
Universität Ulm | 89069 Ulm | Germany Fakultät für
Ingenieurwissenschaften
und Informatik
Institut für Datenbanken und
Interaktive Systeme

Development of an iPhone business
application
Diplomarbeit an der Universität Ulm

Vorgelegt von:
Andreas Robecke
andreas.robecke@uni-ulm.de

Gutachter:
Prof. Dr. Manfred Reichert
Prof. Dr. Peter Dadam

Betreuer:
Rüdiger Pryss

2011

Fassung February 3, 2011

c� 2011 Andreas Robecke

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or
send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105,
USA.
Satz: PDF-LATEX 2ε

Contents

1 Introduction 1
1.1 The H-Index . 2
1.2 The G-Index . 4
1.3 Acceptance of the indexes . 5
1.4 Google Scholar as the data source . 6

2 iPhone Development Introduction 9
2.1 XCode, Interface Builder and the iOS SDK . 9

2.1.1 XCode . 10
2.1.2 iOS SDK . 10

2.2 iPhone Limitations . 11
2.3 Objective-C and MVC . 12

2.3.1 Memory Management . 12
2.3.2 MVC on the iPhone . 16
2.3.3 Communication between objects . 17

2.4 User Interface Design . 21
2.4.1 More on Interface Builder . 21
2.4.2 Coding user interfaces vs. Interface Builder 27
2.4.3 Human Interface Guidelines . 29

2.5 Review Guidelines . 30
2.6 Test your app on the device . 31

3 Requirements 35
3.1 Requirements defined before implementation 35

3.1.1 Calculation of h- and g-indexes . 35
3.1.2 Manage search results . 35
3.1.3 Merging publications . 36

3.2 Requirements emerged during the implementation process 36
3.2.1 Graph Feature . 36
3.2.2 Comparison Feature . 37
3.2.3 Remember Feature . 37

4 Architecture 39

iii

Contents

4.1 Controller Hierarchy . 39
4.1.1 UITabBarController Class . 39
4.1.2 UINavigationController Class . 40
4.1.3 Custom controllers loaded through the MainWindow NIB 44

4.2 Custom Controller Inheritance . 44
4.2.1 UIKit Controllers . 44
4.2.2 Super Controllers . 44
4.2.3 Custom Controllers . 46

4.3 Parsing and Database Functionality . 46
4.3.1 Parsing . 46
4.3.2 Database Access . 47
4.3.3 Outsourcing parsing to a server . 49

5 Implementation 51
5.1 Calculation of h- and g-indexes . 51

5.1.1 Development of a Google Scholar API 51
5.1.2 Analysis of the HTML document structure for parsing 57
5.1.3 Choosing a parser . 62
5.1.4 Calculation Algorithms . 69
5.1.5 The Search Flow . 70

5.2 Manage search results . 73
5.2.1 Displaying the calculated indexes . 73
5.2.2 Emailing results . 74
5.2.3 Displaying the publications of a search 77
5.2.4 Editing results . 81
5.2.5 Displaying a publication . 82
5.2.6 Data persistence on the iPhone . 85
5.2.7 Caching and Saving . 87
5.2.8 Manage stored results . 88

5.3 Merging publications . 90
5.3.1 Merge Mode . 92
5.3.2 Merging . 93
5.3.3 Dissolving . 93

5.4 Graph Feature . 94
5.4.1 Displaying large Images . 97
5.4.2 Quartz 2D . 98
5.4.3 Graph drawing strategy . 98
5.4.4 Creating an image file . 99
5.4.5 Email the image . 100

5.5 Comparison Feature . 100

iv

Contents

5.6 About and Instructions . 102
5.7 Remember Feature . 105
5.8 iOS Frameworks . 106

6 Bug 111

7 App Store Submission 113
7.1 Distribution Alternatives . 113
7.2 Rejected . 114

8 Conclusion 115

A Appendix 117
A.1 TSI . 117

A.1.1 Our TSI . 117
A.1.2 Apple’s response . 118

Bibliography 119

v

1 Introduction

Smart-phones conquered the world in the past years and it seems like they have become
an indispensable tool for many people to alleviate their everyday life. By today they can
compete with the CPU power and memory of the personal computers built not even ten
years ago [37]. Effective batteries allow to use the CPU power and perform tasks like play-
ing music and videos or running a mobile internet connection for hours. Techniques like
UMTS and not at least the increasing coverage of WLAN access points provide mobile fast
internet connections and enable mobile client applications to communicate with servers
anywhere. Often a GPS unit in conjunction with a respective framework allows for local-
isation and navigation functionalities within applications. Cameras and 3D accelerometer
can serve as additional input interfaces. The smart-phones have proven to be a applicable
platform for many everyday life applications. One of the most advanced smart-phones is
being produced by Apple: the iPhone. By now there are hundreds of thousand iPhone ap-
plications available. More and more companies decide to take advantage of Apple‘s mobile
platform and develop their own iPhone applications in order to support their employees in
daily tasks (See [8] for examples). In this diploma thesis we want to analyse and evaluate
the paradigm of iPhone development. Therefore we will develop an iPhone application.
Along the procedure of development we want to get a feeling for all the aspects involved in
development. The iPhone comes with an outstanding multi touch screen as the main user
input interface. This is an important difference to usual computer input interfaces which
influences development heavily. The operating system was being designed to perform well
with limited resources and requires to adopt programming in terms of efficiency. Apple
provides a multiplicity of frameworks for development but also restricts developers and ap-
plications by certain policies and guidelines. In this diploma thesis we want to learn about
all these things. Our findings shall serve as a basic framework for further investigations
on developing business applications for Apple‘s mobile devices. By developing our own
iPhone application we want to get a feeling for the performance of the device and further-
more generate code which can be reused and investigated for future projects. In order to
achieve all this, we have addressed ourselves the task of developing an iPhone application
for the calculation of scholarly indexes. This idea seems to be an adequate challenge as it
will include parsing, processing and the storage of data. The key feature of our application
is to retrieve data from Google Scholar in order to calculate the h- and g-Indexes of schol-
ars. Hereby we want all necessary tasks, from data retrieval to index calculations, to be
performed on the device. The two indexes aim to be a measurement of the productivity and

1

1 Introduction

impact of the work of a scholar. They are both based on the amount of times the top most
cited publications are being cited of other publications. Before we present the technical
parts of the project we want to give a short introduction about the mentioned indexes, their
background and relevance.

1.1 The H-Index

The h-index was defined by J. E. Hirsch in his paper “An index to quantify an individual‘s
scientific research output” [42] in 2005 as the number of papers with citation numbers >= h.
For an illustration see figure 1.1 below.

Assuming a scholar
has published 22 pa-
pers. When we order
the papers based on
their citation counts, we
receive a table like the
one to the right.

The h-index is the num-
ber of the best cited
publications which have
been cited h times at
least.

For this example the
h-index therefore is 9 as
there are 9 publications
with at least 9 citations.
The 10th paper only
has 8 citations and thus
does not contribute to
the h-index in this case.

Figure 1.1: H-index calculation example

Hirsch claims the h-index to be a useful index to characterize the scientific output of a
researcher by combining quality with quantity and avoiding the disadvantages of the other
bibliometric indicators like the following:

2

1.1 The H-Index

1. Total number of papers (Np):

• Advantage: Measures productivity.

• Disadvantage: Does not measure the impact of papers.

2. Total number of citations (Nc, tot):

• Advantage: Measures total impact.

• Disadvantage: Hard to find and may be inflated by a small amount of highly cited
papers which may not be representative for the individual if he/she is a co-author.

3. Citations per paper (i.e. ratio of Nc,tot to Np):

• Advantage: Allows to compare scientists of different ages.

• Disadvantage: Hard to find, rewards low productivity and disadvantages high
productivity.

4. Number of “significant papers”, defined as the number of papers with > y citations:

• Advantage: Eliminates the disadvantages of all criteria above, gives an idea of
broad and sustained impact.

• Disadvantage: Randomly favours or disfavours individuals as y is arbitrary. Y
would have to be adjusted for different levels of seniority.

5. Number of citations to each of the q most-cited papers:

• Advantage: Overcomes many of the disadvantages of the criteria above.

• Disadvantage: Not a single value and thus insufficient for comparison,q is arbi-
trary which again would favour or disfavours individuals randomly.

Although the h-index aims to measure the broad impact of an individual‘s work by respect-
ing quality as well as quantity, here are some aspects which have to be considered among
others.

1. Different fields will have h values typically to the field. Thus the comparison of scien-
tists of different fields does not make much sense.

2. The h-index is bounded by the total amount of publications. A scholar who published
five articles can only achieve an h-index of five even if these publications are highly
cited and would be the most significant articles in the whole field of research.

3. The amount of co-authors of a paper in not being considered.

4. Context is critical:

a) Citations can be made in a negative context but still would contribute to a better
h-index

3

1 Introduction

b) Many citations are used simply to flesh out a paper‘s introduction and thus have
no real significance to the work.

c) Well-established researchers and projects are cited disproportionately more of-
ten than those less known.

5. Manipulation possibilities: Systematic self citing can increase someone‘s h-index.
The same thing applies for indirect self citations which is the case when a co-author
self-cites a publication. One author could help another to increase his h-index by
citing publications which need few more citations to contribute to the h-index.

1.2 The G-Index

The g-index was introduced by Leo Egghe in his paper “Theory and practice of the g-index”
[39] in 2006 as an improvement to the h-index. The g-index is defined as the unique number
such that the g most cited articles received (together) at least g2 citations. Thus the g-index
inherits all the good properties of the h-index and in addition better takes into account the
top most cited articles. The h-index is robust in the sense that it is insensitive to lowly cited
papers as well as outstanding highly cited papers. Egghe claims latter to be a drawback
as the evolution of the most cited papers is not being taken into account. Once a paper
is selected to belong to the top h papers, the paper does not influence the calculation of
h-index in subsequent years even if it doubles its number of citations. Therefore Egghe
introduced the g-index to better take into account outstanding highly cited publications over
time. For an example see figure 1.2.

4

1.3 Acceptance of the indexes

Assuming a scholar
has published 22 pa-
pers. When we order
the papers based on
their citation counts, we
receive a table like the
one to the right.

The g-index is defined
as the number such that
the g most cited articles
together received at
least g2 citations

For this example the g
index therefore is 15 as
the 15 best cited papers
together have a citation
count of 230. But the 16
best cited papers do not
have a citation count of
256 or more.

Figure 1.2: G-index calculation example

1.3 Acceptance of the indexes

The acceptance, especially of the h-index has increased in the years since its introduction
in 2005. The Wired Magazine published the article "The Genius Index: One Scientist’s
Crusade to Rewrite Reputation Rules" [40] in June 2009. The article states: "In its nearly
four years of life, the relatively simple, flexible h-index has become the most talked-about
metric in the very hot science of rating scientists and their research,...Schools and labs use
such ratings to help them make grants, bestow tenure, award bonuses, and hire postdocs.
In fact, similar statistical approaches have become standard practice in Internet search
algorithms...". Public lists of the h-indexes of scholars of specific fields [46] [47] further
suggest the broad acceptance of the h-index. Even though the g-index tries to eliminate
one of the weaknesses of the h-index [39], which even Hirsch acknowledged according
to the mentioned article in the Wired Magazine [40], it does not seem to have the same
popularity as the h-index yet.

5

1 Introduction

1.4 Google Scholar as the data source

In order to calculate the h- and g-index, our application needs a data source from which it
can retrieve the citation counts of the publications of the scholar of interest. Comprehen-
sive data sources are the “ISI Web of Science” [4], which is provided by Thomson Reuters,
Elsevier‘s “Scopus” [3] and Google‘s “Google Scholar” [1]. There are several scientific pub-
lications which discuss and compare these sources, serving as data sources for calculating
h-indexes, intensively. The calculation results definitely vary by the data source being used
and there are different opinions, based on several criteria, on which data source serves best
for such calculations. We neither object to discuss the differences of these data sources
nor the topic of which data source serves best for the calculation of the indexes.

However, for a better understanding and an imagination of the impact of these differences
we will mention a few.

1. The different sources have different coverage in different fields. [35]

2. The coverage of non English publications differs [35]

3. In contrast to WoS and Scopus, which index citations mainly from journal articles
and conference papers, citations found through GS come from many different types
of documents, including journal articles, conference papers, doctoral dissertations,
master’s theses, technical reports, research reports, chapters, and books, among
others [45]

4. Google Scholar sometimes includes non-scholarly sources (e.g., course reading lists),
phantom or false citations [45]

5. Google‘s coverage of sources is not clear as they never published anything about it

6. Google Scholar‘s processing is fully machine based and occasionally makes mis-
takes i.e. cannot adopt details like publication year, author,... or even double counts
citations [41]

7. Web of Science and Scopus both administer data manually

Obviously those differences between the data sources have to be considered as they di-
rectly influence the h-indexes and their reliability. One may imagine that a particular source
results in higher h-indexes if it includes more sources than another. Again another might
provide lower h-indexes in a particular field. The h- and g-index on the other hand are quite
robust to minor data faults by their definitions and may compensate some of those aspects.
In her paper "Which h-index? – A comparison of WoS, Scopus and Google Scholar" [34]
Judit Bar-Ilan calculated and compared the h-indexes of highly cited Israeli researchers us-
ing the three mentioned data sources. In her conclusion she writes "The findings show that
it matters which citation tool is used to compute the h-index of scientists". Table 1.1 shows

6

1.4 Google Scholar as the data source

a selection of the h-indexes and the variations based on the data sources.

Researcher Subject Area WoS Scopus GS

Alexander, Gideon Physics 32 30 20

Alon, Noga Mathematics, Computer Science 14 17 27

Beeri, Catriel Computer Science 3 3 8

Ciechanover, Aaron Biology & Biochemistry 33 34 30

Dolev, Daniel Computer Science 5 7 18

Mikenberg, Giora Physics 31 10 4

Netzer, Hagai Space Sciences 28 28 18

Oren, Moshe Molecular Biology & Genetics 47 49 38

Peleg, David Computer Science 8 11 21

Shainberg, Isaac Ecology/Environment 8 10 9

Table 1.1: H-indexes according to Web of Science, Scopus and Google Scholar

Anne-Wil Harzing does not doubt that all these data sources have their own limitations but
also states in her publication "Google Scholar - a new data source for citation analysis" [41]
that she believes: "In most cases, Google Scholar presents a more complete picture of an
academic’s impact than the Thomson ISI Web of Science". Due to the fact that Google
Scholar is the only comprehensive data source which is available freely, we will use it as
the data source in our application. This also has the advantage that the results can be
reproduced by anyone.

7

1 Introduction

8

2 iPhone Development Introduction

During this diploma thesis we will often refer to technologies, methods and classes of dif-
ferent types. To make it easier for you to distinguish between custom code which we have
implemented or technologies already provided through Objective C or by the frameworks
we have used, we will mark methods, classes, frameworks and specific technologies in dif-
ferent colours. The - DARK BLUE COLOUR - shows that we are talking about something
specific to our application and usually means that we have implemented or created the
class or method or whatever we are talking about ourselves. The - GENERAL TECHNOL-
OGY COLOUR - stands for technologies, classes and methods provided either by one of
the frameworks we used or specific to Objective C.

When we started developing the current iPhone OS and SDK versions were 3.X. During
the development the new version of the previously called iPhone OS was introduced as
iOS (4.0). When the iOS came out, the new SDK version also was renamed in iOS SDK.
Even though we started developing in version 3.2, we switched to the new SDK when it
came out. However, in the following chapters we will refer to all versions of the iPhone - OS
and - SDK as iOS and iOS SDK. In cases where it is relevant, we will provide the specific
versions. Sometimes we talk about iPhone applications or apps. When we do so, we mean
iOS applications which run on the iPhone but also on the iPodTouch and possibly on the
iPad.

2.1 XCode, Interface Builder and the iOS SDK

Before you can start developing an iPhone application, it is necessary to install XCode
and the iOS SDK on your Mac. Your Mac has to be Intel-based and needs to run Snow
Leopard. The iOS SDK is not designed to run on other systems which makes the Mac
indispensable for serious development. XCode and the iOS SDK can be downloaded for
free after registering as an Apple developer, which is also for free.

9

2 iPhone Development Introduction

2.1.1 XCode

XCode is Apple’s IDE. It ships with built-in project templates, a graphical debugger, the
iPhone Simulator, Interface Builder and Instruments.

iPhone Simulator

The iPhone Simulator enables you to test your applications directly on your desktop without
connecting an actual device.

Interface Builder

Interface Builder is a tool for developing user interfaces graphically. It allows you to build a
complete user interface via drag and drop and then connect the individual components to
objects and methods in your code with so called IBOutlets and IBActions.

Instruments

Instruments provides a set of tools for inspecting memory usage, disk activity, network
activity, and graphic performance. Instruments is very helpful for tracking down memory
leaks and locating critical areas of memory usage.

2.1.2 iOS SDK

On top of the iOS Kernel there are four layers of services on which iOS applications can be
built. Figure 2.1 shows the layer hierarchy.

These layers provide different interfaces and technologies on different levels of abstraction.
The higher-level frameworks provide infrastructures for implementing standard system be-
haviour. Lower-level frameworks usually are suitable for implementing custom behaviour
which is not provided by higher levels. The starting point for building a new application
usually is the Cocoa Touch layer and the UIKit in particular. The frameworks at these layer
provide the fundamental infrastructure for an application whereat most technologies are
based on Objective-C. The UIKit framework provides the visual infrastructure for an ap-
plication, including classes for windows, views, controls and controllers for handling those
objects.

10

2.2 iPhone Limitations

Figure 2.1: iOS layers

Moving down from the Cocoa Touch layer to the next layer, the Media layer provides tech-
nologies to support drawing, audio and video. The interfaces on this layer are either
based on Objective-C or C. A C-based technology on this layer for example is OpenGL.
An Objective-C based technology on the other hand is Core Animation, which is a frame-
work for animating user interfaces.

The two lower-level layers, Core Services and Core OS contain the fundamental interfaces
for iOS. Most interfaces on this layer are C-based. A Core OS layer-specific technology for
example is the database technology SQLite.

2.2 iPhone Limitations

Developing for a mobile platform such as the iPhone, one has to consider several restric-
tions. Due to platform limitations such as limited amount of memory and CPU power, there
is no garbage collection in iOS. This limitation directly affects development and is the reason
why the developer is responsible for retaining and releasing objects in memory. If an appli-
cation takes up too much memory, iOS simply forces it to quit. Applications running on iOS,
live in so called sandboxes, which is a security concept and restricts applications in terms of
data access. Applications only can access the data in their own sandbox. It is not possible
to access data from other applications or certain folders like the iTunes library. The lack of
physical input devices and the tiny screen might restrict user interaction to some extend.
On the other hand the iPhone offers technologies such as multi touch, an accelerometer
which detects device orientation and an on-screen keyboard. These technologies in com-

11

2 iPhone Development Introduction

bination with the provided frameworks such as the UIKit enable the developer to build rich
user interaction despite restrictions.

2.3 Objective-C and MVC

The iOS SDK is designed around supporting two programming paradigms. Object oriented
programming and the Model View Controller (MVC) design pattern. Objective-C is the
object oriented programming language which is used for the implementation of iOS appli-
cations. It is a superset of ANSI C that has been extended with certain syntactical and
semantic features derived from Smalltalk to support object oriented programming. Due to
the fact that Objective-C is based on a foundation of ANSI C, it is possible to mix straight
C with Objective-C. Inheritance becomes an important feature for hierarchically structuring
the behaviour of specific classes in the frameworks such as the UIKit framework. Many
classes provided by the frameworks, are shipped with the SDK, inherit from multiple par-
ent classes (Not multiple inheritance!). The UIButton for example inherits from the classes
UIControl and UIView, thus acting as a UIView as well as a UIControl. The complete in-
heritance hierarchy of the UIButton class actually is NSObject : NSResponder : UIView :
UIControl. If you want to built an application for iOS, you have to be familiar with Objective-
C. Apple’s document "Introduction to The Objective-C Programming Language" [25] is a
good starting point to learn Objective-C.

2.3.1 Memory Management

When you are programming an application for iOS, you will have to manually take care of
the memory management as there is no garbage collection available for iOS. This means
you have to manually allocate and free the memory which is allocated by your objects, as
soon as you do not need them any longer. If you do not take care of your memory properly,
your application will leak memory and you risk it to get terminated by the system at some
point. Therefore memory management is an important issue you have to deal with. In Co-
coa you will use a reference counting system to take care of an object’s life cycle 2.1. When
you allocate an object it will have a reference count of one. You can manipulate the refer-
ence count by using the instance methods retain and release. If you retain an object the
reference will be incremented by one, if you release it, the reference count will be decre-
mented by one 2.2. As soon as the reference count is zero the object will be destroyed
automatically and the allocated memory freed. Another fundamental aspect is the object
ownership mechanism by which you can specify when to release an object. If you create or
retain an object, using one of the methods alloc, new, copy or retain, you own it. An object
thus can have multiple owners. If you own an object, you are responsible for releasing it

12

2.3 Objective-C and MVC

later. If you do not own an object on the other hand, you are not allowed to release it. So if
you release an object at some point in your code, you have to make sure that you are the
owner at this point. Of course the object can still have other owners. But you do not need
to care about existing other ownerships when you release an object. You simply have to re-
lease an object for each time you retained it and you release it as soon as you do not need
it any more. Apart from the release method you can send an autorelease message to an
object, to declare that you do not want to own the object beyond the scope in which you sent
the message. This means when you send an autorelease message to an object, its retain
count will automatically be decremented by one at some point in the future. Let’s assume
you create an object in a method to return it to the caller. In this case the method does not
want to take responsibility for the created object even though it has created it. Therefore
the method will call an autorelease message to the object before returning it. The caller
then has to make sure he acquires ownership for this object by sending a retain message
to it. Listing 2.6 is an example of latter. If the caller does not do so, it will be destroyed au-
tomatically at some point in the future. Maybe before the caller expects this. Some classes
provide so called convenience constructors, which return autoreleased objects. Method
names usually indicate if they retain objects by containing one of the words alloc, new or
copy in the method name. If they do not, the created object probably will get autoreleased.
Another fundamental concept you should be familiar with, are pointers. If you create an
object in Objective-C you assign it to a pointer. A reassignment of the pointer might cause
a memory leak as you loose track of the object originally assigned to your pointer. Listing
2.5 is an example of a pointer reassignment causing a memory leak. Moreover you need
to know that there are methods which retain objects (Compare listing 2.3 and 2.4). Other
methods in turn create autoreleased objects. Compare listing 2.7. Thus, you always have
to make sure whether the object will be autoreleased or if you are the owner and therefore
have to release it at some point. XCode integrates the tool Instruments which allows you
to scan for memory leaks. You can check for memory leaks by selecting Run –> Run with
Performance Tools –> Leaks in XCode. Another tip is to "build and analyse" your applica-
tion (Build –> Build and Analyze). XCode will then mark the lines of code which potentially
might cause memory leaks.

Listing 2.1: Object Lifecycle

1 NSString *hello = [[NSString alloc] initWithString:@"Hello!"];

2 //reference count is 1

3 [hello release];

4 /*
5 calling release on the string

6 reference count is 0

7 object will be destroyed

13

2 iPhone Development Introduction

8 and memory can be freed

9 */

Listing 2.2: Retain Message

1 NSString *hello = [[NSString alloc] initWithString@"Hello!"];

2 //reference count is 1

3 [hello retain];

4 //reference count is 2

5 [hello release];

6 //reference count is 1

7 [hello release];

8 //reference count is 0

Listing 2.3: Some methods call retain on objects

1 NSNumber *number = [[NSNumber alloc] initWithInt:84];

2 //number reference count is 1

3 NSMutableArray *arr = [[NSMutableArray alloc]init];

4 //arr reference count is 1

5 [arr addObject:number];

6 /*
7 addObject calls retain on number!

8 number reference count is 2

9 */

10 [number release];

11 //number reference count is 1

12 [arr release];

13 /*
14 number reference count is 0

15 arr reference count is 0

16 */

Listing 2.4: Another example of a method calling retain on an object

1 UIView *viewX = [[UIView alloc]initWithFrame:CGRectMake(100, 100,

100, 100)];

2 //viewX reference count is 1

3 viewX.backgroundColor = [UIColor redColor];

4 [self.view addSubview:viewX];

5 /*
6 addSubview calls retain on the viewX object

14

2.3 Objective-C and MVC

7 viewX reference count is 2

8 */

9 [viewX release];

10 /*
11 viewX reference count is 1

12 will be 0 when the parent view will be released

13 */

Listing 2.5: Reassignment of a pointer

1 NSNumber *number = [[NSNumber alloc] initWithInt:84];

2 //original number (84) object reference count is 1

3 number = [[NSNumber alloc] initWithInt:85];

4 /*
5 new number (85) object reference count is 1

6 reassignment of the number pointer:

7 you lost the pointer to the original number object

8 and therefore caused a memory leak!

9 */

Listing 2.6: Autoreleasing

1 /*
2 When you create an object in a method and you

3 intend to return it, you have to autorelease it.

4 The caller on the other hand should retain it if necessary

5 */

6 - (NSString*)sayHello{

7

8 NSString *hello = [[NSString alloc] initWithString:@"Hello

!"];

9 return [hello autorelease];

10 }

11 ...

12 NSString *helloString = [self sayHello];

13 [helloString retain];

14 //To make sure the object will be kept alive

15 ...

16 [helloString release];

17 //Call release when you do not need it any more

15

2 iPhone Development Introduction

Listing 2.7: Autoreleasing

1 /*
2 Some methods construct autoreleased objects

3 If the method name does not contain alloc, new or copy

4 but creates an object, it probably will be autoreleased

5 */

6 NSNumber *number = [NSNumber numberWithInt:84];

7 /*
8 If you call release on an object which was already

9 autoreleased your application will crash

10 */

2.3.2 MVC on the iPhone

Even though the iOS SDK is build around the MVC design pattern, the MVC pattern in iOS
does not always match the theory of the fundamental MVC pattern.

Views in an iPhone application are based on the class UIView. Nearly all user interface
classes are being derived from this class. Each iOS application usually contains one UI-
Window object, which is a special UIView object providing the root for all other UIView
objects. A view can be displayed by adding it to the applications window object or by
adding it to another view by using the addSubview: method. A complete user interface can
be seen as a tree of sub views. In addition to the UIView objects, UIViewController objects
play a key role in managing views. Even though you can develop an application without
using any UIViewController class, in most cases you should not do that, as they have many
built-in functionality for managing user interfaces. They can provide so much behaviour
and functionality expected of an iPhone application that it would be a huge waste of time
to implement respective controller classes along the MVC architecture yourself. Especially
if you are new to iOS development, building an application without using view controllers,
simply is not an option you should consider at all. View controllers are responsible for laying
out the items on your screen and thus do not exclusively act as a controllers in the sense of
the MVC pattern. Usually one view controller is associated with one view object. This view
object usually contains a hierarchy of sub views whereat these sub views can be manipu-
lated by the view controller as well. View controllers take responsibility for rotating the view
depending on the device orientation and resizing views to fit in the boundaries defined by
special UI elements such as tool bars and navigation bars. The UIViewControllers classes
exist to make it easy to manage UI elements and build applications that conform to Apples
design guidelines. In addition to the base class UIViewController, there are special UIView-

16

2.3 Objective-C and MVC

Controller classes for special purposes. The TableViewController for example is a controller
specially designed for displaying data in the form of a table. The UINavigationController and
the UITabBarController both are controllers which are designed to navigate between other
view controllers. The navigation controller can be used to navigate between different levels
in a stack of view controllers. Similarly a tab bar controller can manage multiple distinct
view controllers allowing the users to switch between those by tapping the corresponding
tab. By combining different UIViewController classes, it is possible to build complex layouts.
Each view controller then manages a specific part of the layout or just takes responsibility
for switching between controllers. In our application for example, we combined a tab bar
controller with three navigation controllers whereat all three manage a stack of miscella-
neous view controllers. By now you might be able to imagine of how much functionality
you would relinquish if you would not use the provided UIViewControllers classes. It will
definitely be clear after you read the whole diploma thesis. The iOS SDK provides many
classes for implementing controllers and views, but it does not provide any model specific
templates. So it is up to you to implement callback methods and delegate protocols (See
2.3.3) to support the required functionality.

In the following, we will be talking a lot about view controllers, views and other classes
and objects. Thereby we sometimes use the class name even though we refer to an ob-
ject. Furthermore we will refer to controller objects of the class UIViewController as view
controllers. UITableViewController objects are being named table view controllers and so
on. Similarly we would refer to a custom controller object of the class SuperSpecialCus-
tomViewController as super special custom view controller. It might seem a bit confusing
now, but it should all be clear in the context.

2.3.3 Communication between objects

Controllers, models and views all are represented by objects designed to fulfil a specific
role in an application. Each of those objects contributes a limited set of behaviours to the
application. In order to get a task done, these objects might need to communicate with
each other at runtime. Therefore Cocoa provides several patterns by which objects can
talk to each other. The most important mechanisms in iOS are delegation, target-action
mechanism and notifications.

Delegation

Delegation is a way of handing over the responsibility for responding to some kind of event.
It is used by UIKit classes in order to hand over responsibility for responding to user inter-
action. A delegate object has to act in behalf of the object originally encountered the event.

17

2 iPhone Development Introduction

Therefore the delegating class holds a property usually called delegate. Furthermore it de-
clares a so called protocol. The protocol defines one or more methods the delegate object
has to implement. The delegating object itself does not implement these methods. A good
example is the UITableView class. It does not have a built-in way of responding to a tap on
a row. Instead it requires a delegate object which has to implement the delegate methods
such as tableView: didSelectRowAtIndexPath: which then implement the response to the
user interaction. Listing 2.8 shows an example of our application, where we use delegation
for the parser object to communicate with a view controller. The parser class defines the
ParserDelegate protocol as illustrated by listing 2.8. Figure 2.2 illustrates the delegation
pattern in general.

Listing 2.8: Parser.h

1 // Parser.h

2

3 @protocol ParserDelegate

4 @required

5 - (void)requestHTMLFrom:(NSString *)url;

6 - (void)presentResults;

7 - (void)insertQuery;

8 - (void)setExpLastPage:(int)lastPage;

9 @end

10

11 @interface Parser : NSObject {

12 id <ParserDelegate> delegate;

13 ...

14 }

15

16 @property(nonatomic, assign) id <ParserDelegate> delegate;

17 ...

18

2.3 Objective-C and MVC

Figure 2.2: Delegation pattern in general

The parser object holds a property to the delegate, in our case an instance of the SearchView-
Controller class. The search view controller conforms to the ParserDelegate protocol and
implements the required methods (requestHTMLFrom:, presentResults, ...). In section
5.1.5 we will introduce the whole search flow. Hereby, the communication of the parser
object and the search view controller is an important aspect. For an illustration see figure
5.6 in the "Implementation" chapter.

Each iOS application has to implement at least one delegate, the application delegate which
adopts the UIApplicationDelegate protocol. This is crucial to any application as it must re-
spond to application-launch, application-quit, low-memory, and other messages from the
application object.

Almost identical to delegates there are data sources. Unlike being a delegate control of the
user interface, it is a delegate control of data. A data source is a reference held by UIView
objects such as UITableView that require a data source from which they retrieve the data
they present on the screen. Most of the time, but not necessarily, that is the same object
as the delegate. Also similar to the delegate the data source must implement one or more
methods of a protocol to supply the view with the data to be displayed. In iOS applications,
the view controllers typically act as delegate as well as data source of their corresponding
views. This is another iOS variance of the MVC pattern as models are usually responsible

19

2 iPhone Development Introduction

for data encapsulation. Of course data source can be used in a model class either.

The Target-Action Mechanism

The target-actions mechanism is a lower-level way of redirecting user interactions. Espe-
cially controls like UIButtons use this mechanism to communicate specific user events to
other objects. In the UIKit, the children of the UIControl class almost exclusively define
most of the target-action mechanism for iOS. To set up a control to send an action mes-
sage to the target, you have to associate both, the target and action with a control event.
Listing 2.9 shows an example of the target-action mechanism with a UIButton. The button
(subjectAreasBtn) sets the target to self, the action to @selector(displaySubjectAreas) and
the control event to UIControlEventTouchUpInside. The target has to implement an appro-
priate respond in its selector. If it does not do that and the action-message is sent to the
target object anyway, the application will crash at runtime due to an undefined method call.

Listing 2.9: Target-Action Mechanism with UIButton

1 [subjectAreasBtn addTarget:self action:@selector(

displaySubjectAreas:) forControlEvents:

UIControlEventTouchUpInside];

An action message must have a unique signature. The method it invokes is of the type void
and has a single argument of the type id, named sender by convention. The sender iden-
tifies the control which sent the action message but is not really required to be specified.
Listing 2.10 shows the corresponding method which will be invoked.

Listing 2.10: Target-Action Mechanism - Method

1 - (void)displaySubjectAreas:(id)sender{

2 /*
3 If you have defined the (id)sender in your method signature

4 you can then access it within your method

5 i.e. to make decisions based on the senders type

6 */

7 NSLog(@"%@", sender);

8 ...

9 }

20

2.4 User Interface Design

Notifications

In addition to delegates and target-actions Cocoa offers another way of object communi-
cation. Notifications do not implement a tight coupling between the communicating ob-
jects and furthermore allow to broadcast notifications in contrast to delegation and action-
messages. With notification one object can inform multiple other objects about status
changes. Therefore the interested objects have to register with a notification center and
then start observing for notification messages.

2.4 User Interface Design

In section 2.1.1 we introduced Interface Builder and said that you can use it to build your
user interfaces graphically. In fact most project templates provided by XCode come with
a set of Interface Builder files and Apple suggests to build your user interfaces with it. On
the other hand it is not indispensable to use Interface Builder as you can create your user
interfaces programmatically in a view controllers loadView method.

2.4.1 More on Interface Builder

Interface Builder provides a library of user interface elements (See figure 2.3) and some
special objects, such as UIViewController objects, which you can add to your user interface
via drag and drop. See figure 2.4.

21

2 iPhone Development Introduction

Figure 2.3: Interface Builder Library - Elements you can add to your interfaces

22

2.4 User Interface Design

Figure 2.4: Interface Builder - Building UI via Drag and Drop

When you save a user interface created in Interface Builder, it creates a XIB file which
XCode automatically converts to a NIB file at build time so that it can be deployed with your
application. This means during development you will create and edit XIB files whereat your
application later will use NIB files. XIB files are XML based and provide some advantages
for development. NIB files on the other hand are archives. For further information check
out [6]. When a NIB file is loaded into memory, the contained objects will be unarchived
and instantiated. Each NIB file contains one File’s Owner object which provides the link

23

2 iPhone Development Introduction

between your hand written code and the objects created from the NIB file. It is responsi-
ble for loading and managing the NIB file and the contained objects. Figure 2.5 illustrates
an example of our application. It shows the AboutViewController.xib main window with all
the objects contained in this XIB file. You can see the File’s Owner object is of the class
AboutViewController. This means, when we create an instance of the AboutViewController
class in our application, the about view controller’s NIB file and thus the contained user
interface will be loaded automatically. Because view controllers often have a corresponding
XIB file, XCode offers to create a corresponding XIB file when you subclass UIViewCon-
troller from the provided template. When you choose to do so, it automatically assigns your
controller class to the File’s Owner object in the XIB file.

Figure 2.5: AboutViewController as the File’s Owner object of the AboutViewController.xib

Often you need to access the user interface elements you have added to your XIB file
in your code. Or you want one of the buttons you have added to you user interface with
Interface Builder to trigger a method in your code. To connect the objects that you have
added to your XIB file and your code, there are IBOutlets and IBActions.

IBOutlets

With IBOutlets you can mark properties in your code simply by placing the IBOutlets key-
word in the property declaration. In the SearchViewController class for example, we have
defined the instance variable *go of the type UIButton to connect with a button in the XIB

24

2.4 User Interface Design

file. Therefore we added a property declaration and the IBOutlets. See listing 2.11. When
you then open Interface Builder, it looks for IBOutlets and allows you to connect the in-
stance variables in your code with objects in the XIB file of the same type. Your application
then can access and manipulate these objects during runtime.

Listing 2.11: Declaration of an IBOutlet

1 #import <UIKit/UIKit.h>

2 ...

3

4 @interface SearchViewController : UIViewController <

UITextFieldDelegate, ParserDelegate> {

5 ...

6 UIButton *go;

7 ...

8 }

9 ...

10 @property(nonatomic, retain) IBOutlet UIButton *go;

11 ...

There are several ways how you can connect your IBOutlets with your code in Interface
Builder. It usually involves dragging something somewhere. In the Inspector window for
example, you can see the IBOutlet of an object. To connect your IBOutlets you can click
and drag them on the corresponding user interface elements of your XIB’s main window as
illustrated in figure 2.6.

Figure 2.6: Connecting an IBOutlet with the corresponding user interface element

25

2 iPhone Development Introduction

IBActions

IBActions are methods in your code which can be triggered by objects, typically controls
loaded from the NIB file. Therefore you mark your methods with the return type IBAction to
tell Interface Builder to treat it like a target action. See target-action mechanism in section
2.3.3. Usually the method takes one argument sender of the type id which is a reference to
the object sending the action message. The return type IBAction is the same as void. If you
have an UIButton in your user interface which you have created in Interface Builder, you
can connect its UIControlEventTouchUpInside event with an IBAction defined in your view
controller’s code. In our AboutViewController class we have defined three methods. To
connect these with controls of the corresponding XIB file, we marked these with the return
type IBAction as illustrated in listing 2.12. The connection of IBActions with corresponding
methods works similar to the connection of IBOutlets with user interface elements. When
you select your target object and open the Inspector window in Interface Builder you can
see the IBActions you have defined in your code. Again you can click and drag them onto
a control in your XIB file. When you do so, Interface Builder will list all events of the control.
You can then choose to connect an event with your IBAction. See figure 2.7.

Listing 2.12: Declaration of IBActions in code

1 #import <UIKit/UIKit.h>

2 ...

3

4 @interface AboutViewController : UIViewController <

MFMailComposeViewControllerDelegate> {

5

6 }

7

8 - (IBAction)presentInstrcutionsVC;

9 - (IBAction)emailUs;

10 - (IBAction)visitDBISWebsite;

11 ...

Buttons in general usually are being connected to the methods they trigger either program-
matically (See target-action mechanism in section 2.3.3) or through a connection to an
IBAction in their XIB file. Note that neither Interface Builder nor XCode will warn you about
non-connected IBOutlets and IBActions. So if you forget to make a connection your appli-
cation will probably crash at some point or just not behave like you expect it to. Also be
careful, when you rename IBActions or IBOutlets, you have to reconnect them in Interface

26

2.4 User Interface Design

Figure 2.7: Connecting an IBAction with a control of your XIB

Builder. Otherwise you will cause an error too.

Interface Builder primarily simplifies building user interfaces and saves writing code. It is
important to know that the entire file and referenced frameworks or code must be loaded
into memory so that individual objects can be instantiated. Therefore it is important to keep
NIB files small in order to keep memory usage low.

2.4.2 Coding user interfaces vs. Interface Builder

You do not have to use Interface Builder to build your user interfaces. If you decide not to
use Interface Builder you will have to write the corresponding code yourself. Depending on
the complexity of your user interface this can be quite a lot. Laying out user interfaces and
setting all the necessary attributes requires to write several lines of code. The loadView
method of your controller is where you would put this code. Listing 2.13 shows an exam-
ple where we simply added an UILabel and an UIButton to a UIView in an view controller.
Figure 2.8 shows the resulting user interface. In comparison if you would take advantage
of Interface Builder instead, you would not have to write a single line of code and still could
adjust your user interface objects programmatically in the viewDidLoad method of the view
controller. However, there are lively discussions on the internet about NIB files slowing
down performance as they are expensive to load. We did not make any experience with
NIB files slowing down performance significantly in our application. But it also is not subject
of this diploma thesis to compare the performance of the different methodologies of loading

27

2 iPhone Development Introduction

user interfaces. On the other hand one might imagine that thoughtlessly assembling all
user interfaces in a single XIB file might slow down performance as all elements are being
loaded in memory at once.

Listing 2.13: Coding user interfaces

1 #import "HandMadeViewController.h"

2

3 @implementation HandMadeViewController

4

5 - (void)loadView {

6

7 // Implement loadView to create a view hierarchy

programmatically, without using a NIB.

8

9 CGRect rectFrame = [UIScreen mainScreen].applicationFrame;

10 UIView *view = [[UIView alloc] initWithFrame:rectFrame];

11 view.backgroundColor = [UIColor grayColor];

12 self.view = view;

13

14 UIButton *button = [UIButton buttonWithType:

UIButtonTypeRoundedRect];

15 [button setTitle:@"A Button" forState:UIControlStateNormal

];

16 button.frame = CGRectMake(80, 210, 160, 40);

17 [self.view addSubview:button];

18 [button release];

19

20

21 UILabel *label = [[UILabel alloc]initWithFrame:CGRectMake

(60, 300, 200, 100)];

22 label.text = @"This is a label...";

23 label.backgroundColor = [UIColor grayColor];

24 label.textAlignment = UITextAlignmentCenter;

25 label.textColor = [UIColor blackColor];

26 label.font = [UIFont systemFontOfSize:20];

27 [self.view addSubview:label];

28 [label release];

29

30 }

28

2.4 User Interface Design

Figure 2.8: The user interface generated by the code of listing 2.13

On the following pages we will refer to navigation bars and tool bars. Just that you know
what we are talking about, in the interfaces of view controllers the navigation bar (UINavi-
gationBar) always is on top whereas the tool bar (UIToolbar) is located at the bottom of the
interface. For an illustration see figure 2.9 below.

2.4.3 Human Interface Guidelines

Before you start developing an application you should have a look at Apple’s Human Inter-
face Guidelines [33]. The documents basically describe how you should design your user
interfaces to achieve a rich user experience in your application. iOS and the frameworks
with which you will implement your application provide several standard techniques how
to implement user interaction. When you are building an application for iOS you should
not forget that you are designing for a multi touch screen and respective user interfaces
and interactions will have to be different to what you are used to from desktop applica-
tions. Moreover iOS users expect a consistent behaviour not only application wide, but
also across iOS applications. This has the advantage that users are able to operate any
iOS application quickly. Apple provides several techniques and principles to support you in
designing user interfaces. Animating your user interactions and interfaces can be crucial in
order to achieve rich usability. You also should be aware of the fact that violating Apple’s
Human Interface Guidelines might be a reason for your application not to be accepted for

29

2 iPhone Development Introduction

Figure 2.9: Navigation Bar and Tool Bar

the distribution in the App Store. But we will talk about the Review Guidelines in the next
section.

2.5 Review Guidelines

If you are developing an iPhone application, you may want to offer it in the App Store where
you can find hundreds of thousands apps by today. You need to know that not every app
actually makes it into the App Store. Apple reviews each app which is being submitted for
distribution. There are quite a few restrictions, not only in terms of how you have to build
and design your app, but also in terms of the content and the functionality it provides. In
the Review Guidelines and the iOS SDK Agreement, which you have to agree to in order to
use the iOS SDK, you can find what is allowed and what is not. These terms also apply to
third party libraries which you have included in your project. So be careful with third party
libraries as they can cause your app to get rejected. In order to read the Apple’s Review
Guidelines, you need to register as a developer. The guideline’s introduction states: "... We
don’t need any more Fart apps. If your app doesn’t do something useful or provide some
form of lasting entertainment, it may not be accepted. ... We will reject Apps for any content
or behavior that we believe is over the line. What line, you ask? Well, as a Supreme Court
Justice once said, "I’ll know it when I see it". And we think that you will also know it when

30

2.6 Test your app on the device

you cross it. To give you some sense of what might cause an app to be rejected we have
listed a few restrictions of the current Review Guidelines below.

• Apps that crash will be rejected

• Apps that use non-public APIs will be rejected

• Apps that download code in any way or form will be rejected

• Apps that are "beta", "demo", "trial", or "test" versions will be rejected

• Apps that duplicate apps already in the App Store may be rejected, particularly if
there are many of them

• Apps that are not very useful or do not provide any lasting entertainment value may
be rejected

• Apps that do not notify and obtain user consent before collecting, transmitting, or
using location data will be rejected

• Apps that are primarily marketing materials or advertisements will be rejected

• Apps must comply with all terms and conditions explained in the Apple iPhone Human
Interface Guidelines and the Apple iPad Human Interface Guidelines

• Apps that do not use system provided items, such as buttons and icons, correctly and
as described in the Apple iPhone Human Interface Guidelines and the Apple iPad
Human Interface Guidelines may be rejected

• Apps containing pornographic material, defined by Webster’s Dictionary as "explicit
descriptions or displays of sexual organs or activities intended to stimulate erotic
rather than aesthetic or emotional feelings", will be rejected

• Apps containing references or commentary about a religious, cultural or ethnic group
that are defamatory, offensive, mean-spirited or likely to expose the targeted group to
harm or violence will be rejected

• Apps that include the ability to make donations to recognized charitable organizations
must be free

As we said, these are just some of the restrictions, there are many more. We even made
an experience with the restrictions ourselves as we knowingly used a non-public API in our
application and tried to submit it for distribution (See 7.2).

2.6 Test your app on the device

At the beginning of this chapter we told you about the iPhone Simulator 2.1.1. The simula-
tor is great because it allows you to investigate iPhone development without actually having

31

2 iPhone Development Introduction

a device. It also is practical during development for testing and debugging features quickly.
But if you are serious about developing an app for the distribution in the App Store, you
have to get a device. The cheapest option is the iPod Touch as the primarily difference to
the iPhone is that it does not support the mobile communication technologies. For many
apps, an iPod Touch will be sufficient for testing, for others it won’t. That depends on the
functionality you are planning to develop. However a real device is indispensable when it
comes to testing your app. You can get the real "look and feel" of your application only on
the device. Even more important you have to make sure the app in general performs well
on the device. This is not assured as the simulator in some cases behaves differently to
the device. Unfortunately the device is not the only thing necessary for testing. You also
have to be enrolled in one of the iOS developer programs. If you are studying or teach-
ing at a university you might have the possibility to enrol for the iOS Developer University
Program. It is free and allows you to test your apps on iPads, iPhones, and iPods. It does
not allow to distribute your apps in the App Store though. If you are planning to do so,
you will have to enrol in one of two programs, either into the Standard Individual Program
or the Standard Company Program. Either one will cost you a fee of $99 USD per year.
For more information about the developer programs check out Apple’s Support Center [11].
When you have a device and you are enrolled in one of the developer programs, there are
still some steps required before you finally can execute your code on your device. When
you log into the iOS Development Center with your developer account, you will find many
resources about the required steps for testing and app on a device. Many developers on
the internet complain about having problems with setting up the device for testing. In order
to run your application on a device you need to sign it with a valid signing identity. To sign
your application for development you need a private key, iPhone Developer Certificate, and
a Development Provisioning Profile. The private key is necessary so that XCode can sign
your app binaries. The Developer Certificate is a electronic document that associates your
digital identity with information including your name, email address, or business. Provision-
ing profiles let XCode know which certificate/private key pair to use to sign your application
and let the device know how to verify the applications installed on them. When you are
signed in at the iOS Developer Center and you go to the Provisioning Portal, click on Cer-
tificates and then select the How To tab [31], you will find the required steps for setting up
your device for testing. As you will see there it is also possible to transfer your private key
to other Macs, so that you can work from multiple systems. We actually did this once and
can confirm that it worked for us. But before you can install your application, you have to
register your device for development. Therefore you can go back to the "Home" area of the
Provisioning Portal, launch the provisioning assistant and follow along the steps. Another
option is to open your Organizer in XCode (Window –> Organizer). If you have connected
a device, it should automatically appear in the Devices section. When you right click and
choose "Add device for development" the provisioning profile should be generated and au-
tomatically installed on your device. If everything is set up the device should be marked with

32

2.6 Test your app on the device

a green button and you should be able to see a provisioning profile named Team Provision-
ing Profile for your device. Furthermore you should be able to see your provisioning profile
matching your certificate in your applications info.plist file in the Build Tab under the Code
Signing Identity section. You can find the info.plist file in XCode under targets, it is named
like your application. Just leave the selection to automatic selection and you should be able
to run your application on the device by selecting Device from the big button on the top left
in XCode before you hit Build and Run. An issue which you still could stumble across is if
you do not have the right version of iOS on your device. Also you might have to change
your bundle identifier. The bundle identifier is a unique identifier for your application. In my
experience this should not cause any problems during the development phase. But if you
get such an error you should know the bundle identifier can be specified in the Properties
tab of your info.plist file. By convention the bundle ID should be named something like
com.companyName.appName (top-level Internet domain.companyName.appName) and is
being defined based on the AppID you are using for provisioning. If you experience any
kind of problem you should be able to solve them by reading the respective documents in
the provisioning portal carefully.

33

2 iPhone Development Introduction

34

3 Requirements

In this chapter we describe all the requirements we determined for our application. We
defined most of the requirements before we started with developing of course. However,
some functionality and thus requirements emerged during the process of implementation.

3.1 Requirements defined before implementation

3.1.1 Calculation of h- and g-indexes

The key functionality of our application is the calculation of h- and g-indexes based on the
data we retrieve from Google Scholar. In the following, we sometimes will refer to these two
indexes as scholarly indexes.

3.1.2 Manage search results

Display the calculated indexes and the publications which the results are based on

After the calculation we need to display the results in a comprehensible way. The user
needs to be able to check the publication his or her results are based on.

Function to edit results by deleting and restoring publications

Search results can contain publications from not requested authors, i.e. when he has the
same name as the requested author. Therefore the user must be able to manually edit
his/her results by deleting, merging and restoring publications. This means when one publi-
cation is being deleted, the results have to be recalculated, because the deleted publication
does not contribute to the indexes any longer. Restoring must behave conversely. Merging
is being explained in section 3.1.3 below.

35

3 Requirements

Manage stored search results: save, display and delete

We need functionality for managing search results. The search results not only contain
the indexes but all publications the indexes are based on. We want to be able to store
and delete the indexes and edit the corresponding set of publications at any time. Again
editing the set of publications refers to selecting, deselecting and merging publications for
the calculations of the results.

Functionality to email the results

The application should have functionality to email those results in the form of a pdf docu-
ment.

3.1.3 Merging publications

Google Scholar sometimes delivers the very same publication as two or even more different
publications, i.e. due to variations in the title or the same title but different publication types
or versions. This might distort the results. A functionality which allows to merge multiple
publications and hence their citation counts is required to fix this issue.

3.2 Requirements emerged during the implementation
process

3.2.1 Graph Feature

For an author of a publication it might be interesting to see how his publications are evolving
over time. Therefore we conducted to implement a graph feature as it is possible to retrieve
citation counts per year.

Functionality to email the graph

It would be nice to be able to email the evolution graph as a pdf or image.

36

3.2 Requirements emerged during the implementation process

3.2.2 Comparison Feature

The scholarly indexes provide some kind of measurement of the success and impact of an
author. But the indexes are not very useful until they are mapped to some kind of scale.
Thus it would be useful to compare someone’s results with others of the same area of
research. For comparison, we thought it would be best to display two results in the same
hierarchical context. This feature also allows to analyse changes or even the evolution of a
scholarly index as it is possible to limit search requests to specific time intervals. Another
option is to submit a search, save the results and submit the exact same search at some
point in the future again. If you then compare the results of both, you can see if the indexes
increased or not. You will even see if the citation counts of specific publications increased.

3.2.3 Remember Feature

If you request the same search once in a while, maybe to check if there are new citations
which effect the indexes, you would have to edit the search results each time. Therefore a
feature would be nice which can handle the editing of the search results for you based on
the latest previously submitted search and the corresponding undertaken editing.

37

3 Requirements

38

4 Architecture

4.1 Controller Hierarchy

Chapter 3 describes the different features that we initially defined for our application. Be-
fore we could start developing we had to discuss how to structure these features in our
application. As a result we identified two main functionalities which should be accessible
right away, the calculation of the two indexes as the key feature and some kind of a results
manager. Furthermore we would have to include instructions and information about the
application which eventually resulted in three dividable parts. With that in mind, we could
think about how to realize this in our application and found the UITabBarController suitable
for sectioning our functionalities.

4.1.1 UITabBarController Class

The UITabBarController class is a template for a special controller. A controller for switch-
ing between other view controllers. In the UITabBarController class reference [5] Apple
says that this class is not intended for sub-classing. Instead you should use instances of
it as-is to present an interface that allows the user to choose between different modes of
operation. A tab bar at the bottom of the controller’s interface allows to select one of the
provided modes. Each tab is associated with a specific view controller. When the user
selects a tab, the tab bar controller presents the root view of the corresponding view con-
troller. All previous views are being replaced, even if the tab was previously selected. With
the selectedViewController property you can choose the controller which is being displayed
initially. By conforming to the UITabBarControllerDelegate, objects can be notified about
the interactions of the tab bar controller.

XCode provides a tab bar application template. It was the starting point for our application.
It includes three XIB files of which the MainWindow.xib was the important one to us. It
contains a tab bar controller serving as the root controller of our application. The template
automatically adds the view of the tab bar to the application’s window. We removed all
useless parts like the two other XIB files and the FirstViewController object. In Interface
Builder we added three controllers of the type UINavigationController (Compare section

39

4 Architecture

4.1.2) to the tab bar controller, each one serving as the root controller of one tab. All four
controllers are being instantiated from the NIB file, not requiring us to write a single line of
code. Each navigation controller in turn, holds a custom root view controller. In our appli-
cation these are controllers of the types SearchViewController, HistoryTableViewController
and the AboutViewController as you can see in figure 4.1. Figure 4.2 further illustrates that
each of the mentioned controller manages a specific part of the user interface.

Figure 4.1: UITabBarController with one UINavigationController per tab

4.1.2 UINavigationController Class

Similar to the UITabBarController class the UINavigationController class implements a spe-
cial view controller for switching between other view controllers. Again (Compare section
4.1.1) you are not supposed to subclass it but use unmodified instances of it for presenting
a hierarchical user interface. A navigation controller therefore keeps track of the hierarchy in
a navigation stack and provides a back button for moving back in the navigation hierarchy.
To modify the stack, and therefore navigate in your application, the navigation controller
provides two methods, pushViewController: animated: and popViewControllerAnimated:.
When you push your custom view controller on the stack, its view will be displayed and
the navigation controls will be updated. The popViewControllerAnimated: method is used
to navigate back in the hierarchy. This functionality usually is provided by the back button
in the navigation bar of the navigation controller. The navigation controller provides the
UINavigationControllerDelegate protocol to notify other objects about its navigation.

Figure 4.3, 4.4 and 4.5 show the complete navigation structure of the three navigation con-
trollers managed by the tab bar controller. The three figures represent the entire navigation

40

4.1 Controller Hierarchy

Figure 4.2: The user interface managed by multiple controllers

flow of the application. There are of course other controllers and classes. But all controllers
which are part of the navigation tree have corresponding graphical user interfaces which
they present at the respective points of the application flow.

Figure 4.5: Navigation-tree of the UINavigationController of the right tab

41

4 Architecture

Figure 4.3: Navigation-tree of the UINavigationController of the left tab

42

4.1 Controller Hierarchy

Figure 4.4: Navigation-tree of the UINavigationController of the tab in the middle

43

4 Architecture

4.1.3 Custom controllers loaded through the MainWindow NIB

Our MainWindow.xib file contains a controller of the class HistoryTableViewController. It
inherits from the class UITableViewController, which is a special controller for presenting
data in the form of a table. It does not have a corresponding XIB file as the user interface is
loaded programmatically. We will talk about the UITableViewController class in detail later.
The SearchViewController class as well as the AboutViewController class both have their
own XIB files which contain the corresponding user interfaces.

4.2 Custom Controller Inheritance

All controllers in our application inherit from the UIViewController class provided by the
UIKit framework. Because the custom controllers of our application share properties and
functionalities it makes sense to structure them into an inheritance-hierarchy like the con-
trollers of the UIKit framework (Compare section 2.3). Therefore code can be reused and
is easier to maintain. Figure 4.6 illustrates the following explanation.

4.2.1 UIKit Controllers

The yellow controllers of the types UIViewController and UITableViewController both are
included in the UIKit framework. All controllers inherit from the class UIViewController.

4.2.2 Super Controllers

The red controllers are custom controllers providing different levels of functionality which
other controllers may implement through inheritance.

BasicViewController

The BasicViewController class includes a reference to the database controller and an id to
the database entry it manages. Furthermore it provides two basic methods. One to get the
current year and another to display an alert message to the user.

44

4.2 Custom Controller Inheritance

Figure 4.6: Custom Controller Inheritance Hierarchy

45

4 Architecture

BasicTableViewController

The BasicTableViewController class only provides a reference to the database controller
and an id to the database entry it manages. It inherits from the class UITableViewController
and therefore primarily is for displaying data in the form of a table.

IntermediateViewController

The IntermediateViewController class extends the functionality of the BasicViewController
class by two methods for the calculations of the two scholarly indexes and further references
for holding a set of database entries and the two indexes. Additionally it provides a special
view for communicating that it is busy.

ResultsViewController

The ResultsViewController class extends the functionality of the IntermediateViewCon-
troller class by a several properties and methods, all to display and manage results. Another
characteristic is the ability to send email.

4.2.3 Custom Controllers

The green controllers are custom view controllers which inherit their basic functionality from
one of the provided controller classes and extend their functionality in order to fulfil specific
tasks. These controllers actually get instantiated in code.

4.3 Parsing and Database Functionality

4.3.1 Parsing

All parsing functionality is being encapsulated by the Parser class. The only controller
object which needs to communicate with the parser object is the SearchViewController
object as it serves the data to be parsed. The communication between both objects is
being implemented through delegation (Compare section 2.3.3). The parser object also has
a reference to a SQLiteController object which is instantiate by the search view controller
and only passed on to the parser object when it is being created. More on this in the next
section 4.3.2. For a visualization see figure 4.7.

46

4.3 Parsing and Database Functionality

Figure 4.7: Database Access

4.3.2 Database Access

There are two controllers which actually instantiate a SQLiteController object in order to
access the database: the search view controller and a controller of the class HistoryTable-
ViewController. Both controllers then pass on their reference to other objects when these
are being created and require database functionality. See figure 4.7. None of our con-
trollers belonging to the third tab of our tab bar controller needs to access the database.
Alternative data persistence technologies are being discussed in section 5.2.6. Section
5.2.7 explains the integration of the SQLite library.

In our database we want to store the results of a search. Therefore we store the search
parameters in a table called queries. In order to store the publications of a search we create
a new results table for each time the user submits a search. The relation between query

47

4 Architecture

and results table is based on the auto incremented ID field of the query entries, simply
by naming a corresponding results table results_queryID. Figure 4.8 illustrates the binding
between the query entries and the results tables. Figure 4.9 and 4.10 show all fields of the
corresponding tables.

Figure 4.8: Table relations

48

4.3 Parsing and Database Functionality

Figure 4.9: Queries table structure

Figure 4.10: Results table structure

4.3.3 Outsourcing parsing to a server

As an alternative to parsing the data on the device, we could parse it on a webserver. Of
course a server could parse data much faster than our mobile devices and implement a
central caching mechanism so that data would be available rapidly. The described scenario
typically would be implemented using a webservice architecture. Our application, as the
webservice client, would have to implement functionality for consuming the webservice
provided by the server. Unfortunately the iOS SDK does not provide a special framework
for consuming webservices and we would have to implement this functionality ourselves
using a compatible XML parser. There are other reasons why we did not choose to use a

49

4 Architecture

webservice for data processing. The first and most crucial reason is that we wanted to learn
about the software and hardware potentials of the device and thus constituted to perform
all tasks on the device right from the start (See chapter 1). Secondly we would have had to
face the problem of concealing the identity of the server because Google Scholar restricts
the amount of requests in a certain amount of time based on the IP address. Depending on
how many users would try to use the application, and thus the webservice, our server would
get blocked quickly without respective "concealing" technique. There might be solutions to
the challenge of building such a "concealing" mechanism. But on the other hand it would
require a server to run all the time which also would be more expensive. The risk of getting
blocked by Google also applies to the concept of performing all tasks on the device as one
simply can use the features which involve requesting data from Google Scholar too much.
Fortunately the blocking of an IP will be removed after a few hours. As introduced later in
section 5.2.7, the application tries to prevent the user from getting blocked quickly by using
caching mechanisms.

50

5 Implementation

5.1 Calculation of h- and g-indexes

5.1.1 Development of a Google Scholar API

In order to calculate the h- and g-indexes of a scholar we need to get the necessary data
first. The data in this case means an initially unknown amount of citation counts of the best
cited publications of the scholar of interest. In some cases all citation counts of all pub-
lications might be required for the calculations. As we have mentioned earlier, we chose
Google Scholar to serve as our data source. Unfortunately Google Scholar does not pro-
vide an API for their services. But Google provides an advanced search form at http://
scholar.google.com/advanced_scholar_search?hl=en&as_sdt=2000 (See fig-
ure 5.1) which allows querying exclusively for publications of a certain scholar by specifying
the name of the scholar as the author in the form. Figure 5.1 shows a screen shot of the
advanced Google Scholar search from. Submitting the search form, the input form data is
being encoded in the URL. For example if we specify the following search values

With the exact phrase: "http"

Author: "Roy Fielding"

Subject areas: Engineering, Computer Science, and Mathematics

and submit the form, the resulting URL therefore is:

http://scholar.google.com/scholar?as_q=&num=10&btnG=Search+Scholar&

as_epq=HTTP &as_oq=&as_eq=&as_occt=any& as_sauthors=Roy+Fielding &as_

publication=&as_ylo=&as_yhi=&as_sdt=1& as_subj=eng &as_sdts=5&hl=en

This means it is possible to directly retrieve the requested search results in HTML format,
assuming the URL therefore is known. In order to retrieve specific data it is necessary that

51

http://scholar.google.com/advanced_scholar_search?hl=en&as_sdt=2000
http://scholar.google.com/advanced_scholar_search?hl=en&as_sdt=2000
http://scholar.google.com/scholar?as_q=&num=10&btnG=Search+Scholar&
as_epq=HTTP
&as_oq=&as_eq=&as_occt=any&
as_sauthors=Roy+Fielding
&as_publication=&as_ylo=&as_yhi=&as_sdt=1&
&as_publication=&as_ylo=&as_yhi=&as_sdt=1&
as_subj=eng
&as_sdts=5&hl=en

5 Implementation

we are able to construct the corresponding URL independently from the Google Scholar
form. Hence, the first step towards retrieving and processing Google Scholar data in an
iPhone Application was to analyse and understand the URL encoding structure of the ad-
vanced Google Scholar search form.

Figure 5.1: Google Scholar Advanced Search Form

All input field values can be found assigned to the corresponding variables in the URL,
after submitting the form. In addition, the URL encodes the language in which the results
will be displayed in, as well as some other variable value combinations which could not be
classified definitely.

52

5.1 Calculation of h- and g-indexes

Form Field Name URL Variable Value Type

with all the words as_q Text

with the exact phrase as_epq Text

with at least one of the words as_oq Text

without the words as_eq Text

where my words occur as_occt Text

Results per page num 10, 20, 30, 50, 100

Table 5.1: Find Articles - See corresponding section ❧1 in figure 5.1

Form Field Name URL Variable Value Type

Author as_sauthors Text

Table 5.2: Author - See corresponding section ❧2 in figure 5.1

Form Field Name URL Variable Value Type

Publication as_publication Text

Table 5.3: Publication - See corresponding section ❧3 in figure 5.1

Form Field Name URL Variable Value Type

Date as_ylo, as_yhi year (From - To)

Table 5.4: Date - See corresponding section ❧4 in figure 5.1

53

5 Implementation

all possible search types (See table 5.8) as_sdt 1, 1., 2, 3, 4

Articles and Patents

Form Field Name URL Variable Value Type

Search articles in all subject areas as_sdt 1.

Include Patents as_sdtp on

Search only articles in the following subject areas: as_sdtp 1

Biology, Life Science and Environmental Science as_subj bio

Business, Administration, Finance and Economics as_subj bus

Chemistry and Material Science as_subj chm

Engineering, Computer Science and Mathematics as_subj eng

Medicine, Pharmacology, and Veterinary Science as_subj med

Physics, Astronomy, and Planetary Science as_subj phy

Social Sciences, Arts, and Humanities as_subj soc

Legal opinions and journals

Form Field Name URL Variable Value Type

Search all legal opinions and journals as_sdt 2

Search only US federal court opinions as_sdt 3

Search only court opinions from the following states as_sdt 4

Table 5.5: Collections - See corresponding section ❧5 in figure 5.1

Form Field Name URL Variable Value Type

Language hl en (English), de (German), ...

Table 5.6: Language Encoding

54

5.1 Calculation of h- and g-indexes

Explanation URL Variable Value Type

Usually representing the search type; as-
signed values differ from the structure

as_sdt 2000, 2001, ...

US State seems to be set to California (value
5) as default, even though the US state selec-
tion is not included in the search as we always
search for articles and only one search type
can be selected at the same time

as_sdts 5

Table 5.7: Unclassified Variable Value Combinations:

In the collections section ❧5 of the advanced search form, it is possible to define a search
type. By default the search type is set to Search articles in all subject areas. Search types
cannot be combined. Table 5.8 contains all search types and the corresponding values.

Search Type Variable Value

Search articles in all subject areas 1.

Search only articles in the following subject areas 1 (with multiple additional as_subj)

Search all legal opinions and journals 2

Search only US federal court opinions 3

Search only court opinions from the following states 4

Table 5.8: The variable "as_sdt" usually defines the search type

After the search results was submitted all results are being displayed in the browser (Sec-

tion ❧2 in figure 5.2). In section ❧1 of figure 5.2 on the right side, you can see the amount
of results discovered by your search. Even though a search can retrieve much more than
a thousand results, Google only allows to view 1000 results. If we choose to display 100 re-
sults per page, we receive a maximum of 10 result pages. This is more then enough for the
calculation of the h-index and also should be sufficient for the calculation of the g-index as
it is as good as impossible that a scholar will achieve a g-index of more than one thousand.
For example the best rated chemist "Whitesides, G. M.", according to the article "Hirsch
index ranks top chemists" [46] by Richard Van Noorden has an approximate g-index of 257

55

5 Implementation

based on a rough calculation.

The results page provides the ability to limit the results (Section ❧1 in figure 5.2) and

navigate through all results via the typical Google navigation (Section ❧3 in figure 5.2).
Following one of these links sometimes had an assignment of the values “2000”, “2001”, ...
to the variable “as_sdt” as a side effect. These values could not be classified. Also their
absence did not seem to affect the search results in any way. Another special variable is
the “as_sdts” variable. It was classified as holding the value for the US states. But these
exclusively occur in the form when searching for "opinions from a court in a specific US
state”. It seemed always to be set to the default value 5, standing for the state of California.

Figure 5.2: Google Scholar Search Results

56

5.1 Calculation of h- and g-indexes

One variable and multiple values

In all the text fields, it is possible to enter multiple values separated by spaces. In the URL
these values are being combined using a “+” operator.

The variable “as_sdts” as well as the variable “as_subj” can appear multiple times in the
same URL as it is possible to select multiple US states and multiple subject areas in the
same form.

With the gained knowledge about the encoding structure, it is possible to directly retrieve
the same search results (in HTML format) as with the advanced Google Scholar form, by
constructing the corresponding URL and requesting it via HTTP. As a result we are now able
to retrieve any search results in our iPhone application, simply by using NSURLConnec-
tion combined with NSMutableURLRequest and the corresponding NSURL. These classes
are part of the Foundation framework which itself is part of iOS SDK. The three classes
are part of the so called URL loading system [18], which contains classes and protocols
for interacting with URLs and communicating with servers using standard internet protocols.

5.1.2 Analysis of the HTML document structure for parsing

Now that we are able to collect the necessary HTML data, we need to extract the actual
values in which we are interested in from the HTML. Thus we need a parser which is able
to parse HTML data. There are several parsers available which can be used in an iPhone
application. Apple provides the sample application XMLPerformance [19] in the iOS Ref-
erence Library which explores two approaches to parsing XML in iOS. The Readme.txt file
[20] of the project states: “The iPhone SDK provides two APIs for parsing XML. At the
Objective C level, NSXMLParser implements an event-driven approach. . . The other API
in the SDK, the C library "libxml2", has a similar approach known as SAX (Simple API for
XML).” Furthermore there are several third party libraries available which can be integrated
into iPhone applications. Amongst others, there are TouchXML, TBXML and KissXML.

In order to choose an appropriate parser for the application, the HTML structure of the
Google Scholar result pages had to be studied before. The easiest way to do that simply is
to submit an advanced search in a browser and copy and paste the resulting HTML in an
appropriate editor. Doing that, the first thing that strikes someone, is that the HTML is very
messy. Quotation marks around class tags are missing, the DOM structure is incomplete
and the HTML document does not even contain a DOCTYPE declaration. In summary the

57

5 Implementation

HTML is far from being valid and definitely should not, and most likely cannot be parsed in
its original format. By examining single results, a comprehensible structure can be found.
Searching for “Manfred Reichert” as the author in the advanced Google Scholar Search
form, we can extract the HTML DIV containing the values of the first publication result
"Adept flex-supporting dynamic changes of workflows without losing control" as illustrated
by listing 5.1. Figure 5.3 shows the corresponding result displayed by the browser.

Figure 5.3: Google Scholar Search Results

Listing 5.1: HTML code of a result

1 <div class=gs_r>
2 <div class=gs_rt>
3 <h3>
4 <a href="http://www.springerlink.com/index

/W852302K53V81700.pdf" class=yC0>ADEPT
flex-supporting dynamic changes of

workflows without losing control

5
6 </h3>
7 </div>
8

9 <a href="http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.38.8630&rep=rep1&

type=pdf" class=yC1>
10 [PDF] from psu.

edu

11
12
13
14 M Reichert… -

Journal of Intelligent Information Systems,

1998 - Springer
15

16 Abstract. Today's workflow management systems

(WFMSs) are only applicable in a secure and

58

5.1 Calculation of h- and g-indexes

17

18 safe manner if the business process (BP) to be

supported is well-structured and there is no

need

19

20 for ad hoc deviations at run-time. As only few BPs

are static in this sense, this significantly <

b>...
21

22
23 <a href="/scholar?cites

=13863410738913124073&as_sdt=2005&

amp;sciodt=2000&hl=en">Cited by 733

24 - <a href="/scholar?q=related:6Z5AlJ26ZMAJ

:scholar.google.com/&hl=en&

as_sdt=2000">Related articles
25 - <a href="http://www.worldcat.org/oclc

/312690337" class=yC2>Library Search

26 - <a href="http://direct.bl.uk/research/1A
/63/RN042324139.html?source=

googlescholar" class=yC3>BL Direct
27 - <a href="/scholar?cluster

=13863410738913124073&hl=en&as_sdt

=2000">All 28 versions
28
29
30 </div>

In order to parse the HTML, we have to analyse the structure of the HTML, so that we know
where in the DOM tree, we can retrieve which values. To gain this knowledge, an analysis
of several search result pages had to be carried out. As a result, listing 5.2 shows the basic
structure of a single publication-result. The invalid HTML code was being corrected.

59

5 Implementation

Listing 5.2: Pseudo HTML Structure

1 <div class="gs_r">
2 <div class="gs_rt">
3 <h3>
4 <!-- 1 -->

5 Link-type ([BOOK],[

PDF],...)
6 <!-- 2 -->

7 <a href="url to the publication resource"

class="yC0">publication name
8 </h3>
9 </div>

10

11 <!-- 3 -->

12 download-
resource

13 download-link-type
([PDF],[HTML],[PS],[DOC],...)

14
15
16
17 <!-- 4 -->

18 Authors - Publications, Year -

Publisher
19 <!-- 5 -->

20 Short preview of the publication

21 <!-- 6 -->

22
23 <a href="url to all results which cite

this publication">Cited by #
24 Related

articles
25 <a href="url for executing a library

search">Library Search
26 BL

Direct
27 <a href="url to all versions of the

publication">All # versions
28

60

5.1 Calculation of h- and g-indexes

29
30 </div>

The structure above contains all relevant elements with their relevant pseudo attributes and
pseudo values. Figure 5.4 illustrates the mapping from the visual browser representation of
a result to the code of listing 5.2. You may have noticed that there is no visual representation
for the code snippet marked with <! − −1 − − >. This is because not all HTML elements
appear in each result, making parsing even more complex.

Figure 5.4: Visual representation

The following set of rules about the appearance of the HTML elements, supplements the
basic structure.

Rules of document structure

1. Each result is wrapped in a DIV of the class “gs_r”

2. Each result includes a DIV with the class “gs_rt” and the inner H3 element

a) The H3 element includes either one of the elements A, SPAN or both

i. If both elements are included, the class of the SPAN is “gs_ctc”

ii. If the a element does not exist, the class of the SPAN is “gs_ctu”

3. The SPAN with the classes “gs_ggs” “gs_fl” is optional

a) If the SPAN exists, it contains an A element and a SPAN element

b) The A element is of the class “yC. . . “

i. In the “yC. . . ” class, the dots are being replaced by a counter.

ii. The counter counts all A elements of the whole document with the classes
“yC. . . ” starting with zero, counting hexadecimal

c) The inner SPAN element is of the class “gs_ctg2”

61

5 Implementation

4. Each result includes the font element (its attribute size is set to -1)

a) The font element includes a SPAN with the class “gs_a”

i. The SPAN element includes authors, publication, publication year and pub-
lisher in the format: authors - publication, year – publisher

ii. At least authors is included, all others are optional

b) The font element optionally includes a SPAN with the class “gs_fl”

i. The SPAN at least one of seven A elements, the most important is the “Cited
by #” A element, as it contains the amount of publications which cite this pub-
lication and the link to those. The other links are: Related articles, Library
Search, BL Direct, All Versions, View as . . . , Cached

c) The font element optionally contains a short preview of the publication as its
content

With the dynamic results structure in mind, we can now concentrate on choosing an appro-
priate parser for our application.

5.1.3 Choosing a parser

Tree based vs. event based parsing

The first thing we have to consider for choosing a parser are the two common but funda-
mentally different approaches of parsing, tree based parsing and event based parsing.

Tree based parsing approaches map the XML document into an internal tree structure and
allow the application to navigate through that tree. The most popular tree based API for
XML and HTML documents, is the DOM API (Document Object Model) specified by the
DOM working group at the W3C [50].

Event based parsing approaches report parsing events to the application through callback
methods and thereby do not need to build an internal tree structure. Instead the application
needs to implement handlers to deal with the different events such as the start or the end
of an element. The most common tree based API is the SAX API (Simple API for XML) [48].

Both APIs have got advantages and drawbacks. DOM parsers usually keep the whole doc-
ument tree structure in memory and thus usually are slower and consume more memory
than SAX parsers. This needs to be considered especially for parsing large documents.

62

5.1 Calculation of h- and g-indexes

The internal tree structure on the other hand makes accessing elements easy. Some DOM
parsers even allow modifying the structure of the tree in memory like adding or deleting el-
ements. In some cases it is inefficient to build a tree structure in memory. It might not make
a lot of sense to just map the data into a new structure and discard the tree subsequently.
Retrieving specific data with a SAX parser in turn can become very difficult depending on
the nested level and the complexity of the document structure.

At this point we know that using a SAX parser might, and probably will be difficult due to the
complexity and nested level of our HTML structure. Choosing a DOM parser instead might
result in slow performance and memory issues especially due to the restricted resources
on a mobile platform. Another point to consider for development is that we do not have any
influence on the HTML structure. If it changes, it is very likely that the parsing functionality
of the application would have to be adjusted accordingly. This means the final implemen-
tation of the parser should be easy to maintain and still flexible in concern of small changes.

To finally make a decision we will implement and test the different approaches in terms of
speed, maintainability and flexibility. For the following performance tests we have used an
iPod Touch 8GB device of the second generation. The installed iOS version was 3.2. To ac-
tually determine the performance of certain code sections we measure the execution times
in milliseconds with the data type NSTimeInterval. At the very beginning when we started
developing our application, we used the iPhone SDK in the version 3.2 for development and
the corresponding version of Apple’s iPhone OS which was not named iOS yet. Short after
we started developing, iOS 4.0 was released and we then used the new SDK package to
develop for iOS 4.0.

As the representative of the event based parsers, we will test NSXMLParser as it imple-
ments an event driven approach similar to the SAX API. It is included in the iPhone SDK,
easy to use for simple tasks and written in Objective C. Because NSXMLParser does not
build a tree structure of the document, one challenge will be to implement some functional-
ity to keep track of the document structure.

TouchXML will serve as the representative of the tree based parsers. The project descrip-
tion [49] states: “TouchXML is a lightweight replacement for Cocoa’s NSXML* cluster of
classes. It is based on the commonly available Open Source libxml2 library.” As mentioned
by the "Readme.txt" file of Apples XMLPerformance project, the libxml2 library is a C Library
available in the iPhone SDK. TouchXML provides comfortable functions for navigating the
xml tree and even allows XPath queries [51]. Thus it should be uncomplicated to access

63

5 Implementation

the HTML elements and retrieve the relevant data whereas building the tree might steal
some time and could result in slow parsing.

Table 5.9: Performance Comparison of TouchXML and NSXM

Search Value TouchXML NSXML Performance

37,23 33,65 overall processing time in sec.

9,07 6,94 overall parse time in sec.

1.389.831 1.390.115 overall bytes.
Weber

153.234 200.305 bytes per sec.

36,83 36,45 overall processing time in sec.

9,20 9,27 overall parse time in sec.

1.418.426 1.418.142 overall bytes.
Braun

154.177 152.982 bytes per sec.

31,62 32,64 overall processing time in sec.

8,97 9,30 overall parse time in sec.

1.382.759 1.382.475 overall bytes.
Reichert

154.154 148.653 bytes per sec.

10,95 9,99 overall processing time in sec.

3,20 3,05 overall parse time in sec.

405.121 405.121 overall bytes.
Dadam

126.600 132.827 bytes per sec.

32,46 30,39 overall processing time in sec.

8,88 8,95 overall parse time in sec.

1.169.849 1.169.567 overall bytes.
Van der Aalst

131.740 130.678 bytes per sec.

64

5.1 Calculation of h- and g-indexes

Table 5.9: Performance Comparison of TouchXML and NSXM

Search Value TouchXML NSXML Performance

35,8 36,27 overall processing time in sec.

9,45 9,21 overall parse time in sec.

1.400.466 1.395.537 overall bytes.
Brown

148.197 151.524 bytes per sec.

6,93 6,90 overall processing time in sec.

1,91 2,00 overall parse time in sec.

276.697 276.981 overall bytes.
Peter+Dadam

144.868 138.491 bytes per sec.

11,98 10,29 overall processing time in sec.

3,48 3,46 overall parse time in sec.

478.406 478.406 overall bytes.
Manfred+Reichert

137.473 138.268 bytes per sec.

33,44 33,65 overall processing time in sec.

9,38 9,16 overall parse time in sec.

1.409.578 1.409.578 overall bytes.
Michael+Weber

150.275 153.884 bytes per sec.

144.524 149.735 average bytes per sec.

Table 5.9 shows the results of the comparison of the TouchXML implementation with the
NSXML implementation. The overall processing time includes generating the query URL
from the form, downloading the HTML, preprocessing the raw HTML for parsing and the
actual parsing itself. One might notice that the overall amount of bytes, being processed
for the same search, vary. The reason therefore is that the returned HTML in deed varies.
Not just attributes, like HREF attributes containing hash keys, but also minor content parts
differ from search to search. This issue does not influence the comparison of the parsers

65

5 Implementation

in anyway as we calculate how long it took the parser to parse the given amount of data.
But it should be kept in mind during development.

The table shows that the TouchXML implementation and the NSXML implementation be-
have very similar in terms of performance. Both parser implementations handle about the
same amount of bytes per second and both take up a contingent of the overall processing
time of less than 30%. This can be traced back to the fact that in the NSXML parser im-
plementation, tracking the nested document structure does take some time. It also leads to
less maintainable code. The TouchXML implementation in contrast supports XPath queries
which makes accessing data easy. It results in more flexibility in case of changes and better
maintainability as expected.

In both implementations the actual parsing time is less than 30%. This means the impact
of parsing in concern of speed is limited and we could reduce the processing time by using
a faster parser at maximum of less than 30%. To be able to reduce the processing time
we would need a very fast parser. TBXML is another third party library parser. The project
home page [36] states: “TBXML is a light-weight XML document parser written in Objective-
C designed for use on Apple iPad, iPhone & iPod Touch devices. TBXML aims to provide
the fastest possible XML parsing whilst utilising the fewest resources. This requirement for
absolute efficiency is achieved at the expense of XML validation and modification.” Due
to the fact that we preprocess the HTML before we parse it and meanwhile make sure it
is valid, we can set validation aside and try to implement the parsing with the TBXML library.

Table 5.10: Performance Comparison of TouchXML and TBXML

Search Value TouchXML TBXML Performance

37,23 27,87 overall processing time in sec.

9,07 1,71 overall parse time in sec.

1.389.831 1.389.831 overall bytes.
Weber

153.234 812.767 bytes per sec.

36,83 29,54 overall processing time in sec.

9,20 1,74 overall parse time in sec.

1.418.426 1.418.142 overall bytes.
Braun

154.177 815.024 bytes per sec.

66

5.1 Calculation of h- and g-indexes

Table 5.10: Performance Comparison of TouchXML and TBXML

Search Value TouchXML TBXML Performance

31,62 28,92 overall processing time in sec.

8,97 1,74 overall parse time in sec.

1.382.759 1.382.473 overall bytes.
Reichert

154.154 794.524 bytes per sec.

10,95 7,98 overall processing time in sec.

3,20 0,61 overall parse time in sec.

405.121 405.689 overall bytes.
Dadam

126.600 665.064 bytes per sec.

32,46 25,33 overall processing time in sec.

8,88 1,63 overall parse time in sec.

1.169.849 1.169.567 overall bytes.
Van der Aalst

131.740 717.526 bytes per sec.

35,8 27,85 overall processing time in sec.

9,45 1,84 overall parse time in sec.

1.400.466 1.396.105 overall bytes.
Brown

148.197 758.753 bytes per sec.

6,93 5,15 overall processing time in sec.

1,91 0,36 overall parse time in sec.

276.697 276.697 overall bytes.
Peter+Dadam

144.868 768.603 bytes per sec.

11,98 8,21 overall processing time in sec.

3,48 0,65 overall parse time in sec.

478.406 478.406 overall bytes.
Manfred+Reichert

137.473 736.009 bytes per sec.

67

5 Implementation

Table 5.10: Performance Comparison of TouchXML and TBXML

Search Value TouchXML TBXML Performance

33,44 27,51 overall processing time in sec.

9,38 1,74 overall parse time in sec.

1.409.578 1.409.578 overall bytes.
Michael+Weber

150.275 810.102 bytes per sec.

144.524 764.264 average bytes per sec.

As you can see in table 5.10, the TBXML implementation beats the two others in concern of
speed. In fact compared to the two others it is more than five times faster (needs only about
18,77% of the time). Unfortunately it is not possible to access content in specifically nested
structures with the TBXML parser. For example it is not possible to retrieve the content “but
inaccessible here” as demonstrated by listing 5.3

Listing 5.3: TBXML html parsing problem

1 <div>
2 accessible here

3 <p>
4 and accessible here

5 </p>
6 but inaccessible here

7 </div>

According to the project page [36] , one of the goals is:

• XML files conforming to the W3C XML spec 1.0 should be passable.

The above structure does not violate the W3C XML Specification 1.0. But there is no way
to access the “but inaccessible here” content. Because there is no straightforward way of

68

5.1 Calculation of h- and g-indexes

retrieving such nested content we cannot use TBXML in our project. Even though the parser
is really fast compared to the two alternatives and accessing the elements and attributes
is almost as easy as with XPath queries, accessing such nested content would require an
unpleasing workaround and might cause troubles at some point. This being said, we chose
to use TouchXML in our project. It supports XPath queries and thus makes accessing
elements and attributes comfortable and maintainable. Using TouchXML for parsing, it
takes up about 30% of the overall processing time which actually results in a maximum of
about ten seconds exclusively for parsing the HTML of one search query. This is based
on the fact that Google returns only a maximum amount of 1000 results which we choose
to receive spread on a maximum of 10 HTML documents with 100 results each. (Compare
5.1.1) This means if we are using TouchXML instead of TBXML we have to accept that
the application needs about eight additional seconds for parsing the maximum of 10 HTML
documents.

5.1.4 Calculation Algorithms

H-Index Calculation

The h-index is defined as the amount h of publications with a citation count >= h. This
leads to the following basic algorithm.

Listing 5.4: H-Index Calculation Algorithm

1 //First we have to order all publications descending based

on the citation counts

2 allPublications.orderDesc();

3

4 int citationCount = 0;

5

6 for(int i = 0; i < allPublications.length; i++){

7 citationCount = allPublications[i].citationCount;

8 //i publications with at least i citations

9 if(citationCount < i+1){

10 break;

11 }

12 }

13 return i;

Similarly to the h-index the g-index is defined as the unique number such that the g most
cited articles together received at least g2 citations. Thus the algorithm can be retrieved by

69

5 Implementation

a simple transformation to the algorithm for calculating the h-index.

Listing 5.5: G-Index Calculation Algorithm

1 //First we have to order all publications descending based

on the citation counts

2 allPublications.orderDesc();

3

4 int citationCount = 0;

5

6 for(int i = 0; i < allPublications.length; i++){

7 //i papers with at least i citations

8 citationCount += allPublications[i].citationCount;

9 if(citationCount < (i+1)*(i+1)){

10 break;

11 }

12 }

13 return i;

For both calculations we retrieve all relevant publications of a search from the database in
descending order based on their citation counts.

5.1.5 The Search Flow

The search view controller plays a major role in our application as this is the controller
which implements all parts of the data retrieval and processing. Just like many other con-
trollers classes of our application, the SearchViewController class is a standard UIView-
Controller class. It is loaded directly when the application is launched. It contains the
interface to Google Scholar and functionality to request and clean the retrieved HTML for
subsequent parsing. The search view controller instantiates the parser object in its view-
DidLoad method. During data retrieval it instructs the parser object and acts on commands
of the parser as it is its delegate and conforms to the ParserDelegate protocol. Figure
5.6 visualizes an overview of the search flow starting with the user entering data in the
search view controller’s form. All delegation messages the parser sends to its delegate
are coloured in red. The search view controller’s default user interface is a simple search
form, as illustrated in figure 5.5 . It can be extended by pressing "Advanced Search" and
"Limit Subject Areas" subsequently in order to use the full functionality of the implemented
Google Scholar API. Figure 5.7 shows a clipping of the advanced search form. It contains
almost all fields of Google’s form. For comparison see 5.1. During the data retrieval, thus

70

5.1 Calculation of h- and g-indexes

as soon as the user pressed the "go" button, the search view controller displays a view,
visualizing the progress of the search. Figure 5.7 shows a screen-shot of latter. When the
search flow was completed, the search view controller creates an SearchResultsViewCon-
troller object and pushes it on the navigation stack of the underlying navigation controller to
present the search results. We will talk about the SearchResultsViewController class in the
next section. The SearchViewController class has a corresponding XIB file which contains
the default user interface elements as well as the view visualizing the process of the search.
When a user taps the "Advanced Search..." button the user interface is being adjusted and
extended by several elements programmatically. You may wonder what the switch "Try to
editing copy of the latest stored query" does. It will be explained in the last section of the
implementation 5.7.

Figure 5.5: SearchViewController’s default interface - See ❧1 in fig. 4.3

71

5 Implementation

Figure 5.6: Search Flow72

5.2 Manage search results

Figure 5.7: SearchViewController’s progress view & advanced search form

5.2 Manage search results

5.2.1 Displaying the calculated indexes

The search results view controller is the controller which is responsible for presenting the
two scholarly indexes as illustrated by figure 5.8. The class SearchResultsViewController
inherits from the ResultsViewController class which provides most functionality. An com-
mon user interface element is the tool bar which can be found in many view controller
interfaces. The class UIViewController provides the method setToolBarItems: animated:.
Note that you can only use this method if your controller is managed by a UINavigation-
Controller object as this is the class providing the tool bar. See "UIViewController Class
Reference" [26] for further information. If you do not have a underlying navigation con-
troller, you can add a tool bar either programmatically as a sub view in the view controller’s
viewDidLoad method or simply with Interface Builder in your XIB file. The most interesting
feature of the ResultsViewController class probably is the functionality to email the results
which we will talk about later. The SearchResultsViewController class itself is small and al-

73

5 Implementation

most exclusively implements its user interface. Therefore it has a NIB file which contains a
UIScrollView for adding the user interface elements after the NIB was loaded. Alternatively
we could have resigned to use a XIB file here and add the scroll-view programmatically as
the XIB exclusively contains the scroll-view.

Figure 5.8: SearchResultsViewController’s user interface - See ❧2 in fig. 4.3

5.2.2 Emailing results

The ResultsViewController class is the super class of the SearchResultsViewController
class. In order to provide the functionality to email results, it conforms to two protocols,
the MFMailComposeViewControllerDelegate protocol which is provided by the MessageUI
framework and the custom protocol EmailResultsDelegate which we defined in the Email-
ResultsModalViewController class. Latter is for the communication of a modal view con-
troller object of the class EmailResultsModalViewController and a ResultsViewController
controller object. The MessageUI framework provides the controller class MFMailCom-
poseViewController which allows to implement functionality to send email (as well as text
messages) from within your application easily. To do so, you have to import the MessageUI
framework and the MFMailComposeViewController class in your controller so that you can

74

5.2 Manage search results

create an instance of it (or one of MFMessageComposeViewController for texting). The
class provides several methods to set up an email. Amongst others attributes, it allows
to define an email subject (setSubject:), the message-body (setMessageBody: isHTML:)
and attachments (addAttachmentData: mimeType: fileName:). After you have checked
whether the device’s email client is set up properly, simply by calling the mail compose
view controller’s canSendMail method, you can present the mail compose view controller’s
email interface, with the same techniques you would present the view of any other con-
troller. Figure 5.9 shows a screenshot of it on the right side. The search results view
controller presents the email interface modally. This is a special technique for presenting
a controller’s view which does not fit into the current navigation flow. But when the user
taps the "Email Results" button on the tool bar of the SearchResultsViewController, the
email interface is not being displayed right away. At first the search results view controller
presents the interface of an EmailResultsModalViewController object, as illustrated by the
left screenshot of figure 5.9. It is also presented modally and offers the ability to limit the
amount of publications which will be emailed.

Figure 5.9: Left: EmailResultsModalViewController’s user interface , Right: MFMailCom-
poseViewController’s user interface

75

5 Implementation

Modal View Controllers

The so called modal view controllers are not of a special kind of controllers. It sounds
like they are controllers which inherit from the "ModalViewController" class or something
like that. But that is not the case. The expression modal view controllers refers to pre-
senting any kind of UIViewController object in a modal manner. Presenting a modal view
controller makes sense when you have to interrupt the current workflow of your applica-
tion. For example to gather information from the user or temporarily present information
to the user. The UIViewController class provides the method presentModalViewController:
animated: to present a view controller modally. Thus any view controller can present an-
other modally. Even modally presented view controllers can present other view controllers
modally. Furthermore you can choose between several transition style for presenting a
modal view controller by setting the property @property(nonatomic, assign) UIModalTran-
sitionStyle modalTransitionStyle of a view controller to the specific UIModalTransitionStyle.
The transition should differ from the typical navigation transition for a better usability. Usu-
ally the controller which presents another modally, is also responsible for dismissing the
modally presented view controller by calling the method dismissModalViewControllerAni-
mated:. Again delegation is the default communication concept between the two controllers.
(Compare section 2.3.3). The modal view controller defines a delegation protocol to which
the presenting view controller has to conform.

Using the example of the EmailResultsModalViewController class, the delegation proto-
col is the EmailResultsDelegate protocol to which ResultsViewControllers object conforms.
The EmailResultsDelegate protocol is being defined like described in listing 5.6.

Listing 5.6: EmailResultsDelegate protocol

1 @protocol EmailResultsDelegate

2 @required

3 - (void)presentMailVC:(int)withLimit;

4 - (void)cancelEmailResults;

5 @end

In the cancelEmailResults method, a results view controller simply dismisses the EmailRe-
sultsModalViewController object with the mentioned method. In the presentMailVC: with-
Limit: method it additionally creates a MFMailComposeViewController object to present
it subsequently. In this case we first dismiss the current modal view controller (EmailRe-
sultsModalViewController object) to present another view controller MFMailComposeView-
Controller object modally. As an alternative we could make the first modal view controller

76

5.2 Manage search results

present the second view controller modally. This would enable us to dismiss both controllers
by dismissing the root modal view controller. For more information see [10].

PDF Support

The requirements define the functionality to email the search results in the form of a PDF-
document. Apple’s Quartz 2D Programming Guide contains the document "PDF Document
Creation, Viewing, and Transforming" [12]. Amongst other topics it describes how to create
a PDF document using the Quartz 2D drawing engine. Although we quickly managed to
make use of the Quartz engine to create PDF documents containing our defined content,
we had to find out that the PDF documents could not be displayed on most non-Apple de-
vices. After some searching on the web we found that many others experienced similar
problems. Apparently this is due to a bug which does not include the font into the PDF
document correctly. Unfortunately we neither could find an official document about this bug
nor could we set up a quick solution for the problem ourselves and thus decided to use the
HTML format instead. One might argue that we could have used a third party PDF library to
realize PDF support, we are aware of this but we deliberately decided against the integra-
tion of a third party library as the alternative of using HTML does not have any drawbacks
and can be realized with standard Objective-C file handling technologies.

File Management

To create the search results HTML document, we firstly write the HTML code to a NSMuta-
bleString object. Secondly we convert it to a normal NSString object. Before we can write
the file to a directory in our sandbox, we have to determine the path to the destination
folder. Due to the fact that we create the HTML documents only temporarily to send them
via email, the /tmp folder is the right place to store these files. The only available alternative
would be the /Documents directory as we will not be able to create files and directories
inside the application bundle on the device. To create the path to the /tmp directory we
use the method NSHomeDirectory() to return the path to the home directory. We then have
to append @"tmp/filename.html" to specify the complete path to the file in the /tmp folder.
Lastly we write our string to a file by using the method writeToFile: atomically: encoding:
error: which is available for NSString objects.

5.2.3 Displaying the publications of a search

A user can check all the publications, the two indexes are based on by clicking the "Publi-
cations" button of the search results view controller’s tool bar (See earlier 5.8). By doing so,

77

5 Implementation

an instance of the PublicationsTableViewController is being pushed on the stack which dis-
plays the publications in an UITableView object as demonstrated by figure 5.10. In conjunc-
tion with the publications table view controller, the table view enables the user to navigate
through a list of all publications. The publications are sorted in descending order based on
their citation counts and all publications contributing to the two indexes are marked in the
corresponding colours yellow and green. As you will see later, the PublicationsViewCon-
troller class also contains functionality for editing the results.

Figure 5.10: PublicationsTableViewController’s user interface

The UITableView class is a subclass of UIScrollView which is part of the UIKit framework
and is meant for displaying and editing data in the form of a table. The view’s table has
a single column and allows vertical scrolling only. The rows are represented by objects of
the class UITableViewCell, which are special views for actually presenting the data. The
UITableViewCell class contains some built in sub views such as textLabel, imageView and
methods for displaying your content and handling cell interactions like cell selection and
highlighting. For further information about the class see [23]. If the standard properties and
methods are not sufficient for your needs, you can subclass UITableViewCell to implement
your custom functionality. We will provide some more details about the UITableViewCell

78

5.2 Manage search results

class in the next section. But first we will introduce the container which class which holds
the cell objects, the UITableView class. You can instantiate a UITableViewCell object with
one of two styles, either UITableViewStylePlain or UITableViewStyleGrouped. The style as-
signs a certain visual appearance to the way the table view presents its sections and rows.
See figure 5.11 for examples. A table view is subdivided into one or more sections which
can be identified by an index. Each section contains its own rows of which each can be
identified by another index within the section. Table views which are of the style UITable-
ViewStylePlain can have an additional index which appears as a list of items (such as the
numbers 1, 101, 201, 301 on the right side of the table view in figure 5.11). By clicking
on one item, the table view jumps to the corresponding section. In order to display data
and to interact with an UITableView object, there must be a delegate and a data source
object. Typically this is a UIViewController object which conforms to the UITableViewDel-
egate protocol and acts as the UITableViewDataSource object. Many methods defined
by the UITableViewDelegate and the UITableViewDataSource protocols take NSIndexPath
objects as parameters. An index path represents a path to a node in a tree of nested
arrays. The index path arguments of the two table view protocol methods contain two in-
dexes, the section index and the row index and thus represent the path to a specific row
(UITableViewCell). For further information about UITableViewDataSource see [15]. For
more information about the UITableViewDelegate protocol check out [16]. The instance of
UITableView which belongs to our PublicationsTableViewController object can contain up
to 1000 rows. Therefore one might think it has 1000 UITableViewCell objects to display all
rows. Due to the fact that this would be very ineffective and probably would not work with
the restricted resources of the iPhone, the UITableView object caches its UITableViewCell
objects. It has only as many objects as are actually visible on the screen and reuses these
objects to display the entire data set. The responsible method for reusing the cell objects
is the table view’s dequeueReusableCellWithIdentifier: method. For detailed information
check out [22].

79

5 Implementation

Figure 5.11: Left: UITableViewStylePlain - Right: UITableViewStyleGrouped

UITableViewCell

As mentioned before the UITableViewCell class is a special UIView class for presenting and
managing data in the table of an UITableView object. The class provides multiple view prop-
erties (textLabel, detailedTextLabel, imageView, contentView, backgroundView,...) which
let you build the visual appearance of the cell. When you create a cell you can choose
to implement a predefined cell style similar to when you create a table view. A cell style
positions the sub views of the cell in a certain manner and can be seen as a template for
presenting data in a certain layout. In many situations the predefined styles and views will
be sufficient to present your data. If they are not, you have two options to extend your
cells. You can simply add your custom sub views to the content view of a cell. The Com-
pareTableViewController class in our application implements its cells this way. If you decide
to add custom views to the cell’s content view, you have to think about how you can reuse
your sub views when you make use of a reuse identifier. And you always should reuse your
cells. You might have to adjust the heights of the cell and the layout of the sub views for
each cell when your content is of dynamic size. The second option is to subclass UITable-
ViewCell. In our application we did this to present the rows of the publications table view

80

5.2 Manage search results

controller by our custom class Cell. Each object of the class Cell presents one publica-
tion in a PublicationsTableViewController object. Therefore it contains six labels (cites, title,
authors, ...) which can be set through corresponding methods (setTitle:, setCites:, setAu-
thors:, ...). Another method allows to set the colours in which the different elements are
being displayed. Furthermore our cell automatically calculates the heights of its sub views.
Thus we can determine the necessary cell height through the properties rightSectionCur-
rentHeight and leftSectionCurrentHeight and adjust the cells in the delegate’s tableView:
heightForRowAtIndexPath: method.

The UITableView class not only handles the data visualization but also enables the user to
add and edit data presented by the cells. This is why the UITableViewCell class has many
"editing" properties, which define the behaviour of the cell when it is in editable state. A cell
enters the editable state when the table view calls the setEditing: animated: method on the
cell with editing set to YES. Therefore the editing style can be set through the editingStyle
property. The editing style defines special controls (deletion controls, insertion controls, re-
ordering controls) that the table view’s delegate has assigned to each row in the tableView:
editingStyleForRowAtIndexPath: method. As the names of the controls indicate, they allow
to trigger methods to delete, insert and reorder cells. For detailed information check out
the chapters "Inserting and Deleting Rows and Sections" and "Managing the Reordering
of Rows" in Apple’s "UITableView Programming Guide" [14]. In our application we neither
make use of the editing style (as we exclusively need to delete publications) nor any of
the deletion-, insertion- and reordering controls. We will talk about how the Publication-
sTableViewController class implements its functionality to delete publications in the next
section.

5.2.4 Editing results

The user must be able to delete publications which are part of the results but do not belong
to the requested author or more generally speaking to the requested search. Deleting a
publication results in an automatic recalculation of the two scholar indexes. For inserting,
editing and deleting rows the UITableViewDataSource protocol provides the method: table-
View: commitEditingStyle: forRowAtIndexPath:. When this method is implemented by the
data source, the table view automatically provides a swipe-to-delete feature which allows to
trigger this method by swiping over the cell and pressing the appearing "Delete" button. See
figure 5.12. Doing so calls the methods with the UITableViewCellEditingStyle argument set
to UITableViewCellEditingStyleDelete. In the case of the PublicationsTableViewController
class, we exclusively make use of this method to delete publications and thus do not need
to differentiate between multiple UITableViewCellEditingStyles. To actually delete a publi-
cation we call a database method inside this function, which marks the result as deleted

81

5 Implementation

and reloads the table view to reorder the rows. Deleted results appear in an additional "Re-
jects" section at the bottom of the table view and are coloured in red. See the screenshot
on the right side of figure 5.12. Deleting a publication in the rejects section in the same
manner, will restore the publication.

Figure 5.12: PublicationsTableViewController’s: Deleting publications & Rejects section

5.2.5 Displaying a publication

When you tap one of the rows of the publications table view controller, a PaperViewCon-
troller object is being created and presents its user interface. Figure 5.13 shows a corre-
sponding user interface. It contains further information about a publication. Additionally it
provides up to four functions. If Google could find a link to the actual publication you can
use the very left button of the tool bar to browse the URL. The second feature is the "Graph"
feature. By clicking the corresponding button, a graph which visualizes the evolution of the
citations over time, will be calculated and displayed for the respective publication. We will
talk about it later as this is one of the features which emerged during the development. In
case the publication is merged with others, the third button allows to navigate to a controller

82

5.2 Manage search results

with which you can dissolve the merges. It will be explained in section 5.3.3. Last but not
least, if Google found a link to the publication, you can email this link simply by clicking the
respective button in the tool bar.

Figure 5.13: PaperViewController’s user interface

The PaperViewController class inherits from our BasicViewController class. Its correspond-
ing XIB file contains a UIScrollView to which we dynamically add several UILables in the
controller’s viewDidLoad method to display the publication details. Dynamically means we
first calculate the size of the text, add the label and adjust the height of the scroll-view if
necessary. Furthermore we have added a tool bar with four buttons to trigger the functions
mentioned above. By now you know that most of the application is made up of UIViewCon-
trollers objects and their corresponding UIView objects which contain the user interface the
controllers present. The PaperViewController class is another example of a typical view
controller. In order to send email, the controller conforms to the MFMailComposeView-
ControllerDelegate protocol and imports the MessageUI header and the MFMailCompo-
seViewController header file. We already talked about emailing within an application in
section 5.2.2. The methodology here pretty much is the same. For further information you
can check out Apple’s MessageUI Framework Reference [9].

83

5 Implementation

In some situations we would like to display a web document in our application. In case the
Google search engine could retrieve a link to the web resource where we might be able to
read the actual publication, this is one of those situations. In order to embed web content
within your application the UIKit framework provides the class UIWebView. After you have
created a UIWebView object you can use the loadRequest: method to connect to a given
URL. The UIWebView class actually allows to implement standard browser functionality
within your application. The methods stopLoading, reload, goBack and goForward allow to
stop, reload the requests and navigate through the web. The class defines the delegation
protocol UIWebViewDelegate. It enables the delegate to react on the events webView:
shouldStartLoadWithRequest: navigationType:, webViewDidStartLoad:, webViewDidFin-
ishLoad:, webView:didFailLoadWithError:. But there is even more. A UIWebView object
can automatically detect phone numbers, http links, email address defined by it’s dataDe-
tectorTypes property in order to provide respective functionality. For further information
check out the UIWebView Class Reference [17].

As I said, we would like to display web content in several situations. Therefore we built
the WebViewController class. It is a usual view controller which serves as the delegate for
its own UIWebView object. The corresponding XIB file contains the UIWebView object, a
tool bar to support the browser functionality and a UIActivityIndicatorView object to indicate
when the controller is busy loading. Figure 5.14 shows an example of the web view con-
troller’s user interface.

To actually see a WebViewController object in action click on the very left button of the
paper view controller’s tool bar. The WebViewController object will load the publication’s
respective web document. Not all publications have a respective URL and for others you
might need an account in order to read them. However, many of the publications can be
read directly within the application.

84

5.2 Manage search results

Figure 5.14: Example of a WebViewController user interface

5.2.6 Data persistence on the iPhone

After submitting a specific search, we want to be able to maintain our results. This means
we have to store the data we retrieved during parsing on our device at some point. The most
common ways of saving data to the iPhone are Property Lists (Plists), Object Archiving,
Core Data and SQLite. Depending on what task you want to accomplish, it is important to
know about a basic security concept of iOS: Each application only can access its reserved
portion of the file system, the so called sandbox. Any other parts of the file system cannot
be accessed. In particular all of the mentioned concepts therefore usually store data in the
/Documents folder inside the application’s sandbox. An alternative for temporary data is
the /tmp folder. The following sections will give a short overview of the concepts mentioned
above.

Property Lists

Property lists provide a primitive way to store and create serialized objects. Although any
object can be serialized only a limited number of types can be stored using a property list.

85

5 Implementation

Some types are for primitive values and others are containers which can hold those values:
NSString, NSData, NSDate, NSNumber, NSArray, NSDictionary. Property Lists are con-
venient for persisting small amounts of primitive data. For more complex data hierarchies,
custom objects and large amounts of data (more than a few hundred kilobytes), property
lists will quickly become insufficient.

Object Archiving

Object Archiving can be seen as the next higher level from Property Lists. As the name
already indicates, object archiving provides a convenient way for storing objects of an ar-
bitrary class in an archive. It allows you not only to archive a single object but complex
webs of interrelated objects. These webs are called object graphs. In an archive arbitrarily
complex webs of interrelated objects can be stored at which the identity of every object in
the graph and all its relationships to other objects are being preserved. Objects therefore
have to conform to the NSCoding protocol. An example of object archives are the NIB
files created by Interface Builder to archive user interface objects (Compare chapter 2.4).
For further information about object archiving check out the "Archives and Serializations
Programming Guide" [21].

SQLite

iOS ships with SQLite, a lightweight reliable and powerful relational database which directly
reads and writes to ordinary disk files. One big advantages of SQLite library is that it can
handle relative large amounts of data (up to one gigabyte and more) efficiently. We can
define data structures independently from corresponding model objects and perform basic
SQL queries on these. Another advantage of SQLite is that the database format is cross
platform.

Core Data

Core Data is a fully featured persistence framework which helps you manage models in
the sense of the model-view-controller design pattern. It implements intelligent caching
mechanisms and allows you to keep a subset of your model objects in memory at any time
which can be crucial to memory management. Model objects managed by Core Data can
be seen as a representation of a record in a database table. Amongst other things, Core
Data can give automatic support for common tasks like save, restore undo and redo and for
maintaining reciprocal relationships between objects. The Core Data framework is based

86

5.2 Manage search results

on the built in SQLite library.

Table 5.11 gives an overview of the different technologies.

Property Lists

- Small amounts of data (less than a few hundred KB)

- No custom objects

- I.E. to save user settings

Object Archiving

- Any objects conforming to NSCoding protocol

- Stores the objects not just values

- Complex object graphs can be archived

SQLite

- Relational Database

- C API

- Can handle large amounts of data (up to GB)

Core Data

- Framework with high level abstraction

- No Database queries necessary

- Especially useful to manage model objects

Table 5.11: The different possibilities of data persistence

5.2.7 Caching and Saving

In our application we have to differentiate between caching and saving at first. Obviously it
makes sense to have the ability to save results, simply for later use. Caching on the other
hand is necessary to protect the user from resubmitting the same queries. This is impor-
tant because Google only allows to request a certain amount of data in a certain amount
of time based on an IP address. By using a caching mechanism we try to prevent the user
from quickly getting blocked by Google. Secondly we must have the ability to manage large
amounts of data as a single search result with all the contained publications may allocate
about 800KB on the device and the user is in charge of which search results he wants to
keep. It is a design decision whether we want to map our data to corresponding models
(in terms of the MVC pattern) or not. Because of the straightforward structure of the result
data, we can stick to basic data structures instead of mapping our data to custom models.

87

5 Implementation

For full flexibility we eventually decided to use SQLite over Core Data and all other options.
SQLite provides basic date-time functionality and thus not only serves for saving but also
for caching. As we know, Objective C is a superset of ANSI C. Therefore it is possible
to mix C and Objective C within your project. The SQLite API for instance is a C API. It
is not included in XCode projects by default. You can do so by right clicking your Frame-
works folder in XCode, Add –> Existing Frameworks... and then choose libsqlite3.dylib.
To actually use it in one of your Objective C classes you have to import the sqlite.h. We
will not cover the SQLite API in this diploma thesis. The documentation can be found at
http://www.sqlite.org/. In our application all database methods are bundled into the
custom class SqliteController which handles database interaction through the SQLite API.
The two controller of the types SearchViewController and HistoryTableViewController are
the only controllers which actually instantiate this class. Compare with the "Architecture"
chapter 4. These two controllers then pass on pointers of their SqliteController objects to
other controllers. It simply would be inefficient to create a sqlite controller for each con-
troller which needs to interact with the database. In fact it would be even more efficient to
instantiate the SqliteController class only once in the AppDelegate and then pass on the
pointer to the database controller from there. There are probably different strategies on how
to achieve this but it definitely is something to consider when your application implements
some kind of database controller.

Caching Mechanism

To implement our caching mechanism we make use of the date-time functionality provided
by SQLite. Each time when a controller of the class SqliteController is being instantiated
by one of our two root controllers, the sqlite controller checks for cached data which is older
than twelve hours. In case there are older queries and respective publications, they are
being deleted. To distinguish between cached and stored data, we simply set the keep
integer field of the query entries to the respective boolean values. SQLite does not provide
a separate boolean storage class (Compare queries table structure 4.9).

5.2.8 Manage stored results

The HistoryTableViewController object of our application is the controller which displays
search results which were being stored or are still in the cache. Like the PublicationsTa-
bleViewController objects, the HistoryTableViewController object displays its data in a table
view. To differentiate between the search results, each cell displays the name of the author
and the date of when the search was being submitted. To distinguish between cached and
stored results the history table view controller displays either a transparent floppy disk or a
coloured floppy disk as illustrated by figure 5.15.

88

http://www.sqlite.org/

5.2 Manage search results

Figure 5.15: HistoryTableViewController’s user interface

Unlike our PublicationsTableViewController class, the HistoryTableViewController class does
not inherit from any of our custom controller classes. This has the advantage that we can
make it inherit from the UITableViewController class provided by the UIKit framework. The
UITableViewController class is a template for a special controller which presents data in
its predefined UITableView. The controller object thereby automatically serves as the data
source and as the delegate object of its table view. This mainly saves writing code by au-
tomating some procedures we had to take care of ourselves when we implemented the
PublicationsTableViewController class. For instance we do not need to create a UITable-
View as the controller’s view already is of this type. Furthermore the data source and
delegate get hooked up to the controller object automatically when we create it. Generally
speaking, when you want to display data in a table view, you should subclass UITable-
ViewController. If this is not possible you can still implement a table view, data source and
delegate independently.

Another difference between the PublicationsTableViewController class and the History-
TableViewController class are the cell objects which they use to display their data. While
the PublicationsTableViewController class makes use of our custom class Cell, the His-

89

5 Implementation

toryTableViewController class uses a standard version of the UITableViewCell class. To
create one of the standard versions of the class UITableViewCell, you initialize it with a
predefined style using the method initWithStyle: reuseIdentifier:. In this case we have used
the style UITableViewCellStyleSubtitle. It provides a left-aligned label across the top and a
left-aligned label below. In order to display the floppy disk icon, we simply add the icon to
the cell’s imageView. Figure 5.16 illustrates the layout of the three view properties. (Also
compare section 5.2.3)

Figure 5.16: UITableViewCellStyleSubtitle - UITableViewCell out of the box

The HistoryTableViewController object, just like the SearchViewController object is being
presented by a UINavigationController object (See chapter 4 for details). When the user
taps on of the rows, an instance of HistoricResultsViewController is being created and be-
ing pushed on the stack of the underlying navigation controller to present a more detailed
view of the search query. The HistoricResultsViewController class is almost identical to the
SearchResultsViewController class. The only difference to the SearchResultsViewCon-
troller class is the user interface. Instead of an explanation of what to do next, the historic
results view controller displays the details of the search query. Both controllers inherit their
functionality from their super class ResultsViewController which was being explained in
section 5.2.1 and the following. Therefore the functionalities of showing publications and
emailing results are exactly the same.

You might have noticed the "Compare" button in the history table view controller’s user
interface. We will talk about it later.

5.3 Merging publications

Occasionally it happens that the very same publication is listed multiple times in the very
same search result. This might happen when the same publication was published under
different titles. In such a case the Google Scholar search engine might not be able to deter-
mine that these titles refer to the same publication and thus index two publications instead
of one. Furthermore it even can happen that Google finds multiple publications with the

90

5.3 Merging publications

exact same title for the same author. This is confusing because the same author would
probably not write two different publications and entitle them identically. Obviously these
issues can distort the results. Unlike the Google Scholar search engine, a person might
notice that the very same publication is listed twice. Maybe the user can even imagine
why this happens. However, if the very same publication appears multiple times, one may
use the "Merge" button in the navigation bar of the publications view controller’s user in-
terface to merge multiple publications. (See figure 5.10) After the user tapped the "Merge"
button, the table view swaps into what we call "Merge Mode". In "Merge Mode" one can
select the publications which should be merged. The interface then displays a tool bar
with the "Merge Selected Publications" button to merge the selected publications. Figure
5.17 shows a screenshot of the publications view controller’s interface in "Merge Mode" on
the left side. The feature allows to merge multiple publications at once and even nested
merging is possible. Back in normal mode, merged publications are being marked with a
red "Merge #amount of other publications merged with this publication" as illustrated by
figure 5.17 on the right side. The publication with the most citations will be kept as the
representative publication. If there are multiple, an arbitrary publication will serve as the
representative one. All others will disappear from the table view. Of course it is possible
to dissolve merges. Therefore the merged publication has to be tapped. In the appearing
view, the bottom bar contains a "Dissolve" button. Tapping it shows all publications which
are currently merged with this publication, again in a table view. To delete a merge you
simply delete the publication here the same way you would delete publications in the publi-
cations view controller’s user interface with the swipe and delete feature (Compare section
5.2.4).

91

5 Implementation

Figure 5.17: Merge Mode & Publication with one merged publication

5.3.1 Merge Mode

The implementation of the "Merge Mode" is simple. Basically we toggle a flag which indi-
cates whether merge mode is set or not. Depending on the flag we change the appearance
of the cells by using different UITableViewAccessory types and reloading the table view.

Usually a cell’s accessory type is set to UITableViewCellAccessoryDisclosureIndicator ❧1
which indicates that the cell can be tapped to display the next level in the navigation flow.
When the "Merge" button gets tapped, we toggle the flag and reload the table view. In
the data source’s method which returns the cells (tableView: cellForRowAtIndexPath:),
we toggle the accessory type accordingly. In "Merge Mode" we use the accessory type

UITableViewCellAccessoryNone ❧2 so that it is clear that the usual function of the cell is
disabled temporarily. For the selection and deselection of the cells, we makes use of the
same principle. In the delegate’s method, which gets called when the user taps a cell
(tableView: didSelectRowAtIndexPath:), we toggle between the accessory types UITable-

ViewCellAccessoryNone and UITableViewCellAccessoryCheckmark ❧3 . Latter indicates
that a cell was being selected by displaying a check mark. The deselection of the cell in

92

5.3 Merging publications

turn, causes the cell to switch back and display the accessory type UITableViewCellAcces-
soryNone. Figure 5.18 shows the three accessory types.

Figure 5.18: UITableViewCell Accessory Types

5.3.2 Merging

The purpose of merging is to merge the citation counts of multiple publications into a single
representative publication count. Therefore we define the publication with the highest cita-
tion count as the "Master ". If there are multiple we select an arbitrary one to become the
"Master ". For all other publications which were selected for being merged with the master
publication, we change the database field merged_with to the master’s ID and add the cita-
tion counts to the master’s cites field. Additionally we increment the master’s database field
merge_count for each merged publication by one so that we know how many publications
are being merged with the master.

5.3.3 Dissolving

In order to dissolve the merges of a publication, you first have to navigate to the next higher
level in the navigation flow. Again, this is implemented with the usual methodology to push
the next controller onto the navigation stack and triggered by tapping a row of the pub-
lications view controller’s table view. The subsequently presented user interface belongs
to a controller of the type PaperViewController which we introduced in section 5.2.5. By
pressing the "Dissolve" button of the paper view controller’s tool bar, an instance of the Dis-
solveViewController is being created and pushed on the stack. The DissolveViewController

93

5 Implementation

class inherits from our BasicTableViewController class, which simply is an implementation
of the class UITableViewController holding a reference to the database controller and an
ID to the database entry it manages. Thus the DissolveViewController class basically is
another standard UITableViewController implementation which shows the merged publica-
tions as illustrated by figure 5.19. The user can dissolve a merge by deleting a publication
the same way publications can be deleted in the publications table view controller (Com-
pare section 5.2.4). The implementation of this functionality thus also is the same. The only
difference is the database method it triggers to dissolve a merge.

Figure 5.19: DissolveViewController contains the merged publications of a publication

5.4 Graph Feature

The idea of the graph feature is, that it might be interesting to know about the evolution of
the citation counts of a particular publication. For most publications, which are contained in
the result of a search, Google provides a link to display all the publications which cite this
publication (See the "Cited by #" link in section <!−−6−− > of fig. 5.4). Furthermore it is
possible to limit all publications, which cited the publication of interest, to those which were

94

5.4 Graph Feature

published in a particular year (Compare section ❧1 of figure 5.2). Assuming the publication
years are known, this means that we can assign the amount of publications which cited the
publication of interest to a specific year. Given these data, we can draw a graph visualizing
the evolution of the citation counts over time. Fortunately most publication years are given
and we can draw more or less meaningful graphs in most cases. To provide a measure of
the actual accuracy of the graph, we quote the percentage of how many publications could
be assigned to it.

When you tap the "Graph" button of the paper view controller’s tool bar, a PaperGraphView-
Controller object will be instantiated and start with the collection of the publication counts for
each year. The PaperGraphViewController object does not make use of the Parser class.
It requests HTML documents jut like the SearchViewController class but retrieves the data
of interest using regular expressions. Therefore we use the RegexKitLite framework [2]. It
extends the standard NSString class, provided by the foundation framework, by advanced
regular expression functionality. To use it in your project download and include the classes
and simply add -licucore to your Other linker Flags in the Build tab of your info.plist file.
Similar to the SearchViewController object the PaperGraphViewController object initially
presents a view visualizing the progress of the data collection. As soon as the data is avail-
able a bar graph is being drawn and presented to the user as illustrated by figure 5.20. The
user then has the option to switch to a full screen overview mode (See figure 5.21), email
an image of the graph (See figure 5.23), display the amount of publications which could be
allocated in the graph (See figure 5.22) and navigate back to the paper view controller of
course. The four options are being provided by four buttons on top of the initially presented
graph view.

Figure 5.20: PaperGraphViewController’s default graph view

95

5 Implementation

Figure 5.21: PaperGraphViewController: Graph overview

Figure 5.22: PaperGraphViewController: Citation allocation explained

96

5.4 Graph Feature

Figure 5.23: Email an image of the graph

5.4.1 Displaying large Images

Before we could start with implementing the actual drawing of the bar graph, we had to
think about how to accomplish two important aspects. On the one hand, we had to find a
way of presenting graphs of arbitrary size on a screen with a resolution of 320x480 pixels
(IPhone and iPodTouch of the 2nd and 3rd generation). Thereby we wanted the graph to
show the evolution of the citation counts but also the exact values. On the other hand it is
not possible to display images of arbitrary size on the iPhone and the iPodTouch as mem-
ory is limited. Both aspects are based on similar constraints. The problem of displaying
large images on the iPhone is not novel at all. The basic approach is to chop the image into
multiple smaller tiles and use a UIScrollView object to scroll around and partially display the
image. By using a UIScrollView object, zooming in and out also can be achieved. Indeed
that is what we first tried. We initially displayed an overview of the graph and enabled to
zoom in, to make the individual values such as citation counts and years readable. Quickly
we figured that one has to do a lot of scrolling and zooming to read the individual values
as well as for getting back to display the overview. In order to achieve both, displaying an
overview as well as the details in the graph, our final approach was to use two different per-
spectives. This not only solved the illustration problem but also lead to a basic approach of
how to implement the detailed perspective in which the actual values of the citation counts
are being displayed. More on this in section 5.4.3.

97

5 Implementation

5.4.2 Quartz 2D

We already mentioned the Quartz 2D drawing engine in the context of creating PDF docu-
ments in section 5.2.2. This is no coincidence at all. In order to draw with Quartz a graphics
context is being required. This is an opaque data type which encapsulates the information
Quartz uses to draw to an output device. It can be thought of as some kind of drawing
destination which not only contains the drawing parameters but also device specific char-
acteristics. The device can be a window, an image or a PDF file for instance. This has
the advantage that you can draw the same sequences of Quartz drawing routines to differ-
ent devices simply by using different graphic contexts. As you know, we decided to create
HTML files instead of PDF documents eventually. But when we initially created PDFs, we
used a PDF graphics context to create our documents. Likewise we used a window graph-
ics context, to draw our graph on the screen, and a bitmap graphics context to create a
PNG image in order to email it.

5.4.3 Graph drawing strategy

Like we said, it is not possible to display images of arbitrary size. Also this does not make
much sense as the screen resolution is 320 x 480 pixels (Device of third generation) and
we can not show images of larger size anyway. For our detailed bar graph perspective
we came up with the idea that we could use the device in landscape mode and adjust
the citation values to the screen height of 320 pixels so that horizontal scrolling would be
sufficient to show graphs which are broader than the screen. This results in an easy to use
interface and omits the necessity of zooming and scrolling for citation counts and years as
we can add the values in readable size to the graph. To overcome the problem of drawing
large graphs, we use three tiles of 240 x 320 pixels and a UIScrollView object to draw the
detailed graphs. The tiles hereby change their positions in the scroll-view based on the
scroll-view’s offset from its origin and draw their content based on their position. Figure
5.24 illustrates this approach. In the application an instance of PaperGraphViewController
holds the scroll-view with the three tiles which draw the entire bar graph. The tiles are of
the class GraphTile. It basically is a UIView which draws its content based on its frame,
more precisely on the position of its frame in the scroll-view. To rearrange the tiles we
overwrite the setFrame: method. The paper graph view controller conforms to the scroll-
view’s UIScrollViewDelegate protocol and responds on scrolling with rearranging the tiles
respectively by using the mentioned setFrame: method.

98

5.4 Graph Feature

Figure 5.24: Relocating tiles which draw their content based on their position

Once a graphics context is available, the parameters for painting can be set and the drawing
routines like CGContextAddLineToPoint being defined. To draw something on the screen,
you have to make an UIView object implement the method drawRect:, in which you can
then perform the actual drawing. The UIView object automatically creates a graphic con-
text for the current drawing environment which you can obtain in the drawRect: method by
calling UIGraphicsGetCurrentContext.

5.4.4 Creating an image file

To create an image, you have to create a CGBitmapContextCreate first. Therefore you
need to supply a pointer to the memory where you want the drawing to be rendered. But
first you have to calculate the size of the memory block which is required for your image and
allocate it using the malloc method. In our case we have used 8 bit for each component R,
G, B and Alpha in the RGB color space, which results in 32 bit per pixel. The necessary
memory block therefore must be imageWidth ∗ imageHeight ∗ 4 bytes large. There are
plenty of drawing routines and transformations functions available. You can draw and com-
bine paths, gradients, shadows, patterns, layers and transformations. It would go beyond
the scope of this diploma thesis to explain them here. Also it very much depends on what
you want to accomplish. To find out which routines and transformations you need for what
you want to draw, you should check out Apple’s Quartz 2D Programming Guide [13].

99

5 Implementation

5.4.5 Email the image

The process of emailing the graph image very much is the same as emailing the HTML
results as discussed in section 5.2.2. After we drew the image, we can save it to the
/tmp folder and then attach it to our email. Hence the PaperGraphViewController class not
only conforms to the UIScrollViewDelegate protocol but also the MFMailComposeViewCon-
trollerDelegate protocol in order to implement the email functionality like described before.

5.5 Comparison Feature

The comparison feature, as the name suggests, is a feature for the comparison of two
search results. In the navigation bar of the history table view controller there is the "Com-
pare" button (Left screenshot of figure 5.25). When you tap it, a tool bar with the button
"Compare Checked Publications" will appear and you can select two of the search results
as illustrated by the right screenshot of figure 5.25. When you tap the button in the tool bar
both scholarly indexes for both scholars are being calculated and presented by the interface
of a ComparisonResultsViewController object which is illustrated by the left screenshot of
figure 5.26. The presented view allows to compare the two indexes and the search details.
For a better distinction between the tow search results, the interface displays all results
related to the first scholar in brown and yellow and all results related to the second scholar
in green. The more interesting part is the CompareTableViewController object which dis-
plays the publications of both searches in the same table. In order to differentiate between
which publication belongs to which search, the compare table view controller’s table view
also uses brown and yellow to display the publications of the first search and two shades
of green for the publications of the second search. Unfortunately we cannot be sure if it is
possible to identify publications distinctly. Initially we thought that publications do have a
unique title. But we had to find out that this is not always the case. For distinct identifications
we would have to know whether it is possible to identify results distinctly or whether it can
happen that there are two results with the exact same values and thus are indistinguish-
able. Fortunately, all this only effects us slightly. The fact that there can be publications
with the same titles does not have any impact on the calculations of the two indexes at all.
If Google accidentally provides two publications instead of one, it is up to the user to clean
the data by deleting one (Compare 5.2.4) or merging both (Compare 5.3). Therefore we
assume that the publication titles within the results of one search are unique and identify
the publications for the comparison based on their titles. When we can find one publica-
tion in both search results, we display the corresponding row in the neutral blue colour.
Moreover we split the left section of our rows in top and bottom. In the top half, we show
citation- and merge count of the first scholar’s publication. In the bottom half we display the
respective details of the second scholar’s publication whereas the citation count is being

100

5.5 Comparison Feature

displayed in relation to the first publications count. So you might see something like +3,
−1 or + − 0 if the citation count is the same for both publications. For a visual illustration
see the right screenshot of figure 5.26. The comparison feature can be helpful to find out
why an author has better indexes than another. It also allows to compare the results and
publications of the same author at different points in time. In the advanced search form the
user can limit publication years. On the other hand one could perform a search today for a
comparison with the exact same search in two month from now. However, the results of the
feature are not that easy to understand and you should remember that the colours green
and brown stand for two different searches, instead of two different indexes, like they did
in the interfaces of the SearchResultsViewController and the HistoricResultsViewController
objects.

Figure 5.25: HistroyTableViewController: Select two publications for comparison

101

5 Implementation

Figure 5.26: HistroyTableViewController: Select two publications for comparison

We have already introduced all the techniques which we have used to implement the com-
parison feature. The selection of the two publication in the history table view controller’s
interface is the same approach that we have used in order to select publication for merging
5.3.1. The ComparisonResultsViewController class inherits from the IntermediateView-
Controller class and implements a user interface to show the two results at once. By now
we have talked about the UITableViewController class quite a lot. The CompareTableView-
Controller class is just another example as it inherits from our BasicTableViewController
class.

5.6 About and Instructions

At this point we have completed the explanation of the required features. In the "Architec-
ture" chapter 4 we explained the basic structure of our application and said that it consists
of a UITabBarController object with three tabs. You may have noticed that all custom con-
trollers we described in the "Implementation" chapter so far, are located in the left or in the

102

5.6 About and Instructions

middle tab. The right one is still missing. The right tab does not contain any more seri-
ous features. Its function simply is to present some information about the application and
instructions about all our features. A controller of the type AboutViewController is the root
controller of the third tabs navigation controller. Figure 5.27 shows the user interface of
the AboutViewController class. It has a corresponding XIB file containing two UITextViews
and three buttons. The buttons all are connected to respective IBActions in the controller.
The first button is represented by an email address. By tapping it, once again an instance
of MFMailComposeViewController is being created and presented modally. The second
button is our institute’s web address. By tapping it, a WebViewController object is being
presented in order to load our institutes website. By tapping the third button, an instance
of the InstructionsViewController is being presented. The InstructionsViewController class
does not inherit from the WebViewController class but implements similar functionality. As
the name suggest, the instructions view controller’s interface presents the instructions as il-
lustrated by figure 5.28. Therefore the corresponding XIB file contains the exact same user
interface elements as the interface of the WebViewController class. Most important, the
UIWebView. Additionally the tool bar holds the "Instructions" button. The reason why the
InstructionsViewController class is so similar to the WebViewController class is because
the instructions view controller presents a local website which is being stored in the ap-
plication bundle and contains the instructions of all features. The additional "Instructions"
button serves as a "Home" button which provides functionality to always return to the initially
presented instructions site.

103

5 Implementation

Figure 5.27: AboutViewController’s user interface

104

5.7 Remember Feature

Figure 5.28: InstructionsViewController’s user interface

5.7 Remember Feature

Last but not least we will talk about the "Try to editing copy of the latest stored query" switch
in the search view controller’s interface (See figure 5.5) and its functionality. Switches are
of the class UISwitch which implements functionality identical to a real switch: you can turn
it on and off. However, let us assume you have submitted a search sometime in the past,
deleted all publications which did not match your request, merged all publications which
belong together and then saved the results. Now you would like to do the same search
again, maybe to check if the indexes or specific citation counts increased. Then you would
have to query the same search and perform the exact same editing on the result like you
did last time. The function behind the "Try to editing copy of the latest stored query" switch
is to automate this. If the "Try to editing copy of the latest stored query" switch is turned
on before you search, the application checks if there are saved results which belong to
an equal search request. If this is the case, the application automatically tries to perform
the exact same editing on your new search results after retrieving them like you did on the

105

5 Implementation

latest saved results of the respective equal search.

Due to the fact that we are not sure whether the Google results allow to be identified dis-
tinctly, we assume that the titles of publications usually are unique. We know that there are
cases in which this does not apply. We even discovered cases where the title of the exact
same publication varied from one search to another. But we assume that these cases are
very rare and only emerge due to poor performance of the Google Scholar search engine
or based on disadvantageously entitling of publications. Thus we (Compare 5.3 and 5.5)
use the title as an identifier for a specific publication. This again means we have to do a
lot of string comparison here. Based on the matchings of the strings, database functions
are being triggered to perform deletions and merging of the new publications with the same
titles. Due to the identification problems this feature can not guarantee to reproduce all the
editing of the latest stored results accurately.

5.8 iOS Frameworks

In the appendix of Apple’s iOS Technology Overview there is a nice table [29] which gives an
overview of all iOS frameworks, a short explanation for each and a link for further resources.
The table 5.12 lists most of these frameworks and the corresponding descriptions. All
frameworks which we actually used for development are marked in blue. Note, that all
frameworks coloured in green are available since iOS version 4.0 or above. Therefore they
were not yet available, when we started development. However, the tables point out the
spectrum of available technologies and possibilities that iOS development has reached by
today.

Table 5.12: Frameworks used for development

Framework Description

Accelerate.framework Contains accelerated math and DSP functions

AddressBook.framework Contains functions for accessing the user’s con-
tacts database directly.

AddressBookUI.framework Contains classes for displaying the system-
defined people picker and editor interfaces.

AssetsLibrary.framework Contains classes for accessing the user’s photos
and videos.

106

5.8 iOS Frameworks

Table 5.12: Frameworks used for development

Framework Description

AudioToolbox.framework Contains the interfaces for handling audio stream
data and for playing and recording audio.

AudioUnit.framework Contains the interfaces for loading and using au-
dio units.

AVFoundation.framework Contains Objective-C interfaces for playing and
recording audio and video.

CFNetwork.framework Contains interfaces for accessing the network via
Wi-Fi and cellular radios.

CoreAudio.framework Provides the data types used throughout Core Au-
dio.

CoreData.framework Contains interfaces for managing your applica-
tion’s data model.

CoreFoundation.framework Provides fundamental software services, includ-
ing abstractions for common data types, string
utilities, collection utilities, resource management,
and preferences.

CoreGraphics.framework Contains the interfaces for Quartz 2D.

CoreLocation.framework Contains the interfaces for determining the user’s
location.

CoreMedia.framework Contains low-level routines for manipulating audio
and video.

CoreMIDI.framework Contains low-level routines for handling MIDI data.

CoreMotion.framework Contains interfaces for accessing accelerometer
and gyro data.

CoreTelephony.framework Contains routines for accessing telephony-related
information.

CoreText.framework Contains a text layout and rendering engine.

107

5 Implementation

Table 5.12: Frameworks used for development

Framework Description

EventKit.framework Contains interfaces for accessing a user’s calen-
dar event data.

EventKitUI.framework Contains classes for displaying the standard sys-
tem calendar interfaces.

ExternalAccessory.framework Contains interfaces for communicating with at-
tached hardware accessories.

Foundation.framework Contains interfaces for managing strings, collec-
tions, and other low-level data types

GameKit.framework Contains the interfaces for managing peer-to-peer
connectivity.

iAd.framework Contains classes for displaying advertisements in
your application.

ImageIO.framework Contains classes for reading and writing image
data.

MapKit.framework Contains classes for embedding a map interface
into your application and for reverse-geocoding
coordinates.

MediaPlayer.framework Contains interfaces for playing full-screen video.

MessageUI.framework Contains interfaces for composing and queuing
email messages.

OpenGLES.framework Contains the interfaces for OpenGL ES, which
is an embedded version of the OpenGL cross-
platform 2D and 3D graphics rendering library.

QuartzCore.framework Contains the Core Animation interfaces.

QuickLook.framework Contains interfaces for previewing files.

Security.framework Contains interfaces for managing certificates,
public and private keys, and trust policies.

108

5.8 iOS Frameworks

Table 5.12: Frameworks used for development

Framework Description

StoreKit.framework Contains interfaces for handling the financial
transactions associated with in-app purchases.

SystemConfiguration.framework Contains interfaces for determining the network
configuration of a device.

UIKit.framework Contains classes and methods for the iOS appli-
cation user interface layer.

109

5 Implementation

110

6 Bug

There is one disappointing aspect we have to talk about. There is a bug in our application.
After a few weeks of development we discovered that our app sometimes gets stuck. It does
not crash, it just does not respond any more. We figured that it has got something to do with
our table view controllers. Funny thing though, when the device is being shook, the app
suddenly responses again. It seems that the bug has got something to do with animating
the table view when the respective table controller is being pushed and popped on or off
the navigation stack. It seems not to occur when either the animation is not being applied in
the pushViewController: animated: method of the underlying navigation controller or when
we relinquish on the data source’s sectionIndexTitlesForTableView: method for navigating
within the table. Initially we thought of course that this is our fault and we might have
messed up memory management at some point. Thus we searched for the bug for quite a
while but could not find anything. Our next step was to break down everything to a simple
example in order to reproduce the bug. Fortunately we could achieve this with a XCode
application template and a few additional lines of code. At this point it seemed unlikely
that we have messed up something and everything pointed to the fact that this could be
an iOS bug. Fortunately the Apple’s developer program provides technical support. In the
Standard Developer Program, you can submit two TSIs (Technical Support Incident) each
year [32]. After a few more weeks of putting the bug aside we submitted a TSI reporting
the issue. The Apple technician who responded on our TSI analysed that it seems to be
an iOS bug. He proposed to rewrite a part of the code so that the bug would not occur.
Unfortunately that did not work. By now we do not have a solution for the problem yet. In
the appendix A.1 you can read our TSI and Apple’s response.

111

6 Bug

112

7 App Store Submission

When your application is ready for the submission to the App Store, you will initially have to
go through a similar procedure than the one of preparing your application to run on a de-
vice for development purposes. Unfortunately this time you will have to perform even more
steps. I can understand when developers experience problems with submitting an app for
distribution in the App Store the first time as it requires a lot of steps before you can actu-
ally upload your application. The provisioning portal on the other hand provides documents
which should give you the answers to all of your questions concerning App submission. For
the distribution you have to create a distribution certificate and the corresponding private
key. The steps are similar to setting up the provisioning profile for test purposes. This time
you have to create an App Store Distribution Provisioning Profile in order to build your app
for distribution via the App Store. Moreover you have to configure your application for the
distribution. All necessary steps can be found in the provisioning portal under the Distribu-
tion section [27]. When you have finally built your application for distribution, you are still not
quite done yet. You now have to log in at iTunes Connect (https://itunesconnect.apple.com/)
with your App ID and add a new Application. Therefore you need to provide a description,
screen shots, icons and a URL to your app’s website. When all this is done, you are ready
to upload your binary via Application Loader. Application Loader comes with iOS SDK 3.2
and later and allows you to upload your binary.

7.1 Distribution Alternatives

The App Store is not the exclusive way of distributing apps. We have already mentioned
three different Developer Programs in section 2.6: the Standard Individual Program, the
Standard Company Program and the iOS Developer University Program. If you are en-
rolled into either the Standard Individual Program or the Standard Company Program you
can distribute your apps via the App Store. Moreover you have the ability to install your
application on up to 100 devices via Ad Hoc distribution. More information about Ad Hoc
distribution can be found in the iOS Provisioning Portal of the iOS Developer Center [30]. If
you plan on developing an app for a company and therefore need to distribute your app on
more than 100 devices, there is a developer program especially for that: the iOS Developer

113

7 App Store Submission

Enterprise Program. It costs $299 per year and exclusively allows to distribute apps via Ad
Hoc but not via the App Store. To enrol into the iOS Developer Enterprise Program a DUNS
Number [38] is required. For further information see the iOS Developer Program [28].

7.2 Rejected

When you have uploaded your app you can check the status of the review in iTunes Connect
[7]. For our application the review process took about ten days. But that probably depends
on the complexity, functionality and content of your app and on how busy they are reviewing
other apps by the time you submit yours. We have mentioned some of the reasons which
cause apps to be rejected earlier in section 2.5 in the chapter "iPhone Development Intro-
duction". We knowingly used a non-public API, the method addTextFieldWithValue: label:
of the class UIAlertView to add a text field to the alert view in order to limit the amount of
publications being emailed with the results. The current implementation of this functionality
was explained back in section 5.2.2 in the "Implementation" chapter. However everything
worked well with the initial implementation and one could limit the amount of publications
being sent with the results by typing in a number in the text field of the appearing alert view.
But when we uploaded our app for the review, it got rejected. We received an email point-
ing out the respective rule of the Review Guidelines: 2.5 Apps that use non-public APIs
will be rejected. Thus we replaced the alert view simply with a view controller which we
present modally to ask the user whether he would like to limit the amount of publications
being sent with the results. We uploaded the app once again and after about 8 days, the
app was being accepted by Apple and finally was available in the App Store. Based on this
experience you can see that Apple is serious about the Review Guidelines. There are quite
many restrictions and you better check them before you invest your time in development.

114

8 Conclusion

With the development of our application we could proof that the iOS provides some basic
technologies for the development of mobile business applications for the iPhone. We could
meet most of the requirements which we defined for our application. The development
frameworks provide enough technologies which allow to port lightweight business appli-
cations on the iPhone. The platform is ready for thin client applications and it is possible
to outsource partial functionality from a desktop computer onto the iPhone. On the other
hand developing for the iPhone is more complex than developing an application for a usual
personal computer. You have to deal with memory management and restricted resources
on one side and with building a rich user interface for a small multi touch screen on the
other. Apple’s frameworks and guidelines assist the developer in designing a rich user in-
terface but cannot compensate all constraints which come with the small screen and the
nature of the device such as having to hold it during typing. Of course the device has sev-
eral advantages such as mobility, which a computer simply cannot provide. And the small
touch screen interface even might be the better solution in some scenarios compared to
the usual computer input interfaces. In order to gain more knowledge about the usability of
the device, it would be necessary to analyse user performance for several tasks of different
complexity in comparison with the same tasks on a computer. Even though there are sev-
eral development frameworks available in the iOS SDK, the technology outline by far cannot
compete with the possibilities of software development for personal computers. Building a
complex application requires to seriously investigate feasibility in general. In case the basic
conditions are being satisfied, the development still will take an adequate time.

115

8 Conclusion

116

A Appendix

A.1 TSI

A.1.1 Our TSI

Hello,

we seem to have a strange bug in our application,

UITableView - sectionIndexTitlesForTableView seems to cause the application not to re-
spond on touches. When it gets stuck and one shakes the device, it responds again.

Attached code has to be installed on a device! In simulator the bug only appears occasion-
ally.

Steps to reproduce:

To reproduce the status where the app is not responding to touches, you have to press the
initially presented button in the app, scroll down and subsequently navigate back (to the
root view controller presenting the button) while the table view still is animating the scrolling

and then repeat these steps a few times.

Eventually, after a few times, the app will not respond after the table view was being pre-
sented.

When you then shake the device the app will respond again.

If it just will not happen restart your device and try again. I promise at some point it will get
stuck. I can make a video if necessary.

117

A Appendix

I have experienced this situation in an app I am developing currently. It did not respond in a
view controller which presents another view controller containing a table view. So the bug
appears in a different situation. But the reason should be the same. I figured out that the
method sectionIndexTitlesForTableView seems to have something to do with it. If I do not
implement it, it works just fine.

I could reproduce the bug on multiple devices (iPodTouch 2nd gen, 4th gen, iPhone 4th
gen) as well as with multiple SDKs (iOS 4.0, iOS 4.1 and I am quite sure also in iOS 3.2)

Thanks a lot for checking it out.

Cheers, Andreas Robecke

A.1.2 Apple’s response

Hello,

Thank you for your inquiry to Apple Worldwide Developer Technical Support. I am respond-
ing to let you know that I have received your request for technical assistance.

I have been able to reproduce the problem. I believe there is race condition somewhere due
to the animation firing and the releasing of the table view controller when the back button
is pressed. I have not confirmed if "sectionIndexTitlesForTableView" is the smoking gun for
the cause of the problem.

This is a very strange bug indeed. I would suggest not allocating, releasing, and reallocat-
ing this view controller each time you navigate. This may be the heart of the problem. I
would suggest creating your TableView instance in viewDidLoad inside your RootViewCon-
troller and use that instance when pushing and popping. This will keep the retain count at
1 and never cause the release to occur while switching back and forth. I’ve tested it a bit
and couldn’t reproduce the problem.

I would consider this a bug in iOS and you can file one at "http://bugreporter.apple.com".

Best regards,
Keith Mortensen
Apple Developer Technical Support

118

Bibliography

[1] Google Scholar. http://scholar.google.com/

[2] RegexKitLite. http://regexkit.sourceforge.net/RegexKitLite/

[3] Scopus. http://www.scopus.com/

[4] Web of Science. http://isiwebofknowledge.com/

[5] UI Tab Bar Controller Class Reference. http://developer.apple.com/

library/ios/#documentation/uikit/reference/UITabBarController_

Class/Reference/Reference.html. Version: 2009

[6] Nib File Management. http://developer.apple.com/library/

mac/#documentation/DeveloperTools/Conceptual/IB_UserGuide/

BuildingaNibFile/BuildingaNibFile.html#//apple_ref/doc/uid/

TP40005344-CH11-SW1. Version: 2010

[7] https://itunesconnect.apple.com/

[8] APPLE: iPhone in Business. http://www.apple.com/iphone/business/

profiles/

[9] APPLE: Message UI Framework Reference. http://developer.apple.

com/library/ios/#documentation/MessageUI/Reference/MessageUI_

Framework_Reference/_index.html

[10] APPLE: Modal View Controllers. http://developer.apple.com/

library/ios/#featuredarticles/ViewControllerPGforiPhoneOS/

ModalViewControllers/ModalViewControllers.html

[11] APPLE: Program Enrollment. http://developer.apple.com/support/ios/

enrollment.html

[12] APPLE: Quartz 2D Programming Guide. http://developer.apple.

com/library/ios/#documentation/GraphicsImaging/Conceptual/

drawingwithquartz2d/dq_pdf/dq_pdf.html#//apple_ref/doc/uid/

TP30001066-CH214-TPXREF101

[13] APPLE: Quartz 2D Programming Guide. http://developer.apple.

com/library/ios/#documentation/GraphicsImaging/Conceptual/

drawingwithquartz2d/Introduction/Introduction.html

119

http://scholar.google.com/
http://regexkit.sourceforge.net/RegexKitLite/
http://www.scopus.com/
http://isiwebofknowledge.com/
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITabBarController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITabBarController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITabBarController_Class/Reference/Reference.html
https://itunesconnect.apple.com/
http://www.apple.com/iphone/business/profiles/
http://www.apple.com/iphone/business/profiles/
http://developer.apple.com/library/ios/#documentation/MessageUI/Reference/MessageUI_Framework_Reference/_index.html
http://developer.apple.com/library/ios/#documentation/MessageUI/Reference/MessageUI_Framework_Reference/_index.html
http://developer.apple.com/library/ios/#documentation/MessageUI/Reference/MessageUI_Framework_Reference/_index.html
http://developer.apple.com/library/ios/#featuredarticles/ViewControllerPGforiPhoneOS/ModalViewControllers/ModalViewControllers.html
http://developer.apple.com/library/ios/#featuredarticles/ViewControllerPGforiPhoneOS/ModalViewControllers/ModalViewControllers.html
http://developer.apple.com/library/ios/#featuredarticles/ViewControllerPGforiPhoneOS/ModalViewControllers/ModalViewControllers.html
http://developer.apple.com/support/ios/enrollment.html
http://developer.apple.com/support/ios/enrollment.html
http://developer.apple.com/library/ios/#documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/Introduction/Introduction.html

Bibliography

[14] APPLE: Table View Programming Guide for iOS. http://developer.apple.

com/library/ios/#documentation/UserExperience/Conceptual/

TableView_iPhone/AboutTableViewsiPhone/AboutTableViewsiPhone.

html#//apple_ref/doc/uid/TP40007451

[15] APPLE: UITableViewDataSource Protocol Reference. http://developer.

apple.com/library/ios/#documentation/uikit/reference/

UITableViewDataSource_Protocol/Reference/Reference.html

[16] APPLE: UITableViewDelegate Protocol Reference. http://developer.

apple.com/library/ios/#documentation/uikit/reference/

UITableViewDelegate_Protocol/Reference/Reference.html

[17] APPLE: UIWebView Class Reference. http://developer.apple.com/

library/ios/#documentation/uikit/reference/UIWebView_Class/

Reference/Reference.html

[18] APPLE: URL Loading System Programming Guide. https://developer.

apple.com/library/ios/#documentation/Cocoa/Conceptual/

URLLoadingSystem/URLLoadingSystem.html

[19] APPLE: XMLPerformance. http://developer.apple.com/library/ios/

#samplecode/XMLPerformance/Introduction/Intro.html

[20] APPLE: XMLPerformance ReadMe.txt. http://developer.apple.

com/library/ios/#samplecode/XMLPerformance/Listings/

ReadMe_txt.html#//apple_ref/doc/uid/DTS40008094-ReadMe_

txt-DontLinkElementID_23

[21] APPLE: Archives and Serializations Programming Guide. https:

//developer.apple.com/library/ios/#documentation/Cocoa/

Conceptual/Archiving/Archiving.html. Version: 2010

[22] APPLE: UITableView Class Reference. http://developer.apple.com/

library/ios/#documentation/uikit/reference/UITableView_Class/

Reference/Reference.html#//apple_ref/occ/instm/UITableView/

dequeueReusableCellWithIdentifier:. Version: 2010

[23] APPLE: UITableViewCell Class Reference. http://developer.

apple.com/library/ios/#documentation/uikit/reference/

UITableViewCell_Class/Reference/Reference.html#//apple_ref/

occ/cl/UITableViewCell. Version: 2010

[24] APPLE: Memory Management Programming Guide. http://developer.apple.

com/library/ios/#documentation/Cocoa/Conceptual/MemoryMgmt/

Articles/mmRules.html. Version: 2010-06-24

120

http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewDataSource_Protocol/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewDataSource_Protocol/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewDataSource_Protocol/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewDelegate_Protocol/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewDelegate_Protocol/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewDelegate_Protocol/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIWebView_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIWebView_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIWebView_Class/Reference/Reference.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html
http://developer.apple.com/library/ios/#samplecode/XMLPerformance/Introduction/Intro.html
http://developer.apple.com/library/ios/#samplecode/XMLPerformance/Introduction/Intro.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/Archiving/Archiving.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/Archiving/Archiving.html
https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/Archiving/Archiving.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html

Bibliography

[25] APPLE: Introduction to The Objective-C Programming Language. http:

//developer.apple.com/library/ios/#documentation/Cocoa/

Conceptual/ObjectiveC/Introduction/introObjectiveC.html.
Version: 2010-07-13

[26] APPLE: UIViewController Class Reference. http://developer.apple.com/

library/ios/#documentation/uikit/reference/UIViewController_

Class/Reference/Reference.html. Version: 2010-10-13

[27] APPLE: Distribution. http://developer.apple.com/ios/manage/

distribution/index.action. Version: 2011

[28] APPLE: iOS Developer Enterprise Program. http://developer.apple.com/

programs/ios/enterprise/. Version: 2011

[29] APPLE: iOS Frameworks. http://developer.apple.com/library/ios/

#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/

iPhoneOSFrameworks/iPhoneOSFrameworks.html#//apple_ref/doc/

uid/TP40007898-CH6-SW3. Version: 2011

[30] APPLE: iOS Provisioning Portal. https://developer.apple.com/ios/manage/
overview/index.action. Version: 2011

[31] APPLE: Obtaining your iOS Development Certificate. https://developer.apple.
com/ios/manage/certificates/team/howto.action. Version: 2011

[32] APPLE: Technical Support. http://developer.apple.com/support/

resources/technical-support.html. Version: 2011

[33] APPLE: iOS Human Interface Guidelines. https://developer.apple.

com/library/ios/#documentation/UserExperience/Conceptual/

MobileHIG/Introduction/Introduction.html. Version: 2011-01-03

[34] BAR-ILAN, JUDIT: Which h-index? – A comparison of WoS, Scopus and Google
Scholar. In: Scientometrics, Vol. 74, No. 2 (2008) 257–271 (2007)

[35] BOSMAN, Jeroen: Scopus reviewed and compared. (June 2006)

[36] BRADLEY, Tom: TBXML. http://www.tbxml.co.uk/TBXML/TBXML_Free.

html. Version: 20th May 2010

[37] COLLECTION.DE cpu: CPUs by Production Year. http://www.cpu-collection.
de/. Version: 2011

[38] DNBGERMANY: D&B. http://www.dnbgermany.de/

[39] EGGHE, LEO: Theory and practise of the g-index. In: Scientometrics (2006)

121

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIViewController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIViewController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIViewController_Class/Reference/Reference.html
http://developer.apple.com/ios/manage/distribution/index.action
http://developer.apple.com/ios/manage/distribution/index.action
http://developer.apple.com/programs/ios/enterprise/
http://developer.apple.com/programs/ios/enterprise/
https://developer.apple.com/ios/manage/overview/index.action
https://developer.apple.com/ios/manage/overview/index.action
https://developer.apple.com/ios/manage/certificates/team/howto.action
https://developer.apple.com/ios/manage/certificates/team/howto.action
http://developer.apple.com/support/resources/technical-support.html
http://developer.apple.com/support/resources/technical-support.html
https://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
https://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
https://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://www.tbxml.co.uk/TBXML/TBXML_Free.html
http://www.tbxml.co.uk/TBXML/TBXML_Free.html
http://www.cpu-collection.de/
http://www.cpu-collection.de/
http://www.dnbgermany.de/

Bibliography

[40] GUGLIOTTA, Guy: The Genius Index: One Scientist’s Crusade to Rewrite Reputa-
tion Rules. In: Wired Magazine (17.06.2009). http://www.wired.com/culture/
geekipedia/magazine/17-06/mf_impactfactor

[41] HARZING, Prof. Anne-Wil: Google Scholar - a new data source for citation analysis.
(2007)

[42] HIRSCH, J E.: An index to quantify an individual’s scientific output. In: Proc. Natl.
Acad. Sci. U. S. A. 46 (2005), Aug, Nr. physics/0508025, S. 16569

[43] MAHER ALI, PhD: iPhone SDK 3 Programming. A John Wiley and Sons, Ltd, Publica-
tion, 2009

[44] MARK, Dave ; LAMARCHE, Jeff: Beginning iPhone 3 Development: Exploring the
iPhone SDK. Apress, 2009

[45] MEHO, Lokman I. ; YANG, Kiduk: A New Era in Citation and Bibliometric Analyses:
Web of Science, Scopus, and Google Scholar. In: Journal of the American Society for
Information Science and Technology (2006)

[46] NOORDEN, Richard V.: Hirsch index ranks top chemists. In: Royal Society of Chem-
istry (23 April 2007). http://www.rsc.org/chemistryworld/news/2007/

april/23040701.asp

[47] PALSBERG, Jens: The h Index for Computer Science. (2011). http://www.cs.

ucla.edu/~palsberg/h-number.html

[48] SAX: Official website for SAX. http://sax.sourceforge.net/

[49] TOUCHXML: TouchXML. https://github.com/TouchCode/TouchXML

[50] W3C: Document Object Model (DOM). http://www.w3.org/DOM/

[51] W3C: XPath Language. http://www.w3.org/TR/xpath20/

122

http://www.wired.com/culture/geekipedia/magazine/17-06/mf_impactfactor
http://www.wired.com/culture/geekipedia/magazine/17-06/mf_impactfactor
http://www.rsc.org/chemistryworld/news/2007/april/23040701.asp
http://www.rsc.org/chemistryworld/news/2007/april/23040701.asp
http://www.cs.ucla.edu/~palsberg/h-number.html
http://www.cs.ucla.edu/~palsberg/h-number.html
http://sax.sourceforge.net/
https://github.com/TouchCode/TouchXML
http://www.w3.org/DOM/
http://www.w3.org/TR/xpath20/

Name: Andreas Robecke Matrikelnummer: 541382

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Andreas Robecke

	Introduction
	The H-Index
	The G-Index
	Acceptance of the indexes
	Google Scholar as the data source

	iPhone Development Introduction
	XCode, Interface Builder and the iOS SDK
	XCode
	iOS SDK

	iPhone Limitations
	Objective-C and MVC
	Memory Management
	MVC on the iPhone
	Communication between objects

	User Interface Design
	More on Interface Builder
	Coding user interfaces vs. Interface Builder
	Human Interface Guidelines

	Review Guidelines
	Test your app on the device

	Requirements
	Requirements defined before implementation
	Calculation of h- and g-indexes
	Manage search results
	Merging publications

	Requirements emerged during the implementation process
	Graph Feature
	Comparison Feature
	Remember Feature

	Architecture
	Controller Hierarchy
	UITabBarController Class
	UINavigationController Class
	Custom controllers loaded through the MainWindow NIB

	Custom Controller Inheritance
	UIKit Controllers
	Super Controllers
	Custom Controllers

	Parsing and Database Functionality
	Parsing
	Database Access
	Outsourcing parsing to a server

	Implementation
	Calculation of h- and g-indexes
	Development of a Google Scholar API
	Analysis of the HTML document structure for parsing
	Choosing a parser
	Calculation Algorithms
	The Search Flow

	Manage search results
	Displaying the calculated indexes
	Emailing results
	Displaying the publications of a search
	Editing results
	Displaying a publication
	Data persistence on the iPhone
	Caching and Saving
	Manage stored results

	Merging publications
	Merge Mode
	Merging
	Dissolving

	Graph Feature
	Displaying large Images
	Quartz 2D
	Graph drawing strategy
	Creating an image file
	Email the image

	Comparison Feature
	About and Instructions
	Remember Feature
	iOS Frameworks

	Bug
	App Store Submission
	Distribution Alternatives
	Rejected

	Conclusion
	Appendix
	TSI
	Our TSI
	Apple's response

	Bibliography

