal is to reduce average and total change distance
between the process model and instance-specific models; e.g., to learn from
instance changes and to reduce future need for adapting instances [97].
Illustration. Since instance adaptations occurred frequently in the scenario
introduced in the context of PMS7 (cf. Section 3.2.7), it was decided to
consider them in a specific variant of the original guideline (cf. Fig. 6b).

32

5. Implementation

To demonstrate the feasibility of our refactoring techniques we imple-
mented a proof-of-concept prototype and applied it to existing process mod-
els. Section 5.1 describes the architecture of our prototype, while Section 5.2
demonstrates it based on a walk-through scenario.

5.1. Architecture

Our refactoring tool has been implemented as an Eclipse RCP applica-
tion on top of the SecServ platform8. Our prototype provides support for
all refactorings depicted in Fig. 9. To support users in applying behavior-
preserving refactorings, our prototype only enables refactorings which fulfill
the relevant preconditions. In addition, users are supported in assessing the
effects of a particular refactoring on selected quality metrics. Fig. 12 shows
the architecture of our refactoring tool component. The Refactoring Tool
component is integrated in a loosely coupled manner into the Process Editor
component of SecServ via the extension point mechanism of the Eclipse RCP
platform.

Change Operation

Process Model

Refactoring Tool

Process Model

Refactoring Tool

<< control >> Tool Selection Validation
Process Editor

IRefactoringTool

SESE DecompositionEquivalence Tester

Quality Metric

IQualityMetric

Component

Interface

Figure 12: Architecture of Refactoring Tool component

Both the Refactoring Tool component and the Process Editor component
rely on the Process Model component containing all the model elements from

8http://qe-uibk.ac.at/secserv

33

the process model repository and the Change Operation component contain-
ing all supported change patterns (e.g., Insert Process Fragment, Delete Pro-
cess Fragment and Move Process Fragment).

The Tool component is the central part of the Refactoring Tool component
containing the functionality of the refactorings. The Tool component relies
on the Selection Validation component, which checks whether a particular
refactoring can be executed depending on the currently selected elements
(i.e., it checks its pre-conditions). In the graphical user interface of the Pro-
cess Editor component only those refactorings become enabled which fulfill
the pre-conditions.

The Tool component also relies on the Equivalence Tester component,
which checks whether two process models or process model fragments are
structurally equivalent, i.e., have the same process structure tree (cf. Defin-
tion 1) or expose the same behavior (cf. Defintion 2). Both the Selection
Validation component and the Equivalence Tester component rely on the
SESE decomposition component which computes SESE regions for a given
process model and process model fragment respectively, and which constructs
a corresponding process structure tree.

To evaluate the effect of a particular refactoring with respect to selected
quality metrics the Refactoring Tool component uses the IQualityMetric in-
terface provided by the Quality Metric component. Note that the Quality
Metric component is easily extensible, i.e., further quality metrics can be
added by implementing the IQualityMetric interface.

As illustrated in Fig. 13, the current version of our refactoring tool compo-
nent provides support for all refactorings described in this paper. In addition,
the component can be easily extended with additional refactorings by imple-
menting the IRefactoringTool interface and by adding a new extension. From
a technical point of view the provided refactoring tools can be divided into
three groups. First of all, ElementRefactoringTools modify a single activity.
These refactorings are not enabled if the selected element is a gateway or an
edge (i.e., RF1, RF6 and RF7). Second, FragmentRefactoringTools, in turn,
are only applicable to SESE fragments (i.e., RF3, RF4, RF5, and RF8). To
support users in applying behavior-preserving refactorings these refactorings
are only enabled when a SESE is selected. Finally, ProcessModelRefactor-
ingTools modify the whole process model. As a consequence, the selection
of elements has no effect on the availability of these refactorings (i.e., RF2,
RF9, RF10, and RF11).

34

AbstractRefactoringTool

AbstractFragmentRefactoringTool AbstractProcessModelRefactoringToolAbstractElementRefactoringTool

RF3 - Substitute Process
Fragment

RF4 – Extract Process
Fragment

RF5 - Replace Process
Fragment by Reference

RF8 - Remove
Redundancies

RF2 – Rename
Process ModelRF7 - Re-label Collection

RF1 - Rename Activity

RF6 – Inline Process
Fragment RF10 – Remove

Unused Branch

RF9 – Generalize
Variant Changes

RF11 – Pull Up
Instance Change

Figure 13: Refactoring Tools

5.2. Walk-through Scenario

To better illustrate the main functionalities of our prototype we describe
a walk-through scenario. This scenario is based on a simplified version of
the pre take-off process for a general aviation flight under visual flight rules
(VFR) and is briefly described in the following.

Before conducting a general aviation flight the pilot first has to check the
weather. Optionally, the pilot can then file the flight plan. This is followed
by a preflight inspection of the airplane. For large airports the pilot calls
clearance delivery to get the engine start clearance. If an airport has a tower
control the pilot has to contact ground to get taxi clearance, otherwise she
has to announce taxiing. This is followed by taxiing to run-up area and run-
up inspections ensuring that the airplane is ready for flight. If the airport has
a tower, the tower is contacted to get take-off clearance, otherwise take-off
intentions have to be announced. Finally, the pre take-off process finishes
with the take-off of the airplane.

During the pre-flight inspections the pilot can detect problems with the
airplane. If the problems are severe, the flight is immediately cancelled.
Otherwise, if the airplane can move under its own power, it drives to the
repair station. Alternatively, the airplane is either towed to the repair station
or a mechanician comes to the airplane in order to deal with the problem.
After the repair the flight is re-started with checking the weather.

Fig. 14 depicts the pre take-off process as described above including sev-
eral process model smells. First, the model does not strictly follow the
verb-object style of naming activities, which relates to PMS1 (Non-Intention
Revealing Naming of Activity). For example, activity Repair violates this

35

Fragment 3

Fragment 4 Fragment 5 Fragment 6

Fragment 2

PMS3: Redundant
Process Fragment

Fragment 1

Check
Weather

Perform
Preflight

Inspection

File
Flightplan

Cancel
Flight

Severe
problem

Move to
Repair
Station

Small
Problem

Plane can
move under its
own power

Tow to
Repair
Station

Get
Mechanician

Repair Check
Weather

Perform
Preflight

Inspection

File
Flightplan

Issue Found

Call
Clearance

Get
ClearanceIf

large
airport

Contact
Ground

Get Taxi
Clearance

Íf tower

Announce
Taxiing

Taxiing to
Run-up

Perform
Run-up

lnspection
Contact
Tower

Get Take-off
Clearance

Íf tower

Announce
Take-off

Intentions

Take-off
Airplane

PMS1: Non-intention revealing Naming of Activity
Violation of Verb-Object Style

PMS3: Redundant
Process Fragment

PMS4: Large Process
Model

Figure 14: Original Model of Pre Take-off Process

convention. Second, the process model contains a redundant process model
fragment (i.e., Fragments 1 and 2), which is an example of PMS3 (Redun-
dant Process Model). Third, the depicted model is rather large and complex
constituting an example of PMS4 (Large Process Model).

To address these smells, the process designer loads the model into our
refactoring tool. To remove PMS1 (Non-Intention Revealing Naming of Ac-
tivity) the process designer selects the respective activity and renames it to
Repair Airplane using RF1 (Rename Activity). To deal with PMS4 (Re-
dundant Process Fragment), the designer selects Fragment 1 and chooses RF4
(Extract Process Fragment) from the list of enabled refactorings to extract
Model PreflightProcessSchema (RF4 is enabled since the selection consti-
tutes a SESE fragment and thus fulfills the pre-conditions for RF4). In a next
step, the designer selects Fragment 2 and chooses refactoring RF5 (Replace
Process Fragment by Reference) to replace this fragment with a reference to
Model PreflightProcessSchema (cf. Fig. 17).

Although these two changes have already reduced the size of the pre take-
off process by eight nodes, the process model is still rather large and complex
(PMS 6 - Large Process Model). Therefore, the designer decides to also apply
refactoring RF4 (Extract Process Fragment) to Fragments 3-6, since each of
them comprises several activities logically belonging together. For example,
Fragment 3 deals with the reparation of an airplane if issues are detected
during the preflight inspections.

Fig. 15 shows a screen of our prototype illustrating the extraction of
all activities dealing with the reparation of the airplane (selected activities
in Fig. 15A) into a distinct Model RepairProcessSchema (cf. Fig. 16B).

36

Before conducting the change, the designer is informed about the effects of
this refactoring on the pre take-off process in terms of selected metrics (e.g.,
reduction of model size by nine) (cf. Fig. 15B). By pressing the OK button
the change is performed and the updated model is stored in the repository.
The result of this refactoring is depicted in Fig. 16.

A.) Fragment 3

B)B.)

Figure 15: Model Before Extracting Repair Process

Fig. 17 illustrates the model after applying all refactorings described
above. A summary of the conducted refactorings and their effects on quality
metrics is depicted in Fig. 18.

6. Related Work

Refactoring techniques for improving software design were first proposed
by Opdyke [52]. He suggested a set of refactorings for C++ which are seman-
tic preserving if certain preconditions are met. The first notable refactoring
tool has been the Refactoring Browser [7] for Smalltalk, which automati-
cally performs the refactorings proposed by Opdyke plus some additionally
techniques [69]. As all refactorings provided by this tool constitute behavior-
preserving transformations it is ensured that no errors or information losses

37

A.)

B.)

Figure 16: Model After Extracting Repair Process

are introduced. Tool support for languages like C++ and Java have recently
emerged. The provided refactorings usually cannot be proven to be com-
pletely behavior-preserving. Therefore, refactorings need to be backed up
by automated regression tests to detect behavioral changes in the software
and to avoid errors [17]. Most of our refactorings, in turn, make use of
pre-conditions to ensure that the behavior of the process models from the
repository is not altered.

Closely related to the refactoring techniques considered in this paper are
program and code optimizations, which constitute behaviour-preserving pro-
gram transformations [4]. In contrast to refactorings which focus on im-
provement of design artifacts, code optimization aims to improve the execu-
tion efficiency at runtime. While this topic has not yet been systematically
investigated in the context of process-aware information systems, there are
techniques and considerations available that relate to this topic [28]. Code
optimization is an issue for the deployment of an executable process model
to a process engine [25]. For instance, it is more efficient to transform graph-
oriented links in a BPEL process into sequences if possible, because checking
of link status is more resource intense than simply jumping to the next activ-

38

RepairProcessSchema (S6)

Move to
Repair
Station

Plane can move
under its own
power

Tow to
Repair
Station

Get
Mechanician

Repair
Airplane

Perform
Preflight
Phase

FlightSchema (S1)

TakeOffProcessType (S5)

TaxiingProcessSchema (S4)

ClearanceProcessSchema (S3)

PreflightProcessSchema (S2)

Perform
Preflight

Steps (S2)

Cancel
Flight

Severe problem

Small Problem

Perform
Clearance

(S3)

Taxiing to
Run-up

Perform
Run-up

lnspection

Contact
Ground

Get Take-off
Clearance

Íf tower

Announce
Take-off

Intentions

Take-off

Check
Weather

Perform
Preflight

Inspection

File
Flightplan

Call
Clearance

Get
ClearanceIf large

airport

Contact
Ground

Get Taxi
ClearanceÍf tower

Announce
Taxiing

Perform
Taxiing (S4)

TakeOff
Airplane (S5)

Issue Found

Repair
Airplane (S6)

Figure 17: Model after Refactoring

Smell Sources Literature Metrics Refactorings
PMS1 1-7 [27,29,30,35,59,50] verb-object style RF1, RF2, RF7
PMS2 1-7 [1,7,8,28,31,69,71,73] cyclomatic number, structuredness,

density, structural appropriateness
RF3

PMS3 1, 4, 5, 6 [3,20,74] footprint similarity RF4, RF5, RF8
PMS4 5 [28,31,34,48] size RF4
PMS5 6 [48,59] #activities / subprocess RF6
PMS6 2, 3, 7 [58,68] behavorial appropriateness RF10
PMS7 3 [38,77] #instance changes RF11
PMS8 4, 6, 7 [24,26,49] change distance RF9

Data
Source

Domain Scenarios Number of
Models

Reference

Source 1 Healthcare Birth and postnatal care
Inpatient chemotherapy treatment
Outpatient chemotherapy treatment
Ovarian carcinoma surgery
Keyhole surgery

70 process models [44]

Source 2 Healthcare Clinical guidelines and pathways in
internal medicine

46 process models

Source 3 Healthcare Clinical guidelines for urinary stone
diagnosis

1 process model
with 98 instances

Source 4 Healthcare Handling of medical procedures (i.e.,
requesting, scheduling, performing
and validating medical examinations)

84 process model
variants

Source 5 Automotive Vehicle development 1 process model [5]
Source 6 Automotive Electronic change management 60 process models [16]
Source 7 Automotive Vehicle repair 900 variants [19]

Smell Literature Metrics Refactorings
PMS1 [27-32] verb-object style RF1, RF2, RF7
PMS3 [44-46] footprint similarity RF4, RF5, RF8
PMS4 [39,40,48,49] size RF4

Before Refactoring Refactorings After Refactoring
PMS1 – 1 violation of verb-object style RF1 (1x) All activities labeled according to

verb-object style
PMS3 – Fragments 1 and 2 are redundant RF4 (1x)

RF5 (1x)
No redundant fragments
Reduction of model size by 8

PMS4 – Process model with 42 nodes
(22 activities, 18 gateways,
1 start node, 1 end node)

RF4 (4x) Flight Schema (S1): size 12
Preflight Process Schema (S2): size 7
Clearance Process Schema (S3): size 6
Taxiing Process Schema (S4): size 9
Take-Off Process Schema (S5): size 8
Repair Process Schema (S6): size 11

Figure 18: Overview of Conducted Refactorings

ity in a sequence when executing a process. In this paper, though, we stick
to the perspective of a process designer aiming to organize process models in
a comprehensible way.

Similar to program refactorings, process model refactorings constitute
transformations, which are behavior-preserving if certain preconditions are
met. Existing approaches focus on UML model transformations [81], while

39

refactoring has not been elaborated in detail for business process models.
There exist a few approaches which provide specific refactorings in a narrow
context (e.g., a particular process modeling formalism). In [16] refactoring
techniques for Event-driven Process Chains are described. Unlike our refac-
torings, these proposals require additional modeling elements. Refactoring
techniques have also been discussed in connection with model merging [30].
The proposed transformations aim at improved process design, but are not
necessarily behavior-preserving. The ADEPT process management system,
in turn, applies simple refactorings in the context of process changes to avoid
smell PMS2 [58]; i.e., the structure of a process model is simplified after
the application of a sequence of changes, while preserving model behavior.
Finally, [6] discusses graph transformations similar to RF4 and RF6 in the
context of process views.

Several refactoring techniques are discussed in [15], however, their scope
is slightly different from our refactorings; e.g., refactorings “Merge Process
Ends”, “Join Process Ends” and “Close Branches” focus on model completion
and refactoring “Automatically Order Branches” deals with layouting issues.
Similarly, [64] discusses options for re-layouting process models in order to
increase model comprehension.

Behavior-preserving model transformations have been proposed in [5] to
make Petri nets more compact. Several approaches for deriving structured
models from unstructured ones are discussed in the context of BPMN to
BPEL transformations. These include refined process structure tree decom-
position [93], untangling unstructured loops [101], and further transforma-
tion rules [88, 53, 56, 55]. Synthesis can be used to transform a Petri net via
a transition system into another behavior-equivalent Petri net. Respective
techniques allow to eliminate unnecessary net elements (e.g., silent activities,
unnecessary places) [10] or to discard OR-joins from process models [47] (and
can therefore be used to address smell PMS2).

The specific requirements of capturing process model variants have been
addressed in different modeling approaches. In this work, we assume a generic
process model to capture the behavioural alternatives of different variants.
This is similar to the approach taken in work on the configuration of process
models [22, 86, 87, 24], while other approaches define dedicated variation
elements on the process modeling language level. Such languages include
Configurable EPCs [74, 31], aggregated EPCs [62], and the variant rich pro-
cess models [76], which pick up ideas and concepts from modeling of software
product families and feature diagrams [26, 94]. The definition of generic

40

process models relates to identifying similar process models with overlap-
ping behaviour [89, 14, 12, 99] and integrating them into a single model
[57, 45, 21, 70].This integration is a particular instance of RF8, which aims
to remove redundancies.

Process model smells are closely related to anti-patterns [29, 82], since
both describe indicators for low process model quality. However, most of the
described patterns constitute real modeling errors (potentiallly leading to
deadlocks) and cannot be resolved through behavior-preserving refactorings.
As an instantiation of RF1, the work in [33] defines an automatic approach to
reformulate activity labels using techniques from natural language process-
ing. Finally, existing BPM tools only provide limited refactoring support.
Renaming of activities and process models is supported by most tools (e.g.,
ARIS). However, more advanced refactoring support has been missing in
most existing tools so far. Some support for process model refactorings is
provided by the IBM Pattern-based Process Model Accelerators extension
for WebSphere Business Modeler [15].

7. Summary and Outlook

With the increasing adoption of PAISs and the emergence of large process
repositories systematic support for model management is getting increasingly
important. We introduced 8 process model smells, supported by empirical
evidence in the form of several large case studies, to assist process designers in
detecting symptoms of low process model quality. Moreover, we proposed 11
refactorings specifically suited for large process repositories. To demonstrate
the feasibility of the proposed refactoring techniques we provided a proof-
of-concept prototype to support users in both identifying refactoring options
and applying behavior-preserving or compliance-ensuring refactorings.

The smells and refactorings we propose, along with the presented tool
support, should be seen as a means to support organizations to better deal
with their emerging process model repositories. As mentioned, it is increas-
ingly realistic that business users without any deep modeling skills will be
developing process models. While there are several benefits that can be as-
sociated with this practice, we argue that the quality of process models –
regardless of their originators – will deteriorate over time. Therefore, we
argue that there will always be a need for a small proportion of people with
more advanced modeling knowledge to counter-balance this detoriation; the
proposed techniques in this paper aim to support experienced modelers dur-

41

ing process modeling. The analogy from the business domain is that while
business professionals nowadays use advanced IT tools that required special-
ized use only some years ago (e.g web development tools, databases, etc), the
role of system administrators has not died out and has arguably become more
important than before - precisely because of the lack of deep IT knowledge
with casual users.

Even though we considered several different data sources from the health-
care domain and from automotive engineering having different characteris-
tics, it cannot be ruled out completely that other domains might show dif-
ferent characteristics which are missing from the current set of models. The
goal of our paper is not to provide a complete list of process model smells.
Instead our claim is to provide a list of process smells which can be typi-
cally found in practice and which provide indication for poor process model
quality. To further validate our process model smells as well as refactoring
techniques expert interviews are planned.

Future work includes the evaluation of our proof-of-concept protoype us-
ing case studies. We further plan to integrate the presented techniques with
other repository services including process model adaptation [96], process
model evolution [65], and process change mining [65]. Our overall goal is to
provide integrated repository support for the management of process models
throughout the entire process life cycle.

References

[1] E. R. Aguilar, F. Garćıa, F. Ruiz, M. Piattini, An exploratory experiment
to validate measures for business process models, in: Proc. RCIS’07, 2007.

[2] K. Beck, Extreme Programming explained, Addison Wesley, 2000.

[3] J. Becker, M. Kugeler, M. Rosemann, Process management: a guide for
the design of business processes, Springer, 2003.

[4] J. Bentley, Writing efficient programs, Prentice Hall Ptr, 1984.

[5] G. Berthelot, Transformations and decompositions of nets, in: W. Brauer,
W. Reisig, G. Rozenberg (eds.), Advances in Petri Nets 1986 Part I, 1987.

[6] R. Bobrik, Configurable visualization of complex process models, Ph.D.
thesis, University of Ulm (2008).

42

[7] J. Brant, D. Roberts, Refactoring Browser:
st-www.cs.uiuc.edu/users/brant/refactoringbrowser/.

[8] G. Canfora, F. Garćıa, M. Piattini, F. Ruiz, C. Visaggio, A family of
experiments to validate metrics for software process models, J. of Systems
and Software 77 (2) (2005) 113–129.

[9] J. Cardoso, Workflow Handbook 2005, chap. Evaluating workflows and
web process complexity, Future Strategies, Inc., 2005, pp. 284–290.

[10] J. Cortadella, M. Kishinevsky, L. Lavagno, A. Yakovlev, Deriving petri
nets from finite transition systems, IEEE Transactions on Computers
47 (8) (1998) 859–882.

[11] P. Dadam, M. Reichert, The ADEPT project: A decade of research
and development for robust and flexible process support - challenges
and achievements, Computer Science - Research and Development 23 (2)
(2009) 81–97.

[12] R. Dijkman, M. Dumas, B. F. van Dongen, R. Käärik, J. Mendling, Sim-
ilarity of business process models: Metrics and evaluation, Information
Systems (in Press).

[13] E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

[14] M. Dumas, L. Garćıa-Bañuelos, R. M. Dijkman, Similarity search of
business process models, IEEE Data Eng. Bull. 32 (3) (2009) 23–28.

[15] C. Favre, T. Gschwind, J. Koehler, et. al., Faster and better business
process modeling with the IBM pattern-based process model accelerators,
in: Proc. BPMDemos2009, 2009.

[16] P. Fettke, P. Loos, Refactoring von Ereignisgesteuerten Prozessketten,
in: Proc. EPK’02, 2002.

[17] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring:
improving the design of existing code, Addison-Wesley, 1999.

[18] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns,
Addison-Wesley, 1994.

43

[19] German Association of the Automotive Industry (VDA), Engineering
Change Management. Part 1: Engineering Change Request (ECR), V
1.1., Doc. No. 4965, Dec 2005 (2005).

[20] A. Glover, Refactoring with Code Metrics,
www.ibm.com/developerworks/java/library/j-cq05306/ (2006).

[21] F. Gottschalk, W. M. P. van der Aalst, M. H. Jansen-Vullers, Merging
event-driven process chains, in: Proc. CoopIS’08, vol. 5331 of LNCS,
Springer, 2008.

[22] F. Gottschalk, W. M. P. van der Aalst, M. H. Jansen-Vullers, M. L.
Rosa, Configurable workflow models, Int. J. Cooperative Inf. Syst. 17 (2)
(2008) 177–221.

[23] A. Guceglioglu, O. Demirors, Using Software Quality Characteristics to
Measure Business Process Quality, in: Proc. BPM’05, 2005.

[24] A. Hallerbach, T. Bauer, M. Reichert, Capturing variability in business
process models: the Provop approach, Journal of Software Maintenance
and Evolution: Research and Practice (2009) 22 (6-7) (2009) 519–546.

[25] R. Hauser, J. Koehler, Compiling process graphs into executable code,
in: Proc. GPCE’04, 2004.

[26] S. Hsiao, E. Liu, A structural component-based approach for designing
product family, Computers in Industry 56 (1) (2005) 13–28.

[27] N. Kock Jr, Product flow, breadth and complexity of business processes:
an empirical study of 15 business processes in three organizations, Busi-
ness Process Re-engineering & Management Journal 2 (2) (1996) 8–22.

[28] J. Koehler, R. Hauser, Untangling unstructured cyclic flows - a solution
based on continuations, in: Proc. CoopIS’04, 2004.

[29] J. Koehler, J. Vanhatalo, Process anti-patterns: How to avoid the com-
mon traps of business process modeling, Tech. Rep. Report RZ-3678, IBM
Zurich Research Lab (2007).

[30] J. Küster, J. Koehler, K. Ryndina, Improving business process mod-
els with reference models in business-driven development, in: BPM’06
Workshops, 2006.

44

[31] M. L. Rosa, M. Dumas, A. H. M. ter Hofstede, J. Mendling, Configurable
multi-perspective business process models, Information Systems.

[32] R. Lenz, M. Reichert, IT support for healthcare processes - premises,
challenges, perspectives, Data & Knowledge Eng. (1) (2007) 39–58.

[33] H. Leopold, S. Smirnov, J. Mendling, Refactoring of activity labels in
business process models, in: 15th International Conference on Applica-
tions of Natural Language to Information Systems (NLDB 2010), 2010.

[34] H. Leopold, S. Smirnov, J. Mendling, Recognizing activity labeling styles
in business process models, Enterprise Modelling and Information Sys-
tems Architectures - International Journal (EMISA Journal) - accepted
for publication.

[35] C. Li, M. Reichert, A. Wombacher, Discovering reference process models
by mining process variants, in: Proc. ICWS’08, 2008.

[36] C. Li, M. Reichert, A. Wombacher, On measuring process model simi-
larity based on high-level change operations, in: Proc. ER’08, 2008.

[37] C. Li, M. Reichert, A. Wombacher, Discovering reference models by
mining process variants using a heuristic approach, in: Proc. BPM’09,
2009.

[38] R. Lu, S. Sadiq, Managing process variants as an information resource,
in: Proc. BPM 06, 2006.

[39] T. Malone, K. Crowston, G. Herman, Organizing business knowledge:
the MIT process handbook, MIT Press, 2003.

[40] J. Mendling, Empirical studies in process model verification, in: Proc.
ToPNoC II, 2009.

[41] J. Mendling, H. A. Reijers, How to define activity labels for business
process models?, in: Proc. AIS SIGSAND’08, 2008.

[42] J. Mendling, H. A. Reijers, J. Cardoso, What makes process models
understandable?, in: Proc. BPM’07, 2007.

45

[43] J. Mendling, H. A. Reijers, J. Recker, Activity labeling in process mod-
eling: Empirical insights and recommendations, Inf. Syst. 35 (4) (2010)
467–482.

[44] J. Mendling, H. A. Reijers, W. M. P. van der Aalst, Seven process mod-
eling guidelines (7PMG), Information and Software Technology 52 (2)
(2009) 127–136.

[45] J. Mendling, C. Simon, Business process design by view integration, in:
Proceedings of BPM Workshops 2006, vol. 4103 of LNCS, 2006.

[46] J. Mendling, M. Strembeck, Influence factors of understanding business
process models, in: Proc. BIS’08, 2008.

[47] J. Mendling, B. F. van Dongen, W. M. P. van der Aalst, Getting rid of
or-joins and multiple start events in business process models, Enterprise
IS 2 (4) (2008) 403–419.

[48] J. Mendling, H. Verbeek, B. F. van Dongen, W. M. P. van der Aalst,
G. Neumann, Detection and prediction of errors in EPCs of the SAP
reference model, Data & Knowledge Engineering 64 (1) (2008) 312–329.

[49] T. Mens, P. V. Gorp, A taxonomy of model transformation, Electr.
Notes Theor. Comput. Sci. 152 (2006) 125–142.

[50] T. Mens, T. Tourwe, A survey of software refactoring, IEEE Transac-
tions on Software Engineering 30 (2) (2004) 126–139.

[51] M. Minor, A. Tartakovski, D. Schmalen, R. Bergmann, Agile workflow
technology and case-based change reuse for long-term processes, Int’l J.
of Intelligent Information Technologies 4 (1) (2008) 80–98.

[52] W. F. Opdyke, Refactoring: A program restrucuring aid in designing
object-oriented application frameworks, Ph.D. thesis, Univ. of Illinois
(1992).

[53] C. Ouyang, M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hofstede,
J. Mendling, From business process models to process-oriented software
systems, ACM Trans. Softw. Eng. Methodol. 19 (1).

[54] D. Parnas, Software aging., in: Proc: ICSE ’94, 1994.

46

[55] A. Polyvyanyy, L. Garćıa-Bañuelos, M. Dumas, Structuring acyclic pro-
cess models, in: Proc. BPM’10, 2010.

[56] A. Polyvyanyy, L. Garćıa-Bañuelos, M. Weske, Unveiling hidden un-
structured regions in process models, in: Proc. CoopIS’09, 2009.

[57] G. Preuner, S. Conrad, M. Schrefl, View integration of behavior in
object-oriented databases, Data & Knowledge Engineering 36 (2) (2001)
153–183.

[58] M. Reichert, P. Dadam, ADEPTflex – Supporting dynamic changes of
workflows without losing control, Journal of Intelligent Information Sys-
tems 10 (2) (1998) 93–129.

[59] M. Reichert, P. Dadam, B. Schultheiss, I. Konyen, Analysis of healthcare
processes in a woman’s clinic. DBIS No. 27, 28, 29, 16, 15, 14, 7, 6, 5
(1996-1997).

[60] M. Reichert, S. Rinderle-Ma, P. Dadam, Flexibility in process-aware
information systems, in: Transactions on Petri Nets and Other Models of
Concurrency II, vol. 5460 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2009, pp. 115–135.

[61] H. A. Reijers, Design and control of workflow processes: business process
management for the service industry, Springer, 2003.

[62] H. A. Reijers, R. Mans, R. van der Toorn, Improved model management
with aggregated business process models, Data and Knowledge Engineer-
ing 68 (2) (2009) 221–243.

[63] H. A. Reijers, J. Mendling, Modularity in process models: review and
effects, in: Proc. BPM’08, 2008.

[64] S. Rinderle, R. Bobrik, M. Reichert, T. Bauer, Business process visual-
ization - use cases, challenges, solutions, in: ICEIS (3), 2006.

[65] S. Rinderle, M. Reichert, P. Dadam, Correctness criteria for dynamic
changes in workflow systems – A survey, Data and Knowledge Enginner-
ing 50 (1) (2004) 9–34.

47

[66] S. Rinderle, M. Reichert, M. Jurisch, U. Kreher, On representing, purg-
ing, and utilizing change logs in process management systems, in: Proc.
BPM’06, 2006.

[67] S. Rinderle, B. Weber, M. Reichert, W. Wild, Integrating Process Learn-
ing and Process Evolution - A Semantics Based Approach, in: Proc.
BPM’05, 2005.

[68] S. Rinderle-Ma, M. Reichert, B. Weber, On the formal semantics of
change patterns in process-aware information systems, in: Proc. ER’08,
2008.

[69] D. Roberts, J. Brant, R. Johnson, A refactoring tool for Smalltalk, The-
ory and Practice of Object Systems (4) (1997) 253–263.

[70] M. L. Rosa, M. Dumas, R. Uba, R. M. Dijkman, Merging business
process models, in: Proc. CoopIS’10, vol. 6426 of LNCS, Springer, 2010.

[71] M. L. Rosa, J. Lux, S. Seidel, M. Dumas, A. H. M. ter Hofstede,
Questionnaire-driven Configuration of Reference Process Models, in:
Proc. CAiSE’07, 2007.

[72] M. Rosemann, Potential pitfalls of process modeling: part A, Business
Process Management Journal 12 (2) (2006) 249–254.

[73] M. Rosemann, J. Recker, C. Flender, Contextualisation of business pro-
cesses, Int’l J. of Business Process Int. and Mgmt 3 (1) (2008) 47–60.

[74] M. Rosemann, W. M. P. van der Aalst, A configurable reference mod-
elling language, Information Systems 32 (1) (2007) 1–23.

[75] A. Rozinat, W. M. P. van der Aalst, Conformance testing: Measuring
the fit and appropriateness of event logs and process models, in: BPM’05
Workshop, 2006.

[76] A. Schnieders, F. Puhlmann, Variability mechanisms in e-business pro-
cess families, in: Proc. BIS’06, 2006.

[77] A. Sharp, P. McDermott, Workflow modeling: tools for process improve-
ment and application development, Artech House, 2001.

48

[78] B. Silver, BPMS watch: Ten tips for effective process mod-
eling, http://www.bpminstitute.org/articles/article/article/bpms-watch-
ten-tips-for-effective-process-modeling.html (2009).

[79] M. Soto, A. Ocampo, J. Munch, The Secret Life of a Process Description:
A Look into the Evolution of a Large Process Model, in: Proc. ICSP’08,
2008.

[80] D. Strong, S. Miller, Exceptions and exception handling in computerized
information processes, ACM ToIS 13 (2) (1995) 206–233.

[81] G. Sunye, D. Pollet, Y. L. Traon, J. Jezequel, Refactoring UML models,
in: Proc. UML’01, 2001.

[82] N. Trcka, W. M. P. van der Aalst, N. Sidorova, Data-flow anti-patterns:
Discovering dataflow errors in workflows, in: Proc. CAiSE’09, 2009.

[83] W. M. P. van der Aalst, Business alignment: Using process mining as a
tool for delta analysis and conformance testing, Requirements Engineer-
ing Journal 10 (3) (2005) 198–211.

[84] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, A. Bar-
ros, Workflow Patterns, Distributed and Parallel Databases 14 (1) (2003)
5–51.

[85] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, A. Weijters, Workflow mining: A survey of issues and ap-
proaches, Data & Knowledge Eng. 27 (2) (2003) 237–267.

[86] W. M. P. van der Aalst, M. Dumas, F. Gottschalk, A. H. M. ter Hofstede,
M. L. Rosa, J. Mendling, Correctness-preserving configuration of business
process models, in: Proc. FASE 2008, 2008.

[87] W. M. P. van der Aalst, M. Dumas, F. Gottschalk, A. H. M. ter Hofstede,
M. L. Rosa, J. Mendling, Preserving correctness during business process
model configuration, Formal Asp. Comput. 22 (3-4) (2010) 459–482.

[88] W. M. P. van der Aalst, K. Lassen, Translating unstructured workflow
processes to readable BPEL: Theory and implementation, Information
and Software Technology 50 (3) (2008) 131–159.

49

[89] B. F. van Dongen, R. Dijkman, J. Mendling, Measuring similarity be-
tween business process models, in: Proc. CAISE’08, 2008.

[90] I. Vanderfeesten, J. Cardoso, J. Mendling, H. A. Reijers, W. M. P.
van der Aalst, BPM & Workflow Handbook., Chap. Quality metrics for
business process models., 2007.

[91] I. Vanderfeesten, H. A. Reijers, J. Mendling, W. M. P. van der Aalst,
J. Cardoso, On a quest for good process models: the cross-connectivity
metric, in: Proc. CAiSE’08, 2008.

[92] I. Vanderfeesten, H. A. Reijers, W. M. P. van der Aalst, Evaluating
workflow process designs using cohesion and coupling metrics, Computers
in Industry 59 (5) (2008) 420–437.

[93] J. Vanhatalo, H. Voelzer, J. Koehler, The refined process structure tree,
Data and Knowledge Engineering 69 (8) (2009) 793–818.

[94] C. Verdouw, A. Beulens, J. Trienekens, T. Verwaart, Towards dynamic
reference information models: Readiness for ICT mass customisation,
Computers in Industry 61 (9) (2010) 833 – 844.

[95] B. Weber, M. Reichert, Refactoring process models in large process
repositories, in: Proc. CAiSE’08, 2008.

[96] B. Weber, M. Reichert, S. Rinderle-Ma, Change patterns and change
support features - enhancing flexibility in process-aware information sys-
tems, Data and Knoweldge Engineering 66 (2008) 438–466.

[97] B. Weber, M. Reichert, W. Wild, S. Rinderle-Ma, Providing integrated
life cycle support in process-aware information systems, Int’l J. of Coop-
erative Information Systems (IJCIS) 18 (1) (2009) 115–165.

[98] B. Weber, S. W. Sadiq, M. Reichert, Beyond rigidity - dynamic process
lifecycle support, Computer Science - Research and Development 23 (2)
(2009) 47–65.

[99] M. Weidlich, J. Mendling, M. Weske, Efficient consistency measurement
based on behavioural profiles of process models, IEEE Transactions on
Software Engineering.

50

[100] M. Weske, Business process management: concepts, methods, technol-
ogy, Springer, 2007.

[101] W. Zhao, R. Hauser, K. Bhattacharya, B. Bryant, F. Cao, Compil-
ing business processes: untangling unstructured loops in irreducible flow
graphs, Int. Journal of Web and Grid Services 2 (1) (2006) 68–91.

51

