
Bridging the Gap Between Business Bridging the Gap Between Business Bridging the Gap Between Business Bridging the Gap Between Business 

Process Models and Service Process Models and Service Process Models and Service Process Models and Service 

Composition SpecificationsComposition SpecificationsComposition SpecificationsComposition Specifications    
 

Stephan Buchwald 

Group Research & Advanced Engineering, Daimler AG, Germany 

 

Thomas Bauer 

Group Research & Advanced Engineering, Daimler AG, Germany 

 

Manfred Reichert 

Institute for Databases and Information Systems, University of Ulm, Germany 
 

ABSTRACT 
Fundamental goals of any Service Oriented Architecture (SOA) include the flexible support and 

adaptability of business processes as well as improved business-IT alignment. Existing approaches, 

however, have failed to fully meet these goals. One of the major reasons for this deficiency is the gap that 

exists between business process models on the one hand and workflow specifications and 

implementations (e.g., service composition schemes) on the other hand. In practice, each of these two 

perspectives has to be regarded separately. In addition, even simple changes to one perspective (e.g. due 

to new regulations or organizational change) require error-prone, manual re-editing of the other one. Over 

time, this leads to degeneration and divergence of the respective models and specifications. This 

aggravates maintenance and makes expensive refactoring inevitable. This chapter presents a flexible 

approach for aligning business process models with workflow specifications. In order to maintain the 

complex dependencies that exist between high-level business process models (as used by domain experts) 

and technical workflow specifications (i.e., service composition schemas), respectively, (as used in IT 

departments) we introduce an additional model layer – the so-called system model. Furthermore, we 

explicitly document the mappings between the different levels (e.g., between business process model and 

system model). This simplifies model adoptions by orders of magnitudes when compared to existing 

approaches.  

 

INTRODUCTION 

Service Oriented Architecture (SOA) is a much discussed topic in companies (Barry 2003; Erl, 2005; Erl, 

2007; Josuttis, 2007; Mutschler, Reichert, Bumiller, 2008). SOA was introduced to increase enterprise 

flexibility. Accordingly SOA is expected to support business requirements more quickly than 

conventional software technology. In this context, business processes and their IT implementation play a 

crucial role. In particular, there is a high need for quickly adaptable business process implementations, 

when considering the fact that process changes often become necessary in companies (Weber, Reichert, & 

Rinderle-Ma, 2008; Weber et al., 2009; Weber, Sadiq, & Reichert, 2009). We pursue the goal to design a 

SOA in a way that enables easily adaptable business process implementations when compared to 

contemporary software architectures.  

Additionally, we obtain a traceable documentation of the dependencies that exist between high-level 

activities (i.e. process steps) of a business process model and the technical elements of its corresponding 

workflow specification (e.g. human tasks or service calls). Thus automated consistency checking across 



 2 

the different model layers becomes possible as part of the software development process. In particular, the 

effects late adaptations of a business process model have on its corresponding workflow specification and 

vice versa can be easily traced by utilizing the known dependencies between business process activities 

on the one hand and workflow activities on the other hand.  

A major advantage of our approach is the straightforward creation of the Business-IT-Mapping Model 

(BIMM) to avoid an unnecessary definition of complex mapping rules. Instead, we maintain rather simple 

relationships between business processes and workflow activities. Examples from practical settings 

illustrate the high effectiveness of this approach with respect to the maintenance of service-oriented 

applications. 

The chapter is structured as follows: We first provide some background information and introduce a basic 

method for defining service oriented information systems. Then, we describe how business processes can 

be transformed into a service composition specification. Following that, we discuss how dependencies 

can be transparently maintained by using an additional Business-IT Mapping Model. Then, we describe 

the usage of such model and a proof-of-concept prototype. Finally, we discuss related work and conclude 

with a summary. 

 

BACKGROUND 

A business process represents the documentation of business requirements of the desired service oriented 

information system (Weske, 2006). Business requirements are often identified by interviewing end users 

and process owners. These persons detail their own business processes graphically by modeling activities 

and control flow. Therefore, the main demand on a business process model (short: business process) is 

comprehensibility for end users and process owners (Bobrik, 2005). Moreover, their respective business 

department is normally responsible for modeling the business processes. Even if the operational 

implementation of this task is carried out by (external) consultants, the business departments still retain 

responsibility for the results, because only business users command the necessary expertise. During the 

design phase of business processes, it is primarily the structure of the process flow (control flow), its 

activities, and authorized users which are documented.  

In the following, we first define a general process (Definition 1). Subsequently we define a business 

process model (Definition 2) as a derivation of a general process. 

 

Definition 1 (Process) 

Let P = (N, E, NT, ET, EC) be a Process with 

• N (Nodes) a set of Nodes, 

• E (Edges) a set of directed Edges where (N, E) defines a coherent directed graph, 

• NT : N � {Start, End, Activity, ANDSplit, ORSplit, XORSplit, ANDJoin, ORJoin, XORJoin, 

LoopEntry, LoopExit, DataObj} defines for each node n ∈  N a Node Type NT(n), 

• ET (Edge Types) describes a set of Edge Types. ET : E � {ControlFlow, DataFlow, Loop} 

defines for each Edge e ∈ E a Edge Type ET(e), 

• EC(e) defines for each Edge e with ET(e)∈ {ControlFlow, Loop} a transition condition cond 

respectively the value true (true means that the transaction condition always applies). For each 

Edge e with ET(e)∈ {DataFlow} EC(e) is undefined. 

 

A business process is defined as follows: 

 

Definition 2 (Business Process) 

A business process BP = (BN, BE, BNT, BET, BEC) is a Process that corresponds to Definition 1 with 



 3 

• Business Nodes BN = {bn1, …, bnm} (e.g. activity or business service (Stein, 2009; Werth, 2008)), 

• Business Edges BE = {be1, …, ben }, 

• Business Node Types BNT, Business Edge Types BET and Business Edge Conditions BEC 

corresponding to Definition 1 

 

End users and process owners model business processes to document business requirements. 

Additionally, business processes are used for process analysis and process optimization. Process owners 

usually have little or no IT background. Therefore, they do not describe the contents of a business process 

in a formal way. Instead, they use simple graphical notations and textual descriptions, such as offered by 

business process modeling tools (e.g. extended Event-driven Process Chains (eEPC) in ARIS (Scheer, 

Thomas,  & Adam, 2005). Generally, not all aspects are detailed in a business process or shall be modeled 

at this early stage (e.g. in order to reduce complexity). Therefore, the business process is deliberately 

vague in some places. This incompleteness concerns the process structure itself (i.e. the control flow) as 

well as other aspects (e.g. no detailed definition of data structures).  

Fig. 2 shows an example of a business process (in BPMN2.0
1
 notation, see OMG, 2009). It describes a 

simplified process for product changes in the automotive domain. This process ensures that change 

requests for components are verified and authorized before they are realized. A change request is created 

by completing a change request form. Since changes usually affect several parts, additional information 

on these parts must be gathered. Then, the change request will be detailed and evaluated by the 

responsible change manager. Depending on this evaluation, a decision is made whether or not the 

proposed change request will be implemented. 

 

propose a

change request

indicate

affected

components

detailing of

change

rating of

change

decision about

the change

inform

applicant

change is approved

applicant

realization of

change

vehicle

developer

change

manager

model range

manager
email

change is rejected

 
Fig. 1 Business process model for a change request in the automotiv domain (in BPMN notation) 

 

Based on this business process, a new service-oriented information system can be implemented. This 

software implementation, however, is executed by software engineers. They do not make business-

relevant decisions during system implementation, but take over the information and requirements 

documented in the business process instead. For a platform-specific implementation of a service-oriented 

additional information beyond the respective business process become necessary: for instance, data 

objects, implemented services, user interfaces (such as mask design), business rules, and underlying 

organizational models. We refer to the corresponding technical description of a business process as 

executable model process (short: executable process) or service composition schema. The executable 

process has to be complete and formal to be executable by a workflow engine. Moreover this technical 

description must meet all demands of the Meta Model used by the engine (e.g. BPEL (OASIS, 2007), 

BPMN 2.0 (OMG, 2009), ADEPT (Dadam, & Reichert, 2009)). The concrete meta model that has to be 

used depends on the execution platform chosen. For example IBM WebSphere Process Server (WPS) is 

using an extension of BPEL in version 6.2, which is strongly oriented at BPMN (IBM, 2008b). 

                                                 
1 A detailed description of all BPMN 2.0 modeling components can be found on http://bpmb.de/poster. 



 4 

Specialists for designing a service composition schema are usually not present in business departments, 

but the respective responsibility lies with the IT department. In many companies, the required expertise is 

not available at all. Consequently, the implementation of the service composition schema is often 

outsourced to external software vendors. Fig. 2 shows a part of the service composition schema of the 

business process we depict in Fig. 1. 

 

 
Fig. 2 Service composition schema (cf. Fig 2) designed in WebSphere Integration Developer (in BPEL notation) 

 

Closing the gap between business process management (cf. business process in Fig. 1) and IT 

implementation (cf. service composition schema in Fig. 2) is a fundamental challenge to be tackled for a 

SOA. The use of workflow technology is not sufficient to fulfill the requirements for a flexible SOA. 

When regarding current practice, the interaction between business and IT departments during the software 

development process need to be improved in particular. This aspect is usually referred to as business-IT 

alignment (Chen, 2008): Information systems should meet business requirements and needs more 

alternatively than present solutions. In addition to a strong process orientation, it becomes necessary that 

business requirements and business processes are documented comprehensively. Furthermore, loss of 

information and corruptions in the development process of the service-oriented information system must 

be avoided. If changes are made to the business requirements (e.g. as documented in Fig. 1), they should 

be transferred correctly into the implementation of a service-oriented information system (cf. Fig. 2). This 

should be as quickly as possible. On the other hand, changes to the SOA environment may occur, e.g. 

when services are shut down or services migrate to a new version. A flexible reaction on such scenarios is 

important in any SOA to keep it viable. 

To achieve this, an additional model layer is needed to transforming business requirements and processes 



 5 

(business processes) into a conceptual representation of the IT implementation (service composition 

schema).  

There are several approaches using such intermediate model layer. Examples include MID M3 (Pera, & 

Rintelmann, 2005), IBM SOMA (Arsanjani et al., 2008; Arsanjani, 2004), IDS Scheer AVE (Yvanov, 

2006) and Quasar Enterprise (Engels, & Voss, 2008). In the Enhanced Process Management by Service 

Orientation (ENPROSO) approach we target of use an intermediate model layer, the so-called “System 

Model” (Buchwald, Bauer, & Reichert 2010). In the following sections we will detail the ENPROSO 

approach. 

The responsibility for creating a system model process (short: system process) is located in the IT 

department. Changes to the system process should be confirmed by the concerned business department. 

The representation of the system process has to be understandable to business users. Its contents are the 

same as in a business process. However, it has to be defined in a complete and formal manner in order to 

achieve a platform independent IT specification (service composition schema). That means non-formal 

business process models have to be replaced and detailed in the system process: 

 

Definition 3 (System Process) 

A system process SP = (SN, SE, SNT, SET, SEC) is a process that corresponds to Definition 1 with 

• System Nodes SN = {sn1, …, snk} (e.g. a technical service call or a human task) , 

• System Edges SE = {se1, …, sel } 

• System Node Types SNT, System Edge Types SET and System Edge Conditions SEC 

corresponding to Definition 1 

 

In the ENPROSO project, we pursue a three-level modeling method to realize (and implement) process 

and service-oriented information systems in a SOA (cf. Fig. 3). All three model layers include relevant 

process aspects like data objects, business rules, services, and organization model (Reichert, & Dadam, 

2000; Weske, 2007). These will be refined in the different model layers (beginning with the business 

model). Changes to process aspects have to be confirmed by the business department and must be 

implemented by the IT department (Rinderle-Ma, & Reichert 2009). Therefore, storage of the 

dependencies between the different model layers is crucial. Different object types relate to each other: 

Business processes create different data objects, use business rules, and call services. As the restructuring 

of the control flow and activities in the business process presents the greatest challenge with respect to 

model transformations, we focus on this aspect in the following. 

 

 
Fig. 3: Levels of Process Modeling and other aspects 

 



 6 

CONCEPTS FOR PROCESS TRANSFORMATION 

This section describes the basic concept for transferring business processes into system processes. The 

transformation of a business process into a system process requires the adaptation of this process (i.e. 

restructuring and detailing of the business process). We introduce the different types of structural changes 

along our running example from Fig. 1. In addition, we identify various approaches to realize the 

documentation of the relationship between the different layers of modeling (cf. Fig. 3). Finally, we 

describe how a system process can be transferred into a service composition schema 

 

Basic Types of Transformations  

As discussed above, it is necessary to store all dependencies between business requirements and the 

corresponding IT realization. For each activity of the business model (and also the corresponding 

properties and requirements), the corresponding activity of the system model must be derivable (cf. Fig. 

3). Normally, this is not easy to realize, since an IT department usually follows different goals and 

guidelines than the business department. An example of a simple transformation is the renaming of the 

business activity [propose a change request] into activity [HT_ ChangeAppl_ProductDevelopment_Re-

questChange] of the system process as shown in Fig. 4. Such simple change of labels is easy to handle. 

However, we often need a larger restructuring when transferring business process activities into system 

process activities. This is caused by the differences in modeling information and level of detail between 

the business departments and the IT departments. Further, manual activities which shall not be automated 

at all may be modeled in the business process. Their documentation is nonetheless important for process 

handbooks or activity accounting. Accordingly, manual activities are not copied one-to-one into the 

system process, but are rather grouped together or even omitted entirely. As our example, consider the 

activity [realization of change] in Fig. 4. IT-based activities of the business process are often described 

roughly or not at all. Therefore, they have to be refined or added into the system process. Other business 

process activities are split in various IT-based activities of the system process (system process activities), 

for example user interactions, Service Calls, or transformation of data objects. For instance, the activity 

[indicate affected components] is split into a Human Task (Agrawal et al., 2007a; Agrawal A. et al. 

2007b) for user interaction (HT_..._InputPartNumber) and a Service Call (Service_..._GetPartData). 

 

 
Fig. 4 Transformation between the business model and the system model 

 

Taking account of such transformations, our approach enables transparency of relations between business 

process activities and their IT implementation. Similarly, transparency is supported in the opposite 

direction, since it is important for the execution of a service oriented information system that activities 



 7 

affected by changes in the environment can be identified in the business process. This allows for quick 

reactions to upcoming changes, like a service shut down. 

In the following we describe different types of transformations that occur frequently in practice. 

 

Type 1 (Rename Activities): In the simplest case, a business process activity is mapped to 

exactly one system process activity. For instance, filling out a form can be realized as a Human 

Task (Agrawal et al., 2007) in a BPEL process. Activities of the executable model are often 

subject to naming conventions. This results in different names for activities and data objects in 

the business model and the system model. To ensure a comprehensible documentation between 

the different model layers, we have to manage such adaptations explicitly. For example, the 

business process activity [propose a change request] is realized by the Human Task [HT_ 

ChangeAppl_ProductDevelopment_RequestChange] in the system process (cf. Fig. 4). 

 

Type 2 (Split Activities): Service-oriented workflow engines require a strict distinction 

between activities with user interaction (Human Tasks) and Service Calls (BPEL invoke). 

This distinction has not been made in service-oriented workflow engines so far. Classical 

workflow engines, such as IBM WebSphere MQ Workflow (IBM, 2005), or AristaFlow 

BPM Suite (Dadam & Reichert, 2009; Reichert & Dadam 2009) consider activities as 

larger units. These units may interact with users and exchange data with backend systems. 

Since such units, however, are hardly reusable, they do not meet the basic philosophy of SOA (Erl, 2005; 

Erl, 2007; Josuttis, 2007; Mutschler, Reichert, Bumiller, 2008). In the example shown in Fig. 4, it is 

necessary to split activity [indicate affected components] into a user interaction (to input of the part 

numbers) and a service call (to determine the remaining part data from a product data management 

(PDM) system). There are also cases that require more than one service call. For example, data must be 

read from different backend systems before they can be displayed in a user form. 

 

Type 3 (Merge Activities): During the analysis of business processes, logically related 

tasks are identified to be modeled by means of separate activities. If activities of a 

continuous sequence are always realized by the same person, it makes sense to merge them 

into one system process activity. Nevertheless, this activity can be described as a form 

flow; i.e. a sequence of forms. In our illustrating example, the business process activities 

[detailing of change] and [rating of change] are merged to one activity [HT_..._Refine-

ChangeRequest] in the system process. 

 

Type 4 (Insert Additional Activities into the system process): After the decision board has 

permitted the change and the requestor is informed accordingly, the change may be carried out. 

In order to actually implement it, the affected components have to be set into state changeable in 

the PDM-System. This is done by a service call [Service_MarkPartsAsChangeble], which is 

inserted by a specific transformation type into the system process. Often, additional activities for 

the logging of relevant events or errors that occurred are necessary as well. 

 

Type 5 (Remove Activities from the Business Process): A business process often contains 

activities whose execution should not be controlled and monitored by a workflow management 

system. In our example, activity [realization of a change] will be performed autonomously by 

an engineer. Consequently this activity shall not be to be implemented in a workflow 

management system, but is important at the business model level for calculating processing 

times and simulating process costs. Similar scenarios exist for activities that describe the 

“welcoming of a customer” or “conducting a sales conversation”. 

If required, additional types of transformations may be defined, for example, the transformation of m 

activities of the business process into n activities of the system process. 

Type 2

A

X Y

Type 1

X

A

Type 3

X

A B

Type 4

X

Type 5

A



 8 

Generally, it is by far not trivial to identify the relations between business process activities and 

corresponding technical system process activities. Therefore, all transformations that were performed 

between business process activities and system process activities have to be stored explicitly. The way we 

suggest to realize such functionality is described in the following. 

 

Dependencies between business process and system process 

A traceable documentation of dependencies is fundamental for closing the gap between business 

processes and their corresponding IT implementation. In this section, we examine fundamental 

approaches for transforming a business process into a system process: 

Approach 1 (Copying Business Processes): The business process is copied into the system process 

before it is restructured. System processes are typically created with another tool than the business 

process. In such case, a tool change must be carried out (e.g. from a business process modeling tool like 

ARIS into a CASE tool). This tool change makes it difficult to copy business processes directly into 

processes of the system model. To realize this, a special import functionality is necessary. Different meta 

models for business processes and processes of the system model (e.g. eEPCs and UML Activity 

Diagrams) and the limited import functionality of existing typically tools result in loss of information 

during the import. Often, it is even more appropriate to model the system process manually from scratch. 

Approach 2 (Using Sub-Processes): One possibility for refining process information also supported by 

existing tools is to introduce sub-processes. As shown in Fig. 5a, for example, an activity of the business 

process can be detailed by a whole sub-process. The relationship between the activity of the business 

process and the sub-process in the system model remains visible. For example, this can be realized in 

ARIS by referencing a sub-process through a so-called “assignment” of the original activity. If a tool 

change takes place in respect to the modeling of the business process and the system model, it is 

necessary to import the business process into the system model (cf. Approach 1). 

In this variant only the renaming (cf. Basis Types of Transformation, Type 1), splitting (Type 2) and 

removal (Type 5) of activities can be realized. Merging of activities (Type 3) is not possible since 

Approach 2 is only applicable to single activities. Likewise, insertion of activities (Type 4) is not 

possible, since no object exists in the business process that can be refined in the system process. 

Moreover, the (overall) structure of the business process no longer exists on the system process level. The 

structure of the system process can only be reconstructed via the business process itself and the 

corresponding refinement relations. This is very confusing for the process designer and renders the 

derivation of a service composition scheme cumbersome. 

 

 

Fig. 5: Variants for managing relationships between business process and system process. 

 

Approach 3 (Business-IT-Mapping Model): We now introduce a new type of model whose instances 

are called Business-IT-Mapping Model (BIMM). BIMMs describe in which way activities from the 

business process are transferred into activities of the system process. Likewise, all system process 

activities can be traced backwards to the business process activities they originated from. With this new 



 9 

model we can define all required types of transformation. 

Business processes are often modeled using business modeling tools whereas system processes are 

realized with CASE tools. The purpose of the BIMM is to document relationships between business 

processes and system processes. It describes no order (control flow) between the activities of the system 

process model. Thus, only individual activities have to be exported from the business modeling tool and 

have to be imported into the system process modeling tool (cf. Fig. 5b). This is easy to realize, because 

there is no meta model change necessary for a process graph. 

Approach 3 allows for the documentation of all types of transformation. It is expandable by adding 

additional types of transformation. All changes made in the business process or in the system model are 

immediately obvious. The dependencies between activities from the business process and system process 

activities are bidirectionally traceable. A disadvantage of this approach is the need to define the additional 

BIMM as well as the effort to define and manage this model by hand. Since all other approaches have 

serious disadvantages, we opt for Approach 3. 

 

Transformation of the system process into a service composition schema 

As mentioned above, the transformation of the system process into a service composition schema should 

be as simple as possible, since the executable model is often implemented by external service providers or 

IT departments, who do not have any knowledge about the corresponding business process.  

The transformation between these models should be one-to-one. All aspects modeled in the system 

process are transferred to the service composition schema. These aspects are formalized and detailed 

depending on the necessities of the target platform: For example, a system process is documented as a 

UML Activity Diagram and should be implemented as a BPEL Process. In addition, manual activities are 

documented as Human Tasks in the system process (Agrawal et al., 2007). Moreover, it is necessary to 

use suitable BPEL constructs (e.g. While, Parallel-ForEach) to realize the control flow defined in the 

system process as a BPEL process. 

The traceability between these models is straightforward, since every aspect of system process is directly 

transferred into the service composition schema. Identification of corresponding objects (e.g. activities) 

between the models is possible via their names. Only for the special case that the system process does not 

fulfill the naming conventions of the target platform, an additional table to map names is necessary. This 

table has a simple structure since a system process activity is always assigned to exactly one activity of 

the service composition schema.  

There are no relevant challenges regarding the traceability between the system model and the executable 

model. Hence, this transformation will not be considered further in the following sections of this chapter. 

 

DESIGN OF THE BUSINESS-IT-MAPPING MODEL 

The business process modeling tools (e.g. ARIS or MID Innovator) and notations (e.g. eEPC (Scheer, 

Thomas, & Adam, 2005), BPMN (OMG, 2009) or UML-Activity Diagrams (OMG, 2004)) are usually 

selected by the respective business departments. Likewise, the implementation platform or language (e.g. 

IBM WebSphere Process Server and BPEL (OASIS, 2007)) normally can not be chosen freely by the 

software developers. On the other hand, the system model must meet certain requirements, like 

comprehensibility. In principle, an IT department can choose between several modeling languages (e.g. 

eEPC, BPMN), if there is no company policy for a specific notation or a modeling tool. Notations and 

tools have some impact on the quality of the BIMM, which will be discussed later. 

The BIMM, as shown in Fig. 5b, defines a connecting link between business processes and system 

processes. Currently, this link is not supported by business process modeling or CASE tools. In the 

following sections we will explain how a BIMM should be designed. This is important to ensure the 

traceability between a business process and system process. Finally, we show how the example scenario 

(cf. Fig. 1) can be realized by selected notations. 



 10 

 

Structure and Internal Consistency 

The BIMM is defined during the development of the system process. The IT department has the 

responsibility for the BIMM as well as the system model. Therefore, the same modeling tools and the 

same notations should be used for designing of the BIMM and the system process. 

In general, the BIMM defines a set of relations which map the activities of the business process to 

activities of the system process. Each of these relations corresponds to exactly one transformation type. A 

relation should be always realized by some unique object in the BIMM (and not only by edges). This 

object describes the type of the transformation and additional attributes like the name of the 

transformation, its description, or the contact from the business department who approved the 

transformation. We define a BIMM as follows: 

 

Definition 4 (Business-IT-Mapping Model) 

Let BIMM = {Transf1, …, Transfk} be a Business-IT-Mapping Model for a business process BP = (BN, 

BE, BNT, BET, BEC) and a system process SP = (SN, SE, SNT, SET, SEC) with 

• the transformation Transfi= (N1, N2, OpType) with 

N1 is a set of nodes, 

N2 is a set of nodes and 

OpType ∈ {Map, Split, Merge, Remove, Insert} 

• The following functions are defined: 

BNodes(Transfi) provides the nodes N1  

SNodes(Transfi) provides the nodes N2 

OpType(Transfi) provides the corresponding Transformation Type OpType 

 

To ensure internal consistency, it is necessary to define the types of transformation correctly: 

 

Definition 5 (Internal Consistency of the Business-IT-Mapping Model) 

BIMM = {Transf1, …, Transfn} is a consistent Business-IT-Mapping Model if ∀ Transfi ∈ BIMM the 

following conditions are fulfilled: 

• ¬∃ (Transfi and Transfj) with: 

∃ n with n ∈ BNodes(Transfi) and 

∃ s with s ∈ SNodes(Transfi) 

• if OpType(Transfi) = Map then: 

| BNodes(Transfi)| = 1, i.e. exactly one source node in N1 and 

| SNodes(Transfi)| = 1, i.e. exactly one target node in N2 

• if OpType(Transfi) = Split then: 

| BNodes(Transfi)| = 1, i.e. exactly one source node in N1 and 

| SNodes(Transfi)| > 1, i.e. actually more than one target node in N2 

• if OpType(Transfi) = Merge then: 

| BNodes(Transfi)| > 1, i.e. actually more than one source node in N1 and 

| SNodes(Transfi)| = 1, i.e. exactly one target node in N2 

• if OpType(Transfi) = Remove then: 

| BNodes(Transfi)| = 1, i.e. exactly one source node in N1 and 



 11 

| SNodes(Transfi)| = 0, i.e. no target node in N2 

• if OpType(Transfi) = Insert then 

| BNodes(Transfi)| = 0, i.e. no source node in N1 and 

| SNodes(Transfi)| = 1, i.e. exactly one target node in N2 

Fig. 6 shows our ENPROSO modeling approach including the previously established BIMM to document 

relationships between the business process and the system processes. 

 

 
Fig. 6 Business-IT-Mapping Model to document relationships 

 

Current modeling tools do not support the concept of our BIMM. Therefore, we have to use and adapt an 

existing model type in order to realize the BIMM (e.g. as an eEPC, BPMN model or UML Activity 

Diagram). This model type must store business process activities, system process activities, and also 

dependencies between them. Depending on the notation and the tool, a special model type can be derived 

for BIMM. To realize the transformation between business process activities and system process 

activities, special types for nodes as well as edges are used. 

Fig. 7 shows a BIMM which correspond to the example introduced above (cf. Fig. 4). This BIMM is 

designed in a “neutral” notation. Transformation types are visualized by octagons to differentiate them 

from business process activities and system process activities. Transformation edges between activities 

and transformation types are shown with dashed directed edges. 

 

 
Fig. 7 : Business-IT-Mapping Model for the example scenario presented in Fig. 1 

 

 



 12 

Overcoming the Limitations of Existing Tools 

A BIMM includes business process activities, system process activities and also relations between them. 

The meta model that is appropriate to realize a BIMM depends on the notations and the tools used for 

these two models. To document the dependencies between business process activities and system process 

activities in the BIMM, it is necessary to realize references to activities in both models. This can be 

achieved easily if both models are specified in the same tool. Frequently, however, the BIMM is created 

with different tool than the business process. The gap between tools must thus be managed in referencing. 

For this purpose, there are basically the following options: 

 

Option 1 (Exporting Activities): The activities of the business process are exported by using a 

standardized interface (e.g. as XML file) and imported into the system process. Copies of activities from 

the business process are now available in the system process. They contain an identifier (ID) referencing 

the activity in the business process. Thus, an unambiguous identification of corresponding activities in the 

business process is possible. In addition, descriptive data on activities from the business process should be 

imported into the system process, e.g. the name of the responsible person in the business department. 

If there is no export and import functionality no appropriate exchange format between different tools, it is 

sufficient to read the ActivityID in the business process and store it in the system process activity 

manually. 

 

Option 2 (Using a Repository): Another option is the usage of a repository (Buchwald, Bauer, & Pryss, 

2009). In this case, there is no need for bilateral interfaces between different tools, since Business 

Activities are stored directly in the repository. During the design of a system process stored business 

process activities can be imported. Subsequently, the IDs of the business process activities are explicitly 

managed by the repository (Buchwald, Tiedeken, Bauer, & Reichert, 2010).  

The SOA repository can even play an additional role if it stores the whole Business-IT-Mapping Model. 

To achieve this, every object and relation between business processes and system processes must be 

stored and managed by the repository. It can thus be traced which system process activity relates to which 

business process activity. Furthermore, long-term storage of the BIMM and the corresponding 

dependencies (even if the modeling tools become unavailable) can be realized. Because of the tool-

independent interface of a SOA repository, it can be used by different partners and various tools. This is 

important if there are tool changes in a later phase of the development process. 

 

Tool support for Generating the Business-IT-Mapping Model 

The BIMM can be created and managed manually. However, a support tool would be helpful. Special tool 

functionality is required to generate the BIMM (semi-) automatically. Fig. 8 shows how to generate such 

a model: For instance, the business process activity indicate affected components (cf. Fig. 4) is chosen for 

detailing (1 in Fig. 8). The tool should offer functionality to select the business process activity (2: source 

activity) and the desired transformation type (2: Type 2 split). Additionally, the number and the 

corresponding names for the system process activities (2: target activities) have to be defined. With this 

information, the corresponding BIMM fragment (3a) can be created automatically. Furthermore, the new 

system process activities are created in the system process (3b). They constitute the basis for the process 

definition (by drawing edges, etc.). 

 



 13 

 
Fig. 8 Tool functionality, the example of the Transformation Type 2 (split) 

 

USAGE OF THE BUSINESS-IT-MAPPING MODEL 

The BIMM enable traceability of performed transformations between business processes and system 

processes. Furthermore a fast mapping (and implementation) of altered business requirements to activities 

of the executable model (service composition schema) are provided. Likewise when changes in the 

environment of the executable model like the shut down of a service (cf. Fig. 4, Service_GetPartData) 

occurs, the corresponding business activities can be identified easily (cf. Fig. 4, indicate affected 

components). Thus, responsible business managers can be informed quickly in order to authorize such 

changes. Finally, BIMM information can be used at runtime to monitor activities (Business Activity 

Monitoring, BAM (Amnajmongkol et al., 2008)). This is useful, for example, to check whether the 

defined business requirements are met (e.g. processing time of a task).  

In this section, we describe how to deal with changes to the business process or the service composition 

specification. As discussed above, it is important to ensure the consistency between the different model 

layers (cf. Fig. 3). 

 

Ensuring Consistency between Model Layers 

One advantage of the BIMM is that it allows to ensure consistency between the different model layers. 

Thus, errors in implementation can be avoided. In addition, changes at the business model level or at the 

executable model level can be identified via a consistency analysis. Below, we describe requirements 

concerning the consistency between the different model layers: 

 

Consistency Requirement 1: Changes are usually initiated by the business department. These business 

changes must be propagated into the other models (cf. Fig. 9). Our BIMM approach offers the basis for 

automated analysis of consistency. For this purpose, after changing a business process all business 

process activities have to be imported into the BIMM (cf. Step 1 in Fig. 9). The consistency analysis then 

compares the set of imported activities in the BIMM with the existing ones (Step 2). If source activities in 

the BIMM do no longer exist, they have been deleted from the business process (Step 2a). This 

information is communicated, for instance, in the form of a report to the business process modeler (Step 

3). Therefore, a software developer adapts the BIMM and the system process appropriately by removing 

these activities. For this case we have defined an inconsistency rule (R1 in Definition 6-1). This rule 

identifies the deletion of business process activities. 

If business process activities are added to the business process, the consistency analysis will recognize 

identifies that source activities are missing in the BIMM (Step 2b). Then, if the activity has technical 

relevance the modeler has to update the BIMM and the system model suitably. For this case, we have 

defined another inconsistency rule (R2 in Definition 6-1).  

 

Definition 6-1 (Structural Inconsistency) 
Let BP = (BN, BE, BNT, BET, BEC) be a business process, SP = (SN, SE, SNT, SET, SEC) a system 

process and BIMM = {Transf1, …, Transfn} a Business-IT-Mapping Model. Then, there exists an 

inconsistency if one of the following rules is fulfilled: 

• Inconsistency Rule R1: ∃ Transfi ∈ BIMM, ∃ bn ∈ BNodes(Transfi) with: bn ∉ BN 



 14 

• Inconsistency Rule R2: ∃ bn ∈ BN and ¬∃ Transfi ∈ BIMM with bn ∈ BNodes(Transfi) 

 

Consistency Requirement 2: If accessible timestamps for business process activity objects are supported 

by the business process modeling tool (e.g. the attribute “last modified” that is maintained by ARIS), 

changes on individual business process activities can be identified. The consistency analysis not only 

compares the updated with the existing set of business process activities, but also the time stamps of 

individual business process activity objects. For this purpose, the timestamp of the business process 

activity is exported. This timestamp is then saved in the corresponding object of the BIMM. After re-

importing the business process activities into the BIMM, activities with modified timestamps can easily 

be detected (cf. Step 2c in Fig. 9). If Inconsistency Rule R3 is applies, a business process activity of the 

business process has been changed (R3 in Definition 6-2). 

Of course, there are changes which can be ignored by modelers of the system process because they are 

irrelevant to the IT implementation (e.g. changes in costs for execution of activities that are relevant only 

for a process simulation and analysis). An analysis of changes provides a superset of the actually 

necessary adaptations. Nevertheless, it is crucial to ensure that no changes remain undetected.  

 

Definition 6-2 (Structural Inconsistency – Continuation Part 1) 

• Inconsistency Rule R3: ∃ bn ∈ BN with related bn′ ∈ BNodes(Transfi) and Timestamp(bn) > 

Timestamp(bn′ ) 

 

 

Fig. 9: Consistency analysis for business changes 

 

Consistency Requirement 3: Not all changes are initiated by the business department (cf. Business 

Changes in Fig. 9) in practice. Often, it is necessary to implement changes directly in the system process 

(or even in the service composition schema of the executable model) without adaption of the business 

process. For instance, this may be the once when quick reactions to changes in IT operations, like the 

sudden suspension of a service, become necessary. We call such changes environment changes. They can 

be identified by consistency analysis based on the BIMM as well: If an activity is removed from the 

system process, the consistency analysis detects that the corresponding activity still exists in the BIMM 

(R4 in Definition 6-3). Together with the business department, a decision is made whether only the 

BIMM should be modified (so that the inconsistency is resolved), or if the proposed change also affects 

the business process. 

Additionally, our consistency analysis detects the absence of newly added system process activities in the 



 15 

BIMM (R5 in Definition 6-3). A frequently occurring case is that already existing system process 

activities are changed, e.g. a new service version is called or a staff assignment rule was modified (Erl et 

al., 2009). Such changes can be identified by comparing the timestamps (analogous to consistency 

requirement 2): If Inconsistency Rule R6 (Definition 6-3) is fulfilled, an activity of the system process has 

been changed. Subsequently, the timestamp of the corresponding activity in the BIMM is updated. The 

change should also be propagated to the business process, if it is relevant from the business perspective. 

 

Definition 6-3 (Structual Inconsistency –Continuation Part 2) 

• Inconsistency Rule R4: ∃ Transfi ∈ BIMM, ∃ sn ∈ SNodes(Transfi) with: sn ∉ SN 

• Inconsistency Rule R5: ∃ sn ∈ SN and ¬∃ Transfi ∈ MM with sn ∈ SNodes(Transfi) 

• Inconsistency Rule R6: ∃ sn ∈ SN with related sn′ ∈ SNodes(Transfi) and Timestamp(sn) > 

Timestamp(sn′ ) 

If R1…R6 is not fulfilled, BIMM is consistent to BP and SP. 

 

To quickly identify changes, modelers have to be informed actively. Therefore, a visualization of 

information about changes directly in the system process is useful (cf. Step 3 in Fig. 9): A task list 

integrated in the corresponding modeling tool can help to visualize all changes to be implemented. 

Subsequently, the modeler marks changes in the task list which he has already considered (cf. Step 4). 

Alternatively or additionally affected system process activities can be highlighted until the modeler has 

confirmed the elimination of the inconsistency. Both variants prevent changes from avoiding notice. For 

the realization of these variants, it is a prerequisite that the modeling tool offers a (expandable) 

functionality for task list management and for marking activities. 

 

Application Scenarios and Enhancements 

A further usage of the BIMM is possible if its information set is expanded. In the following we describe 

two potential enhancements for the BIMM: 

Enhancement 1: The control flow (sequence, loops, etc.) between business process activities could be 

included into the BIMM in order to detect changes automatically after a re-import (for instance, switched 

order of activities). As mentioned above, the transfer of business processes into another modeling 

language is difficult. Changes in the control flow can easily be detected by comparing the two model 

versions of the business process (which is supported by conventional modeling tools directly). Therefore, 

we do not suggest storing the control flow in the BIMM. The resulting efforts should be avoided. 

Enhancement 2: Similarly, we can use information about the control flow of the system process stored in 

the BIMM: If we know in which order system process activities are executed (for example, after a split 

transformation in the BIMM), it is possible to generate parts of the system process automatically. 

Together with the information about the control flow of the changed business process, the whole system 

process can be generated anew. This means that the previous version of the system process will be 

discarded. However, an automatic generation of the entire system process is hardly realizable in practice. 

Due to the vague and informal description of the business processes, it is extremely difficult to formally 

specify the resulting (complex) transformation rules. For instance, cases exist in which business process 

activities are modeled sequentially in the business process and should be ordered in parallel in the system 

process (e.g. to reduce the execution time). Likewise, a split of a business process activity does not 

always result in system process activities that follow each other directly. This can not be described by a 

flow-control fragment in the BIMM. 

Therefore, we pursue a fundamentally different way then the one described in Enhancements 1 and 2: The 

last existing (and extensively documented) version of the system process is remains in place (i.e. it is not 

discarded). Required changes (for example initiated by new business requirements) are propagated 

subsequently into this system process. In our opinion, this approach results not only in a better quality of 

system processes (now created manually), but also in less maintenance effort of the various models: The 



 16 

BIMM has to store only the dependencies between business process activities and system process 

activities. Therefore, it is not necessary to maintain complex control flow fragments or to define rules 

how to apply them. 

 

PROOF-OF-CONCEPT IMPLEMENTATION 

In the following section, we describe how to realize a BIMM by using the Business Process Modeling 

Notation (short: BPMN). To this end, we use the application example from the Background section. We 

discuss the difficulties that occur during modeling. In addition, we demonstrate how our approach can be 

implemented with today's process modeling and process execution tools. We first use the IBM 

WebSphere Business Modeler 6.2 (WBM) (IBM, 2008a) tool. This tool focuses more on the specification 

and execution of service compositions (compared with tools for the pure business process modeling like 

ARIS). In addition, it enforces the compliance with certain guidelines. For comparison, we present also an 

implementation in ARIS which uses BPMN notation for realizing the BIMM. 

 

IBM WebSphere Business Modeler 

A BIMM
2
 can be created by IBM WebSphere Business Modeler (cf. Fig. 10). The BPMN swimlane 

representation separates the objects (activities) from the business process and the system process, and also 

the transformation nodes between them. An object type categorization enables additionally marking by 

colors. In addition, the names of the transformation nodes are chosen in a way that the type of 

transformation is easily recognizable. The uniqueness of these nodes is achieved by sequential 

numbering. For a more detailed description, special names can be chosen for the basic transformations 

(e.g. “Insert: Service for changing the state in the Product Data Management System”).  

 

 

Fig. 10 BIMM designed with IBM WebSphere Business Modeler 

 

The creation of the BIMM with the WBM tool is more difficult because some functionality is missing. 

For instance, there is no comfortable possibility for copying business process activities into the BIMM 

and subsequently making a reference to the same Object Instance in the business process (cf. ARIS 

Assignments). 

                                                 
2 The corresponding Business Process Diagram (cf. Fig. 13) and the system process Diagram (cf. Fig. 14) can be found in the appendix. 



 17 

Further difficulties arise because of the technical focus of WBM: Since the process models have 

semantics for execution, it is necessary to define input and output data (known as ports) for all activities, 

as well as the data flow. Thus, we also have to define a data flow for the edges of the transformation 

nodes although it does not really exist. If we do not define all input and output data of objects in our 

BIMM, we get some error messages. The associated data flow objects can be chosen arbitrary. In these 

objects can be hidden by a special view (modeling mode) in WBM. If we use the modeling mode “basic”, 

error messages and warnings for undefined data objects are hidden. One should be aware, however, that 

these errors exist, even if they are not relevant because no deployment of the BIMM is planned. 

 

Aris Business Architect 

As shown in Fig. 11 it is also possible to design a BIMM by using the ARIS Business Architect 7.1. 

Again the model is realized in BPMN notation. The BIMM includes business process activities of a 

corresponding business process (cf. Fig. 15) defined as an extended Event Driven Process Chain (short: 

eEPC) and system process activities of a corresponding system process (cf. Fig. 16). The different model 

layers are structured by using BPMN swimlanes.  

 

 

Fig. 11 Business-IT-Mapping Model desiged by using ARIS Business Architect 7.1 (BPMN-Notation) 

 

The clarity of the presentation results from using derivations of existing object types. These so-called 

Sub-Types can have their own styles of visualization (their own symbols). This functionality is also used 

to define special symbols to visualize transformation nodes in the BIMM (like in Fig. 7). In addition, a 

special configuration of the ARIS Business Architect allows us to visualize specific attributes for each 

object. This allows for displaying an unambiguous name for structural nodes (e.g. for branching). It is not 

possible to define a special transformation edge between business process activities and transformation 

nodes (or between transformation nodes and system process activities) in the BIMM (cf. Fig. 11). To this 

end, we use the edge type “is predecessor of”.  

Referencing business process and system process activities in the BIMM is easy to realize in ARIS: The 

ARIS object approach demands that each object (e.g. an activity) modeled in a diagram has exactly one 

corresponding object stored in the ARIS database. This allows for the copying of activities from business 

processes and system processes and the subsequent storing of these activities in the BIMM as so-called 

“assignment copies”. Changes applied to objects (e.g. activities in the business process or in the system 

process) affect all assignment copies, because they reference the same ARIS database object. This keeps 

the names of activities and other attributes up to date in the BIMM if changes occur in business processes 

or in system processes. 

Another advantage of using ARIS is that edges between objects do not describe the data flow explicitly. 

Thus, the problem of WBM transformation edges will not occur because transformation edges need not be 

connected to specific output parameters of a business process activity in the BIMM. Similarly, it is not 

defined whether activities (from the BIMM) have additional output parameters or attributes, because these 

are exclusively specified in the corresponding business process or system process. The modeling of a 



 18 

BIMM with ARIS is easier than using WBM, since ARIS is less formal and has no execution semantics. 

The reason for this is that the tool is not intended to be used to specify the IT-view of an information 

system, but to design business processes. 

However, this is also a disadvantage for the usage of ARIS, because the ARIS Business Architect is not a 

tool for users of IT departments and not commonly used for the creation of system processes. It is not 

expected that an IT architect will implement his (UML-) classes or data objects in ARIS in order to 

develop the IT specification. 

 

Conclusion 

We have examined two different modeling tools. Both tools have shown that a BIMM can be realized as a 

BPMN diagram in principle. The result was clear and buildable with little effort: The creation of a single 

transformation node with the corresponding edges and the usage of existing business process activities 

and system process activities is possible in a few seconds up to minutes. Therefore, both tools are suitable 

for the creation of a BIMM. 

Although BPMN diagrams can be used for designing BIMMs, they actually describe only a temporary 

solution. BPMN diagrams should be used only until process modeling tools implement their own type of 

BIMM. 

 

RELATED WORK AND DISCUSSION 

In the literature, we can find a number of approaches addressing issues related to modeled business 

processes and their transformation into executable models. First, we consider approaches which realize 

transformations between different meta-models. Subsequently, we discuss approaches such as MDA 

(Model-Driven Architecture) and MDSD (Model-Driven Software Development), and also the modeling 

methods of various manufacturers. 

Model layer transformation: Existing literature discusses two fundamentally different types of (meta-) 

model transformations: first, the direct transformation of business processes (e.g. eEPC or BPMN) into 

executable models (e.g. BPEL or BPMN), and second, the transformation including an additional model 

layer (e.g. eEPC or BPMN). 

In the first case, the business process is usually limited by restrictions (e.g. non-cyclic models). Ziemann, 

& Mendling (2007) use the XML-based exchange format EPML (Mendling, & Nüttgens (2006)) for 

eEPC models to transform these into BPEL. Because of limitations in the eEPC model a direct 

transformation into a BPEL model can be realized. This approach has to be re-applied if changes are 

made at the business process layer, e.g. inserting a new business process activity. Thus, changes that have 

already been implemented in the BPEL model will be lost. Nevertheless, this approach provides a basic 

mechanism for transforming acyclic eEPC models into BPEL models. 

There are other similar approaches: van der Aalst, & Lassen (2005) describe how a workflow net can be 

transformed into a BPEL model and Gardner (2003) discusses automatic mapping of UML models into 

BPEL models. Basic transformations of BPMN to BPEL are described in the BPMN standard (OMG, 

2009), White (2005), and Ouyang et al. (2006). The latter approach details the transformation of a non-

restricted BPMN model into a BPEL model. Additionally, this approach describes an algorithm that 

transforms BPMN models into BPEL models automatically. First, the algorithm scans the BPMN model 

for certain patterns. Subsequently, it replaces them by custom-defined components that allow a direct 

mapping into BPEL. 

In the second class of approaches, an intermediate model between the business process layer (e.g eEPC) 

and the executable model layer (e.g. BPEL) is introduced: Thomas, Leyking, & Dreifus (2008) describe 

the transformation of an eEPC model into a BPEL model and uses an additional BPMN model as 

intermediate layer. The idea is, analogous to our approach, to improve Business-IT alignment. However, 

it is not a goal to make the relationship between activities of the different layers transparent. The starting 



 19 

point for the transformation is the flow logic of the business process (eEPC). Previously defined mapping 

constructs transform the business process activities into an intermediate model (BPMN). This BPMN 

model is subsequently enriched by technical details (particularly for the process execution) and is 

transformed into a BPEL model. 

Other approaches, such as Weidlich, Weske, & Mendling (2009) compare various models for similarities. 

If changes are made on a model, they can be assigned to similar models. Approaches concerning 

requirements engineering deal with the bidirectional propagation of changes on requirements and related 

UML models (Rupp, 2007). 

Model driven approaches: Several related works are based on standardized approaches such as MDA 

and MDSD. 

Allweyer (2007) describes an approach that is independent form the modeling notation, which transforms 

(coarse granular) business processes into executable processes. To realize such a transformation, different 

patterns will be defined in the business model (eEPC). These patterns specify the technical detailing of 

objects (e.g. business objects from the business process) and describe how these objects may be 

transferred into the executable model (BPMN). Subsequently, transformation rules implement such 

transformations. 

Bauler et al. (2008) describes how to define business patterns and technical patterns and how to apply 

them on various business processes. Thereto, business patterns are applied on coarse granular BPMN 

models. The resulting model is called “extended BPMN model”. Based on this model an automatically 

transformation generates an executable model (so-called pseudo-BPEL). It is transferred in a further step 

into an executable model (BPEL) by using additional technical patterns. 

The OrVia project (Stein et al, 2008) uses a similar approach: it describes a method for an automatic and 

tool-assisted transformation of eEPC models into executable BPEL models. Predefined patterns are used 

here as well. eEPC models will be transformed into BPEL models by the usage of such patterns. 

Model driven approaches generate their executable models by using patterns. However, such approaches 

for the generation of executable models are not always realizable. This also applies to our scenario where 

free modeling of the system process is required: Therefore, for business processes (mostly described 

coarsely granular and vaguely), a structural adaptation at the system process layer is necessary. To realize 

such an adaption using automatically applicable patterns would be too complex and costly, because 

extensive transformations between objects from the business process (e.g. activities) and objects from the 

system process have to be defined. Additionally, transformations like inserting new activities in the 

system process are hard to realize, since there exist no corresponding activity in the business process to 

which a pattern can be applied. In our scenarios, business processes are different, so that a reuse of 

predefined patterns in various business processes is not realistic. In addition, the “technical problem” with 

pattern definition that was mentioned at Enhancement 2 occurs with these approaches. Therefore, for each 

business process, it must be decided individually how a corresponding technical representation can be 

realized in the system process.  

In addition to these model-driven approaches, there are service-oriented approaches which support a 

model-driven development of information systems (De Castro, Marcos, & Wieringa, 2009). Furthermore, 

there are approaches describing how to transform models into another notation. Ouyang et al (2009) 

present a technique that allows transforming BPMN models into readable (block-structured) BPEL 

models. Such a transformation is defined unidirectional. As a result, inconsistencies occur if changes are 

made in the BPEL model. 

Methods of software manufacturers: Software manufacturers usually recommend a different approach. 

Similar to our proposal, they introduce an additional model layer between the business model layer and 

the executable model layer.  

The modeling methodology M3 of the company MID is based on a MDA approach. This methodology is 

subdivided into three variants (Pera, & Rintelmann, 2005). When compared to our approach some 

similarities are interesting to note for the variant “M3 for SOA”. This method provides extensions for 



 20 

Innovator (MID, 2008) for each model type in the form of UML “stereotype”. The modeling takes place 

at three levels. The first level describes the business model, in which business processes are defined freely 

and without modeling restrictions. Subsequently, use cases are derived from the business process 

description. The latter describe the requirements for the information system to be developed. Based on 

these use cases and additional information from the business processes, a platform-independent “analysis 

model” is generated. This second layer is comparable to our system model layer. It describes, for 

example, classes and data models, and also process descriptions that are required to implement the 

business processes. At the third model level a platform-specific model is described which specifies the 

target platform and language. This platform-specific model is supplemented by technical information. 

Other manufacturers like IBM (Arsanjani et al, 2008; Arsanjani, 2004), IDS Scheer (Klückmann, 2007), 

Enterprise SOA (Woods, Mattern, 2006), Model-Driven Integration of Process driven SOA Models 

(Zdun, Dustdar, 2007; Tran, Zudan, Dustdar, 2008) or Quasar Enterprise (Engels, & Voss, 2008) describe 

similar methods in order to transfer business processes into an IT implementation. They also use different 

model layers to realize the mapping between business processes and their IT implementation. However, 

none of these methods document the dependencies between business process activities of various levels in 

a traceable and understandable way. 

Conclusion: In our project ENPROSO, we use these approaches as a basis in order to realize fundamental 

transformations between different modeling languages. At some approaches, the necessity of an 

intermediate model (system model) is identified and partially implemented. A BIMM that ensures 

traceability between a business process and a system process has not been discussed in any previously 

existing approach. 

 

CONCLUSION 

Business processes (created by business departments) must be adapted 

structurally before they can be implemented within a workflow 

management system. This chapter describes an approach which allows for 

a quick and transparent transfer of business requirements into information 

systems (cf. Fig. 11). To achieve this, we introduced a new model layer 

(system model) between the business model and executable model. This 

model is in the responsibility of the IT department and serves as 

specification for the IT implementation. An additional Business-IT-

Mapping Model (that is part of the system model) enables the transparent 

documentation of the transformations that were applied to the business 

processes in order to define the system process and the executable process 

(service composition schema). This traceability is used to create or adapt 

an IT implementation more quickly. It also ensures the consistency 

between the model layers. The approach for the realization of a Business-

IT-Mapping Model is described in detail and realized prototypically.  

We have shown how flexibility can be increased in the development of 

service- and process-oriented information systems. Our approach 

ENPROSO enables the realization of business requirements by an IT 

implementation with a higher quality and more quickly by: 

• ensuring bidirectional traceability between business activities and 

system activities 

• enabling localization of changes in the corresponding model 

• enabling automatic identification of inconsistencies between different models 

• supporting the modeler when resolving inconsistencies and propagating changes 

 

 

Fig. 12 ENPROSO three-level 

modeling method 



 21 

REFERENCES 

Amnajmongkol J., Angani Y., Che Y., Fox T., Lim A, Keen M. (2008). Business Activity Monitoring 

with Websphere Business Monitor V6.1, IBM Redbooks 

Agrawal A. et al. (2007a). WS-BPEL Extension for People Specification. Technical Report, Active 

Endpoints, Adobe, BEA, IBM, Oracle, SAP AG 

Agrawal A. et al. (2007b). Web Services Human Task. Technical Report, Active Endpoints, Adobe, BEA, 

IBM, Oracle, SAP AG 

Arsanjani A., Ghosh S., Allam A., Abdollah T., Ganapathy S., & Holley K. (2008). SOMA - A method 

for developing service-oriented solutions; In: IBM Systems Journal 47 

Van der Aalst W. M. P., & Lassen K. B. (2005). Translating Workflow Nets to BPEL4WS. BPM-05-16, 

BPM Center, Eindhoven, Netherlands 

Allweyer T. (2007). Erzeugung detaillierter und ausführbarer Geschäftsprozessmodelle durch Modell-zu-

Modell-Transformationen; In.: 6. Workshop Geschäftsprozessmanagement mit Ereignisgesteuerten 

Prozessketten, St. Augustin, Germany (p. 23-38)  

Arsanjani A. (2004). Service-oriented modeling and architecture; IBM developer works  

Barry D. K. (2003). Web services and service-oriented architectures. Morgan Kaufmann 

Bauler P. et.al. (2008). Usage of Model Driven Engineering in the context of Business Process 

Management; In: Proc. 4th GI Workshop XML Integration and Transformation for Business Process 

Management, (p. 1963 – 1974) 

Buchwald S., Bauer T., Pryss R. (2009). IT-Infrastrukturen für flexible, service-orientierte Anwendungen 

- ein Rahmenwerk zur Bewertung; In: Proc. 13. GI-Fachtagung Datenbanksysteme in Business, 

Technologie und Web, (p. 524–543) 

Buchwald S., Bauer T., Reichert, M. (2010). Durchgängige Modellierung von Geschäftsprozessen in 

einer Service-orientierten Architektur. In: Modellierung'10, March 2010, Klagenfurt, Austria. 

Koellen-Verlag, Lecture Notes in Informatics (LNI) 161, pp. 203-211 

Buchwald S., Tiedeken J., Bauer T., Reichert M. (2010). Anforderungen an ein Metamodell für SOA-

Repositories, Zentral-europäischer Workshop über Services und ihre Komposition. 

Bobrik R, Bauer T., & Reichert M. (2006). Proviado – Personalized and Configurable Visualizations of 

Business Processes. In: Proc. 7th Int'l Conf. on Electronic Commerce and Web Technologies (EC-

WEB'06), September 2006, Krakow, Poland. Springer, LNCS 4082, pp. 61-71 

Chen H.-M. (2008). Towards Service Engineering, Service Orientation and Business-IT Alignment; In: 

Proc. 41st Hawaii Int. Conf. on System Sciences 

Dadam P. & Reichert M. (2009). The ADEPT Project: A Decade of Research and Development for 

Robust and Flexible Process Support - Challenges and Achievements. Springer, Computer Science - 

Research and Development , Vol. 23, No. 2, pp. 81-97 ISSN 1865-2034. 

De Castro V., Marcos E., & Wieringa R. (2009). Towards a Service-Oriented MDA-Based Approach to 

the Alignment of Business Processes with IT Systems: from the Business Model to a Web Service 

Composition Model, Int. J. Cooperative Inf. Syst. 

Erl T. (2005). Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall 

Erl T. (2007). Service-Oriented Architecture: Principles of Service Design. Prentice Hall 

Erl T., Karmarkar A., Walmsley P., Haas H., Yalcinalp U., Liu C. K., Orchard D., Tost A., and Pasley J. 

(2009). Web Service Contract Design and Versioning for SOA. Prentice Hall 

Engels G., & Voss M. (2008). Quasar Enterprise. In: Informatik Spektrum 31 (p. 548 – 555) 

Gardner T. (2003). UML Modelling of Automated Business Processes with a Mapping to BPEL4WS; In: 

Proc. of the First European, Workshop on Object Orientation and Web Services at ECOOP 

IBM (2005). WebSphere MQ Workflow Workflow: Getting Started with Buildtime. Version 3.6, Product 



 22 

documentation, Document Number SH12-6286-10 

IBM (2008a). WebSphere Business Modeler, Version 6.2, White Paper 

IBM (2008b). WebSphere Process Server, Version 6.2, White Paper 

Josuttis N.M. (2007). SOA in Practice - The Art of Distributed System Design. O'Reilly 

Klückmann J. (2007). 10 Steps to Business-Driven SOA, IDS Scheer AG 

MID (2008). Innovator Object – Objektorientiertes Software Engineering mit der UML, White Paper 

Mendling J., & Nüttgens M. (2006). EPC markup language (EPML): an XML-based interchange format 

for event-driven process chains (EPC), Inf. Syst. E-Business Management, 4, 245-263 

Mutschler B., Reichert M., Bumiller J. (2008). Unleashing the Effectiveness of Process-oriented 

Information Systems: Problem Analysis, Critical Success Factors and Implications. IEEE Computer 

Society Press, IEEE Transactions on Systems, 38. 

Ouyang C., Van der Aalst W. M. P., Dumas M., Hofstede A.H.M. (2006). Translating BPMN to BPEL, 

BPM Center Report, BPM-06-02 

OASIS (2007). Web Services Business Process Execution Language Version 2.0. OASIS Standard 

Ouyang C., Dumas M., Van der Aalst W.M.P., Hofstede A.H.M., & Mendling J. (2009). From Business 

Proccess Model to Process-Oriented Software Systems, ACM Trans. Softw. Eng. Methodol 

OMG (2009). Business Process Model and Notation (BPMN) Specification 2.0. V0.9.14, revised 

submission draft, OMG  

OMG (2004). UML 2.0 Superstructure Specification, OMG  

Pera O., & Rintelmann B. (2005). Von betrieblichen Geschäftsprozessen zu einer SOA; 18. Deutsche 

ORACLE-Anwenderkonferenz 

Rinderle-Ma S. & Reichert M. (2009). Comprehensive Life Cycle Support for Access Rules in Information 

Systems: The CEOSIS Project. Enterprise Information Systems , Vol. 3, No. 3, pp. 219-251 

Reichert M., & Dadam P. (2009). Enabling Adaptive Process-aware Information Systems with ADEPT2. 

In: Handbook of Research on Business Process Modeling. Information Science Reference, Hershey, 

New York, pp. 173-203. ISBN 978-1-60566-288-6 

Rupp C. (2007). Requirements-Engineering und Management. Hanser 

Scheer, A.W., Thomas, O.,  Adam, O. (2005). Process modeling using event-driven process chains, 

Process-Aware Information Systems: Bridging People and Software through Process Technology, 

119-145 

Stein S., Kühne S., Drawehn J., Feja S., & Rotzoll W. (2008). Evaluation of OrViA Framework for 

Model-Driven SOA Implementations: An Industrial Case Study. In: Dumas, Marlon ; Reichert, 

Manfred ; Shan, Ming-Chien: Business Process Management: 6th International Conference, BPM 

2008, Milan, Italy, Springer, LNCS 5240 (p. 310–325) 

Stein S. (2009). Modeling Method Extension for Service-Oriented Business Process Management, 

Dissertation, Christian-Albrechts-Universität zu Kiel 

Thomas O., Leyking K., & Dreifus, F (2008). Using Process Models for the Design of Service-Oriented 

Architectures: Methodology and E-Commerce Case Study. In Proceedings of the Proceedings of the 

41st Annual Hawaii international Conference on System Sciences. HICSS. IEEE Computer Society, 

Washington, DC, 109 

Tran H., Zdun U., and Dustdar, S. (2008). View-based Integration of Process-driven SOA Models At 

Various Abstraction Levels. In: Kutsche R.-D., Milanovic N, (eds.) Proceedings of First International 

Workshop on Model-Based Software and Data Integration MBSDI, Berlin, CCIS, Vol. 8, pp. 55-66, 

Springer 

Weber B., Reichert M., & Rinderle-Ma S. (2008). Change Patterns and Change Support Features - 

Enhancing Flexibility in Process-Aware Information Systems. Elsevier Science, Data and Knowledge 



 23 

Engineering , Vol. 66, No. 3, pp. 438-466 

Weber B., Reichert M., Wild W., Rinderle-Ma S. (2009). Providing Integrated Life Cycle Support in 

Process-Aware Information Systems. World Scientific Publ., Int'l Journal of Cooperative Information 

Systems (IJCIS) , Vol. 18, No. 1, pp. 115-165. 

Weber B., Sadiq S., & Reichert M. (2009). Beyond Rigidity - Dynamic Process Lifecycle Support: A 

Survey on Dynamic Changes in Process-aware Information Systems. Springer, Computer Science - 

Research and Development , Vol. 23, No. 2, pp. 47-65 ISSN 1865-2034. 

Weidlich M., Weske M., Mendling J. (2009). Change Propagation in Process Models using Behavioral 

Profiles, IEEE International Conference on Services Computing 

Weske M. (2007). Business Process Management - Concepts, Languages, Architectures. Springer 

Werth D., Leyking K., Dreifus F., Ziemann J., Martin A. (2006). Managing SOA Through Business 

Services - A Business-Oriented Approach to Service-Oriented Architectures, ICSOC Workshop, 

Springer 

White S. (2005). Using BPMN to Model a BPEL Process, BPTrends 

Woods D., Mattern T. (2006). Enterprise SOA: Designing IT for Business Innovation, O’Reily Media 

Yvanov, K. (2006). ARIS Value Engineering for SOA, IDS Scheer AG 

Ziemann J., & Mendling J. (2007). EPC-Based Modeling of BPEL Processes: A pragmatic 

Transformation Approach. In MITIP 2005, Italy Architectures. Springer 

Zdun U., Dustdar S. (2007). Model-Driven Integration of Process-Driven SOA-Models. International 

Journal of Business Process Integration and Management 2 (2), 109-119 

 

APPENDIX 

A prototypical implementation of the BIMM was realized with the IBM WebSphere Business Modeler 

and ARIS. In the following we show the corresponding business processes and system processes. These 

directly realize the scenario introduced in the Background section (see Fig. 1). Fig. 13 and Fig. 14 show 

the BPMN implementation of the business process and the system process in IBM WebSphere Business 

Modeler (WBM). 

 

 

Fig. 13 Business Process designed in IBM WebSphere Business Modeler 

 



 24 

 

Fig. 14 system process designed in IBM WebSphere Business Modeler 

 

Fig. 15 shows the eEPC implementation of the business process in ARIS Business Architect. The 

corresponding BPMN implementation of the system process is shown in Fig. 16. 

 

 

Fig. 15 Business Process modeled in ARIS 

 

Fig. 16 system process modeled in ARIS 


